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ABSTRACT

Learning high-dimensional probability distributions by competitively training
generative and discriminative neural networks is a prominent approach of Gener-
ative Adversarial Networks (GANs) among generative models to model complex
real-world data. Nevertheless, training GANs likely suffer from non-convergence
problem, mode collapse and gradient explosion or vanishing. Least Squares GAN
(LSGANs) and Wasserstein GANs (WGAN) are of representative variants of
GANs in literature that diminish the inherent problems of GANs by proposing the
modification methodology of loss functions. However, LSGANs often fall into
local minima and cause mode collapse. While WGANs unexpectedly encounter
with inefficient computation and slow training due to its constraints in Wasserstein
distance approximation. In this paper, we propose Quantile Regression GAN (QR-
GAN) in which quantile regression is adopted to minimize 1-Wasserstein distance
between real and generated data distribution as a novel approach in modification
of loss functions for improvement of GANs. To study the culprits of mode col-
lapse problem, the output space of discriminator and gradients of fake samples
are analyzed to see if the discriminator guides the generator well. And we found
that the discriminator should not be bounded to specific numbers. Our proposed
QRGAN exposes high robustness against mode collapse problem. Furthermore,
QRGAN obtains an apparent improvement in the evaluation and comparison of
Frechet Inception Distance (FID) for generation performance assessment com-
pared to existing variants of GANs.

1 INTRODUCTION

Deep learning-based data generation techniques have proved their successes in many real-world
applications. Thanks to the rising of generative models, the generation of audio, images and videos,
either unconditionally or conditionally, has achieved remarkable advancements in recent years. Text
or structured data can be generated easily as well in many recent studies. Data generation techniques
bring about efficency and creativity in human activities at every conner of the world.

Among the most influent and successful methods for data generation experiments, Variational Au-
toencoders (VAE) Kingma & Welling (2014) and Generative Adversarial Networks (GANs) Good-
fellow et al. (2014) are the fundamental representatives of generative models.

Variational Autoencoders (VAE): VAEs regularize the encoder output to be a known distribution.
This regularization is applied to each sample. For latent variable z and input x, p(z|x), not p(z),
is pushed to the prior distribution. With the additional reconstruction loss, the two objectives may
conflict each other. Usually, mean square error (MSE) loss is used for the reconstruction loss.
Because if the global minimum of MSE loss is at the expected value of the distribution, the decoders
generate blurry outputs. PixelVAE Gulrajani et al. (2016) fixes VAE’s blurry output by replacing
MSE loss by PixelCNN van den Oord et al. (2016) decoder.

Generative Adversarial Networks (GANs): GANs regularize the entire decoder input distribu-
tion to be a known distribution. In other words, GANs regularize p(z), not p(z|x). Therefore,
generators can generate sharp outputs without the conflicting objectives in VAEs. A number of
GAN variants has been presented in literature to improve the data generation including Least-square
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GANs (LSGANs) Mao et al. (2019), Wasserstein GANs (WGANs) Arjovsky et al. (2017), Latent-
GAN Prykhodko et al. (2019), Adversarial Autoencoders (AAEs) Makhzani et al. (2016). LSGANs
and WGANs improved the objective function for better generation quality. LatentGAN generates
latent variables for the given autoencoder using GAN methods. AAEs replace the KL regularization
from VAEs by a discriminator that distinguishes the encoder output distribution (generated data) and
known distribution (real data). Although GANs can obtain better generation output, they are diffi-
cult to train because of the framework architecture in which two networks compete. Mode collapse
is a common failure in GAN frameworks that generator outputs very similar samples only. Mode
collapse is caused by unstable training and improper loss function.

Variants of GANs: Recent work targets to find the best method to train GANs with better quality
and less mode collapse. The work Wiatrak et al. (2020) shows a huge number of existing studies
that put an effort to improve GANs. The work also explains GANs’ recent successes and problems.
Accordingly, several GAN variants are introduced to stabilize the GAN training such as DCGAN
Radford et al. (2016), LSGAN, WGAN-GP Gulrajani et al. (2017), and Fisher GAN Mroueh &
Sercu (2017). In Least Square Generative Adversarial Networks Mao et al. (2017); Mao et al. (2019)
(LSGANs), the authors propose to use mean square error (MSE) which does not saturate. Also,
they found that training generator to make samples near the decision boundary instead of trying
to overwhelm the discriminator results better models. Alternatively, Wasserstein GANs Arjovsky
et al. (2017) applies Lipschitz condition to approximate 1-Wasserstein distance. In the original
WGAN, they implement the constraint by clipping weights of critic network into a range specified
by hyperparameters. WGAN-GP is introduced to improve training of WGAN. WGAN-GP give
gradient penalty to push weight gradient norm of critic to 1. Thus, the generator can easily escape
from local minima. However, it takes more time for computation of gradients for random inputs.

Reinforcement Learning (RL): is to learn the optimal policy in a given environment. The agent
read an observation (state) from the environment, calculate the optimal action, and take the action.
The environment returns the next state with the reward by the action. By trial and error, the agent
learns the optimal action for each state and gradually reach to the optimal policy. For given time
t, state s, action a, decay factor γ, and reward at t is Rt, Q − value is defined as Q(s, a) =
E[
∑∞
t=0 γ

tRt|s, a], which in the other words is the expected value of cumulative sum of decaying
rewards. Previously, Q-Learning used a table to store every Q-value for each state. This method
cannot be used for complex environments which have a great deal of states.

Quantile Regression Deep Q Network (QR-DQN:) To learn a generalized state-value function,
Deep Q Network (DQN) successfully applies deep neural network to predict Q-value Mnih et al.
(2015). With some tricks for stability, DQN succeeds to beat human level performance in over 29 of
49 Atari 2600 games. Meanwhile, there are attempts to learn a distribution of Q-value: C51 Belle-
mare et al. (2017), Quantile Regression-Deep Q Network (QR-DQN) Dabney et al. (2017). C51
introduces the importance of distributional reinforcement learning (distributional RL) which learns
Q-value distribution instead of the expected value. Distributional RL improves training stability and
performance. However, the KL divergence used in C51 is not mathematically guaranteed to con-
verge. In economics, the mean predicting quantile values is not only important. The work Koenker
(2005) proposes a method called quantile regression to predict quantile values. QR-DQN demon-
strates a solution that guarantees mathematical convergence by quantile regression that minimizes
1-Wasserstein distance without bias.

Our contributions: Adropting the above-mentioned quantile regresstion approach in this work,
we propose QRGAN, a GAN-based generative model adopting quantile regresstion, to minimize
1-Wasserstein distance between real samples and generated samples using quantile regression. We
train the discriminator to predict quantile values of realisticity using quantile regression. Then, we
train our generator to minimize the difference of quantile values of real and fake samples to minimize
1-Wasserstein distance between the two. We analyze and compare the discriminator output space
for each method to find out if discriminator can guide the generator well. Discriminators whose
target is specified tend not to make ambiguous outputs. Those discriminators create sharp minima,
so generators may not learn from them. For example, when a generator generates fake samples near
a real sample A, a discriminator lowers the probability of samples near A (which can be seen as
”realisticity”). Then, generator should generate fake samples near another real sample B. However,
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discriminator detects fake samples between A and B almost completely. Although the generator
should move to B, the generator chooses to stay near A because the way from A to B is too risky
(the realisticity can decrease). In other words, bounded discriminator creates sharp local minima,
which prevents the generator from learning. This also stops the networks from escaping from the
mode collapse. Not to let the discriminator get bounded, we desire to minimize 1-Wasserstein
distance. Wasserstein GAN Arjovsky et al. (2017) applies Lipschitz condition to a discriminator
to approximate 1-Wasserstein distance causing a slowness in training. Our approach of quantile
regression can obtain relatively faster training speed in comparision to existing variants of GANs.

The paper is organized as follows. In Section 1, we brief current state of the art and motivation of this
work. In Section 2, we comprehensively present the development of QRGAN. And experimental
demonstrations are shown in Section 3 including experiments on the mixture of gussian dataset and
image generation experiments. Lastly, the paper is concluded in Section 4.

2 QUANTILE REGRESSION GAN

GANs train generative model by minimizing Kullback-Libeler (KL) divergence between real sam-
ples and generated samples. However, KL divergence is not mathematically guaranteed to converge.
Thus, the discriminator often creates sharp local minima and even cause mode collapse issue. Al-
though WGANs instead minimize 1-Wasserstein distance to fix this problem, the training is slow
because Lipschitz condition is added to the discriminator (critic) network for Wasserstein distance
approximation. We propose QRGAN, a GAN-based generative method, to minimize 1-Wasserstein
distance between real samples and generated samples using quantile regression. We train our dis-
criminator to predict quantile values of realisticity using quantile regression. Then, we train our
generator to minimize the difference of quantile values of real and fake samples to minimize 1-
Wasserstein distance between the two. First, we explain the relation of quantile regression and
1-Wasserstein distance in Section 2.1. In Section 2.2, we explain how to learn quantile values by
applying quantile regression to the discriminator, and how the generator minimizes 1-Wasserstein
distance. Finally, we compare QRGAN with other state of the art GAN methods in Section 2.3.

2.1 QUANTILE REGRESSION FOR MINIMIZATION OF 1-WASSERSTEIN DISTANCE

For given quantile fraction τ inverse CDF function F , distributions Pr and Pg , p −Wasserstein
distance is defined by,

Wp(Pr,Pg) =

(∫ 1

0

∣∣∣∣F−1Pr
(τ)− F−1Pg

(τ)

∣∣∣∣pdτ) 1
p

(1)

Then 1-Wasserstein distance is,

Wp(Pr,Pg) =

∫ 1

0

∣∣∣∣F−1Pr
(τ)− F−1Pg

(τ)

∣∣∣∣dτ (2)

. Here, minimizing 1-Wasserstein distance is same to minimizing distance between quantile values.
This method is used to indirectly minimize 1-Wasserstein distance in QR-DQN. Quantile regression
is done by training the network using quantile loss. It is crafted function to have minimum value
at the given quantile fraction τ . Given quantile fraction τ ∈ [0, 1] and error u, quantile loss is
formulated as follows,

ρτ (u) =

{
u.(τ − 1), u ≤ 0

u.τ, u > 0
(3)

2.2 QRGAN

We define the number of quantile values N , then quantile fractions are τ0 = 0, τi = i
N+1 , τN = 1

where, i = 1, .., N . 1 −Wasserstein distance can be represented better by using middle points τ̂
Dabney et al. (2017) τ̂ = τi−1+τi

2 . In QR-DQN Dabney et al. (2017), the authors apply Huber loss
to quantile loss to smoothen it. However, the solution of quantile Huber loss is different from the
true quantile value. For accurate quantile regression, we trade off the converge-ability by not apply
Huber loss unlike QR-DQN. For given target y and prediction y′ error u is defined by, u = y−y′. We
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apply quantile regression to discriminator to learn a distribution of realisticity. We modify DCGAN
Radford et al. (2016) architecture to output vector of N dimension instead of scalar for prediction
of quantile values. The target of real samples is a and the one of fake samples is b. The output
of discriminator is the realisticity distribution of the input batch. We simply define it by the mean
along the batch dimension of each result as did in Wasserstein GANs. For given batch size M
and discriminator output o, Dτ(batch) = 1

M

∑M
i=1 oi,τ . Objective functions of discriminator can be

formulated as the following:

min
D

VQRGAN(D) =
1

N

∑
τ̂∈(τ̂1,.., ˆτN )

(
ρτ̂ (Dτ̂ (xreal)− a) + ρτ̂ (Dτ̂ (xfake)− b)

)
(4)

Intuitively, ”realisticity” should not be bounded to the specific number. In that sense, we find that
it works best to use a = +∞, b = −∞ with regularization (explained below). The quantile values
will have gradients of τ for positive changes and gradients of (τ − 1) for negative changes. Still, the
quantile values can be viewed as pessimistic/optimistic neurons that are mentioned in Dabney et al.
(2020). The discriminator output will grow forever and thus the discriminator will not converge
when we use targets a = +∞ and b = −∞ without regularization. We add L1 − square penalty
term of the discriminator outputs for convergence,

min
D

VQRGAN(D) =
1

N

∑
τ̂∈(τ̂1,..,τ̂N )

(
ρτ̂ (Dτ̂ (xreal)− a) + ρτ̂ (Dτ̂ (xfake)− b)

)
+

λ
1

N

∑
τ̂∈(τ̂1,..,τ̂N )

(
1

2M

( M∑
i=1

|oi,τ,real|+
M∑
i=1

|oi,τ,fake|
)
− k
)2

(5)

Where, λ and k are hyperparameters. When added L2 − penalty term, the discriminator outputs
eventually saturate (gradients at 0), and the generator training gets slowed. For generator to minimize
1−Wasserstein distance,

W1(U, Y ) =

∫ 1

0

|F−1Y (ω)− F−1U (ω)|1dω (6)

we compute the quantile valuesDτ̂ (xreal) andDτ̂ (xfake) and minimize the differences using mean
absolute error loss.

min
G

VQRGAN(G) =
1

N

∑
τ̂∈(τ̂1,.., ˆτN )

|Dτ̂ (xreal)−Dτ̂ (xfake)| (7)

We replace Dτ̂ (xreal) by∞ to prevent it updating to decrease the discriminator output when some
quantile values of fake batch are often greater than that of real batch.

min
G

VQRGAN(G) =
1

N

∑
τ̂∈(τ̂1,.., ˆτN )

|∞ −Dτ̂ (xfake)| (8)

Minimizing this objective function is same to maximize the following function, thus:

max
G

VQRGAN(G) =
1

N

∑
τ̂∈(τ̂1,.., ˆτN )

Dτ̂ (xfake) (9)

The proposed QRGAN is developed as shown in Algorithm 1.

2.3 COMPARISON TO OTHER GANS

Derivative of discriminator loss when a = ∞, b = −∞, N = 1, is 0.5 which is proportional
to the derivative of the half of the critic loss of Wasserstein GANs. The two even regularizes the
discriminator/critic outputs to prevent endless growth. In addition, the derivative of generator loss is
1, same as Wasserstein GANs. This fact may mean QRGANs are an upgraded version of Wasserstein
GANs that do not need to meet the Lipschitz condition for approximating 1-Wasserstein distance
thanks to quantile regression.
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Algorithm 1: QRGAN
Input: η, M , N , λ, k, τ̂1, .., τ̂N , θD, θG
. η (learning rate), M (batch size), N (number of quantile
values), λ (regularization coefficient), k (norm target)

. τ̂1, .., τ̂N (quantile values), θD (initial discriminator weights),
θG (initial generator weights)

1: while (Parameters NOT converged) do
2: Sample {xi}Mi=1 ∼ Pr . A batch of real data
3: Sample {zi}Mi=1 ∼ p(z) . A batch of the prior distribution
4: gD ←5θD[

1
M.N

∑M
i=1

∑
τ̂∈(τ̂1,..,τ̂N )

(
ρτ̂

(
Dτ̂ (xi; θD)−∞

)
+ ρτ̂

(
Dτ̂ (G(zi; θG); θD) +∞

))
+

λ 1
N

∑
τ̂∈(τ̂1,..,τ̂N )

(
1

2.M

(∑M
i=1 |oi,τ,real +

∑M
i=1 |oi,τ,fake|

)
− k

)2]

5: gG ←5θG

[
1

M.N

∑M
i=1

∑
τ̂∈(τ̂1,..,τ̂N )Dτ̂ (G(zi; θG); θD)

]
6: θG ← θD − η.Adam(θD, gD)
7: θG ← θG + η.Adam(θG, gG)

Figure 1: Comparison of LSGAN and QRGAN generator loss. LSGAN generator minimizes the
difference of the means of distributions. QRGAN generator minimizes the difference of the

quantile values of distributions.

3 EXPERIMENTS AND RESULTS

In order to investigate the QRGAN’s robustness against mode collapse problem, we performed ex-
periments using several GAN methods (NSGAN, LSGAN, QRGAN) on mixture of gaussian dataset
(Ring-8, Grid-25) in the works Section 3.1. We also analyzed the discriminator output space to see
if the discriminator guides the generator as expected. Also, we pinpoint the reasons why we should
not use L2 penalty term in QRGANs. Furtheremore, to examize the QRGAN’s generation capabil-
ity, we performed different image generation experiments (CIFAR-10, LSUN-Bedroom, Cats). We
evaluated the GAN methods by Frechét Inception Distance Heusel et al. (2018). We also conducted
analogous analyses of QRGAN with regard to WGAN-GP using no-batch-normalization discrimina-
tor. For all image generation experiments, we only take a training set for training and evaluation. All
model weights of convolutional and transposed convolutional layers are initialized from N(0, 0.02)
and biases of them are initialized to zeros. We picked Adam Kingma & Ba (2017) optimizer with
β1 = 0.5 and β2 = 0.99 for optimization purposes. For WGAN-GP, we use λ (gradient penalty
coefficient) of 1 for CIFAR-10, and 10 for LSUN-Bedroom.
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3.1 MIXTURE OF GAUSSIAN DATASET

To test the robustness against to mode collapse, we did the same experiments which are done in
Unrolled GAN (Ring-8) and VEEGAN (Grid-25) Metz et al. (2017) Srivastava et al. (2017). We
define two training dataset generator, Ring-8 and Grid-25. Ring-8 dataset contains samples from
mixture of 8 gaussians arranged in ring shape. The ring has radius of 2 and each gaussian distribution
has standard deviation of 0.02. Meanwhile, Grid-25 dataset contains samples from mixture of 25
gaussians arranged in grid (5x5) shape. The centers of gaussian distributions range from [−4,−4]
to [4, 4]. Each distribution has standard deviation of 0.05. The MLP-based model architecture used
for MoG experiments is shown in Fig. 7. Hyperparameters used for Ring-8 and Grid-25 experiments
are presented in Table 2. The experiment results are shown in Fig. 2.

Figure 2: (Top) Ring-8 experiment result. (Bottom) Grid-25 experiment result.

(a) LSGAN (b) NSGAN (c) WGAN-GP (d) QRGAN∞,−∞ (e) QRGAN−∞,∞
(regularized by L2 penalty term)

Figure 3: Contour plots of discriminator output space

Mode collapse occurred on NSGAN and LSGAN in both Ring-8 and Grid-25 experiments. How-
ever, mode collapse is not observed on our proposed method (QRGAN) experiments. Mode collapse
occurs by various reasons. One of the most decisive reason is local minima in the space created by
discriminator. To analyze the discriminator output space at a situation which discriminator over-
whelms generator, we trained discriminator by various GAN methods with dummy generator which
outputs samples from uniform distribution. The color is the discriminator output value (higher is
more realistic). Blue dots are dummy generator output, sampled from uniform distribution. We
pick some blue dots and draw red arrows (force) by normalized computed gradients by generator
loss. The contour plots of discriminator ourput spaces are shown in Fig. 3. As we can see from the
contours, very steep slope appears only near real samples and very gentle slope appear for samples
outside. Thus, gradient norm is very small (the arrow length is short). Most gradient directions
are not desirable for fake samples. Looking at the colors, discriminator guides proper Wasserstein
distance minimization. Slopes are not too gentle fake samples. Red arrows consistently head to
real samples. Like LSGAN case, gradients are too gentle for fake samples and gradient directions
are decided by noise, thus not desirable. Generator is likely to suffer from local minima. In com-
mon, discriminator is modeled to predict probability. For the optimal discriminator, there are no
output difference between real samples. This behavior is same to fake samples, too. In real, noise
makes difference, thus gradient directions are noisy. Then, generator is not trained to make realistic
samples. This works very similarly for LSGANs and bounded (which use finite targets) QRGANs,
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too. Instead, we can model a discriminator to predict distance. If discriminator predicts distance, it
should be less affected by noise.

3.2 IMAGE GENERATION EXPERIMENTS

3.2.1 EVALUATION METRICS

We use Fréchet Inception Distance Heusel et al. (2018) (FID) for evaluation of image generation
experiments. FID is an evaluation metric for image generation models. Although Inception Score
(IS) is used previously, there are cases where IS evaluates worse than FID because does not reflect
training data. FID calculates 2048-dimension feature vector from Inception-v3 model. It calculates
mean and covariance matrix from the feature vector, and then compute Fréchet distance from the
statistics. Lower FID value means that the two statistics are closer. Given mean µ1 and µ2, and
covariance matrix Σ1 and Σ2, the Frechet inception distance could be represented as following,
FID = ‖µ1 − µ2‖2 + Tr(Σ1 + Σ2 − 2

√
Σ1Σ2). We used the dataset and approach presented in

Heusel et al. (2018) for FID value calculation. We generate 50000 images and then calculate FID
value for each 4k iterations and compare the minimum Fréchet Inception Distance (FID) value.

3.2.2 ARCHITECTURE FOR EXPERIMENTS

Deep Convolutional GANs: Deep Convolutional Generative Adversarial Networks Heusel et al.
(2018) (DCGANs) introduce rules for stable adversarial training of convolutional networks. Addi-
tionally, the authors have shown vector arithmetic operations (addition, subtraction) on the latent
code representations and it means that they successfully vectorized image. For image generation
experiments, we use DCGAN-based architectures as shown in Fig. 8.

Checkerboard artifacts and Resize-convolution: In DCGAN, generator outputs with checker-
board artifacts when the kernel size is not divisible by stride Odena et al. (2016). These artifacts
are generated because the outputs can be unevenly overlap. This phenomenon also occurs in back-
ward pass of convolution operations. To fix the checkerboard artifacts, we use convolution-average-
pooling and resize-convolution layers. For downsample pass in the discriminator, we use kernel size
of 3, stride of 1, padding of 1 for convolutional layers and following average pool 2d layer. For up-
sample pass in the generator, we upsample the input by nearest neighbor method and then pass it to
following convolutional layer. The checkerboard artifacts is presented in Fig. 9. The parameters of
different architecture variants are shown in Table 3. Hyperparameters are presented in Table 4. The
results of computed minimum FID are as in Table 1. QRGAN has shown better FID values than
NSGAN and LSGAN and competitive score to WGAN-GP. By applying the regularization method
learned from the discriminator output space analysis, gradients keep good norm and direction. Al-
though WGAN-GP shows great performance in several experiments, the computation is very costly
and take much more iterations. The analysis results for comparison of QRGAN against NSGAN,
LSGAN and WGAN-GP are shown in Fig. 4, Fig. 5 and Fig. 6 for the experiments on CIFAR-10,
LSUN-Bedroom and Cats, respectively.
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<Figure 5-9> CIFAR-10 generation task results. (Left) QRGAN 

compared to NSGAN and LSGAN. (Right) QRGAN compared to 

WGAN-GP. 
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QRGAN compared to NSGAN and LSGAN. (Right) QRGAN 
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<Figure 5-11> Cats generation task results. (Left) QRGAN 
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WGAN-GP. WGAN-GP did not converge. 

(a) QRGAN compared to NSGAN and LSGAN
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Figure 4: CIFAR-10 generation experiment results
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Figure 5: LSUN-Bedroom generation experiment results
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compared to NSGAN and LSGAN. (Right) QRGAN compared to 

WGAN-GP. WGAN-GP did not converge. 

(b) QRGAN compared to WGAN-GP

Figure 6: Cats generation experiment results

Table 1: The minimum FID summary

Minimum FID CIFAR-10 LSUN-Bedroom Cats
NSGAN 34.16 28.29 11.37
LSGAN 34.53 30.39 13.68
WGAN-GP 30.36 19.76 229.8
QRGAN 30.93 22.45 10.46

4 REMARKS

We presented the proposed QRGAN, a new method to train GANs that minimize 1-Wasserstein
distance between real data distribution and fake data distribution using quantile regression. By
modeling a discriminator to predict quantiles, more details could be learnt. We explained how mode
collapse is created, and what is the desired characteristics of discriminator output space. We showed
that LSGAN discriminator creates sharp local minima, thus it can get stuck in mode collapse. On the
contrary, WGAN-GP did not create any sharp local minima. We found an appropriate regularization
method from this analysis. The result has shown improved generation quality than previous state of
the art GAN methods.

8



Under review as a conference paper at ICLR 2021

ACKNOWLEDGMENTS

This research was partially supported by Basic Science Research Program through the
National Research Foundation of Korea(NRF) funded by the Ministry of Education(No.
2020R1A6A1A03046811). This research was partially supported by the MSIT(Ministry of Science,
ICT), Korea, under the ITRC(Information Technology Research Center) support program(IITP-
2020-2016-0-00465) supervised by the IITP(Institute for Information & communications Technol-
ogy Planning & Evaluation)

REFERENCES
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APPENDIX

A FIGURES AND TABLES RELATED TO EXPERIMENTS

Due to the space limitation, we present related figures and tables of our experiments in appendices.

A.1 THE MLP-BASED MODEL ARCHITECTURE USED FOR MOG EXPERIMENTS

Figure 7: The MLP-based model architecture used for MoG experiments
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A.2 CIFAR-10 ARCHITECTURE
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5.2.2. Architecture 

<Figure 5-7> Architecture for CIFAR-10 

 

Deep Convolutional GANs 

Deep Convolutional Generative Adversarial Networks [15] 

(DCGANs) introduce rules for stable adversarial training of 

convolutional networks. Additionally, the authors have shown vector 

arithmetic operations (addition, subtraction) on the latent code 

representations and it means that they successfully vectorized 

image. For image generation tasks, we use DCGAN-based 

architectures. 

 

 

Figure 8: Architecture for CIFAR-10
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A.3 CHECKERBOARD ARTIFACTS AND RESIZE-CONVOLUTION
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Checkerboard artifacts and Resize-convolution 

 
 

 
 

<Figure 5-8> Checkerboard artifacts. (Top) Checkerboard artifacts has 

caused because kernel size is not divisible by stride. (Bottom) No 

checkerboard artifacts appeared by using resize-convolution. 

 

In DCGAN, generator outputs with checkerboard artifacts when the 

kernel size is not divisible by stride [25]. These artifacts are 

generated because the outputs can be unevenly overlap. This 

phenomenon also occurs in backward pass of convolution operations. 

To fix the checkerboard artifacts, we use convolution-average-

pooling and resize-convolution layers. For downsample pass in the 

discriminator, we use kernel size of 3, stride of 1, padding of 1 for 

convolutional layers and following average pool 2d layer. For 

upsample pass in the generator, we upsample the input by nearest 

neighbor method and then pass it to following convolutional layer. 

 

 

 

Figure 9: Checkerboard artifacts. (Top) Checkerboard artifacts has caused because kernel size is
not divisible by stride. (Bottom) No checkerboard artifacts appeared by using resize-convolution.
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A.4 TABLES OF PARAMETERS

Table 2: Hyperparameters used for Ring-8 and Grid-25 experiments

Hyperparameter Name Value
Batch size 500
Dimension for latent vector 128
Discriminator Model MLP without BN
Generator Model MLP without BN
Main dimension for discriminator 128
Main dimension for generator 128
Learning rate for discriminator 1e-3
Learning rate for generator 1e-3
Optimizer Adam
β1 (Adam) 0.5
β2 (Adam) 0.99
Number of quantiles 64
λ (L1-square penalty) 0.1
k (Norm target) 0

Table 3: Architecture variants summary

Task Number of hidden layers Image size
CIFAR-10 3 32x32
LSUN-Bedroom 4 64x64
Cats 4 128x128

Table 4: Hyperparameters summary

Hyperparameter Name CIFAR-10 LSUN-Bedroom Cats
Batch size 64 64 64
Image size 32x32 64x64 128x128
Dimension for latent vector 100 100 100
Main dimension of discriminator 64 64 64
Main dimension of generator 64 64 64
Discriminator Model DCGAN DCGAN DCGAN
Generator Model DCGAN DCGAN DCGAN
Learning rate for discriminator 2e-4 2e-4 5e-5
Learning rate for generator 2e-4 2e-4 5e-5
Optimizer Adam Adam Adam
β1 0.5 0.5 0.5
β2 0.99 0.99 0.99
Number of quantiles 64 64 64
λ (L1-square penalty) 0.1 1.0 0.1
K (Norm target) 0.0 1.0 0.0
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B BACKGROUND AND PRELIMINARY

We present the background and preliminary for this study as in the following appendices for clearer
understanding of the proposed QRGAN.

B.1 DISCRIMINATION AND GENERATION

Generally, generation tasks are known to be complex than classification/regression tasks because the
model learns joint probability distribution: Given an observable variable X and a target variable Y :

p(X,Y ) = p(X|Y ).p(Y ) (10)

while discriminative model learns only p(X|Y ).

Figure 10: Discriminant model vs generative model

There are many attempts to train neural-network-based generative models like Variational Autoen-
coders (VAE), Generative Adversarial Networks (GANs), and Adversarial Autoencoders. Kingma
& Welling (2014) Kingma & Welling (2014) Makhzani et al. (2016)

B.2 THE KULLBACK-LEIBLER (KL) DIVERGENCE

The Kullback-Leibler (KL) divergence is defined as follows,

DKL(P |Q) =

∫
p(x)log

(
p(x)

q(x)

)
dx (11)

where both P andQ are assumed to be continuous, is an integral probability metric (IPM) to measure
diversity between P and Q. The KL divergence can be infinite when there are points where P (x) =
0 and Q(x) > 0. In that case, gradients calculated by KL divergence tends to be zero, then training
gets slow.

For GAN discriminator loss,

5σ(x) = 0 where σ(x) = 0 or σ(x) = 1 (12)

For NSGANs, Non-saturating GANs, whose generator loss is defined as:

min
G

VNSGAN (G) = −logσ
(
D(xfake)

)
(13)

Then, log0 = −∞, where σ(x) = 0
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B.3 WASSERSTEIN DISTANCE

To fix the non-convergence problem of the KL divergence, there are attempts to minimize Wasser-
stein distance in recent work. The p − Wasserstein metric Wp, for p ∈ [1,∞], also known as
the Earth Mover distance when p = 1 Levina & Bickel (2001), is an integral probability metric
(IPM) between distributions. The p −Wasserstein distance is Lp metric on inverse cumulative
distribution functions between distributions U and Y .

Wp(U, Y ) =

(∫ 1

0

|F−1Y (τ)− F−1U (τ)|pdτ
) 1

p

(14)

where for a random variable Y , the inverse CDF F−1Y of Y is defined by,

F−1Y (ω) := infy ∈ R : ω ≤ FY (y) (15)

where, FY (y) = Pr(Y ≤ y) is the CDF of Y Dabney et al. (2017). Wasserstein distance is difficult
to compute because of its complexity. In Wasserstein GANs, the authors apply Lipschitz condition
which is defined by,

dA

(
f(x1), f(x2)

)
≤ KdB(x1, x2) (16)

for given metrics dA and dB to apply an approximation method for the 1-Wasserstein distance. This
constraint limits the neural network capacity because the model architecture and weight value should
be restricted.

Figure 11: 1-Wasserstein distance is also called Earth Mover’s distance

B.4 VARIATIONAL AUTOENCODER

B.4.1 AUTOENCODER

Autoencoder is a neural network architecture used to learn latent representations in an unsupervised
manner. It consists of encoder and decoder networks, and usually encoder’s output dimension is
smaller than input dimension, called bottleneck.

Objective function of autoencoders can be formulated as follows:

min
θ
JAE(θ) =

1

2

(
X −D(E(X; θ); θ)

)2

(17)

where E is encoder network outputs code and D is decoder network which predicts input to the en-
coder. To generate samples from the decoder, we should generate appropriate input for the decoder.
However, it is very difficult to generate the input due to the intractability of the latent distribution of
plain autoencoders.
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Figure 12: Autoencoder architecture

B.4.2 VARIATIONAL AUTOENCODER

In VAEs, they make the encoder to output parameters of a tractable distribution such as normal dis-
tribution. By doing so, we can calculate Kullback-Leibler (KL) Divergence of the code distribution
and a prior distribution. For given encoder E, decoder D, prior distribution p, the objective is:

min
θ
JV AE(θ) =

1

2

(
X −D(Z; θ)

)2

+KL(Z‖p) (18)

where, µ, σ = E(X; θ) and Z ∼ N(µ, σI).

Figure 13: Variational Autoencoder architecture

In addition, reparameterization trick is applied for backpropagation. Z = µ + σ.ε, where ε ∼ p. In
VAEs, the KL divergence regularization assumes every code distribution to be p even when different
input is given. This leads to input aliasing to the decoder and worsen blurry outputs.

B.5 GENERATIVE ADVERSARIAL NETWORKS

B.5.1 GAN

Recently, Generative Adversarial Networks (GANs) have been introduced. Discriminator learns
whether the input is real or fake, and generator learns to fool discriminator to generate realistic
samples by help of discriminator. GANs successfully solved problems of VAEs. Unlike VAEs,
GANs can hypothesize the entire code distribution. Adversarial autoencoders (AAEs) take this
idea to make generative autoencoder which regularizes the entire code distribution. GANs can be
formulated as the following:

min
G

max
D

V (D,G) = Ex∼pdt(x)
[
logD(x)

]
+ Ez∼pz(z)

[
log(1−D(G(z)))

]
(19)

Because gradients could be very small at the beginning, alternative loss function for generator,
namely NSGAN is proposed.

max
G

V (G) = E
[
logD(G(z))

]
(20)
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Figure 14: The Generative Adversarial Networks framework architecture

B.5.2 DIFFICULTY OF TRAINING GANS

Figure 15: (Upper, Unrolled GAN) the GAN training is successful without mode collapse. (Lower,
Standard GAN) the GAN training is failed, and this type of GAN failure is called mode collapse

that generator outputs very similar images Metz et al. (2017)

GANs are difficult to train because the networks compete each other. Because discriminator is used
for generator loss calculation, the loss can oscillate and be unstable. In addition, cross entropy loss
used in the original GANs often saturates. When failed to train GANs, mode collapse problem often
occurs.

B.6 REINFORCEMENT LEARNING

Reinforcement Learning is to find a policy that maximizes given rewards by environment. Given
state and action, an environment outputs next state and reward. Agent should try various action

18
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Figure 16: Reinforcement learning

sequence to find best policy. Q − Learning is learning Q-values iteratively. Q − value is defined
as,

Q(s, a) = E
[ ∞∑
t=0

γtRt|s, a
]

(21)

and this can be represented by Bellman equation,

Q(s, a) = R+ E
[
γQ(s′, a′)

]
(22)

where s is current state, a is the action, r is reward, a′ is the next action, and γ is a hyperparameter
called discount factor to discount future rewards exponentially.

B.6.1 DEEP Q NETWORK (DQN)

Deep Q Network Mnih et al. (2015) successfully applies deep learning to solve the Bellman equa-
tion. The training is unstable because the Bellman equation is recursive. Target network, a cloned
network only for calculation of target Q value, is used to stabilize the training. Moreover, replay
memory is applied to randomly sample the training data.

B.6.2 C51

Moreover, there was an attempt to learn a value distribution instead of an expected value of it. In
C51, the authors define three hyperparameters: the number of supports, low and high for Q-value.
By making bins by the three hyperparameters, the regression task has been turned to a classification
task. Unlike DQN, target is not a scalar value but a distribution. To optimize predicted distribution to
target distribution, they projected supports properly to fit bins then minimized the KL divergence be-
tween the two. Learning value distribution stabilizes training and improved prediction performance.
Although they prove that 1-Wasserstein distance should be minimized because KL divergence is not
mathematically guaranteed to converge, they could not find a way to minimize it.

Figure 17: C51’s performance compared to human and DQN Bellemare et al. (2017)
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B.6.3 QUANTILE REGRESSION DEEP Q NETWORK (QR-DQN)

QR-DQN Dabney et al. (2017) is proposed to fix the non-convergence problem of C51. The authors
hypothesize the probability distribution function (PDF) consists of N dirac delta functions. We can
optimize the PDF by changing the supports of the dirac delta functions. Likewise, the CDF can be
also optimized by quantiles.

Figure 18: The CDF which is represented by 3 Dirac delta functions. Area filled by red represents
the 1-Wasserstein distance. The 1-Wasserstein distance is proportional to the sum of difference

between quantile values at each quantile fractions. Therefore, quantile regression is the equivalent
to 1-Wasserstein distance minimization.
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