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ABSTRACT

Offline-to-online reinforcement learning (RL), by combining the benefits of offline
pretraining and online finetuning, promises enhanced sample efficiency and policy
performance. However, existing methods, effective as they are, suffer from subopti-
mal performance, limited adaptability, and unsatisfactory computational efficiency.
We propose a novel framework, PROTO, which overcomes the aforementioned
limitations by augmenting the standard RL objective with an iteratively evolving
regularization term. Performing a trust-region-style update, PROTO yields stable
initial finetuning and optimal final performance by gradually evolving the regu-
larization term to relax the constraint strength. By adjusting only a few lines of
code, PROTO can bridge any offline policy pretraining and standard off-policy
RL finetuning to form a powerful offline-to-online RL pathway, birthing great
adaptability to diverse methods. Simple yet elegant, PROTO imposes minimal
additional computation and enables highly efficient online finetuning. Extensive
experiments demonstrate that PROTO achieves superior performance over SOTA
baselines, offering an adaptable and efficient offline-to-online RL framework.

1 INTRODUCTION

Reinforcement learning (RL) holds the potential to surpass human-level performances by solving
complex tasks autonomously (Silver et al., 2017). However, collecting a large amount of online
data, especially the initial random explorations, can be expensive or even hazardous (Nair et al.,
2020). Offline RL and offline imitation learning (IL) offer alternatives to training policies without
environment interactions, by exploiting fixed offline datasets generated by a behavior policy. However,
their performances are heavily limited by the quality and state-action space coverage of pre-existing
offline datasets (Jin et al., 2021). This largely inhibits these approaches in real-world applications,
where both sample efficiency and optimal performance are required (Kormushev et al., 2013).

Offline-to-online RL (Nair et al., 2020) has emerged as a promising solution, by pretraining a policy
π0 using offline RL/IL and then finetuning with online RL. Ideally, offline-to-online RL can improve
sample efficiency with favorable initialization for online RL. Further, by exploring more high-quality
data, it overcomes the suboptimality of offline RL/IL caused by the over-restriction on a fixed
suboptimal dataset. However, directly finetuning a pretrained policy often suffers from severe (even
non-recoverable) performance drop at the initial finetuning stage, caused by distributional shift and
the over-estimation error of value function at out-of-distribution (OOD) regions (Nair et al., 2020).

Existing works typically adopt conservative learning to alleviate this initial performance drop,
which has three major drawbacks: 1) Suboptimal performance. The majority of current methods
introduce policy constraints to combat performance drop due to distributional shift (Nair et al., 2020).
Optimizing policy with an additional constraint, however, impedes the online learning process and can
cause non-eliminable suboptimality gap (Kumar et al., 2019). 2) Limited adaptability. Most existing
methods are tailored to a specific pretraining or finetuning method, which lacks adaptability to
bridge diverse methods to achieve the best possible performance (Lee et al., 2022). 3) Computational
inefficiency. Moreover, some works require ensemble models to obtain near-optimal performance (Lee
et al., 2022), which introduces tremendous computational costs and is unscalable to larger models.

In this paper, we propose a generic and adaptive framework, iterative Policy Regularized Offline-To-
Online RL (PROTO), which incorporates an iterative policy regularization term into the standard RL
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objective. Performing a trust-region-style update (Schulman et al., 2015), our method encourages
the finetuning policy to remain close to πk (policy at last iteration, with π0 being the pretrained
policy). Compared to existing methods, PROTO adopts appropriate conservatism to overcome the
initial performance drop, while gradually relaxing excessive restrictions by casting constraint on
an evolved πk rather than the fixed π0, which leads to stable and optimal finetuning performance.
Moreover, theoretical analysis proves that the introduced iterative regularization term induces no
suboptimality and hence is far more optimistic compared to previous policy constraints that typically
cause suboptimal performance due to over-conservatism. Therefore, PROTO recognizes the necessity
of giving enough freedom to finetuning in order to obtain near-optimal policies. It imposes minimal
assumptions on pretraining and finetuning methods, allowing for seamless extension to diverse
methods accomplished by adding just a few lines of code to standard off-policy RL finetuning.
Simple yet effective, PROTO achieves state-of-the-art performance on D4RL benchmarks (Fu et al.,
2020) and introduces negligible computational costs, retaining high computational efficiency on par
with standard off-policy RL approaches and offering a competitive offline-to-online RL framework.

2 RELATED WORK

Policy Constraint (PC). The most straightforward way to mitigate the initial finetuning performance
drop is to introduce policy constraints to combat the distributional shift. Existing methods, however,
are over-conservative as they typically constrain the policy in a fixed constraint set (e.g., offline
dataset support (Kumar et al., 2019)), which can lead to severely suboptimal performance (Kumar
et al., 2019). Nair et al. (2020) is the first offline-to-online RL approach that obtains stable finetuning
performance. It introduces advantage weighted regression (AWR) (Peng et al., 2019) to extract policy,
which is equivalent to implicitly constraining the policy w.r.t. the replay buffer B that is updated by
filling in newly explored transitions. Some offline RL approaches adopt AWR-style policy extraction
to learn policies that can be directly utilized for online finetuning (Kostrikov et al., 2022; Garg et al.,
2023; Xiao et al., 2023). AWR, however, cannot be plugged into diverse online RL approaches
non-intrusively, limiting its adaptability. Sharing similar philosophy, some works constrain the policy
to stabilize training, but using a pluggable regularization (Wu et al., 2022; Zhao et al., 2022; Zheng
et al., 2023) such as simply adding one additional IL loss (Wu et al., 2022), which is easily adaptable
to diverse online finetuning approaches. All these methods are over-conservative since the constraint
on a mixed replay buffer B or a behavior policy µ may be severely suboptimal (Kumar et al., 2019;
Li et al., 2023; Wu et al., 2022). Some recent works partially reduce the over-conservatism by
constraining on a potentially well-performing pretrained policy π0 (Yu & Zhang, 2023; Agarwal
et al., 2022; Zhang et al., 2023). However, π0 may still be severely suboptimal when pretrained on a
suboptimal offline dataset (Kumar et al., 2019; Jin et al., 2021).

Pessimistic Value Initialization (PVI). One alternative to address performance drop is to initialize
online RL with a pessimistic value function, to alleviate the side effect of overestimation errors. By
doing so, the value function already attains low values at OOD regions and one can directly finetune
online RL without introducing any conservatism, which has the potential to obtain near-optimal
finetuning performance. Lee et al. (2022) is the first to adopt pessimistic value initialization and
introduces a balanced experience replay scheme. Nakamoto et al. (2023) further improves upon (Lee
et al., 2022) by conducting a simple value surgery to ameliorate training instability caused by the
over-conservative value initialization at OOD regions. However, these methods heavily rely on
CQL (Kumar et al., 2020) pretraining framework, which inherit the main drawbacks of CQL such
as being over-conservative and computationally inefficient (Kostrikov et al., 2021; Li et al., 2023).
Thus, when tasks are too difficult for CQL to obtain reasonable initialization, inferior performance
may occur. Moreover, an ensemble of pessimistic value functions is generally required to better
depict the manifold of OOD regions (Lee et al., 2022), which again inevitably imposes tremendous
computational costs during both offline pretraining and online finetuning.

Goal-Conditioned Supervised Learning (GCSL). A recent study (Zheng et al., 2022) considers the
decision transformer (DT) (Chen et al., 2021) finetuning setting and introduces entropy regularization
to improve exploration. However, DT is formulated as a conditioned-supervised learning problem,
which can be perceived as implicitly constraining policies on the replay buffer B similar to AWR,
hence also suffering suboptimal performance when B is severely suboptimal.
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Table 1: Comparison of existing practical offline-to-online RL methods. See Table 2 in Appendix A for
a more detailed comparison of other offline-to-online RL methods. µ: behavior policy that generates the
offline dataset D. B: replay buffer. π0: pretrained policy. SPOT (Wu et al., 2022), AWAC (Nair et al., 2020),
IQL (Kostrikov et al., 2022), PEX (Zhang et al., 2023), Off2On (Lee et al., 2022), ODT (Zheng et al., 2022).

Type PC PVI GCSL

Method SPOT AWAC IQL PEX Off2On ODT

a. Constraint policy set µ B π0 No Constraint B
b. Stable and optimal policy learning ✗ ✗ ✗ ! ✗

c. Adaptable to diverse pretraining methods ! ! ! ✗ ✗

d. Adaptable to diverse finetuning methods ! ✗ ! ! ✗

e. Computationally efficient ! ! ! ✗ ✗

3 PROTO RL FRAMEWORK

3.1 PROBLEM DEFINITION

We consider the infinite-horizon Markov Decision Process (MDP) (Puterman, 2014), which is
represented by a tupleM := ⟨S,A, r, ρ,P, γ⟩, where S and A denote the state and action space,
respectively. r : S×A → R represents a reward function, ρ denotes initial distribution, P : S×A →
S is the transition kernel, and γ ∈ (0, 1) is a discount factor.

Standard RL aims to learn a policy π∗ : S → A that maximizes the expected discounted return
J(π) = E [

∑∞
t=0 γ

tr(st, at)|s0 ∼ ρ, at ∼ π(·|st), st+1 ∼ P(·|st, at)], i.e., π∗ ← argmaxπ J(π).
One popular approach to solving the above problem is approximate dynamic programming
(ADP) (Powell, 2007), which typically approximates the action-value function Qπk(s, a) of the policy
πk at the last iteration by repeatedly applying the following policy evaluation operator T πk , k ∈ N :

(T πkQ)(s, a) := r(s, a) + γEs′∼P(·|s,a),a′∼πk(·|s′) [Q(s′, a′)] (1)

Then, standard actor-critic RL approaches introduce one additional policy improvement step to further
optimize the action-value function Qπk(s, a) (Lillicrap et al., 2016; Haarnoja et al., 2018):

πk+1 ← argmax
π

Ea∼π(·|s)[Q
πk(s, a)] (2)

In high-dimensional or continuous space, Qπk is generally learned by enforcing the single-step
Bellman consistency, i.e., minQ Jπk(Q) = 1

2E(s,a,s′)∼B [(T πkQ−Q))(s, a)]
2, where B is a replay

buffer that is updated by filling in new transitions during the training process. The policy improvement
step is also performed on this replay buffer, i.e., πk+1 ← argmaxπ Es∼B,a∼π(·|s) [Q

πk(s, a)].

3.2 OFFLINE-TO-ONLINE RL

Offline-to-online RL ensures favorable initialization for online RL with a pretrained policy, meanwhile
overcomes the suboptimality of offline RL or IL by exploring more high-quality data with online
finetuning. However, directly finetuning offline pretrained policy with online RL often suffers from
severe performance drop caused by distributional shift and over-estimation error at OOD regions (Nair
et al., 2020). Thus, additional regularization is required to stabilize the finetuning process. Since
optimizing policy with additional regularization can lead to suboptimal performance (Kumar et al.,
2019; Li et al., 2023), the primary goal of the offline-to-online RL pathway is to balance stability
and optimality during online finetuning. This requires policy finetuning to be initially stable while
avoiding excessive conservatism to achieve near-optimal policies.

Limitations of SOTA. As summarized in Table 1, previous offline-to-online RL studies all directly
borrow conservatism from offline RL to stabilize online finetuning. Current methods, especially those
based on policy constraint and goal-conditioned supervised learning, prioritize stability over policy
performance optimality (Nair et al., 2020; Kostrikov et al., 2022; Zheng et al., 2022), by keeping
policy constraints fixed (e.g., behavior policy µ and pretrained policy π0) or changed slowly during
online finetuning (e.g., mixed replay buffer B). Thus, if the initial constraints are severely suboptimal,
they may restrain the online finetuning process to suboptimal performance with poor online sample
efficiency, as illustrated in Figure 1.
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Figure 1: Aggregated learning curves of
online finetuning with different policy con-
straints on 9 MuJoCo Locomotion tasks in
D4RL benchmark (Fu et al., 2020). When
policy constraints are involved, severely sub-
optimal performance persists. Fixed con-
straint: IQL (Kostrikov et al., 2022); An-
nealed constraint: Frozen (see Section 4.4);
No conservatism: Off2On (Lee et al., 2022).

Some works gradually anneal the constraint strength to
alleviate over-conservatism (Wu et al., 2022; Agarwal
et al., 2022). However, even with constraint annealing,
suboptimal and slow online finetuning still occurs if the
initial over-conservatism is too strong, as shown in Fig-
ure 1. Therefore, directly using fixed policy constraints
may not be the best choice for offline-to-online RL. Re-
cent pessimistic value initialization method provides sta-
ble and optimal policy learning without introducing ad-
ditional conservatism into online finetuning (Lee et al.,
2022; Nakamoto et al., 2023; Hong et al., 2023), but at the
expense of inefficiency, as it requires ensemble models to
achieve reasonable performance with significant compu-
tational overhead. So far, it still remains a challenge how
to strike a balance between stability and optimality in a
computationally efficient way.

In addition, most previous studies focus on a specific pre-
training or finetuning method (Nair et al., 2020; Kostrikov
et al., 2022; Lee et al., 2022), with limited adaptability
to diverse RL approaches. An ideal offline-to-online RL,
however, should provide a universal solution that bridges
a wide range of offline pretraining and online finetuning approaches to achieve the best possible
performance and applicability. The simplest way to achieve this is to adopt a pluggable regularization,
such as adding a BC term into the original policy loss (Fujimoto & Gu, 2021; Wu et al., 2022), which
can be easily integrated into diverse RL methods. However, such regularization often suffers from
large suboptimality gaps (Wu et al., 2022) due to lack of consideration on policy optimality.

In summary, conservative designs commonly used in offline RL, such as policy constraints, pessimistic
value regularization, and goal-conditioned supervised learning, inevitably suffer from suboptimal per-
formance, limited adaptability, and inefficiency. Next, we introduce a new easy-to-use regularization
that effectively retains stability while enabling adaptive and efficient online policy learning.

3.3 ITERATIVE POLICY REGULARIZATION

Trust-region update has gained some success in online RL (Schulman et al., 2015; 2017; Nachum
et al., 2018) and thanks to its potential for unifying offline and online policy learning, has recently
been extended to solve offline RL problems (Zhuang et al., 2023). Inspired by this, we propose a
generic and adaptive framework, iterative Policy Regularized Offline-To-Online RL (PROTO), which
augments the standard RL objective J(π) with an Iterative Policy Regularization term:

πk+1 ← argmax
π

E

[ ∞∑
t=0

γt

(
r(st, at)− α · log

(
π(at|st)
πk(at|st)

))]
, k ∈ N, (3)

where πk is the policy at the last iteration, with π0 being the pretrained policy. This objective seeks
to simultaneously maximize the reward and minimize the KL-divergence w.r.t. the policy obtained at
the last iteration πk, which is equivalent to optimizing the original objective within the log-barrier of
πk, hence can be interpreted as a trust-region-style learning objective.

Similar to the treatment in Max-Entropy RL (Haarnoja et al., 2018), this Iterative Policy Regularized
MDP gives the following policy evaluation operator by simply adding a regularization term into
Eq. (1):

(T πk
πk−1

Q)(s, a) := r(s, a)+γEs′∼P(·|s,a),a′∼πk(·|s′)

[
Q(s′, a′)− α · log

(
πk(a

′|s′)
πk−1(a′|s′)

)]
, k ∈ N+,

(4)
The policy improvement step can be realized by adding a similar regularization term into Eq. (2):

πk+1 ← argmax
π

Ea∼π(·|s)

[
Qπk(s, a)− α · log

(
π(a|s)
πk(a|s)

)]
, k ∈ N. (5)
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Despite its simplicity, we will show that PROTO can naturally balance the stability and optimality of
policy finetuning in an effective manner, therefore is more suited for offline-to-online RL compared
to existing conservative learning schemes that directly borrowed from offline RL methods.

Stability and Optimality. Performing a trust-region-style update, PROTO constrains the policy
w.r.t. an iteratively evolving policy πk, which smartly serves dual purposes by ensuring that: 1) the
finetuned policy remains close to the pre-trained policy π0 during the initial finetuning stage, to avoid
distributional shift; 2) gradually allowing the policy to deviate far from the potentially suboptimal
constraint induced by π0 at the later stage, to find the optima as long as it stays within the trust region.
Therefore, this objective enables stable and optimal policy learning, which is different from and far
more optimistic than existing methods with constraints on a potentially suboptimal and fixed µ, π0 or
B (Wu et al., 2022; Nair et al., 2020; Kostrikov et al., 2022; Zhang et al., 2023).

Furthermore, we can extend the existing analysis of KL-regularized MDP in the tablular case
(corollary of Thm. 1 in (Vieillard et al., 2020)) to our offline-to-online setting and obtain Lemma 1,
which shows that PROTO principally enjoys both stable and optimal policy finetuning (The derivation
is presented in Appendix B). Note that we do not seek to devise tighter and more complex bounds
but to give insights for PROTO. Following the notations in (Vieillard et al., 2020), we define Q∗

is the optimal value of optimal policy π∗. π0 is the pretrained policy and Q0 is its corresponding
action-value. Let vαmax := rmax+αln|A|

1−γ , vmax := v0max, and ϵj is the approximation error of value
function at j-th iteration. Assume that ∥Qk∥∞ ≤ vmax, k ∈ N , then we have:
Lemma 1. Define Qk as the value of πk obtained at k-th iteration by iterating Eq. (4)-(5), then:

∥Q∗ −Qk∥∞ ≤
2

1− γ

∥∥∥∥∥∥ 1

k + 1

k∑
j=0

ϵj

∥∥∥∥∥∥
∞

+
4

1− γ

vαmax

k + 1
, k ∈ N. (6)

For the RHS, the first term reflects how approximation error affects the final performance, and the
second term impacts the convergence rate. Note that the approximation error term in Eq. (6) is the
norm of average error, i.e., ∥ 1

k+1

∑k
j=0 ϵj∥∞, which might converge to 0 by the law of large numbers.

Therefore, PROTO will be less influenced by approximation error accumulations and enjoys stable
finetuning processes. By contrast, the performance bound of finetuning without any regularization
attains the following form (Scherrer et al., 2015) (see Lemma 3 in Appendix for detailed discussion):

∥Q∗ −Qk∥∞ ≤
2γ

1− γ

k∑
j=0

γk−j∥ϵj∥∞ +
2

1− γ
γk+1vmax, k ∈ N. (7)

The error term
∑k

j=0 γ
k−j∥ϵj∥∞ ≥ 0 in Eq. (7) cannot converge to 0 and initially decays slowly (γ

often tends to 1, so γk changes slowly initially). Therefore, directly finetuning without any regular-
ization may result in severe instability due to the initial approximation error at OOD regions induced
during offline pretraining. Previous methods typically introduce additional fixed regularization to
stabilize finetuning. However, fixed regularization might lead to a non-eliminable suboptimality gap
in the form of (see Lemma 4 in Appendix for detailed discussion):

∥Q∗ −Qk∥ ≤ ∥Q
∗ −Q∗

Π∥∞
1− γ

, k ∈ N, (8)

where Q∗
Π is the optimal action-value obtained at the constraint set Π. The RHS of Eq. (8) is hard to

converge to 0 unless Π contains the optimal policy (Kumar et al., 2019; Wu et al., 2022; Li et al.,
2023), but the constraint set Π typically only covers suboptimal policies due to the limited coverage
of B, µ or π0. Whereas, the RHS in Eq. (6) can converge to 0 as k →∞, indicating that the PROTO
can converge to optimal as k →∞, which underpins the optimistic nature of PROTO.

The comparison between Lemma 1 and Eq. (7)-(8) demonstrates that PROTO serves as a seamless
bridge between fixed policy regularization and no regularization, allowing for stability while retaining
the optimality of finetuning performance. This indicates that Iterative Policy Regularization offers
a more reasonable level of conservatism for the offline-to-online RL setting compared to existing
policy regularization that directly borrowed from offline RL or no regularization.

Adaptability and Computational Efficiency. PROTO bridges diverse offline RL/IL and online
RL methods, offering a universal proto-framework for offline-to-online RL approaches. It imposes
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no assumption on how π0 is pretrained and thus can be applied to any offline pretraining method.
Also, PROTO can be non-intrusively incorporated into diverse off-policy RL finetuning methods
by simply modifying several lines of code to add the regularization term log(π|πk) in the original
actor-critic framework, according to Eq. (4)-(5). In addition, calculating the additional regularization
term introduces negligible computational cost compared to ensemble networks (Lee et al., 2022) or
transformer-based approaches (Zheng et al., 2022), enabling agile and lightweight applications.

3.4 PRACTICAL IMPLEMENTATION

To further stabilize the finetuning process and meanwhile retain optimality, we introduce Polyak
averaging, a widely adopted technique in modern RL to address potential instability caused by fast
target-value update (Haarnoja et al., 2018; Fujimoto et al., 2018), by replacing πk with its delayed
updates π̄k, i.e., π̄k ← τπk + (1 − τ)π̄k−1. Here, τ ∈ (0, 1] is a hyper-parameter to control the
update speed. As apparent, replacing πk with π̄k retains optimal performance since it still allows large
deviation from the pretrained policy (with a slower deviation speed). We also gradually anneal the α
value with a linear decay schedule (Wu et al., 2022) for the purpose of weaning off conservatism.
Although introducing two hyper-parameters, we show in Appendix D.2 and Appendix F that PROTO
is robust to changes in hyperparameters within a large range, and parameter tuning can be reduced by
adopting a non-parametric approach and setting the annealing speed as a constant.

4 EXPERIMENTS

We evaluate on MuJoCo, AntMaze and Adroit tasks with D4RL (Fu et al., 2020) datasets to demon-
strate the stable and optimal policy learning, adaptability, and computational efficiency of PROTO.
Unless otherwise specified, we pretrain policy using a recent SOTA offline RL method EQL (Xu
et al., 2023; Garg et al., 2023) for its superior pretraining performances and incorporate the regular-
ization term log(π|πk) from PROTO into SAC (Haarnoja et al., 2018) finetuning for its high sample
efficiency and superior performance among off-policy RL methods by default.

4.1 BASELINES

We compare PROTO with the following baselines: (i) AWAC (Nair et al., 2020): an offline-to-online
method that implicitly constrains w.r.t. the replay buffer B using AWR-style policy learning. (ii)
IQL (Kostrikov et al., 2022): a SOTA offline RL method that is also superior in offline-to-online
setting since it also utilizes AWR-style policy learning akin to AWAC. (iii) Off2On (Lee et al., 2022):
a SOTA offline-to-online RL method that uses an ensemble of pessimistic value functions together
with a balanced experience replay scheme, but it is only applicable for CQL (Kumar et al., 2020)
pretraining. (iv) ODT (Zheng et al., 2022): a recent decision transformer (Chen et al., 2021) based
offline-to-online approach. (v) PEX (Zhang et al., 2023): a recent SOTA offline-to-online approach
that adaptively constrains the finetuning policy w.r.t. the pretrained policy π0 by introducing a policy
expansion and Boltzmann action selection scheme. (vi) Offline: performances of SOTA offline
RL approaches without online finetuning that are adopted from (Bai et al., 2022; Xu et al., 2023;
Kostrikov et al., 2022; Kumar et al., 2020; Li et al., 2023).

4.2 MAIN RESULTS

Learning curves of PROTO are illustrated in Figure 2 and 3. Returns are normalized, where 0 and 100
represent random and expert policy performances, respectively. The error bars indicate min and max
over 5 different random seeds. Please refer to Appendix D.5 for reproducing details for baselines.

Figure 2 and 3 show that existing policy constraint-based approaches (IQL, AWAC and PEX) in
most cases can only marginally outperform or cannot surpass SOTA offline RL approaches, due to
the over-conservatism introduced by the policy constraint that largely hinges the finetuning process.
This is especially pronounced when offline dataset or pretrained policy is highly-suboptimal such
as Adroit manipulation, Antmaze navigation, and MuJoCo locomotion random tasks. In contrast,
PROTO enjoys both a stable initial finetuning stage and superior final performance owing to the
optimistic nature of the proposed iterative policy regularization. Note that Off2On also obtains great
performance for most MuJoCo locomotion tasks, since it imposes no conservatism during policy
finetuning and the tasks are relatively simple. Off2On, however, is limited to CQL pretraining, in
which case it is hard to yield reasonable performance when the tasks are too difficult for CQL to
obtain stable pretrained policies and value functions (e.g., Adroit and Antmaze tasks).
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Figure 2: Aggregated learning curves of different approaches on Adroit manipulation, AntMaze navigation,
and MuJoCo locomotion tasks from D4RL (Fu et al., 2020) benchmark.

Figure 3: Learning curves of different approaches on Adroit manipulation, AntMaze navigation, and MuJoCo
locomotion tasks from D4RL (Fu et al., 2020) benchmark.

4.3 EVALUATION ON ADAPTABILITY

To evaluate the universal adaptability of PROTO, we train PROTO on 4 pretraining and 2 finetuning
methods. Such a comprehensive evaluation has not been conducted in previous studies.

Versatility on Diverse Pretraining Methods. Except the EQL pretraining, we also pretrain PROTO
using BC (Pomerleau, 1988), IQL (Kostrikov et al., 2022) and SQL (Xu et al., 2023). PEX is the
only method that explicitly considers BC pretraining and thus we consider PEX with BC pretraining
as the main baseline. Figure 4 shows that BC+PROTO+SAC surpasses PEX+BC by a large margin.
Moreover, all PROTO variants obtain good results, but solely finetuning without PROTO (EQL+SAC)
suffers from severe performance drop at the initial finetuning stage, demonstrating the crucial role
of PROTO for offline-to-online. We also observe that BC+PROTO+SAC can boost the finetuning
performances and obtain good results even starting from an inferior starting point. It is known that
offline RL methods are generally hyperparameter-sensitive while BC is much more stable (Kumar
et al., 2022). Therefore we can use the simplest BC and bypass the complex offline RL for pretraining.
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Figure 4: Learning curves of PROTO with different pretraining methods.

Figure 5: Learning curves of online finetuning for PROTO+TD3. See Figure 19 for full results.

Versatility on Diverse Finetuning Methods. We also plug PROTO into TD3 (Fujimoto et al., 2018)
finetuning. Figure 5 shows that PROTO+TD3 also obtains SOTA results compared to baselines.
Furthermore, we can also extend to sample-efficient online methods via simply increasing the
update-to-data (UTD) ratio during finetuning. Due to space limits, please see Appendix E for details.

Altogether, Figure 4 and 5 demonstrate that we can construct competitive offline-to-online RL
algorithms by simply combining diverse offline pretraining and online finetuning RL approaches via
PROTO, which offers a flexible and adaptable framework for future practitioners.

4.4 ABLATION STUDY

Iterative Policy Regularization vs. Fixed Policy Regularization. To further demonstrate the
advantages of Iterative Policy Regularization, we replace the iterative policy πk in Eq. (3) with the
fixed pretrained policy π0 while retains all the other experimental setups and denote this simplest
variant as Frozen. Similar to previous policy constraint approaches, Frozen aims to solve a fixed
policy constrained RL problem. Figure 6 illustrates the aggregated learning curves of Frozen and
PROTO. We also compare with IQL for its strong performances among other baselines in Figure 2.

Figure 6: Comparison between iterative policy regularization (PROTO) and fixed policy regularization (Frozen)
and other baselines. Refer to Figure 21 for full results.

Observe in Figure 6 that PROTO obtains superior performances compared with Frozen, which
demonstrates the advantage of iterative over fixed policy regularization. Note that Frozen already
annealed the constraint strength, but still converges to suboptimal performances. We believe fixed
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Figure 7: Completion speeds for
AntMaze Navigation tasks. Refer
to Figure 21 for full results.

Figure 8: Positive correlation be-
tween policy deviation w.r.t. π0 and
policy performance.

Figure 9: Computational cost
when performing 1M online sam-
ples and gradient steps.

regularization requires more relaxed conservatism strength to obtain the optimal results while also
being more susceptible to potential approximation errors compared to iterative regularization, please
see Appendix C for illustrative explanation. For AntMaze navigation tasks, although PROTO obtains
similar success rates to other baselines, PROTO completes the navigation tasks with much fewer
transition steps and higher speed (see Figure 7), translating to much better learned policies.

Also, note that the simplest variant Frozen already surpasses or achieves on-par performances as
IQL. We believe that this is because the in-sample learning paradigm of IQL learns from in-sample
data only, which lacks supervision on OOD regions and hence hinges exploration. Additionally, we
employ a linear decay schedule to wean off conservatism, while the conservatism in IQL cannot be
fully turned off since IQL recovers the maximum of action-value function only when the inverse
temperature in its policy extraction step goes to infinity (Kostrikov et al., 2022).

Finetuning Performance vs. Constraint Strength. We investigate how constraint strength affects
final results of different methods. Figure 8 shows that the final performance and constraint strength
exhibit a negative correlation, where PROTO attains relaxed constraints and near-optimal perfor-
mances. Furthermore, we can obtain a better policy by adjusting the polyak averaging speed and
conservatism annealing speed, to accelerate the policy deviation speed (reported as PROTO (Fast)),
which further demonstrates the necessity of relaxing the conservatism when finetuning policies.

We also conduct ablation experiments to analyze the effect of polyak averaging update speed and
the conservatism annealing speeds, and find PROTO robust to parameter tuning (due to space limits,
please refer to Appendix F for detailed results).

4.5 COMPUTATIONAL COST

In Figure 9, we report the computation time of performing 1M online samples and gradient steps, to
compare the computational efficiency of different methods. It is not surprising that ODT requires
the most computational resources since it is a transformer-based approach, while other methods
build on simple MLPs. Off2On requires an ensemble of pessimistic Q-functions and a complex
balanced experience replay scheme, which imposes high computational cost. In addition, the CQL
pretraining in Off2On explicitly requires performing computationally-expensive numerical integration
to approximate the intractable normalization term in continuous action spaces (Kumar et al., 2020;
Kostrikov et al., 2021). By contrast, PROTO only requires calculating the additional regularization
term, computational overhead of which is negligible, therefore enjoys the same computational
efficiency as standard off-policy RL methods.

5 CONCLUSION AND FUTURE WORK

To address major drawbacks of existing offline-to-online RL methods (suboptimal performance,
limited adaptability, low computational efficiency), we propose PROTO that incorporates an iteratively
evolved regularization term to stabilize the initial finetuning and bring enough flexibility to yield
strong policies. PROTO seamlessly bridges diverse offline RL/IL and online off-policy RL methods
with a non-intrusively modification, offering a flexible and efficient offline-to-online RL proto-
framework. Following existing works, this paper only focuses on off-policy RL finetuning, which has
high-sample efficiency but may not enjoy monotonic policy improvement guarantees. One appealing
future direction is to introduce PROTO into on-policy RL finetuning or marry off-policy sample
efficiency with on-policy monotonic improvement to devise more advanced offline-to-online RL.
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A DETAILED DISCUSSIONS ON RELATED WORKS

This section provides detailed comparisons with existing practical offline-to-online RL methods in
Table 2.

Table 2: Detailed comparisons with related practical offline-to-online RL methods. µ: behavior policy
that generates the offline dataset D. B: replay buffer. π0: pretrained policy. a. Constraint policy set;
b. Stable and optimal policy learning; c. Adaptable to diverse pretraining methods; d. Adaptable to
diverse finetuning methods; e. Computational efficient. !: Yes, ✗: No,⃝: It depends.

Type Method a. b. c. d. e.

PC

SPOT (Wu et al., 2022) µ ✗ ! ! !

AWAC (Nair et al., 2020)

B ✗ ! ✗ !

IQL (Kostrikov et al., 2022)

XQL (Garg et al., 2023)

InAC (Xiao et al., 2023)

O3F (Mark et al., 2023)

PEX (Zhang et al., 2023) π0 ✗ ! ! !

ACA (Yu & Zhang, 2023) π0 ✗ ✗ ✗ !

PVI

Off2On (Lee et al., 2022)

No Constraint ! ✗ ! ✗
Cal-QL (Nakamoto et al., 2023)

MCQ (Lyu et al., 2022)

CCVL (Hong et al., 2023)

GCSL ODT (Zheng et al., 2022) B ✗ ✗ ✗ ✗

Others
APL (Zheng et al., 2023)

⃝ ⃝ ⃝ ✗ ⃝SUNG (Guo et al., 2023)

E2O (Zhao et al., 2023)

PROTO (Ours) πk ! ! ! !

Stable and optimal policy learning. All existing policy constraint and goal conditioned supervised
learning methods constrain the finetuning policy w.r.t. a fixed policy set induced by the behavior
policy µ, replay buffer B or the pretrained policy π0, which may be highly-suboptimal and induce
large optimality gap. APL (Zheng et al., 2023) and SUNG (Guo et al., 2023) finetune the policy
with the existence of pretraining conservatism, which may also lead to suboptimal performances.
E2O (Zhao et al., 2023) is a concurrent work that finetunes an ensemble of pretrained agents to
stabilize offline-to-online performances, which can apply to diverse pretraining methods. Therefore,
E2O can obtain optimal performances when the conservatism term can be fully dropped such as
the value regularization in CQL (Kumar et al., 2020) and the BC term in TD3+BC (Fujimoto &
Gu, 2021). Otherwise, E2O cannot obtain optimal results, such as using IQL pretraining since the
conservatism of IQL cannot be fully dropped during online finetuning. By contrast, PROTO casts
constraint on an iteratively evolving constraint set induced by the policy πk at the last iteration, which
relaxes the conservatism in the later stage and thus enjoys similar optimality as no constraints.

Adaptability to diverse finetuning and pretraining methods. SPOT (Wu et al., 2022) provides a
pluggable policy regularization as PROTO dose, thus can flexibly extend to diverse methods, but re-
quires the hard estimation of the unknown behavior policy. AWAC (Nair et al., 2020), IQL (Kostrikov
et al., 2022), XQL (Garg et al., 2023), InAC (Xiao et al., 2023) use AWR to extract policy without
the need for explicitly behavior policy estimation. AWR, however, is difficult to plug in other online
RL approaches non-intrusively, limiting its adaptability for diverse online finetuning methods. PEX
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offers the most flexible framework among all the baselines and is adaptable to diverse methods.
Off2On (Lee et al., 2022), Cal-QL (Nakamoto et al., 2023), MCQ (Lyu et al., 2022), CCVL (Hong
et al., 2023) can only apply to CQL-style (Kumar et al., 2020) pretraining, but can finetune with
diverse online RL approaches. ODT (Zheng et al., 2022) is specifically designed for DT (Chen et al.,
2021) finetuning and pretraining, and meanwhile ACA (Yu & Zhang, 2023) is specificially designed
for SAC+BC pretraining and SAC finetuning. Therefore, ODT and ACA suffer from the most limited
applicability. APL and SUNG also offer general frameworks for offline-to-online RL, but can only
apply to offline RL methods that have explicit regularization terms such as TD3+BC and CQL, since
they require to adaptively drop the regularization terms during online finetuning (e.g. the BC term in
TD3+BC and the value regularization term in CQL). The online finetuning methods of E2O is also
restricted to the choice of its offline pretraining methods, suffering from limited adaptability.

Computational efficiency. Off2On and E2O requires an ensemble of value functions and hence is
computation inefficient. Moreover, Off2On pretrains using CQL, which explicitly requires performing
computationally-expensive numerical integration to approximate the intractable normalization term
in continuous action spaces (Kumar et al., 2020; Kostrikov et al., 2021), which inevitably introducing
tremendous computational costs. ODT builds on Transformer (Vaswani et al., 2017) architecture,
which requires far more computational resources compared to other methods that builds on simple
MLPs.

Other relevant works. TD3-C (Luo et al., 2023) is a relevant concurrent work that only focuses
on TD3+BC pretraining and TD3 finetuning, which can be perceived as one variant of our PROTO
framework (PROTO+TD3) and does not provide theoretical interpretation to their methods. Trust-
PCL (Nachum et al., 2018) is a relevant work that also solves a KL-regularized MDP, but focuses
only on online RL setting without the offline pretraining. QDagger (Agarwal et al., 2022) is another
recent work that constrains on the fixed pretrained policy π0, but is designed for DQN (Mnih et al.,
2015)-based methods and focuses on discrete control. BREMEN (Matsushima et al., 2020) is another
work that utilizes trust-region updates but focuses on the deployment-efficient setting and also casts
constraints w.r.t the replay buffer B, which is over-conservative. There are also some works that
utilize trust-region updates to exclusively address the online RL (Janner et al., 2019; Schulman et al.,
2017) or the offline RL problems (Siegel et al., 2019; Zhuang et al., 2023).

There is also a large amount of work focusing on accelerating online RL training using offline
dataset (Ball et al., 2023), representation learning (Laskin et al., 2020), or a guiding policy (Uchendu
et al., 2023). A recent work (Niu et al., 2022) also considers the hybrid offline and online RL
setting but aims to tackle the sim2real gap. There are also some theoretical works that focus on the
hybrid offline and online RL setting (Wagenmaker & Pacchiano, 2023; Song et al., 2023) or the
offline-to-online RL setting (Xie et al., 2021) without practical implementation. These works lie in
the orthogonal scope of our paper and thus we do not provide detailed discussions here.

Based on the above thorough discussions, PROTO is the only work that can simultaneously enjoy all
the good properties including stable and optimal policy learning, adaptability to diverse methods and
high computational efficiency. In addition, similar to all these related works, this paper contains no
potential negative societal impact.

B THEORETICAL INTERPRETATIONS

This section shows how to extend the analysis of KL-regularized MDP (Vieillard et al., 2020) to our
offline-to-online RL setting (Lemma 1) and provides detailed discussions on the inherent stability
and optimality of PROTO. Specifically, we consider the tabular case to ease the analysis, which is a
common treatment in previous works (Ma et al., 2022; Lyu et al., 2022; Xiao et al., 2023; Vieillard
et al., 2020). In detail, we can extend existing theories from the online RL setting to our specific
offline-to-online settings to compare between different types of policy regularizations, including
iterative/fixed/no policy regularizations in terms of finetuning stability and optimality. Note that we
do not seek to devise tighter and more complex bounds but to give insightful interpretations for our
proposed approach PROTO.
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B.1 PROOF OF LEMMA 1

Proof. First, we introduce Lemma 2 (Corollary of Theorem 1 in (Vieillard et al., 2020)), which builds
the foundation of our theoretical interpretation.

Lemma 2. Define Q∗ is the action-value of optimal policy π∗, Qk is the action-value of policy πk

obtained at k-th iteration by iterating Eq. (4)-(5). vαmax := rmax+αln|A|
1−γ . ϵj is the approximation

error of the action-value function. Assume that π0 is a uniform policy, Q0 is initialized such that
∥Q0∥∞ ≤ vmax and ∥Qk∥∞ ≤ vmax. We have (Vieillard et al., 2020):

∥Q∗ −Qk∥∞ ≤
2

1− γ

∥∥∥∥∥∥1k
k∑

j=1

ϵj

∥∥∥∥∥∥
∞

+
4

1− γ

vαmax

k
, k ∈ N+. (9)

At first glance, Lemma 2 is quite similar to Lemma 1. However, note that the assumption of Lemma 2
is slightly different from Lemma 1. With a slight abuse in notation, in Lemma 2, π0 is assumed as
a uniform policy and Q0 can be any initialized action-value function that satisfies ∥Q0∥∞ ≤ vmax,
while in Lemma 1, π0 is the pretrained policy and Q0 is the corresponding action-value. This means
that Lemma 2 is conducted on the pure online RL setting. Nevertheless, we will show that this lemma
can seamlessly extend to Lemma 1 and our offline-to-online setting by introducing an additional
negligible requirement on Q0 initialization.

Since the original assumption in Lemma 2 allows any form of Q0 initialization as long as it satisfies
∥Q0∥∞ ≤ vmax, we introduce one additional constraint on Q0 initialization that the pretrained policy
should be obtained via one policy improvement step upon Q0, i.e., argmaxπ Ea∼π(·|s)[Q

0(s, a)−
α · log

(
π(s,a)
π0(s,a)

)
. This assumption is negligible since it only introduce an additional condition under

the premise of satisfying the original assumption.

Under this mild assumption, the pretrained policy and its action-value in offline-to-online setting
become π1 and Q1 in Lemma 2, respectively. Note that the pretrained policy is π0 and its corre-
sponding action-value function is Q0 in Lemma 1. Therefore, the conclusion of Lemma 2 is ready to
transfer to Lemma 1 with some simple modifications to meet the requirement that k = 1 in Lemma 2
equivalents to k = 0 in Lemma 1:

Lemma 1. Define Qk as the action-value of policy πk obtained at k-th iteration by iterating Eq. (4)-
(5), and Q∗ is the optimal value of optimal policy π∗. π0 is the pretrained policy and Q0 is its
corresponding action-value function. Let vαmax := rmax+αln|A|

1−γ , and ϵj is the approximation error of
the action-value function. Assume that ∥Qk∥∞ ≤ v0max, we have:

∥Q∗ −Qk∥∞ ≤
2

1− γ

∥∥∥∥∥∥ 1

k + 1

k∑
j=0

ϵj

∥∥∥∥∥∥
∞

+
4

1− γ

vαmax

k + 1
, k ∈ N. (10)

B.2 STABILITY AND OPTIMALITY COMPARED WITH PREVIOUS METHODS

Stability. The approximation error term in Eq. (10) is the infinity norm of the average estimation
errors, i.e., ∥ 1

k+1

∑k
j=0 ϵj∥∞, which can converge to 0 by the law of large numbers. This indicates

that PROTO will be less influenced by approximation error accumulations and enjoys stable finetuning
processes, owing to the stabilization of iterative policy regularization.

Then, we recall the typical approximation error propagation without any regularization in
Lemma 3 (can be found at Section 4 in (Vieillard et al., 2020) and (Scherrer et al., 2015)).
Lemma 3. Assume π0 is a uniform policy, Q0 is initialized such that ∥Q0∥∞ ≤ vmax and ∥Qk∥∞ ≤
vmax, where vmax := rmax

1−γ . Then we have

∥Q∗ −Qk∥∞ ≤
2γ

(1− γ)2

(1− γ)

k∑
j=1

γk−j∥ϵj∥∞

+
2

1− γ
γkvmax, k ∈ N+. (11)
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Similar to the difference between Lemma 2 and Lemma 1, Lemma 3 cannot be directly applied
in the offline-to-online RL setting (Eq. (7)). However, it can be easily transferred by imposing a
minimal assumption on Q0 initialization akin to the proof of Lemma 1. We will not elaborate on
this again and instead directly focus on its approximation error term. As shown in Lemma 3 or
Eq. (7), the approximation error term is the discounted sum of the infinity norm of the approximation
error at each iteration

∑k
j=1 γ

k−j∥ϵj∥∞, which cannot converge to 0 and thus is non-eliminable.
Furthermore, this term often initially decays slowly since γ usually tends to 1. Therefore, if the
initial approximation error ϵ0 caused by offline pretraining is pretty large, the effects of γk∥ϵ0∥∞
might cause severe instability to the initial finetuning (when k is small). This explains why directly
finetuning an offline pretrained policy with online RL typically leads to an initial performance drop
and requires additional regularization to stabilize the training process.

Optimality. To stabilize the online finetuning, previous policy constraint based offline-to-online
RL approaches typically constrain the finetuning policy in a fixed constraint set Π that is induced
by the behavior policy µ, the pretrained policy π0 or the replay buffer B1. However, as discussed in
previous works (Kumar et al., 2019; Li et al., 2023; Wu et al., 2022), optimizing in a fixed constraint
set typically lead to large optimality gap as Lemma 4 (Theorem 4.1 in (Kumar et al., 2019), Theorem
3 in (Li et al., 2023)) shows:

Lemma 4. (Suboptimality induced by fixed policy regularization). Define Q∗
Π is the optimal value

obtained at a constrained policy set Π. Qk is the action-value of policy πk obtained at k-th iteration
by iterating Eq. (1)-(2), but in the set Π, i.e.,πk ← argmaxπ∈Π Ea∼π[Q

k−1(s, a)]. Then we always
have a suboptimality gap:

∥Q∗ −Qk∥∞ ≤
∥Q∗ −Q∗

Π∥∞
1− γ

, k ∈ N (12)

Note that the RHS of Eq. (12) has only an implicit correlation with the iteration times k since
the policy set Π will gradually expand when the replay buffer B contains more data or when the
conservatism strength is fully decayed. However, Π varies slowly since B is typically large and will
be less effected by filling in a few of data and solely annealing the conservatism strength requires
more relaxation as shown in Figure 10. Therefore, the suboptimality gap is hard to be eliminated,
which may cause a large suboptimality gap when the constraint policy set Π is highly suboptimal.

On the contrary, Lemma 1 provides an intuitive insight that the suboptimality gap can be fastly
minimized to zero as k grows even with the existence of iterative policy regularization. Therefore,
PROTO can be perceived as an "optimistic" conservatism, which will not lead to suboptimal per-
formances caused by over-conservatism. This can be observed in Figure 6 that constraining on a
fixed potentially suboptimal constraint set may result in suboptimal performances while allowing the
constraint set to actively update can yield near-optimal performances. It is also worth mentioning that
the complete version of Eq. (12) contains how approximation error and distributional shifts affect
final performances, but we leave them behind to ease the readers to catch the main difference between
fixed policy regularization and iterative policy regularization.

C INTUITIVE ILLUSTRATION OF ITERATIVE POLICY REGULARIZATION

To alleviate the over-conservatism caused by fixed policy regularization, previous studies typically
anneal the conservatism strength. However, observe from Figure 6, Figure 20 and Figure 21 that
even with the conservatism annealing, fixed policy regularization still underperforms iterative policy
regularization. Apart from the theoretical interpretation, we give an intuitive illustration in Figure 10
to further explain why simply annealing the conservatism strength is not enough to obtain optimal
policy.

1The constraint set induced by B slowly changes with filling in new transitions, but is much slower than the
one induced by πk.
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Figure 10: Illustration of iterative policy regularization v.s fixed policy regularization. In order to
achieve the same optimal policy, fixed policy regularization requires a relaxation of conservatism
strength while also being more susceptible to potential approximation errors compared to iterative
policy regularization.

In Figure 10, the size of the constraint set represents the conservatism strength determined by α. A
larger α induces stronger conservatism, resulting in a strict and small constraint set, while a smaller
α implies a more relaxed conservatism and a larger constraint set.

As depicted in Figure 10, to achieve optimal performance, iterative policy regularization gradually
deviates from the initial policy while maintaining relatively less-changed conservatism strength. In
contrast, fixed policy regularization requires significantly relaxed conservatism to attain the same
optimal performance level. Moreover, this relaxed conservatism includes more regions that experience
large approximation errors, rendering online finetuning more susceptible to potential approximation
errors compared to iterative policy regularization.

D EXPERIMENTAL DETAILS

This section outlines the experimental details to reproduce the main results in our paper. We’ll also
open source our code for other researchers to better understand our paper.

D.1 TASK DESCRIPTION

Adroit Manipulation. Adroit manipulation contains 3 domains: pen, door, hammer, where the RL
agent is required to solve dexterous manipulation tasks including rotating a pen in specific directions,
opening a door, and hammering a nail, respectively. The offline datasets are human-v0 datasets in
D4RL (Fu et al., 2020) benchmark, which only contain a few successful non-markovian human
demonstrations and thus is pretty difficult for most offline RL approaches to acquire reasonable
pretraining performances.

Antmaze Navigation. Antmaze navigation consists of two domains, namely medium and large,
each with two datasets from the D4RL (Fu et al., 2020) benchmark: play-v2 and diverse-v2. In each
domain, the objective is for an ant to learn how to walk and navigate from the starting point to the
destination in a maze environment, with only sparse rewards provided. This task poses a challenge for
online RL algorithms to explore high-quality data effectively without the support of offline datasets
or additional domain knowledge.

MuJoCo Locomotion. MuJoCo locomotion encompasses several standard locomotion tasks com-
monly utilized in RL research, such as Hopper, Halfcheetah, Walker2d. In each task, the RL agent is
tasked with controlling a robot to achieve forward movement. The D4RL (Fu et al., 2020) bench-
mark provides three types of datasets with varying quality for each task: random-v2, medium-v2,
medium-replay-v2.
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D.2 HYPER-PARAMETERS

Online finetuning hyper-parameters. PROTO has two hyper-parameters: the Polyak averaging
speed τ and the conservatism linear decay speed η. Although with 2 hyper-parameters, we find that
choosing η around 0.9 can achieve substantially stable performances for all 16 tasks (see Figure 15
for detailed results), where η = 1 means α anneals to 0 with 106 online samples and η = 0.9 means
α anneals to 0 with 106

0.9 online samples. Therefore, we adopt a non-parametric treatment by setting
η = 0.9. We report the detailed setup in Table 3.

Table 3: Online finetuning hyper-parameters

Task τ η

All MuJoCo locomotion 5e− 3 0.9

All Antmaze navigation 5e− 5 0.9

All Adroit manipulation 5e− 5 0.9

Table 4: Offline pretraining hyper-parameters

Task Initial α Pretraining Steps

All MuJoCo locomotion 2.0 0.1M

All Antmaze navigation 0.5 0.2M

All Adroit manipulation 2.0 0.1M

Table 3 shows that PROTO has only two groups of hyper-parameters across 16 tasks with only varying
the Polyak averaging speed τ . Moreover, we ablate on the Polyak averaging speed τ in the range
of [0.5τ, 2τ ] in Figure 13 and find that PROTO is robust to such large hyper-parameter variations.
As a result, PROTO is easy to tune, which is critical and desired for RL community since online
evaluations for parameter tuning are generally costly.

Offline pretraining hyper-parameters. In our paper, we pretrain the policy using EQL (Xu et al.,
2023) (equivalents to XQL (Garg et al., 2023)), and hence we directly adopt the conservatism strength
coefficient α in EQL paper (Xu et al., 2023) to pretrain policy and use it to initialize α in our paper. In
terms of pretraining steps, We find that performing 0.1M pretraining steps for all MuJoCo locomotion
and Adroit manipulation tasks and 0.2M pretraining steps for all Antmaze navigation tasks already
attain good initialization. Therefore, we do not pretrain further to reduce computational costs. Please
see Table 4 for detailed parameter choice2. Similar to EQL, both PEX and IQL pretrain based on
in-sample learning. Therefore, we also pretrain PEX and IQL with the pretraining steps according to
Table 4.

D.3 ADDITIONAL EXPERIMENTAL DETAILS

Initialization of online replay buffer. We initialize the online replay buffer with three different
types: (1) Initialize the buffer with the entire offline dataset akin to (Nair et al., 2020; Kostrikov et al.,
2022). (2) Conduct a separate online buffer and sample symmetrically from both offline dataset and
online buffer akin to (Ball et al., 2023). (3) Initialize the buffer with a small set of offline datasets.
However, we observe that these three different types of initialization have little effect on finetuning
performances, please see Table 5 for detailed results. Whereas, we recommend to symmetrically
sample from offline dataset and together a separate online dataset akin to (Ball et al., 2023) for future
consideration to design online finetuning approaches with higher sample efficiency.

We believe that PROTO is less affected by the replay buffer compared to other methods since PROTO
constrains the policy based on the iteratively evolved policy πk rather than relying heavily on the

2We also initialize α according to Table 4 when using BC to pretrain policy.
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Table 5: Training results with different kinds of online replay buffer

Initialize online buffer
using full offline data

Symmetric sample
akin to RLPD (Ball et al., 2023)

Initialize online buffer
using small offline data

Mujoco mean 95.5 96.7 94.2

Antmaze mean 86.0 83.4 86.4

Adroit mean 113.2 115.1 117.6

replay buffer. On the other hand, the conservatism in other methods like APL (Zheng et al., 2023)
and Off2On (Lee et al., 2022) is largely influenced by the replay buffer (e.g., the BC term in TD3+BC
and the value regularization term in CQL depend heavily on the replay buffer). Therefore, PROTO
exhibits a replay-buffer-agnostic behavior, which is advantageous as it reduces the burden of designing
ad-hoc replay buffer update strategies to achieve good results.

Network architecture and optimization hyper-parameters. We implement all the function
approximators with 2-layer MLPs with ReLU activation functions. To stabilize both offline pretraining
and online finetuning processes, we add Layer-Normalization (Ba et al., 2016) to the action-value
networks and state-value networks akin to previous works (Xu et al., 2023; Garg et al., 2023; Ball
et al., 2023). We find that Layer-Normalization may cause over-conservatism for all halfcheetah
tasks, and thus we only drop Layer-Normalization when experimenting on all halfcheetah tasks. We
choose Adam (Kingma & Ba, 2015) as optimizer, 3e-4 as learning rate and 256 as batch size for all
networks and all tasks.

Clip-double Q and value regularization backup. Similar to (Ball et al., 2023), we also find
that clip-double Q and the value regularization backup may introduce over-conservatism and cause
inferior performances for some extremely difficult tasks. Therefore, we do not use these trick for
some experiments as Table 6 shows.

Table 6: Additional experiment details

Task Clip-double Q Value regularization backup

All Mujoco-Locomotion ! !

All Antmaze-Navigation ✗ ✗

All Adroit-Manipulation ! ✗

D.4 PSEUDOCODE AND COMPUTATIONAL COST

This subsection presents the pseudocode when finetuning using SAC.

Algorithm 1 PROTO with SAC finetuning

Input: Offline dataset D, online replay buffer B, pretrained value networks Q0, pretrained policy
π0, initial conservatism strength α.
for k = 0, 1, 2, 3, ..., N do

Collect new transition, B ← B ∪ {(s, a, r, s′)}.
Sample mini-batch transitions B ∼ D ∪ B.
Update SAC action-value networks based on B by subtracting α · log π

π̄k
from target value.

Update SAC policy based on B by adding α · log π
π̄k

from from actor loss.
Update target value networks via polyak averaging trick
Update target actor network π̄k via polyak averaging trick
Anneal α until 0.

end for
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We implement our approach using the JAX framework (Bradbury et al., 2018). On a single RTX
3080Ti GPU, we can perform 1 million online samples and gradient steps in approximately 20
minutes for all tasks.

D.5 BASELINE REPRODUCING DETAILS

We rerun the official codes and adhere to the authors’ reported hyperparameters to reproduce most of
the baseline results. AWAC results are reproduced by the open-sourced d3rlpy repo (Seno & Imai,
2022). Note that most of the baselines have far more hyperparameter tuning than PROTO.

1. IQL: https://github.com/ikostrikov/implicit_q_learning. We use 3
groups of hyperparameters via tuning the expectile value, policy temperature and dropout rate
following the official implementations. Specifically, the expectile value is 0.7 for Mujoco tasks,
0.9 for Antmaze tasks, 0.7 and for Adroit tasks. The policy temperature is 3.0 for Mujoco tasks,
10.0 for Antmaze tasks, and 0.5 for Adroit tasks. The dropout rate for Adroit tasks is 0.1 and 0 for
other tasks since the offline data for Adroit is small and is prone to overfitting.

2. ODT: https://github.com/facebookresearch/online-dt. We tune various hy-
perparameters following the official implementations including learning rate, weight decay, pre-
train step and whether to use position encoding, et, al, leading to more than 10 groups of parameters.
Please refer to the Table C.4 in (Zheng et al., 2022) for details. In addition, ODT does not conduct
experiments on Antmaze-medium and Antmaze-large tasks, thus we adopt the hyperparameters
used for Antmaze-umaze to task to run Antmaze-medium and large tasks. Also, ODT does not
evaluate on Adroit tasks. For Adroit tasks, we set the pretraining steps as 5000, the buffer size as
1000, the learning rate as 1e-4, the weight decay as 5e-4, the eval context length as 5, geval as the
expert score of each task reported in (Fu et al., 2020) and gonline as the double of the expert score
of each task reported in (Fu et al., 2020), the position encoding is set to NONE.

3. PEX: https://github.com/Haichao-Zhang/PEX. We use the same 3 groups of hyper-
parameters as IQL since the hyperparameters reported in the PEX paper are directly adopted from
IQL.

4. Off2On: https://github.com/shlee94/Off2OnRL. Off2On requires tuning 2 groups
of hyperparameters for pretraining on Mujoco, Antmaze, and Adroit tasks, focusing on the La-
grangian threshold following the official implementations. Specifically, the Lagrangian threshold
for Mujoco and Adroit tasks is -1.0 and is 5.0 for Antmaze tasks. We pretrain using the official
CQL implementation3.

5. AWAC: https://github.com/takuseno/d3rlpy We reproduce the AWAC using the
open-sourced library from d3rlpy (Seno & Imai, 2022).

E SAMPLE-EFFICIENT ONLINE FINETUNING

In this section, we show that PROTO can be also extended to sample-efficient online finetuning
setting by simply increasing the update-to-data (UTD) ratio from 1 to 20 and obtain comparable
results compared to the recent SOTA sample-efficient baselines (RLPD4 (Ball et al., 2023)). In the
sample-efficient online finetuning setting, we only finetune with 0.1M rather than 1M online samples.
The aggregated learning curves is presented in Figure 11.

Figure 11 shows that PROTO achieves on-par performances compared to RLPD via simply in-
creasing the UTD ratio (PROTO (UTD=20)), further demonstrating the adaptability of PROTO
on sample-efficient online finetuning. However, we observe that RLPD grows faster than PROTO.
We hypothesize that this is because that PROTO requires conservatism to handle the instability at
the initial finetuning stage, which may slow down the initial policy updates. In contrast, RLPD
only focuses on online RL without offline pretraining, and thus can ignore the conservatism and
enjoy fast updates. The theoretical comparison between Eq. (7) and Eq. (6) also shows that the
KL-regularization in PROTO will change the optimality gap convergence rate from γk (Eq. (7)) to
1

k+1 (Eq. (6)), which means the convergence becomes slower. Moreover, PROTO uses only a single
network but RLPD utilizes an ensemble network that ensembles 10 networks. Ensemble network is

3https://github.com/aviralkumar2907/CQL
4https://github.com/ikostrikov/rlpd
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Figure 11: Comparisons with the SOTA sample-efficient RL method, RLPD (Ball et al., 2023).

believed to perform better than a single network but requires more computational resources (Ball
et al., 2023; Lee et al., 2022).

E.1 COMPARISONS WITH NON-OPEN-SOURCED SAMPLE-EFFICIENT BASELINES

We also compare PROTO with other non-open sourced baselines including APL (Zheng et al., 2023)
and SUNG (Guo et al., 2023). We also finetune with only 0.1M online samples and report the results
in Table 7, the results of APL and SUNG are adopted from (Guo et al., 2023).

Table 7: Comparison with the non-open-sourced sample-efficient baselines, including all varaints of
APL (Zheng et al., 2023) and SUNG (Guo et al., 2023). The top 3 scores for each task are bolded.

APL
(TD3+BC)

APL
(CQL)

APL
(SPOT)

SUNG
(TD3+BC)

SUNG
(CQL)

SUNG
(SPOT)

PROTO
(UTD=20)

PROTO
(UTD=20, 10τ )

antmaze-m-p - 22.8 86.0 - 86.3 88.6 92.3 88.3
antmaze-m-d - 36.8 86.0 - 85.6 91.7 90.5 89.3
antmaze-l-p - 0.0 38.9 - 52.7 45.7 70.9 78.7
antmaze-l-d - 0.0 3.8 - 44.1 19.8 70.7 70.0

Antmaze Total - 59.6 214.7 - 268.7 245.8 324.4 326.3

hopper-r 27.1 41.8 - 38.7 44.3 - 43.9 69.9
halfcheetah-r 70.0 67.7 - 76.6 69.1 - 84.9 83.7
walker2d-r 13.8 6.3 - 14.1 14.5 - 49.4 39.9
hopper-m 76.9 102.7 - 101.8 104.1 - 105.3 99.9

halfcheetah-m 80.9 44.7 - 80.7 79.7 - 73.4 78.5

walker2d-m 98.2 75.3 - 113.5 86.0 - 107.0 113.1
hopper-m-r 100.6 97.4 - 101.3 101.9 - 65.3 87.5

halfcheetah-m-r 71.5 78.6 - 69.7 75.6 - 63.4 66.2

walker2d-m-r 108.2 103.2 - 109.2 108.2 - 105.4 114.3

Mujoco Total 647.2 617.8 - 705.5 683.4 - 698.0 753

Table 7 shows that PROTO can outperform or obtain comparable performances level compared to all
variants of APL and SUNG for 8 out of 13 tasks. Furthermore, we can obtain further performance
gains via increasing the polyak averaging speed to 10τ (PROTO (UTD=20, 10τ )). Although speeding
up the updates, the training is stable and we don’t observe performance drop, demonstrating PROTO
can handle distribution shift in a large variation of hyperparameter changes.
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F ABLATION STUDY

In this section, we conduct ablation studies on the two hyper-parameters of PROTO, the Polyak
averaging speed τ and the conservatism strength annealing speed η, to investigate whether PROTO is
hyper-parameter robust.

For τ , we ablates on three sets of parameters: 0.5τ, 1τ and 2τ , where 1τ is the original hyper-
parameter that is used to reproduce the results in our paper including 5 × 10−3 for all MuJoCo
locomotion tasks and 5 × 10−5 for all Adroit manipulation and Antmaze navigation tasks. 0.5τ
represents half the original speed and 2τ denotes double the original speed. The aggregated learning
curves and full results can be found in Figure 12 and Figure 13.

Figure 12: Aggregated learning curves of ablations on the polyak averaging speed.

Figure 13: Full results of ablations on the polyak averaging speed.

Figure 12 and Figure 13 illustrate that PROTO can achieve similar performances across a range of
Polyak averaging speeds, including 0.5τ to 2τ . This finding highlights the robustness of PROTO to
variations in the Polyak averaging speed (τ ).

For the ablations on the conservatism annealing speed η, we also ablate on three sets of parameters:
0.8, 0.9 and 1.0, where 0.9 is the original hyper-parameter that is used to reproduce the results in
our paper and means the conservatism strength α anneals to 0 with 106

0.9 online samples. 0.8 and 1.0
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represents α decays to 0 with 106

0.8 and 106

1.0 online samples, respectively. The aggregated learning
curves and full results can be found in Figure 14 and Figure 15.

Figure 14: Aggregated learning curves of ablations on the conservatism annealing speed η.

Figure 15: Full results of ablations on the conservatism annealing speed η.

Figure 14 and Figure 15 demonstrate that PROTO can obtain consistently good performances with
three sets of annealing speed. In this paper, we adopt a non-parametric treatment by setting η as 0.9
to ease the parameter tuning.
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G FULL RESULTS OF PROTO WITH BC PRETRAINING

In this section, we present the complete results for PROTO with BC pretraining, referred to as
PROTO+BC, to demonstrate the versatility of PROTO for various offline pretraining approaches. The
results are reported in Figure 16 and Figure 17. In the case of using BC for policy pretraining, we use
Fitted Q evaluation (FQE) (Le et al., 2019) to obtain the action-value Q0 that corresponds to the BC
policy. FQE is simple to train and insensitive to hyper-parameters, so pretraining Q0 using FQE will
not add additional parameter tuning burden or significant computational costs.

It has been observed in prior work (Lee et al., 2022; Nair et al., 2020) that directly initializing
the value function with FQE and the policy with BC can lead to a significant performance drop
during the initial finetuning stage. However, as shown in Figure 16 and Figure 17, this issue can
be effectively addressed while achieving competitive finetuning performances using PROTO. This
suggests that PROTO enables the use of the simplest pretraining method to construct state-of-the-art
offline-to-online RL methods, bypassing the need for complex offline RL training.

Figure 16: Aggregated learning curves of online finetuning with BC pretrained policy.

Figure 17: Full results of online finetuning with BC pretrained policy.
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H FULL RESULTS OF ONLINE FINETUNING WITH TD3

In this section, we plug PROTO into TD3 (Fujimoto et al., 2018), another SOTA online RL method
that focuses on deterministic policy learning, dubbed as PROTO+TD3 to demonstrate the adaptability
of PROTO for diverse online finetuning approaches. Differ from finetuning with SAC (Haarnoja et al.,
2018), TD3 builds on top of deterministic policy and thus the log term in Eq. (3) in not calculable. To
solve this, we replace the KL-divergence regularization in Eq. (3) with a MSE loss akin to (Fujimoto
& Gu, 2021). We also only finetune the mean output of the stochastic policy that is pretrained by
EQL and drop the variance head to transfer from stochastic to deterministic policy.

πk+1 ← argmax
π

E

[ ∞∑
t=0

γt
(
r(st, at)− α · (π(st)− πk(st))

2
)]

, k ∈ N, (13)

then the policy evaluation operator and policy improvement step become:

(T πk
πk−1

Q)(s, a) := r(s, a) + γEs′∼P(·|s,a)

[
Q(s′, πk(s

′))− α · (πk(s
′)− πk−1(s

′))
2
]
, k ∈ N+,

(14)

πk+1 ← argmax
π

[
Qπk(s, π(s))− α · (π(s)− πk(s))

2
]
, k ∈ N. (15)

This objective shares the same philosophy of Eq. (3) that constraining the finetuning policy w.r.t an
iteratively evolving policy πk instead of a fixed π0, which degenerates to a recent work (Luo et al.,
2023). However, it is worth mentioning that the constraint strength of the MSE loss in Eq. (15) is far
more weak than the log-barrier in Eq. (5). For instance,assume the action space ranges from [-1, 1],
then the MSE loss in Eq. (15) is at most 4, which may vanish compared to the large action-value Q
during policy improvement Eq. (15), while the log-barrier in Eq. (5) may reach∞. Therefore, we
adopt the similar treatment in TD3+BC (Fujimoto & Gu, 2021) that introducing a scalar λ during
policy improvement to rescale the action value to a comparable scale w.r.t the MSE loss to stabilize
training:

πk+1 ← argmax
π

[
λQπk(s, π(s))− α · (π(s)− πk(s))

2
]
, k ∈ N, (16)

where

λ =
β

1
N

∑
(si,ai)

|Q(si, ai)|
, (17)

where N is batch size and β is a hyper-parameter to control the Q scale. Although introducing one
additional parameter to tune, we find that setting β = 4 can achieve consistently good performance
across 16 tasks. For the other parameter choice, we reuse almost all of the hyper-parameters from
finetuning with SAC as reported in Appendix D and only disable the clip-double Q trick for adroit
Manipulation tasks. We report the aggregated learning curves and full results of PROTO+TD3 in
Figure 18 and Figure 19. We also record the learning curves of training SAC and TD3 from scratch.

Figure 18 and Figure 19 demonstrate the adaptability of PROTO for diverse online finetuning
approaches. By simply plugging PROTO into TD3 (Fujimoto et al., 2018), we can form a competitive
offline-to-online RL algorithm PROTO+TD3, which also obtains SOTA performances compared to
SOTA baselines.

27



Under review as a conference paper at ICLR 2024

Figure 18: Aggregated learning curves of TD3 online finetuning.

Figure 19: Full results of TD3 online finetuning.

I FULL RESULTS OF COMPARISONS WITH FIXED POLICY REGULARIZATION

In this section, we report the aggregated learning curves and full results for the comparisons of
iterative policy regularization with fixed policy regularization in Figure 20 and Figure 21.

Observe from Figure 20 and Figure 21 that although we adopt a linear schedule to anneal the
conservatism strength for Frozen, Frozen still suffers from severe slow online finetuning and poor
sample efficiency caused by the initial over-conservatism induced by fixed policy regularization.
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Figure 20: Aggregated learning curves of iterative policy regularization (PROTO) v.s fixed policy
regularization (Frozen).

Figure 21: Full results of iterative policy regularization (PROTO) v.s fixed policy regularization
(Frozen).

J EQL COMPARISON FOR THE OFFLINE2ONLINE SETTING

In this section, we utilize EQL to pretrain and finetune the policy. See from Figure 22 that EQL
can achieve stable but suboptimal finetuning performances, as it constrains w.r.t the slowly evolved
replay buffer B, which introduces over-conservatism. Moreover, note that the final results of EQL are
more suboptimal than IQL. We suspect this is because EQL solves a reverse KL-regularized MDP,
which prefers more mode-seeking policies than IQL (Xu et al., 2023). The mode-seeking policy can
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benefit the offline pretraining as it avoids OOD issues, but may inhibit the exploration during online
finetuning.

Figure 22: EQL comparison for the offline2online setting on Mujoco tasks.

K INVESTIGATIONS ON DISTRIBUTIONAL SHIFT DEGREES OF DIFFERENT
TYPES OF POLICY REGULARIZATION

In this section, we quantitatively compare iterative, fixed, and no policy regularization to analyze
distributional shifts during online finetuning and gain insights into their respective behaviors. Specif-
ically, we record the distributional shift degree w.r.t the pretrained policy π0 by measuring the
Log-likelihood log π0(a|s), where a are sampled from the policies that are finetuned by different
types of policy regularization methods. The results are presented in Figure 23 (a).

Figure 23 (a) shows that the iterative policy regularization method stays close to π0 initially, but
gradually deviates from the pretrained policy π0 and explores more OOD regions. In contrast, fixed
policy regularization always remains close to π0 even with annealed policy constraints as it constrains
w.r.t π0. Also, without any regularization, the finetuned policy quickly shifts away from π0, suffering

30



Under review as a conference paper at ICLR 2024

(a) Comparisons on distributional shift (b) Finetuning performances
Figure 23: Comparisons between iterative/no/fixed policy regularization on distributional shift degrees
and finetuning results.

potential instability. Moreover, the results in Figure 23 (b) are consistent with our observations in
Figure 23 (a), where no regularization suffers severe instability, fixed regularization undergoes stable
but nearly-unchanged results, but iterative regularization enjoys gradually improved performances.

L ADDITIONAL ABLATION STUDIES ON THE POLYAK AVERAGING SPEED

In this section, we consider some extreme settings that the polyak average speed τ is extremely large
(τ = 0.1) or no polyak average trick (No τ ) is introduced. The results are presented in Figure 24.

Figure 24: Ablations on the results for no polyak averaging trick. τ = 5e− 3 refers to our default
hyper-parameter. No τ refers to no polyak averaging trick is utilized.
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Figure 24 shows that PROTO (No τ ) can obtain better results on offline datasets that have good
coverage such as medium-replay and random datasets since a good data coverage can alleviate the
instability and No τ can enhance the optimality. However, for datasets that have narrow data coverage
such as medium datasets, PROTO (No τ ) may undergo some initial performance drop without polyak
averaging. Nevertheless, with a stabilized π̄k induced by polyak average, PROTO (τ = 5e− 3) can
consistently achieve stable and near-optimal finetuning results, achieving a robust trade-off between
stability and optimality across diverse tasks.

We also adopt the polyak averaging trick to directly slow down the EQL+SAC policy updates. Fig-
ure 25 shows that without the explicit regularization imposed by KL-regularization, simply adopting
the polyak averaging trick into EQL+SAC finetuning cannot still avoid the initial performance drop.

Figure 25: EQL+SAC+Polyak averaging results.

M CAL-QL RESULTS

In this section, we compare against a recent SOTA baseline, Cal-QL (Nakamoto
et al., 2023). We reproduce the results of Cal-QL using the official codes from
https://github.com/nakamotoo/Cal-QL. Figure 26 shows that PROTO can outperform
or obtain on-par performances compared to Cal-QL on most of the tasks. In addition, Cal-QL is
limited to CQL-style pretraining and lacks versatility, while PROTO enjoys great versatility on diverse
pretrain and finetune methods.

Note that Cal-QL is not specifically designed for Mujoco tasks and Adroit-human datasets with
dense rewards, but tailored for Antmaze tasks with sparse rewards. Therefore, we carefully tune
the hyperparameters for Mujoco and Adroit-human tasks to ensure fair comparisons. We observe
in the official implementation that Cal-QL introduces a carefully tuned reward scaling+bias trick to
enhance performances. However, we find adhering to the original re-scaling scale and bias value
cannot lead to reasonable results for Mujoco and Adroit-human tasks. Therefore, we carefully tune
these hyperparameters and find setting the reward re-scaling scale as 1 and the bias value as 0 can
obtain relatively good results. In this sense, Figure 26 shows that PROTO can still outperform Cal-QL
on most of the tasks. We also noticed in a concurrent work (Lei et al., 2023) that Cal-QL cannot
achieve satisfactory performances on Mujoco and Adroit-human tasks.
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Figure 26: Comparisons with Cal-QL.
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