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ABSTRACT

Text-to-video generation has made significant strides, but replicating the capabil-
ities of advanced systems like OpenAI’s Sora remains challenging due to their
closed-source nature. Existing open-source methods struggle to achieve compara-
ble performance, often hindered by ineffective agent collaboration and inadequate
training data quality. In this paper, we introduce Mora, a novel multi-agent frame-
work that leverages existing open-source modules to replicate Sora’s functionalities.
We address these fundamental limitations by proposing three key techniques: (1)
multi-agent fine-tuning with a self-modulation factor to enhance inter-agent co-
ordination, (2) a data-free training strategy that uses large models to synthesize
training data, and (3) a human-in-the-loop mechanism combined with multimodal
large language models for data filtering to ensure high-quality training datasets.
Our comprehensive experiments on six video generation tasks demonstrate that
Mora achieves performance comparable to Sora on VBench (Huang et al., 2024),
outperforming existing open-source methods across various tasks. Specifically, in
the text-to-video generation task, Mora achieved a Video Quality score of 0.800,
surpassing Sora’s 0.797 and outperforming all other baseline models across six
key metrics. Additionally, in the image-to-video generation task, Mora achieved
a perfect Dynamic Degree score of 1.00, demonstrating exceptional capability in
enhancing motion realism and achieving higher Imaging Quality than Sora. These
results highlight the potential of collaborative multi-agent systems and human-in-
the-loop mechanisms in advancing text-to-video generation.

1 INTRODUCTION

Generative AI technologies have significantly transformed various industries, with substantial ad-
vancements particularly notable in visual AI through image generation models like Midjourney (Mid-
journey, 2023), Stable Diffusion 3 (Esser et al., 2024), and DALL-E 3 (Betker et al., 2023). These
models have demonstrated remarkable capabilities in generating high-quality images from textual
descriptions. However, progress in text-to-video generation, especially for videos exceeding 10
seconds, has not kept pace. Recent developments such as Pika (pik) and Gen-3 (Gen, b) have shown
potential but are limited to producing short video clips.

A major breakthrough occurred with OpenAI’s release of Sora in February 2024—a text-to-video
model capable of generating minute-long videos that closely align with textual prompts. Sora
excels in various video tasks, including editing, extending footage, offering multi-view perspectives,
and adhering closely to user instructions (OpenAI, 2024a). Despite its impressive capabilities,
Sora remains a closed-source system, which poses significant barriers to academic research and
development. Its black-box nature hinders the community’s ability to study, replicate, and build
upon its functionalities, thereby slowing progress in the field. Attempts to reverse-engineer Sora are
exploring potential techniques like diffusion transformers and spatial patch strategies (Sohl-Dickstein
et al., 2015; Ho et al., 2020; Bao et al., 2023; Peebles & Xie, 2023), but a large gap still exists due to
the intensive computation required to train everything from scratch with a single model.

To address these challenges, we propose Mora, a novel multi-agent framework that leverages ideas
from standardized operating procedures (SOPs) and employs multiple agents using existing open-
source modules to replicate the complex functionalities of Sora. While SOPs and multi-agent systems
have been utilized in text-based tasks (Hong et al., 2023), applying them to text-to-video generation
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Figure 1: Illustration of SOPs to conduct video-related tasks in Mora.

presents unique challenges. Naive multi-agent frameworks (Yuan et al., 2024; Xie et al., 2024) often
fail because agents lack effective collaboration mechanisms, leading to suboptimal performance.
Moreover, existing multi-agent video generation approaches struggle to balance pipeline automation
with the need for high-quality training data, which is critical for producing high-fidelity videos.

Collecting high-quality video data for training is time-consuming and computationally expen-
sive (Chen et al., 2024a), and the scarcity of such data hampers the performance of open-source
models. Furthermore, the quality of available datasets varies widely, making it challenging to train
models that can match the performance of proprietary systems like Sora. To overcome these chal-
lenges, leveraging human-in-the-loop mechanisms for data filtering becomes essential. By integrating
human expertise in the data synthesis process, we can ensure that the training data is of high quality,
which is crucial for training effective video generation models.

In this paper, we address these fundamental limitations by introducing several key techniques in
Mora. First, we develop a multi-agent fine-tuning approach with a novel self-modulation factor that
enhances coordination among agents, allowing them to collaborate effectively to achieve common
goals. Second, we employ a data-free training strategy that uses large models to synthesize training
data, reducing reliance on large labeled datasets and enabling efficient model training without
extensive data collection efforts. Third, we leverage human-in-the-loop mechanisms, in combination
with multimodal large language models, for data filtering during the training data synthesis process.
This approach ensures the quality of the synthesized training data, leading to improved performance
of the video generation pipeline. We summarize the overall pipeline and supported tasks in Figure 1.

By integrating human-in-the-loop mechanisms with multimodal large language models for data
filtering in our data-free training strategy, we significantly enhance the quality of the training data
and, consequently, the generated videos. These techniques collectively improve inter-agent and
agent-human collaboration, enhance the quality and diversity of the generated videos, and expand the
system’s capabilities to match those of Sora. Our comprehensive experiments on six video generation
tasks demonstrate that Mora achieves performance comparable to Sora on VBench (Huang et al.,
2024), closely approaching Sora and outperforming existing open-source methods across various
tasks. Specifically, in the text-to-video generation, Mora achieves a Video Quality score of 0.800,
surpassing Sora’s 0.797, and outperforms all other baselines. In the Image-to-Video Generation task,
Mora matches Sora in Video-Text Integration (0.90) and Motion Smoothness (0.98 vs. 0.99), and
surpasses Sora in Imaging Quality (0.67 vs. 0.63) and Dynamic Degree (1.00 vs. 0.75). Additionally,
in Video-to-Video Editing, Mora matches Sora in both Imaging Quality and Temporal Style, each
scoring 0.52 and 0.24, respectively. These results demonstrate Mora’s ability to not only replicate but
also enhance the functionalities of Sora, providing a promising platform for future research.

We summarize our main contributions as follows:

• We introduce Mora, a novel multi-agent framework that leverages existing open-source modules to
replicate the functionalities of Sora in text-to-video generation.
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• We address fundamental challenges in agent collaboration for video generation through three key
designs: (1) a self-modulated multi-agent fine-tuning approach with dynamic modulation factor for
enhanced coordination, (2) human-in-the-loop control mechanisms enabling real-time adjustments,
and (3) a data-free training strategy using large models to synthesize diverse training data. These
techniques significantly improve inter-agent cooperation and output quality in multi-agent video
generation systems.

• We demonstrate through extensive experiments that Mora achieves performance comparable to
Sora on standard benchmarks, advancing the field of text-to-video generation and providing an
accessible platform for future research.

2 RELATED WORK

2.1 TEXT-TO-VIDEO GENERATION

Generating videos based on textual descriptions has been a long-discussed topic. While early
efforts in the field were primarily rooted in GANs (Wang et al., 2020; Chu et al., 2020) and VQ-
VAE (Yan et al., 2021), recent breakthroughs in generative video models, driven by foundational
work in transformer-based architectures and diffusion models, have significantly advanced academic
research. Auto-regressive transformers are early leveraged in video generation (Wu et al., 2022;
Hong et al., 2022b; Kondratyuk et al., 2023). These models are designed to generate video sequences
frame by frame, predicting each new frame based on the previously generated frames. Parallelly,
the adaptation of masked language models (He et al., 2021) for visual contexts, as demonstrated
by (Gupta et al., 2022; Villegas et al., 2022; Yu et al., 2023; Gupta et al., 2023), underscores the
versatility of transformers in video generation. The recently proposed VideoPoet (Kondratyuk et al.,
2023) leverages an auto-regressive language model and can multitask on a variety of video-centric
inputs and outputs.

In another line, large-scale diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) show
competitive performance in video generation (Ho et al., 2022a; Singer et al., 2022; Khachatryan et al.,
2023; Wu et al., 2023a; Du et al., 2024). By learning to gradually denoise a sample from a normal
distribution, diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) implement an iterative
refinement process for video synthesis. Initially developed for image generation (Rombach et al.,
2022c; Podell et al., 2023), they have been adapted and extended to handle the complexities of video
data. This adaptation began with extending image generation principles to video (Ho et al., 2022b;a;
Singer et al., 2022), by using a 3D U-Net structure instead of conventional image diffusion U-Net.
In the follow-up, latent diffusion models (LDMs) (Rombach et al., 2022b) are integrated into video
generation (Zhou et al., 2022; Chen et al., 2023b; Wang et al., 2023a; Chen et al., 2024a), showcasing
enhanced capabilities to capture the nuanced dynamics of video content. For instance, Stable Video
Diffusion (Blattmann et al., 2023) can conduct multi-view synthesis from a single image while Emu
Video (Girdhar et al., 2023) uses just two diffusion models to generate higher-resolution videos.

Researchers have delved into the potential of diffusion models for a variety of video manipulation
tasks. Notably, Dreamix (Molad et al., 2023) and MagicEdit (Liew et al., 2023) have been introduced
for general video editing, utilizing large-scale video-text datasets. Conversely, other models employ
pre-trained models for video editing tasks in a zero-shot manner (Ceylan et al., 2023; Couairon et al.,
2023; Yang et al., 2023; Chai et al., 2023). SEINE (Chen et al., 2023c) is specially designed for
generative transition between scenes and video prediction. The introduction of diffusion transform-
ers (Peebles & Xie, 2023; Bao et al., 2023; Ma et al., 2024a) further revolutionized video generation,
culminating in advanced solutions like Latte (Ma et al., 2024b) and Sora (OpenAI, 2024a). There is
also utilization in a specific domain such as Bora (Sun et al., 2024b) in biomedical scenarios. Sora’s
ability to produce minute-long videos of high visual quality that faithfully follow human instructions
heralds a new era in video generation.

2.2 AI AGENTS

Large models have enabled agents to excel across a broad spectrum of applications, showcasing their
versatility and effectiveness. They have greatly advanced collaborative multi-agent structures for
multimodal tasks in areas such as scientific research (Tang et al., 2024), software development (Hong
et al., 2023; Qian et al., 2023) and society simulation (Park et al., 2023). Compared to individual

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

agents, the collaboration of multiple autonomous agents, each equipped with unique strategies
and behaviors and engaged in communication with one another, can tackle more dynamic and
complex tasks (Guo et al., 2024). Through a cooperative agent framework known as role-playing, Li
et al. (2024b) enables agents to collaborate and solve complex tasks effectively. Park et al. (2023)
designed a community of 25 generative agents capable of planning, communicating, and forming
connections. Liang et al. (2023) have explored the use of multi-agent debates for translation and
arithmetic problems, encouraging divergent thinking in large language models. Hong et al. (2023)
introduced MetaGPT, which utilizes an assembly line paradigm to assign diverse roles to various
agents. In this way, complex tasks can be broken down into subtasks, which makes it easy for many
agents working together to complete. Xu et al. (2023) used a multi-agent collaboration strategy
to simulate the academic peer review process. Besides, AutoGen (Wu et al., 2023b) is a generic
programming framework that can be used to implement diverse multi-agent applications across
different domains, using a variety of agents and conversation patterns. This motivates our focus on
applying multi-agent frameworks on text-to-video generation tasks, enabling agents to collaborate
seamlessly from project inception to completion.

3 MORA: A MULTI-AGENT FRAMEWORK FOR VIDEO GENERATION

Current text-to-video generation models directly generate videos from textual inputs, which prevents
users from supervising key aspects of video quality, style, and other important elements in real-time.
To address this limitation, we propose a novel multi-agent system coupled with a self-modulated
training algorithm specifically designed for the video generation task. In the subsequent sections,
we outline our approach in detail. Section 3.1 describes the problem and design of our multi-agent
system and the architecture of our model. Finally, in Section 3.2 and Appendix A.7, we present our
data-free multi-agent fine-tuning method.

3.1 AGENT ARCHITECTURE OF MORA

In this section, we introduce the problem and our multi-agent video generation system. To address
the complexity of generating high-quality, long-duration videos, we propose a multi-agent framework
where the generative model G is composed of n collaborating agents {A1, A2, · · · , An}. As shown
in Figure 1, each agent specializes in a specific subtask and collaborates together within the video
generation pipeline. We further introduce the definition of each agent below.

Problem Definition Let P ∈ P denote a textual prompt from the space of all possible prompts
P , describing the desired video content. A video V is represented as a sequence of frames V =
{F1, F2, · · · , FT }, where each Ft ∈ RH×W×C corresponds to an image at time step t, with height H ,
width W , and C color channels. Our goal is to generate extended-length videos that are semantically
consistent with the textual prompt while exhibiting high visual quality and temporal coherence.
Formally, we aim to learn a generative model G : P → V that maps a textual prompt P to a video V
in the space of all possible videos V : V = G(P ). The quality of the generated video can be assessed
using a set of metricsM = {m1,m2, ...,mK}, where each mi : V × P → R evaluates a specific
aspect of the video (e.g., visual quality, temporal consistency, semantic alignment with the prompt).
Our objective is to maximize these quality metrics while ensuring diversity in the generated videos.
In our multi-agent framework, G is decomposed into a set of specialized agents {A1, A2, ..., AN},
each responsible for a specific subtask in the video generation process. These agents collaborate to
produce the final video output, allowing for more granular control of the generation process.

Definition and Specialization of Agents. The specialization of agents enables flexibility in the
breakdown of complex work into smaller and more focused tasks, as depicted in Figure 1. In our
framework, we have five agents: prompt selection and generation agent A1, text-to-image generation
agent A2, image-to-image generation agent A3, image-to-video generation agent A4, and video-
to-video agent A5. We present brief descriptions below, and detailed definitions can be found in
Appendix A.5.

• Prompt Selection and Generation Agent (A1): This agent employs large language models like
GPT-4 and Llama (Achiam et al., 2023; Touvron et al., 2023) to analyze and enhance textual
prompts, extracting key information and actions to optimize image relevance and quality.
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• Text-to-Image Generation Agent (A2): Utilizing models such as those by Rombach et al. (2022c)
and Podell et al. (2023), this agent translates enriched textual descriptions into high-quality images
by deeply understanding and visualizing complex inputs.

• Image-to-Image Generation Agent (A3): Referencing Brooks et al. (2023), this agent modifies
source images based on detailed textual instructions, accurately interpreting and applying these to
make visual alterations ranging from subtle to transformative.

• Image-to-Video Generation Agent (A4): As described by Blattmann et al. (2023), this model
transitions static images into dynamic video sequences by analyzing content and style, ensuring
temporal stability and visual consistency.

• Video Connection Agent (A5): This agent creates seamless transition videos from two input videos
by leveraging keyframes and identifying common elements and styles, ensuring coherent and
visually appealing outputs.

General Structure. Mora model structure is depicted in Figure 1. Specifically, given a user input
T , the Prompt Enhancement Agent (A1) first refines T into a form better suited for video generation.
The enhanced prompt is then passed to the Text-to-Image Agent (A2) to generate the first frame
of the video. At this stage, the user can review and confirm whether the tone and quality of the
frame meet their expectations. If not, the user can either request a re-generation or pass the frame
to the Image-to-Image Agent (A3) for adjustments. Once the desired first frame is finalized, it is
forwarded to the Image-to-Video Agent (A4) to generate a high-quality video that aligns with the
user’s requirements. This step-by-step, independently controllable, and interactive process ensures
that the final video more closely meets the user’s expectations while maintaining high quality. In
cases where a user wishes to generate a continuous video from different video clips, A5 analyzes the
final frame of the preceding video and the initial frame of the next and ensures a smooth blending
between them. Moreover, this procedural design ensures that the generation process does not have to
start from scratch, and the human-in-the-loop technique makes the entire pipeline more controllable,
as detailed in Appendix A.4. It enables our framework to handle various tasks, such as image-to-video
generation, and even video extension and stitching. For more details about supported tasks, please
refer to Appendix A.3. In addition to prompt-based generation, Mora structure also supports task-wise
model fine-tuning, ensuring that agents can effectively follow instructions and consistently produce
high-quality content.

3.2 SELF-MODULATED MULTI-AGENT FINETUNING

In this section, we introduce our proposed multi-agent finetuning design, based on the previously
described model structure. Directly prompting each agent does not account for the downward
transmission of information, which could lead to inefficiencies or errors in communication between
agents. Additionally, the impact of each agent on the final result is not uniform. To address these
issues, we adopt an end-to-end training approach. Our proposed training procedure involves (1)
a self-modulation factor to enhance inter-agent coordination, (2) a data-free training strategy to
synthesize training data, (3) LLM selection with human-in-the-loop to control the training data
quality. In the following sections, we provide a detailed explanation of each component.

Self-modulated Fine-tuning Algorithm. Previous methods primarily employ direct end-to-end
fine-tuning across the entire task procedure, while others may fine-tune individual agents based on
specific tasks. However, both approaches can influence model performance: (1) end-to-end fine-
tuning may result in improper loss allocation for each agent, and (2) fine-tuning agents individually
can lead to misaligned distributions. To address the limitations of existing fine-tuning approaches,
we propose a self-modulated fine-tuning algorithm specifically designed for our multi-agent model
structure. This method aims to enhance coordination among agents and improve overall performance
by introducing a modulation embedding that dynamically adjusts the influence of each agent during
the generation process. The key motivations behind our approach are to balance the impact of
each agent on the final output, improve inter-agent communication and coordination, and allow for
dynamic adjustment of agent contributions based on the current task and intermediate outputs.

Our design introduces a modulation embedding that is concatenated with the text embedding of the
enhanced prompt, allowing for fine-grained control over the generation process. This embedding
is optimized alongside the model parameters during training, enabling the system to learn optimal
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Algorithm 1: Self-Modulated Multi-Agent Video Generation with Data-free Fine-tuning
Input: Initial agents’ parameters {θi}; initial modulation embeddings {zi = Ei("[Mod]")}ni=1;

number of iterations N ; number of samples per iteration S; prompt set P ; batch size B;
number of epochs per iteration K; learning rates ηθi , ηzi

Output: Trained model parameters {θi}
1 for iteration n = 1 to N do
2 Construct training dataset Dn using the data-free training strategy (see Sec. 3.2 );
3 for epoch e = 1 to K do
4 foreach batch {(P (b), V

(b)
target)}Bb=1 in Dn do

5 Compute text embeddings e(b)i = Ei(P (b));
6 for i = 1 to n do
7 Concatenate agent-specific modulation embedding with text embedding for all

examples: ẽ(b)i = [e
(b)
i ; zi];

8 Generate outputs for the batch: O(b)
i =Mi(O

(b)
i−1, ẽ

(b)
i ), where O

(b)
0 = ∅;

9 Compute the final loss for the batch: Lfinal =
1
B

∑B
b=1 L(O

(b)
n , V

(b)
target);

10 for i = 1 to n do
11 Update agent-specific modulation embedding: zi ← zi − ηzi

∂Lfinal
∂zi

;

12 Compute modulation factor: ||zi||2 =
√∑

k z
2
i,k;

13 Compute modulation factor for model i: αi = ||zi||2/n;
14 Update model parameters with dynamic learning rate: θi ← θi − αiηθi

∂Lfinal
∂θi

;

15 return {θi};

coordination strategies. By doing so, we ensure that each agent can adapt its output based on the state
of the preceding agent, leading to more coherent and high-quality video generation.

The implementation of our self-modulated fine-tuning algorithm begins with the initialization of
a modulation embedding {zi} using the text embedding of a special token (Ning et al., 2023):
{zi = Ei("[Mod]")}, where Ei is the text encoder of agent i. For each enhanced prompt Penh, we
compute its text embedding {ei = Ei(Penh)} and concatenate it with the modulation embedding:
{ẽi = [ei; zi]}. This combined embedding serves as input to the agents.

Each agentMi in the system processes its input and produces an output Oi. For the first agent,
O1 =M1(ẽ), and for subsequent agents (i > 1), Oi =Mi(Oi−1, ẽ). The modulation factor, which
influences the impact of each agent, is calculated as the L2 norm of zi: ||zi||2 =

√∑
k z

2
k.

During training, we minimize the total loss Ltotal = L(On, Vtarget) between the final output On and
the target video Vtarget. Both the model parameters θi of each agent and the modulation embedding zi
are updated using gradient descent: θi ← θi − ηθi

∂Ltotal
∂θi

and zi ← zi − ηz
∂Ltotal
∂zi

. By optimizing z,
the modulation embedding learns to adjust its influence to minimize the loss, effectively enhancing
inter-agent coordination and ensuring that each agent can dynamically adjust its output according to
the state of the preceding agent.

The complete training process, including the initialization of the modulation embedding, the for-
ward pass through the agents, and the optimization of both model parameters and the modulation
embedding, is detailed in Algorithm 1. This algorithm encapsulates our self-modulated fine-tuning
approach, providing a comprehensive framework for improving the performance and coordination of
our multi-agent video generation system.

Multimodal LLM Selection with Human-in-the-loop Control. Despite the availability of nu-
merous open-source video datasets, their quality varies significantly, making it challenging for the
pretrained agents we use to effectively leverage these datasets to improve video generation perfor-
mance. Also, manually filtering high-quality data is time-consuming and inefficient. To address this
issue, we introduce a multimodal LLM data selection procedure with human-in-the-loop control.

6
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Figure 2: Samples for text-to-video generation of Mora. Our approach can generate high-resolution,
temporally consistent videos from text prompts. The samples shown are 480p resolution over 12
seconds duration at 276 frames in total.

We first sample a batch of candidates from the agent system. Based on the generated candidates,
we further leverage strong multimodal LLMs that support multi-frame and multi-video inputs to
provide evaluation for the candidate set. When multiple multimodal LLMs agree on the best video
from a set, we directly include it in the training dataset, the evaluation prompt examples detailed
in Appendix A.6. However, when the LLMs’ evaluations differ, we introduce human reviewers for
secondary screening. In such cases, human reviewers evaluate the generated videos and select the
one with the highest quality for inclusion in the training set. If the reviewers determine that none
of the candidates meet the quality standard, the entire set is discarded. This approach enhances the
stability and robustness of the filtering process by combining LLMs’ automated assessments with
human judgment, ensuring the model can handle complex or ambiguous cases.

Data-free Training Strategy. During training, instead of using open-source datasets directly, we
adopt a data-free strategy to synthesize training data dynamically. This method addresses challenges
like inconsistent quality in open-source datasets and the lack of intermediate outputs required for
training different agents. Given a user input prompt set P = {P (1), P (2), . . . , P (S)}, we first
utilize the LLM to generate an enhanced set of diverse prompts Penh = {P (1)

enh , P
(2)
enh , . . . , P

(S)
enh }.

For each enhanced prompt P (s)
enh , our initial workflow—comprising non-finetuned models with

parameters {θi}Mi=1—is applied to generate a set of candidate videos Cs = {V1, V2, V3, V4}. Next,
we use a human-in-the-loop process, in combination with multimodal LLM selection, to select the
highest quality video V̂ (s) from the candidate set Cs for each prompt P (s)

enh . The selected video
V̂ (s) and corresponding prompt P (s)

enh form the training dataset for iteration n, denoted by Dn =

{(P (s)
enh , V̂

(s))}Ss=1. Using the constructed dataset Dn, self-modulated multi-agent fine-tuning is
performed to update the agent parameters {θi}Mi=1, where M is the number of agents involved. The
newly fine-tuned model parameters {θi}Mi=1 then become the starting point for the next round of
data generation and fine-tuning, enabling iterative improvement over N iterations. Thus, after N
iterations, the final optimized agent parameters {θi} are obtained.

4 EXPERIMENTS

4.1 SETUP

Tasks. We evaluated our proposed Mora framework on six diverse video generation tasks to compre-
hensively assess its capabilities. The six tasks are as follows: (1) Text-to-Video Generation, where
videos are generated directly from textual prompts; (2) Image-to-Video Generation, which involves
creating videos conditioned on both an input image and a textual description; (3) Extend Generated
Videos, aiming to extend existing videos to produce longer sequences while maintaining content
consistency; (4) Video-to-Video Editing, which edits existing videos based on textual instructions to
produce modified versions; (5) Connect Videos, focusing on seamlessly connecting two videos to
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Figure 3: Performance variations of Task 1 to Task 4 across different self-training iterations.
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Figure 4: Performance variations of Task 5 and
Task 6 across different self-training iterations.

create a longer continuous sequence; and (6)
Simulate Digital Worlds, where videos that
simulate digital or virtual environments are gen-
erated from textual prompts.

Data. For the text-to-video generation task, we
utilized textual prompts inspired by those pro-
vided in the official Sora technical report (Ope-
nAI, 2024b). To expand our dataset, we em-
ployed GPT-4 (OpenAI, 2023) in both few-shot
and zero-shot settings to generate additional
prompts. These prompts were then used as inputs for the text-to-video models to generate videos.
For the other tasks, we used relevant input data appropriate for each task, such as images, videos, or
textual instructions. For comparison with Sora, we utilized videos featured on its official website and
technical report.

Baseline. In the text-to-video generation process, we selected and compared a wide range of open-
source and commercial models, including Sora (OpenAI, 2024a), VideoCrafter1 (Chen et al., 2023a),
MedelScope (Mod), Show-1 (Zhang et al., 2023a), Pika (pik), LaVie and Lavie-Interpolation (Wang
et al., 2023a), Gen-2 (Gen, a), and CogVideo (Hong et al., 2022a). In the other five tasks, we compare
Mora with Sora. More visual comparisons and detailed analysis of the 5 tasks can be found in the
Appendix A.3.

Metrics. We employed a combination of standard and self-defined metrics to evaluate performance
across the six tasks. For text-to-video generation, we employed several metrics from Vbench
(Huang et al., 2024) for comprehensive evaluation from two aspects: video quality and video
condition consistency. For video quality measurement, we use six metrics: ❶ Object Consistency,
❷ Background Consistency, ❸ Motion Smoothness, ❹ Aesthetic Score, ❺ Dynamic Degree and ❻
Imaging Quality. For measuring video condition consistency, we use two metrics: ❶ Temporal Style
and ❷ Appearance Style. When evaluating other tasks, due to the lack of quantitative metrics, we
design the following four metrics: ❶ Video-Text Integration V ideoTI , ❷ Temporal Consistency
TCON , ❸ Temporal coherence Tmean and ❹ Video Length. For the details of these metrics, please
refer to the Appendix A.2.

4.2 TRAINING

In the training process, We initially used GPT-4o to generate 16 different text prompts and directly
produced four videos for each prompt using an untrained model. During the data selection phase,
we utilized two Multimodal LLMs, LLaVA-OneVision (Li et al., 2024a) and Qwen2-VL (Wang
et al., 2024), to evaluate each set of videos and select the best-performing sample for each prompt.
In the training loop, newly generated text prompts from GPT-4o were used, and after the selection
process, the best videos were fed into the trained model for further optimization, and a total of 96
data were generated. Figures 3 and Figure 4 illustrate the impact of training on the performance of
different tasks. It is evident that, during the early iterations, all tasks exhibit significant performance
improvements, though the rate of improvement gradually slows as more iterations are completed. For
details on the hyper-parameters settings in these training, please refer to Appendix A.9.

4.3 RESULTS

Text-to-Video Generation. The quantitative results are detailed in Table 1. Mora demonstrated
outstanding performance in its two untrained versions, the Dynamic Degree of Mora (SVD) achieves

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Comparative analysis of text-to-video generation performance between Mora and various
other models. The Others category scores are derived from the Hugging Face leaderboard. For Our
Mora (SVD), categorized into three types based on the number of moving objects in the videos:
Type I (single object in motion), Type II (two to three objects in motion), and Type III (more than
three objects in motion). Descriptions of Mora (SVD) and Mora (Open-Sora-Plan) are detailed in
Appendix A.8. ∓ indicates that without Self-Modulated Multi-Agent Finetuning.

Model Video
Quality

Object
Consistency

Background
Consistency

Motion
Smoothness

Aesthetic
Quality

Dynamic
Dgree

Imaging
Quality

Temporal
Style

Video
Length(s)

Others
Sora 0.797 0.95 0.96 1.00 0.60 0.69 0.58 0.35 60
VideoCrafter1 0.778 0.95 0.98 0.95 0.63 0.55 0.61 0.26 2
ModelScope 0.758 0.89 0.95 0.95 0.52 0.66 0.58 0.25 2
Show-1 0.751 0.95 0.98 0.98 0.57 0.44 0.59 0.25 3
Pika 0.741 0.96 0.96 0.99 0.63 0.37 0.54 0.24 3
LaVie-Interpolation 0.741 0.92 0.97 0.97 0.54 0.46 0.59 0.26 10
Gen-2 0.733 0.97 0.97 0.99 0.66 0.18 0.63 0.24 4
LaVie 0.746 0.91 0.97 0.96 0.54 0.49 0.61 0.26 3
CogVideo 0.673 0.92 0.95 0.96 0.38 0.42 0.41 0.07 4
Our Mora
Type I 0.782 0.96 0.97 0.99 0.60 0.60 0.57 0.26 12
Type II 0.810 0.94 0.95 0.99 0.57 0.80 0.61 0.26 12
Type III 0.795 0.94 0.93 0.99 0.55 0.80 0.56 0.26 12
Mora (SVD)∓ 0.792 0.95 0.95 0.99 0.57 0.70 0.59 0.26 12
Mora (Open-Sora-Plan)∓ 0.767 0.94 0.95 0.99 0.61 0.43 0.68 0.26 12
Mora (Open-Sora-Plan) 0.800 0.98 0.97 0.99 0.66 0.50 0.70 0.31 12

0.70, matching Sora and surpassing all other comparative models, which clearly highlights the
effectiveness of our multi-agent collaborative architecture. More impressively, finetuned Mora
(OSP) models outperformed all baseline methods, including Sora, achieving state-of-the-art (SoTA)
performance on multiple benchmarks. In the following experiment content, unless otherwise specified,
Mora refers to Finetuned Mora (OSP). Mora demonstrates exceptional performance in maintaining
overall consistency in video generation. Specifically, it excels in the Object Consistency task,
achieving a leading score of 0.98 compared to other models. In terms of Background Consistency,
Mora scores 0.97, comparable to the state-of-the-art performance of VideoCrafter1 (Chen et al.,
2023a). This highlights Mora’s strong capability to manage the overall coherence of generated
videos. Mora achieved a Motion Smoothness score of 0.99, nearly matching Sora’s perfect score
of 1.0, demonstrating Mora’s exceptional control over the smoothness of video sequences. It
also outperformed in both Aesthetic Quality and Imaging Quality, with scores of 0.66 and 0.70,
respectively. This reflects Mora’s ability to not only ensure high imaging quality but also pursue a
strong aesthetic dimension in its video generation. Our architecture and training method not only
surpass Sora in performance but also achieve this with minimal computational resource requirements,
showcasing exceptional optimization efficiency.

In Figure 2, we present examples of the generated videos. The visual fidelity of Mora’s text-to-
video generation is compelling, manifesting high-resolution imagery with acute attention to detail
as articulated in the accompanying textual descriptions. Notably, the images exude a temporal
consistency that speaks to Mora’s nuanced understanding of narrative progression, an essential quality
in video synthesis from textual prompts.

Image-to-Video Generation. Quantitative comparisons between Sora and Mora across different
tasks are presented in Table 2. As shown in the table, Mora demonstrates comparable performance as
Sora in the Motion Smoothness metric, achieving 0.98. In the VideoTI metric, both Mora and Sora are
tied at 0.90. For the remaining metrics, Mora surpasses all other comparative methods, particularly
achieving a perfect score of 1.0 in Dynamic Degree, demonstrating its exceptional capability in
enhancing the sense of motion in videos. Additionally, Mora leads significantly in image quality with
a score of 0.67, clearly indicating its superior performance in image rendering within video sequences.
Also further demonstrates the usability and strong performance of Mora in the image-to-video task.

Extend Generated Video. The quantitative results from Table 2 reveal that Mora demonstrates
similar performance as Sora in TCON and Temporal Style, with scores of 0.98 and 0.23 compared to
Mora’s 0.99 and 0.24. This indicates that Mora is nearly on par with Sora in maintaining stylistic
continuity as well as sequence consistency and fidelity. In terms of Imaging Quality, Mora surpasses
all other methods with scores of 0.45, demonstrating its excellent imaging capabilities. Despite Sora’s
very narrow lead, Mora effectively extends videos while maintaining high imaging quality, adhering
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Table 2: Summary of model evaluations across various tasks based on the Sora technical report
(OpenAI, 2024b).

Model Image-to-Video Generation Extend Videos

VideoTI Motion
Smoothness Dynamic Degree Imaging Quality TCON Imaging Quality Temporal Style

Sora 0.90 0.99 0.75 0.63 0.99 0.43 0.24
SVD 0.88 0.97 0.75 0.58 0.94 0.37 0.22
SVD-1.1 0.88 0.97 0.75 0.59 0.94 0.37 0.22
Open-Sora-Plan 0.89 0.98 1.00 0.65 0.96 0.45 0.22
Mora (SVD) ∓ 0.88 0.97 0.75 0.60 0.94 0.39 0.22
Mora (Open-Sora-Plan)∓ 0.88 0.97 1.00 0.66 0.96 0.45 0.22
Mora (Open-Sora-Plan) 0.90 0.98 1.00 0.67 0.98 0.45 0.23

Model Video-to-Video Editing Connect Videos Simulate Digital Worlds
Imaging Quality Temporal Style Imaging Quality Tmean Imaging Quality Appearance Style

Sora 0.52 0.24 0.52 0.64 0.62 0.23
Pika 0.35 0.20 - - 0.44 0.10
Runway-tool - - 0.33 0.22 - -
Mora (SVD) ∓ 0.38 0.23 0.42 0.45 0.52 0.23
Mora (Open-Sora-Plan)∓ 0.34 0.20 0.40 0.39 0.51 0.20
Mora (Open-Sora-Plan) 0.52 0.24 0.43 0.44 0.56 0.23

to temporal style, and ensuring strong stylistic continuity and sequence consistency, highlighting its
effectiveness in the video extension domain.

Video-to-Video Editing Table 2 shows that Mora achieves respective scores of 0.52 and 0.24 in
Imaging Quality and Temporal Style, respectively, matching Sora in both aspects. This indicates
that Mora not only consistently achieves high-quality imaging in video editing but also effectively
maintains stylistic consistency throughout. This also further highlights Mora’s usability and strong
adaptability in video-to-video editing tasks.

Connect Videos. Quantitative analysis in Table 2 shows that Sora outperforms Mora in both Imaging
Quality and Tmean. Sora scores 0.52 in Imaging Quality and 0.64 in Temporal Coherence, while
Mora’s best scores are 0.43 and 0.45, respectively. This demonstrates Sora’s superior fidelity in
visual representation and consistency in visual narrative. These results highlight Sora’s advantage in
creating high-quality, temporally coherent video sequences, while also indicating areas where Mora
could be further improved.

Simulate Digital Worlds. Table 2 shows that Sora leads in digital world simulation with a higher
Imaging Quality score of 0.62, indicating better visual realism and fidelity compared to Mora’s score
of 0.52. However, both models achieve identical scores in Appearance Style at 0.23, indicating they
equally adhere to the stylistic parameters of the digital world. This suggests that while there is a
difference in the imaging quality, the stylistic translation of textual descriptions into visual aesthetics
is accomplished with equivalent proficiency by both models.

More results, examples, ablation studies, and case studies are provided in Appendix B.

5 CONCLUSION

We introduce Mora, a pioneering generalist framework that synergies Standard Operating Procedures
(SOPs) for video generation, tackling a broad spectrum of video-related tasks. Mora significantly
advances the generation of videos from textual prompts, establishing new standards for adaptability,
efficiency, and output quality in the domain. Our comprehensive evaluation indicates that Mora
not only matches but also surpasses the capabilities of existing leading models in several respects.
Nonetheless, it still faces a significant performance gap compared to OpenAI’s Sora, whose closed-
source nature presents substantial challenges for replication and further innovation in both academic
and professional settings.

Looking forward, there are multiple promising avenues for further research. One direction includes
enhancing the agents’ natural language understanding capabilities to support more nuanced and
context-aware video productions. Additionally, the issues of accessibility and high computational
demands continue to impede broader adoption and innovation. Concurrently, fostering more open
and collaborative research environments could spur advancements, allowing the community to build
upon the foundational achievements of the Mora framework and other leading efforts.
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A IMPLEMENTATION DETAILS

A.1 HARDWARE DETAILS

All experiments are conducted on eight TESLA H100 GPUs, equipped with a substantial 8×80GB of
VRAM. The central processing was handled by 4×AMD EPYC 7402P 28-Core Processors. Memory
allocation was set at 320GB. The software environment was standardized on PyTorch version 2.0.2
and CUDA 12.2 for video generation and one TESLA A40, PyTorch version 1.10.2 and CUDA 11.6
for video evaluation.

A.2 METRICS

Basic Metrics. ❶ Object Consistency, computed by the DINO (Caron et al., 2021) feature similarity
across frames, assesses whether object appearance remains consistent throughout the entire video; ❷
Background Consistency, calculated by CLIP (Radford et al., 2021) feature similarity across frames;
❸ Motion Smoothness, utilizing motion priors in the video frame interpolation model AMT (Li
et al., 2023) to evaluate the smoothness of generated motions; ❹ Aesthetic Score, obtained by using
the LAION aesthetic predictor (lio) on each video frame to evaluate the artistic and beauty value
perceived by humans, ❺ Dynamic Degree, computed by employing RAFT (Teed & Deng, 2020) to
estimate the degree of dynamics in synthesized videos; ❻ Imaging Quality, calculated by MUSIQ
(Ke et al., 2021) image quality predictor trained on SPAQ (Fang et al., 2020) dataset.

❶ Temporal Style, which is determined by utilizing ViCLIP (Wang et al., 2023b) to compute the
similarity between video features and temporal style description features, thereby reflecting the
consistency of the temporal style; ❷ Appearance Style, by calculating the feature similarity between
synthesized frames and the input prompt using CLIP (Radford et al., 2021), to gauge the consistency
of appearance style.

Self-defined Metrics. ❶ Video-Text Integration (V ideoTI) employs LLaVA (Liu et al., 2024a) to
transfer input image into textual descriptors Ti and Video-Llama (Zhang et al., 2023b) to transfer
videos generated by the model into textual Tv . The textual representation of the image is prepended
with the original instructional text, forming an augmented textual input Tmix. Both the newly formed
text and the video-generated text will be input to BERT (Devlin et al., 2018). The embeddings
obtained are analyzed for semantic similarity through the computation of cosine similarity, providing
a quantitative measurement of the model’s adherence to the given instructions and image.

V ideoTI = cosine(embedmix, embedv) (1)

where embedmix represents the embedding for Tmix and embedv for Tv .

❷ Temporal Consistency (TCON ) assesses the integrity of extended video content. For each input-
output video pair, we employ ViCLIP (Wang et al., 2023b) video encoder to extract their feature
vectors. We then compute cosine similarity to get the score.

TCON = cosine(Vinput, Voutput) (2)

❸ Temporal coherence Tmean evaluates the temporal coherence by calculating the average cor-
relation between intermediate generated videos and their neighboring input videos. Specifically,
TCONfront measures the correlation between the intermediate video and the preceding video in
the time series, while TCONbeh assesses the correlation with the subsequent video. The average of
these scores provides an aggregate measure of temporal coherence across the video sequence.

Tmean = (TCONfront + TCONbeh)/2 (3)

A.3 DETAILS OF SOPS

Text-to-Video Generation. This task harnesses a detailed textual prompt from the user as the
foundation for video creation. The prompt must meticulously detail the envisioned scene. Utilizing
this prompt, the Text-to-Image agent utilizes the text, distilling themes and visual details to craft an
initial frame. Building upon this foundation, the Image-to-Video component methodically generates
a sequence of images. This sequence dynamically evolves to embody the prompt’s described actions
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   Name  "Mike"
   Profile   "Image Producer"
   Goal  "Improve input texts and generate image with generated prompts"

User input a man in a suit with a hat and a cane at a train station.

Descirption

  Content: A suave gentleman, resplendent in his tailored suit, stands
   poised at the threshold of adventure, his fedora hat...
  MediaContent: None

  Content: a man in a suit with a hat and a cane at a train station.
  Media: None

  Content:  None
  MediaContent: <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=1024x576

Image 
Generation

Agent Memory

History message

Instructions

Model/API

With Human W/O Human

Next/Repeat 

Prompts

React

Prompt 
Generation

Figure 5: An example of image generation process in Mora. Left: Agent uses the structured message
to communicate, Right: After the prompt or image is generated, a human user can check the quality
of the generated content.

or scenes, and each video is derived from the last frame from the previous video, thereby achieving a
seamless transition throughout the video.

Image-to-Video Generation. This task mirrors the operational pipeline of Task 1, with a key
distinction. Unlike Task 1 with only texts as inputs, Task 2 integrates both a textual prompt and an
initial image into the Text-to-Image agent’s input. This dual-input approach enriches the content
generation process, enabling a more nuanced interpretation of the user’s vision.

Extend Generated Videos. This task focuses on extending the narrative of an existing video
sequence. By taking the last frame of an input video as the starting point, the video generation agent
crafts a series of new, coherent frames that continue the story. This approach allows for the seamless
expansion of video content, creating longer narratives that maintain the consistency and flow of the
original sequence without disrupting its integrity.

Video-to-Video Editing. This task introduces a sophisticated editing capability, leveraging both
the Image-to-Image and Image-to-Video agents. The process begins with the Image-to-Image agent,
which takes the first frame of an input video and applies edits based on the user’s prompt, achieving
the desired modifications. This edited frame then serves as the initial image for the Image-to-Video
agent, which generates a new video sequence that reflects the requested obvious or subtle changes,
offering a powerful tool for dynamic video editing.

Connect Videos. The Image-to-Video agent leverages the final frame of the first input video and the
initial frame of the second input video to create a seamless transition, producing a new video that
smoothly connects the two original videos.

Simulating Digital Worlds. This task specializes in the whole style changing for video sequences
set in digitally styled worlds. By appending the phrase "In digital world style" to the edit prompt,
the user instructs the Image-to-Video agent to craft a sequence that embodies the aesthetics and
dynamics of a digital realm or utilize the Image-to-Image agent to transfer the real image to digital
style. This task pushes the boundaries of video generation, enabling the creation of immersive digital
environments that offer a unique visual experience.

A.4 ITERATIVE PROGRAMMING WITH HUMAN IN THE LOOP

Human oversight and iterative refinement are essential in content generation tasks, improving the
quality and precision of the final outputs. Integrating human collaboration within video generation
frameworks is pivotal for ensuring that the resulting videos conform to the expected standards.

As illustrated in Figure 1 and 5, Mora is engineered to generate videos based on input prompts
while executing SOPs under continuous human supervision. This supervisory role enables users to
rigorously monitor the process and verify that the outputs align with their expectations. Following
each stage, users have the discretion to either advance to the subsequent phase or request a repetition
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of the previous one, with a maximum of three iterations allowed per stage. This iterative mechanism
persists until the output is deemed satisfactory, ensuring high fidelity to user requirements.

A.5 FUNCTION OF AGENTS

Prompt Selection and Generation Agent. Prior to the commencement of the initial image genera-
tion, textual prompts undergo a rigorous processing and optimization phase. This critical agent can
employ large language models like GPT-4, GPT-4o, Llama, Llama3 (Achiam et al., 2023; GPT; Tou-
vron et al., 2023). It is designed to meticulously analyze the text, extracting pivotal information and
actions delineated within, thereby significantly enhancing the relevance and quality of the resultant
images. This step ensures that the textual descriptions are thoroughly prepared for an efficient and
effective translation into visual representations.

Text-to-Image Generation Agent. The text-to-image model (Rombach et al., 2022c; Podell et al.,
2023) stands at the forefront of translating these enriched textual descriptions into high-quality initial
images. Its core functionality revolves around a deep understanding and visualization of complex
textual inputs, enabling it to craft detailed and accurate visual counterparts to the provided textual
descriptions.

Image-to-Image Generation Agent. This agent (Brooks et al., 2023) works to modify a given
source image in response to specific textual instructions. The core of its functionality lies in its ability
to interpret detailed textual prompts with high accuracy and subsequently apply these insights to
manipulate the source image accordingly. This involves a detailed recognition of the text’s intent,
translating these instructions into visual modifications that can range from subtle alterations to
transformative changes. The agent leverages a pre-trained model to bridge the gap between textual
description and visual representation, enabling seamless integration of new elements, adjustment of
visual styles, or alteration of compositional aspects within the image.

Image-to-Video Generation Agent. Following the creation of the initial image, the Video Generation
Model (Blattmann et al., 2023) is responsible for transitioning the static frame into a vibrant video
sequence. This component delves into the analysis of both the content and style of the initial image,
serving as the foundation for generating subsequent frames. These frames are meticulously crafted to
ensure a seamless narrative flow, resulting in a coherent video that upholds temporal stability and
visual consistency throughout. This process highlights the model’s capability to not only understand
and replicate the initial image but also to anticipate and execute logical progressions in the scene.

Video Connection Agent. Utilizing the Video-to-Video Agent, we create seamless transition videos
based on two input videos provided by users. This advanced agent selectively leverages key frames
from each input video to ensure a smooth and visually consistent transition between them. It is
designed with the capability to accurately identify the common elements and styles across the two
videos, thus ensuring a coherent and visually appealing output. This method not only improves the
seamless flow between different video segments but also retains the distinct styles of each segment.

A.6 MLLMS TO JUDGE VIDEO QUALITY

We employ two multimodal large language models (MLLMs) to evaluate four videos, using random
prompts selected from Table 3. The MLLMs process the inputs and generate rankings based on the
specified evaluation criteria. From the output, we focus on analyzing the video ranked as top-1 by
each MLLM. If both MLLMs agree on the top-1 video, it is directly included in the training dataset.
In cases where the MLLMs disagree, human reviewers intervene to further assess the videos and
finalize the selection. This hybrid approach ensures the inclusion of high-quality, relevant videos,
while balancing automation with human judgment. By integrating MLLMs with human oversight,
we maintain robustness and precision in the data selection process, which ultimately enhances the
video generation model’s performance.

A.7 DETAILS OF TRAINING PIPELINE

The training pipeline is illustrated in two key phases, as shown in Figure 6, constructing the training
dataset and self-modulated fine-tuning.
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Table 3: Evaluation Prompts for MLLMs to Judge Video Quality

Prompt No. Evaluation Criteria
1 Evaluate the visual clarity and resolution, ranking videos based

on image sharpness, smoothness of transitions, and noise levels.
2 Assess object consistency and scene stability across frames, rank-

ing videos on object motion and interactions.
3 Examine the temporal coherence, identifying the best frame-to-

frame continuity.
4 Evaluate the narrative coherence or logical progression, ranking

based on storytelling consistency.
5 Assess color grading and lighting consistency, determining the

best video based on smooth lighting transitions and uniform color.
6 Evaluate the realism of objects, background textures, and scene

complexity, ranking videos from most realistic to least.
7 Analyze content relevance to the task, ranking videos based on

theme alignment and task appropriateness.
8 Compare the aesthetic quality, focusing on artistic composition,

balance, and overall visual appeal.
9 Evaluate noise and artifact levels, identifying the video with the

cleanest and smoothest output.
10 Examine frame rate consistency and smoothness of motion, rank-

ing videos based on natural motion without lag or stuttering.

Enhanced 
prompts

...

Training 
data

High-quality 
candidateMLLM with 

human in-
the-loop

Text 
embeddingAgents Modulation  

embedding
Enhanced 
prompts

User 
input

Output 
video

Total 
loss

...

Update

Gradient descent

MLLM

Construct training dataset

Self-modulated fine-tuning

User 
input

Figure 6: Illustration of the process of constructing training dataset and the design of our self-
modulated fine-tuning.

Constructing the Training Dataset. The process starts with user input prompts that are enhanced
by a multimodal large language model (MLLM). These enhanced prompts are evaluated using a
human-in-the-loop strategy, which ensures high-quality video candidates. The selected videos, paired
with their prompts, form the final training data for fine-tuning the model.

Self-Modulated Fine-Tuning. During fine-tuning, enhanced prompts are processed by multiple
agents. Each agent generates text embeddings, which are combined with a modulation embedding to
dynamically adjust the contribution of each agent. The agents work together in a coordinated manner
to generate video outputs. The total loss is calculated based on the output video and the target, and
gradient descent is used to update both the model parameters and the modulation embeddings, and
then reconstruct the training datasets. This ensures that the agents adapt their outputs based on the
preceding agent’s state, resulting in improved video generation.
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A.8 DETAILS OF AGENTS

Prompt Selection and Generation. Currently, GPT-4o (GPT) stands as the most advanced gen-
erative model available. By harnessing the capabilities of GPT-4o, we are able to generate and
meticulously select high-quality prompts. These prompts are detailed and rich in information, facili-
tating the Text-to-Image generation process by providing the agent with comprehensive guidance.

Text-to-Image Generation. We utilize the pre-trained large text-to-image model to generate a
high-quality and representative first image.

For Mora (SVD), the initial implementation utilizes Stable Diffusion XL (SDXL) (Podell et al., 2023).
It introduces a significant evolution in the architecture and methodology of latent diffusion models
(Rombach et al., 2022c; Meng et al., 2022) for text-to-image synthesis, setting a new benchmark in
the field. At the core of its architecture is an enlarged UNet backbone (Ronneberger et al., 2015)
that is three times larger than those used in previous versions of Stable Diffusion 2 (Rombach et al.,
2022c). This expansion is principally achieved through an increased number of attention blocks
and a broader cross-attention context, facilitated by integrating a dual text encoder system. The
first encoder is based on OpenCLIP (Ilharco et al., 2021) ViT-bigG (Cherti et al., 2023; Radford
et al., 2021; Schuhmann et al., 2022), while the second utilizes CLIP ViT-L, allowing for a richer,
more nuanced interpretation of textual inputs by concatenating the outputs of these encoders. This
architectural innovation is complemented by the introduction of several novel conditioning schemes
that do not require external supervision, enhancing the model’s flexibility and capability to generate
images across multiple aspect ratios. Moreover, SDXL features a refinement model that employs a
post-hoc image-to-image transformation to elevate the visual quality of the generated images. This
refinement process utilizes a noising-denoising technique, further polishing the output images without
compromising the efficiency or speed of the generation process.

For Mora (Open-Sora-Plan), the Stable Diffusion 3 (SD3) (Esser et al., 2024) text-to-image model
employed to generate high-quality images from textual prompts. SD3 utilizes a rectified flow
transformer architecture, offering significant advancements over traditional diffusion models by
connecting data and noise in a linear path rather than the curved trajectories commonly used in
previous approaches. This architectural choice facilitates a more efficient and accurate sampling
process, enhancing the generation of high-resolution images across diverse styles. Additionally, SD3
introduces a novel noise re-weighting technique that biases sampling toward perceptually relevant
scales, thereby improving the clarity and aesthetic quality of the generated images. The model also
supports multiple aspect ratios and incorporates a refinement process that further enhances generated
images through a noising-denoising technique, ensuring high visual fidelity while maintaining
computational efficiency.

Image-to-Image Generation. Our initial Mora (SVD) framework utilizes InstructPix2Pix as Image-
to-Image generation agent. InstructPix2Pix (Brooks et al., 2023) are intricately designed to enable
effective image editing from natural language instructions. At its core, the system integrates the
expansive knowledge of two pre-trained models: GPT-3 (Brown et al., 2020) for generating editing
instructions and edited captions from textual descriptions, and Stable Diffusion (Rombach et al.,
2022b) for transforming these text-based inputs into visual outputs. This ingenious approach begins
with fine-tuning GPT-3 on a curated dataset of image captions and corresponding edit instructions,
resulting in a model that can creatively suggest plausible edits and generate modified captions. Fol-
lowing this, the Stable Diffusion model, augmented with the Prompt-to-Prompt technique, generates
pairs of images (before and after the edit) based on the captions produced by GPT-3. The conditional
diffusion model at the heart of InstructPix2Pix is then trained on this generated dataset. Instruct-
Pix2Pix directly utilizes the text instructions and input image to perform the edit in a single forward
pass. This efficiency is further enhanced by employing classifier-free guidance for both the image and
instruction conditionings, allowing the model to balance fidelity to the original image with adherence
to the editing instructions.

For Mora (Open-Sora-Plan), the image-to-image generation agent, based on SD3 (Esser et al., 2024),
excels in applying detailed text-guided transformations to images with precision and flexibility. SD3’s
rectified flow transformer architecture ensures efficient and accurate image modifications, while the
noise re-weighting process enhances the visual quality of the output, ensuring that edits are seamless
and coherent.
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Image-to-Video Generation. In the Text-to-Video generation agent, video generation agents play
an important role in ensuring video quality and consistency.

Our initial Mora (SVD) implementation utilizes the state-of-the-art video generation model Stable
Video Diffusion to generate video. The Stable Video Diffusion (SVD) (Blattmann et al., 2023)
architecture introduces a cutting-edge approach to generating high-resolution videos by leveraging
the strengths of LDMs Stable Diffusion v2.1 (Rombach et al., 2022b), originally developed for
image synthesis, and extending their capabilities to handle the temporal complexities inherent in
video content. At its core, the SVD model follows a three-stage training regime that begins with
text-to-image pertaining, where the model learns robust visual representations from a diverse set
of images. This foundation allows the model to understand and generate complex visual patterns
and textures. In the second stage, video pretraining, the model is exposed to large amounts of
video data, enabling it to learn temporal dynamics and motion patterns by incorporating temporal
convolution and attention layers alongside its spatial counterparts. This training is conducted on
a systematically curated dataset, ensuring the model learns from high-quality and relevant video
content. The final stage, high-quality video finetuning, focuses on refining the model’s ability to
generate videos with increased resolution and fidelity, using a smaller but higher-quality dataset. This
hierarchical training strategy, complemented by a novel data curation process, allows SVD to excel in
producing state-of-the-art text-to-video and image-to-video synthesis with remarkable detail, realism,
and coherence over time.

The Mora (Open-Sora-Plan) video generation agent leverages a 3D full attention mechanism, which
processes spatial and temporal features simultaneously, providing a unified understanding of motion
and appearance across frames. This mechanism ensures smoother transitions and higher coherence in
movements across consecutive frames, improving the temporal consistency of the generated video.
In the second phase, temporal convolution layers are integrated to further refine the model’s capacity
to comprehend and generate realistic motion dynamics. By capturing temporal patterns over time,
the model produces videos with continuous and natural movements, thereby enhancing the realism
of complex visual sequences. The third phase involves utilizing the CausalVideoVAE (Chen et al.,
2024b), which enhances the visual representation and detail of each frame while minimizing the
occurrence of artifacts commonly associated with video synthesis. The CausalVideoVAE maintains
high-quality visual outputs throughout the entire video sequence by refining and polishing the
generated content through multiple iterations. This comprehensive training regime ensures that Mora
(Open Sora Plan) excels in both image-to-video and text-to-video tasks, delivering exceptional levels
of detail, realism, and temporal coherence. These architectural innovations enable superior handling
of complex motion patterns and high-resolution video outputs, resulting in visually consistent and
temporally stable videos.

Connect Videos. For the video connection task, we utilize SEINE (Chen et al., 2023c) to connect
videos. SEINE is constructed upon a pre-trained diffusion-based T2V model, LaVie (Wang et al.,
2023a) agent. SEINE centered around a random-mask video diffusion model that generates transitions
based on textual descriptions. By integrating images of different scenes with text-based control,
SEINE produces transition videos that maintain coherence and visual quality. Additionally, the model
can be extended for tasks such as image-to-video animation and autoregressive video prediction.

In Mora (Open-Sora-Plan), the video connection task utilizes a specialized architecture to ensure
seamless and visually coherent transitions between videos. This is achieved by combining diffusion-
based models with temporal convolution techniques, facilitating smooth transitions in style, content,
and motion dynamics. The video connection agent employs CausalVideoVAE, optimized for temporal
and spatial consistency, enhancing the connection of two video segments by identifying and preserving
common visual elements across frames. A 3D full attention architecture is central to this process,
enabling the model to simultaneously capture spatial and temporal features, thereby maintaining
coherence in object motion and background continuity. Additionally, the architecture incorporates
random-mask video diffusion, which maintains high-resolution transitions by infilling missing
information based on text-based control inputs or video context. This approach ensures that the
connected videos preserve visual quality and exhibit coherent motion patterns, resulting in high-
quality, temporally stable transitions.
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A.9 DETAILS SETTINGS IN TRAINING

In our training setup, we use the AdamW optimizer, which is known for handling weight decay effec-
tively, with an initial learning rate of 1e-5. The learning rate remains constant throughout training,
controlled by the constant scheduler, and no warmup steps are used (lr_warmup_steps=0).
To handle memory constraints, we accumulate gradients over 1 step, which allows us to use a batch
size of 4 while maintaining stable optimization. We enable gradient checkpointing to further save
memory by reducing the number of intermediate activations stored during backpropagation, although
this comes at the cost of slower backward passes. Mixed precision training with bf16 is employed
to enhance computational speed and lower memory usage, which is crucial when training with a
batch size of 4. The model is trained for a maximum of 12 steps, with checkpoints being saved
every 4 steps to allow for model recovery or evaluation during training. We use an SNR Gamma
value of 5.0 to balance the noise scale, which is especially useful for diffusion-based models, and
apply Exponential Moving Average (EMA) from step 0 with a decay rate of 0.999 to ensure model
stability throughout training. These settings provide a balance between computational efficiency and
model performance, ensuring that we can handle large video data with high memory demands while
optimizing effectively across training iterations.

Since the OpenSora and SD3 environments are mutually exclusive (due to certain package incompati-
bilities), we use inter-process communication (IPC) to perform joint training.

Listing 1: SD3 Process (Text-to-Image) Pseudocode
# Initialize ZeroMQ context and create a REQ socket
Initialize context
Create REQ socket
Connect to Open-Sora-Plan environment

# Main loop
while training is not complete:

# Generate image from Stable-Diffusion3 with prompt
image = Stable_Diffusion3(prompt)

# Send image data to Open-Sora-Plan
socket.send(image)

# Receive video loss from Open-Sora-Plan
video_loss = socket.recv()

# Backpropagation
optimizer.zero_grad()
video_loss.backward()
optimizer.step()

Listing 2: Open-Sora-Plan Process (Image-to-Video) Pseudocode
# Initialize ZeroMQ context and create a REP socket
Initialize context
Create REP socket
Bind to specific port

# Main loop
while True:

# Receive image data from SD3
image_data = socket.recv()

# Process the image data
image = process_image(image_data)

# Generate video from image using Open-Sora-Plan
generated_video = Open_Sora_Plan(image, prompts)

# Compute video loss
video_loss = compute_loss(generated_video, ground_truth_video)
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# Send video loss back to SD3
socket.send(video_loss)

A.10 MODULATION VISUALIZATION

A2: SD3 A3: SD3 A4: Open-Sora-Plan

A4: Open-Sora-PlanA3: SD3A2: SD3

w/o self-modulated fine-tuning

self-modulated fine-tuning

Figure 7: Visualization of Modulation Feature in
self-modulated fine-tuning on Text-to-Video task

To evaluate the effectiveness of self-modulated
fine-tuning on the Text-to-Video generation task,
we visualize the modulation features in Figure 7.
The heatmaps represent the activation distribu-
tions of modulation features across different
model configurations and setups. The top row
of the figure corresponds to results without self-
modulated fine-tuning, while the bottom row il-
lustrates the outcomes with self-modulated fine-
tuning applied. Each column depicts the feature
maps for modulations of various agents: A2:
SD3, A3: SD3, and A4: Open-Sora-Plan. The
heatmap intensity (color bar on the left) ranges
from 0 (purple) to 1 (yellow), representing the
activation magnitudes. The sharper contrasts
and concentrated patterns in the fine-tuned mod-
els further validate the utility of the proposed
method. Without self-modulated fine-tuning, the
modulation values for A2, A3, and A4 were 6.667, 6.667, and 9.630, respectively. After training
with self-modulated fine-tuning, these values were updated to 4.330, 1.789, and 12.335. This demon-
strates that the model progressively allocates greater focus to A4 (the Image-to-Video Agent) during
training, suggesting its increased importance in the task. Specifically, the significant increase in A4’s
modulation value highlights its critical role in enhancing the Text-to-Video generation quality. This
finding further supports self-modulated fine-tuning promoting effective collaboration among agents,
enabling the framework to balance and optimize contributions from each agent adaptively.

A.11 TRAINING SAMPLES STUDY

In this subsection, we analyze the impact of training sample size on the performance of our system to
address concerns regarding the sufficiency of using only 96 samples during training. The experiments
presented in Table A illustrate the results of varying the sample size from 16 to 144 while measuring
the average performance across six tasks.

The results as shown in Table 4 illustrate that while increasing the number of samples leads to
performance improvements initially, the gains plateau as the sample size approaches 96. Specifically,
the average performance metric (Avg.) increases from 0.6059 with 16 samples to a peak of 0.6482
at 96 samples, with only negligible fluctuations thereafter. This plateau suggests that our training
strategy effectively maximizes the utility of the provided samples, leveraging their representational
power to enhance inter-agent collaboration and alignment.

The diminishing returns beyond 96 samples can be attributed to our self-modulated fine-tuning
algorithm, which optimizes agent interactions using a data-free training strategy. By focusing on
refining the agents’ pre-trained capabilities and aligning their outputs to a shared understanding,
the algorithm ensures efficient use of limited training data. This efficiency is further reinforced by
the human-in-the-loop mechanism, which guides the optimization process, making additional data
redundant after a certain threshold.

B MORE RESULTS AND EXAMPLES

B.1 MORE RESULTS DETAILS

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 4: Performance of Mora with training setup of different sample sizes.

Samples Task 1 (Avg.) Task 2 (Avg.) Task 3 (TCON) Task 4 (Avg.) Task 5 (Avg.) Task 6 (IQ) Avg.
16 0.767 0.8775 0.9621 0.27 0.401 0.353 0.6059
32 0.788 0.8806 0.9721 0.33 0.423 0.380 0.6298
48 0.793 0.8830 0.9766 0.36 0.437 0.394 0.6404
64 0.797 0.8850 0.9802 0.37 0.441 0.396 0.6447
80 0.799 0.8868 0.9820 0.37 0.442 0.399 0.6468
96 0.800 0.8874 0.9830 0.38 0.442 0.399 0.6482
112 0.800 0.8875 0.9835 0.38 0.440 0.398 0.6480
128 0.799 0.8875 0.9837 0.37 0.441 0.398 0.6469
144 0.800 0.8876 0.9836 0.37 0.442 0.398 0.6480

Object
Consistency

Background
Consistency

Motion
Smoothness

Aesthetic
Quality

Dynamic
Dgree

Imaging
Quality

Temporal
Style

Mora
VideoCrafter1

ModelScope
Show-1

Pika
Gen-2

LaVie-Interpolation
LaVie

CogVideo

Figure 8: Comparative analysis of text-to-video
generation performance between Mora and various
other models.

Text-to-Video Generation. The quantitative
results are detailed in Table 1 and Figure 8.
Mora showcases commendable performance
across all metrics, making it highly compara-
ble to the top-performing model, Sora, and sur-
passing the capabilities of other competitors.
Specifically, Mora achieved a Video Quality
score of 0.792, which closely follows Sora’s
leading score of 0.797 and surpasses the cur-
rent best open-source model like VideoCrafter1.
In terms of Object Consistency, Mora scored
0.95, equaling Sora and demonstrating supe-
rior consistency in maintaining object identities
throughout the videos. For Background Consis-
tency and Motion Smoothness, Mora achieved
scores of 0.95 and 0.99, respectively, indicating
high fidelity in background stability and fluidity
of motion within generated videos. Although
Sora achieved 0.96 slightly outperforms Mora in
Background Consistency, the margin is minimal.
The Aesthetic Quality metric, which assesses
the overall visual appeal of the videos, saw Mora scoring 0.57. This score, while not the highest,
reflects a competitive stance against other models, with Sora scoring slightly higher at 0.60. Nev-
ertheless, Mora’s performance in Dynamic Degree and Imaging Quality, with scores of 0.70 and
0.59, showcases its strength in generating dynamic, visually compelling content that surpasses all
other models. As for Temporal Style, Mora scored 0.26, indicating its robust capability in addressing
the temporal aspects of video generation. Although this performance signifies a commendable
proficiency, it also highlights a considerable gap between our model and Sora, the leader in this
category with a score of 0.35.

The results in Table 5 compare various models on video generation performance using the Vbench
dataset. Mora (Open-Sora-Plan) achieves the highest overall video quality (0.848) and excels in both
object and background consistency (0.98), while also leading in aesthetic quality (0.70) and imaging
quality (0.72). Emu3 and Gen-3-Alpha perform similarly in video quality (0.841), with Emu3
showing superior motion smoothness (0.99) and dynamic degree (0.79). Despite a slightly lower
video quality, LaVie-2 outperforms other models in temporal style and maintains strong consistency
metrics across the board.

In Figure 2, the visual fidelity of Mora’s text-to-video generation is compelling, manifesting high-
resolution imagery with acute attention to detail as articulated in the accompanying textual descrip-
tions. The vivid portrayal of scenes, from the liftoff of a rocket to the dynamic coral ecosystem and
the urban skateboarding vignette, underscores the system’s adeptness in capturing and translating
the essence of the described activities and environments into visually coherent sequences. Notably,
the images exude a temporal consistency that speaks to Mora’s nuanced understanding of narrative
progression, an essential quality in video synthesis from textual prompts.

Mora can deal with various tasks, including video editing, video extension, and stimulate digital
world. We provide demo of Mora in Figure 9.
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Figure 9: Demo of Mora on various tasks.

Table 5: Comparative analysis of text-to-video generation performance for models with Vbench data.

Model Video
Quality

Object
Consistency

Background
Consistency

Motion
Smoothness

Aesthetic
Quality

Dynamic
Degree

Imaging
Quality

Temporal
Style

Video
Length(s)

Emu3 0.841 0.95 0.98 0.99 0.60 0.79 0.63 0.24 5
Open-Sora-Plan_V1.2 0.814 0.97 0.98 0.99 0.59 0.42 0.57 0.25 8
Gen-3-Alpha 0.841 0.97 0.97 0.99 0.63 0.60 0.67 0.25 10
LaVie-2 0.832 0.98 0.98 0.98 0.68 0.31 0.70 0.25 3
Mora (Open-Sora-Plan) 0.848 0.98 0.98 0.99 0.70 0.72 0.72 0.25 12

Text-conditional Image-to-Video Generation. In Figure 15, a qualitative comparison between the
video outputs from Sora and Mora reveals that both models adeptly incorporate elements from the
input prompt and image. The monster illustration and the cloud spelling "SORA" are well-preserved
and dynamically translated into video by both models. Despite quantitative differences, the qualitative
results of Mora nearly rival those of Sora, with both models are able to animate the static imagery and
narrative elements of the text descriptions into coherent video. This qualitative observation attests
to Mora’s capacity to generate videos that closely parallel Sora’s output, achieving a high level of
performance in rendering text-conditional imagery into video format while maintaining the thematic
and aesthetic essence of the original inputs.

Extend Generated Videos. From a qualitative standpoint, Figure 11 illustrates the competencies of
Mora in extending video sequences. Both Sora and Mora adeptly maintain the narrative flow and
visual continuity from the original to the extended video. Despite the slight numerical differences
highlighted in the quantitative analysis, the qualitative outputs suggest that Mora’s extended videos
preserve the essence of the original content with high fidelity. The preservation of dynamic elements
such as the rider’s motion and the surrounding environment’s blur effect in the Mora generated
sequences showcases its capacity to produce extended videos that are not only coherent but also
retain the original’s motion and energy characteristics. This visual assessment underscores Mora’s
proficiency in generating extended video content that closely mirrors the original, maintaining the
narrative context and visual integrity, thus providing near parity with Sora’s performance.
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Figure 10: Samples for text-conditional image-to-video generation of Mora and Sora. Prompt for the
first line image is: Monster Illustration in flat design style of a diverse family of monsters. The group
includes a furry brown monster, a sleek black monster with antennas, a spotted green monster, and a
tiny polka-dotted monster, all interacting in a playful environment. The second image’s prompt is:
An image of a realistic cloud that spells "SORA".

Video-to-Video Editing. Upon qualitative evaluation, Figure 12 presents samples from video-
to-video editing tasks, wherein both Sora and Mora were instructed to modify the setting to the
1920s style while maintaining the car’s red color. Visually, Sora’s output exhibits a transformation
that convincingly alters the modern-day setting into one reminiscent of the 1920s, while carefully
preserving the red color of the car. Mora’s transformation, while achieving the task instruction,
reveals differences in the execution of the environmental modification, with the sampled frame from
generated video suggesting a potential for further enhancement to achieve the visual authenticity
displayed by Sora. Nevertheless, Mora ’s adherence to the specified red color of the car underline
its ability to follow detailed instructions and enact considerable changes in the video content. This
capability, although not as refined as Sora’s, demonstrates Mora’s potential for significant video
editing tasks.

Connect Videos. Qualitative analysis based on Figure 13 suggest that, in comparison to Sora’s
proficiency in synthesizing intermediate video segments that successfully incorporate background
elements from preceding footage and distinct objects from subsequent frames within a single frame,
the Mora model demonstrates a blurred background in the intermediate videos, which results in
indistinguishable object recognition. Accordingly, this emphasizes the potential for advancing the
fidelity of images within the generated intermediate videos as well as enhancing the consistency
with the entire video sequence. This would contribute to refining the video connecting process and
improving the integration quality of Mora’s model outputs.

Simulate Digital Worlds. Upon qualitative evaluation, Figure 14 presents samples from Simulate
digital worlds tasks, wherein both Sora and Mora were instructed to generated video of "Minecraft"
scenes. In the top row of frames generated by Sora, we see that the videos maintain high fidelity to
the textures and elements typical of digital world aesthetics, characterized by crisp edges, vibrant
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Figure 11: Samples for Extend generated video of Mora and Sora.

Sora

Mora

Instruction: Change the setting to the 1920s with an old school car. make sure to keep the red color

Figure 12: Samples for Video-to-video editing

colors, and clear object definition. The pig and the surrounding environment appear to adhere closely
to the style one would expect from a high-resolution game or a digital simulation. These are crucial
aspects of performance for Sora, indicating a high-quality synthesis that aligns well with user input
while preserving visual consistency and digital authenticity. The bottom row of frames generated
by Mora suggests a step towards achieving the digital simulation quality of Sora but with notable
differences. Although Mora seems to emulate the digital world’s theme effectively, there is a visible
gap in visual fidelity. The images generated by Mora exhibit a slightly muted color palette, less
distinct object edges, and a seemingly lower resolution compared to Sora’s output. This suggests that
Mora is still in a developmental phase, with its generative capabilities requiring further refinement to
reach the performance level of Sora.

B.2 ABLATION STUDY

The results in Table 6 clearly demonstrate the effectiveness of each component in our Mora model.
The full version of Mora (Open-Sora-Plan) outperforms all ablated variants across most metrics,
showcasing the importance of each design choice. First, Mora achieves the highest video quality
score of 0.800, along with the best object consistency (0.98), background consistency (0.97), motion
smoothness (0.99), and imaging quality (0.70). This underscores the significance of incorporating all
components, as removing any one of them leads to a noticeable drop in performance. For instance,
removing the human-in-the-loop module (Mora w/o Human-in-the-loop) reduces video quality to
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Sora

Mora

Figure 13: Samples for Video Connetion

Figure 14: Samples for Simulate digital worlds

0.785 and slightly decreases motion smoothness (0.95), indicating that human guidance is key to
maintaining higher video generation quality and consistency. Similarly, removing self-modulation
(Mora w/o Self-modulated) results in a further decline in video quality to 0.776, while slightly
improving the dynamic degree (0.51). However, this increase in dynamic degree comes at the cost
of consistency across other metrics, showing that self-modulation balances aesthetic quality and
consistency. The Random Initial modulation (Mora with RI-modulated) also demonstrates a strong

Table 6: Ablation study on different variants of Mora model for text-to-video generation
performance. The Random Initial modulation (RI-modulated) embeddings represent {zi ∈
R1×text_encoderi_feature}ni=1.

Model Video
Quality

Object
Consistency

Background
Consistency

Motion
Smoothness

Aesthetic
Quality

Dynamic
Degree

Imaging
Quality

Temporal
Style

Mora (Open-Sora-Plan) 0.800 0.98 0.97 0.99 0.66 0.50 0.70 0.31
Mora (Open-Sora-Plan)∓ 0.767 0.94 0.95 0.99 0.61 0.43 0.68 0.26
Mora w/o Human-in-the-loop 0.785 0.98 0.96 0.95 0.63 0.50 0.69 0.31
Mora w/o Self-modulated 0.776 0.96 0.95 0.95 0.62 0.51 0.67 0.27
Mora with RI-modulated 0.797 0.98 0.96 0.99 0.66 0.50 0.69 0.29
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Figure 15: Samples for text-conditional image-to-video generation of Mora and Sora. Prompt for the
first line image is: Monster Illustration in flat design style of a diverse family of monsters. The group
includes a furry brown monster, a sleek black monster with antennas, a spotted green monster, and a
tiny polka-dotted monster, all interacting in a playful environment. The second image’s prompt is:
An image of a realistic cloud that spells "SORA".

Table 7: Framework comparison capabilities of Sora, Mora and other autonomous agent framework.
"!“ indicates the specific feature in the corresponding framework or model. "-“ means absence.

Framework Role-based agent SOPs Human in the loop Task
AutoGPT (Aut) - - - Code Generation

AutoGen (Wu et al., 2023b) - ! ! Code Generation
MetaGPT (Hong et al., 2023) ! ! - Code Generation

Sora - - - Video Generation
Mora ! ! ! Video Generation

performance, achieving 0.797 in video quality and maintaining the same level of object consistency
(0.98) and motion smoothness (0.99) as the full model. However, the overall consistency and quality
remain lower than the full Mora model, confirming that learned modulation embeddings contribute
significantly to the model’s performance. These results demonstrate that each component—human-in-
the-loop, self-modulation, and optimized modulation embeddings—plays a crucial role in improving
the model’s text-to-video generation capabilities. The full Mora model’s superior performance
validates the importance of our design, providing a clear advantage over the ablated versions.

B.3 OTHER BENCHMARKS RESULTS

To further demonstrate the effectiveness of our proposed approach and address concerns about
overfitting in the data-free training strategy, we conducted extensive evaluations on multiple widely-
used benchmarks: T2V-CompBench, EvalCrafter, and VBench. These benchmarks encompass
diverse out-of-domain datasets and tasks, providing a comprehensive assessment of the generalization
capabilities of our model, Mora. The results are summarized in Table 10.
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From the results, as shown in Table 8, Mora outperforms other state-of-the-art models across all
three benchmarks, achieving the highest scores in T2V-CompBench (Sun et al., 2024a) (0.5022),
EvalCrafter (Liu et al., 2024b) (263), and VBench (Whole Metrics: 0.821). These improvements
highlight Mora’s ability to generalize well to unseen tasks and datasets, demonstrating the robustness
of our multi-agent approach. Compared to Gen2, the second-best performing model, Mora shows a
relative improvement of 4.7% in T2V-CompBench, 3.5% in EvalCrafter, and 2.0% in VBench.

These results validate that our multi-agent framework, combined with the self-modulated fine-tuning
algorithm, does not merely overfit to the data synthesized by large models. Instead, it leverages the
synthesized data and human-in-the-loop preference optimization to enhance inter-agent collaboration,
leading to superior performance on challenging out-of-domain scenarios.

Moreover, Mora’s performance improvements come without requiring substantial additional compu-
tational resources during inference compared to other multi-agent systems. By optimizing inter-agent
interactions, Mora achieves these results while maintaining efficient resource utilization.

Table 8: Performance of Mora on out-of-domain test datasets and benchmarks.

Model T2V-CompBench EvalCrafter VBench (Whole Metrics)
ModelScope 0.3990 218 0.756
ZeroScope 0.3503 217 0.755
Show-1 0.4209 229 0.789
VideoCrafter2 0.4452 243 0.804
Pika 0.4306 250 0.806
Gen2 0.4604 254 0.805
Open-Sora-Plan 0.4849 259 0.812
Mora 0.5022 263 0.821

B.4 EFFICIENCY OF MULIT-AGENT FRAMEWORK

To address concerns about the efficiency of Mora’s multi-agent framework, we provide detailed
comparisons of computational requirements, including memory usage and inference time, for various
video-related tasks. Table 9 summarizes these results and highlights Mora’s ability to achieve
state-of-the-art performance while maintaining comparable computational efficiency.

Mora’s design prioritizes efficient memory utilization despite the multi-agent nature of the system.
Each agent operates independently under the coordination of the SOP, which ensures that memory
is released immediately after an agent completes its task. As a result, the maximum memory
consumption of the pipeline corresponds only to the agent with the highest memory requirement,
which, as shown in Table A, is capped at 46.98 GB for all tasks on an NVIDIA H100 GPU. This
efficient memory management enables Mora to handle complex multi-agent operations without
exceeding resource constraints.

Inference time is an essential factor when evaluating the efficiency of multi-agent frameworks. For
Mora, the most computationally intensive step is the video generation agent, while preceding agents
contribute only a negligible portion to the overall time. The results in Table A demonstrate that
Mora’s inference times are comparable to state-of-the-art models like Open-Sora-Plan and Video-p2p.

The marginal increase in inference time for Mora is well-justified by its substantial gains in video
quality across all tasks. Mora consistently achieves higher performance scores, demonstrating that
the multi-agent framework, coupled with its collaborative fine-tuning algorithm, provides significant
advantages in generating high-quality videos. This trade-off is especially valuable in applications
where quality is a priority over minimal inference latency.

B.5 MULTI-COMPONENT CUMULATIVE ERROR

To address concerns about potential cumulative errors in multi-agent systems, we implemented
several architectural and algorithmic techniques to mitigate error accumulation across components. In
this section, we present empirical evidence demonstrating how these techniques effectively manage
and minimize error propagation, ensuring consistent performance across tasks and video durations.

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Table 9: Computational efficiency and performance comparison across different video generation
tasks. Task 1: Text-to-Video Generation; Task 2: Image-to-Video Generation; Task 3: Extend
Generated Videos; Task 4: Video-to-Video Editing; Task 5: Connect Videos; Task 6: Simulate Digital
Worlds. All experiments were conducted on a single NVIDIA H100 GPU.

Task Model Performance Max Memory Usage Inference Time
1 Open-Sora-Plan (T2V) (3s) 0.765 46.98G 243s

Mora (3s) 0.801 46.98G 261s
2 Open-Sora-Plan (I2V) (3s) 0.875 46.98G 245s

Mora (3s) 0.887 46.98G 253s
3 Open-Sora-Plan (I2V using original video last frame) (3s) 0.942 46.98G 245s

Mora (3s) 0.983 46.98G 259s
4 Pika (Proprietary) 0.232 - 143s

Video-p2p 0.369 26.11G 208s
Mora 0.383 46.98G 253s

5 Open-Sora-Plan (I2V) 0.395 46.98G 245s
Mora 0.442 46.98G 245s

6 Open-Sora-Plan (T2V) (3s) 0.765 46.98G 243s
Mora (3s) 0.801 46.98G 261s

Our self-modulated fine-tuning strategy dynamically adjusts the influence of each agent during
the optimization process. This approach ensures that errors introduced by one component do not
propagate unchecked to subsequent components. By aligning the outputs of each agent with global
system objectives, this technique provides a robust safeguard against error accumulation. The Image-
to-Image Agent (A3) serves as a dedicated quality assurance mechanism. It evaluates and refines the
outputs of preceding agents, particularly for tasks requiring extended temporal sequences. As shown
in Table 10, the absence of A3 leads to significant quality degradation in videos longer than 12 seconds,
while its inclusion maintains consistent quality metrics, even for 24-second videos. This demonstrates
A3’s critical role in mitigating cumulative errors for long-duration tasks. Mora’s modular design
decouples the operations of individual agents, reducing interdependencies and minimizing error
propagation. Ablation studies (Table 11) reveal that the removal of specific components, such as A1
(human input) and A3, impacts performance but does not lead to catastrophic failure. This highlights
the robustness of Mora’s design in isolating errors within specific modules.

Table 10 compares video quality scores for Mora with and without the Image-to-Image Agent (A3)
across different video durations. The results show a clear degradation in quality when A3 is removed,
particularly for longer videos. For example, at 24 seconds, Mora without A3 scores only 0.012,
compared to 0.773 with A3, emphasizing the agent’s importance in maintaining quality over time.
Similarly, Table 11 illustrates the impact of removing individual agents on performance. While the
removal of A1 (human input) or A2 causes minor fluctuations in quality, the removal of A3 results in
a noticeable drop, especially for longer videos. This demonstrates that while the system is resilient to
partial component failure, A3 is critical for maintaining consistent performance across complex tasks.

Table 10: Comparison of video quality scores between Mora with and without the Image-to-Image
Agent (A3) across different video durations. The scores range from 0 to 1, with higher values
indicating better quality. Results show that A3 is crucial for maintaining consistent quality in longer
videos, particularly beyond 12 seconds.

Method 3s 6s 12s 15s 18s 21s 24s
Mora (w/o A3) 0.800 0.794 0.780 0.622 0.439 0.211 0.012
Mora 0.800 0.799 0.800 0.784 0.775 0.773 0.773

B.6 FRAMEWORK FOR DIFFERENT AGENTS

To investigate the impact of substituting Mora’s original agents (A1–A5) with alternative models,
we conducted extensive ablation studies across various tasks. Table 12 summarizes the results,
showcasing the performance of different agent configurations compared to Mora’s default setup. The
findings reveal the importance of each component and the synergistic advantages of Mora’s carefully
curated multi-agent framework.

A1: Text Enhancer Replacing Mora’s original text enhancer with alternatives such as Claude 3.5
or LLaMA 3.1 (70B and 8B) demonstrates relatively minor performance degradation across most
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Table 11: Video quality scores across different configurations, demonstrating the impact of the
Image-to-Image Agent (A3) and human input (A1, A2) in maintaining consistent quality. Scores
range from 0 to 1, with higher values indicating better quality.

Method Performance
Mora (w/o A1 (Human Input)) 0.801
Mora (w/o A2 (Human Input)) 0.809
Mora (w/o A1 & A2 (Human Input)) 0.809
Mora (w/o A3) 0.780
Mora (w/o A1 & A2 (Human Input) and w/o A3) 0.781

tasks. The results suggest that A1’s role is less critical for Mora’s overall performance, as alternative
models maintain comparable quality in most metrics. However, the smaller-scale LLaMA 3.1 (8B)
model causes noticeable degradation in image quality (IQ drops from 0.399 to 0.333), indicating that
model size and capability can influence specific metrics.

A2: Text-to-Image Model The Text-to-Image agent (A2) exhibits greater sensitivity to model
replacement. Substituting SDXL v1.1 with SD 1.5 results in a substantial decline in Task 6 image
quality (IQ drops from 0.398 to 0.288). This highlights the importance of advanced text-to-image
generation capabilities for maintaining high-quality visuals, particularly in scenarios requiring detailed
imagery.

A3: Image Editing Model The Image Refinement agent (A3) plays a crucial role in Mora’s pipeline.
Replacing SDXL v1.1 Refiner with InstructPix2Pix leads to significant performance degradation,
particularly in temporal consistency (TCON drops from 0.983 to 0.950) and image quality (IQ drops
from 0.399 to 0.281). These results underscore A3’s importance in ensuring visual consistency and
quality across generated frames.

A4: Image-to-Video Model The Video Generation agent (A4) emerges as the cornerstone of Mora’s
framework. Replacing A4 with Open-Sora v1.2 results in dramatic performance losses across all
tasks, with the most notable decline in Task 3 temporal consistency (TCON drops from 0.983 to
0.723) and Task 2 average performance (0.887 to 0.704). These findings validate A4’s critical role in
maintaining temporal coherence and overall video quality.

A5: Video Transition Model Mora’s Video Transition agent (A5) is relatively robust to replacement.
Substituting it with Open-Sora v1.2 or SEINE causes only minimal variations in performance, such as
a small drop in Task 5 average performance (from 0.442 to 0.435 with SEINE). These results suggest
that A5 contributes to Mora’s performance but is less sensitive to the choice of model compared to
other agents.

These findings validate Mora’s original agent selection, demonstrating that its configuration achieves
the optimal balance between performance and quality. The consistent performance degradation
observed when substituting agents underscores the effectiveness of Mora’s integrated multi-agent
architecture and self-modulated fine-tuning strategy.

B.7 AGENT SUCCESS RATE

To provide a quantitative analysis of agent success rates and justify the benefits of Mora’s multi-
agent framework, we evaluate the proportion of tasks successfully completed by agents without
requiring external corrections or reinitialization. This metric, termed the agent success rate, reflects
the robustness and efficiency of the multi-agent system. Table 13 compares Mora’s performance
and agent success rates with and without the self-modulated fine-tuning algorithm. The results show
a significant improvement, with Mora’s agent success rate increasing from 34.5% to 91.5% and
its performance score rising from 0.776 to 0.800. These findings demonstrate that self-modulated
fine-tuning not only optimizes agent collaboration but also enhances their ability to autonomously
and effectively complete tasks.

The high agent success rate achieved with self-modulated fine-tuning highlights the effectiveness
of Mora’s multi-agent system. By dynamically adjusting the influence of each agent during the
optimization process, the fine-tuning approach ensures that agents are better aligned and operate in
harmony, reducing conflicts and dependencies on external interventions. The enhanced success rate
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Table 12: The quality performance of different ablation versions of Mora with different agent
configurations (A1-A5). Task 1-6 represent different evaluation metrics as described in the paper.
Scores are bolded for Mora’s original configuration to emphasize its superior performance.

Model Task 1 (Avg.) Task 2 (Avg.) Task 3 (TCON) Task 4 (Avg.) Task 5 (Avg.) Task 6 (IQ)
Mora (ours) 0.800 0.887 0.983 0.383 0.442 0.399

A1: Different Text Enhancer
Claude 3.5 (Anthropic, 2024) 0.800 0.887 0.983 0.383 0.442 0.397
LLaMA 3.1 70B (Meta AI, 2024) 0.799 0.887 0.983 0.384 0.442 0.353
LLaMA 3.1 8B (Meta AI, 2024) 0.797 0.885 0.983 0.381 0.442 0.333

A2: Different Text-to-Image Model
SDXL v1.1 0.787 0.887 0.983 0.381 0.442 0.398
SD 1.5 (Rombach et al., 2022a) 0.783 0.887 0.983 0.381 0.442 0.288

A3: Different Image Editing Model
SDXL v1.1 Refiner 0.799 0.877 0.954 0.383 0.442 0.393
InstructPix2Pix 0.787 0.804 0.950 0.383 0.442 0.281

A4: Different Image-to-Video Model
Open-Sora v1.2 0.770 0.704 0.723 0.329 0.442 0.384

A5: Different Video Transition Model
Open-Sora v1.2 0.800 0.887 0.983 0.383 0.422 0.399
SEINE 0.800 0.887 0.983 0.383 0.435 0.399

also underscores the system’s efficiency, as fewer task failures result in smoother operations and
faster execution. These results validate Mora’s multi-agent design and its ability to handle complex
video generation tasks efficiently, reinforcing its suitability for real-world applications.

Table 13: Performance and agent success rates of Mora with and without self-modulated fine-tuning.

Method Performance Agent Success Rate
Without self-modulated fine-tuning 0.776 34.5%
With self-modulated fine-tuning 0.800 91.5%

C CAPABILITIES ANALYSIS

Compared to the closed-source baseline model Sora and autonomous agents such as MetaGPT (Hong
et al., 2023), our framework, Mora, offers enhanced functionalities for video generation tasks. As
shown in Table 7, Mora encompasses a comprehensive range of capabilities designed to handle diverse
and specialized video generation tasks effectively. The integration of Standard Operating Procedures
(SOPs) such as role-play expertise, structured communication, and streamlined workflows, along
with human-in-the-loop systems, significantly refines the control and quality of video generation.
While other baseline methods can adapt SOP-like designs to boost their performance, they typically
do so only within the realm of code generation tasks. In contrast, models like Sora lack the capability
for fine-grained control or autonomous video generation, highlighting the advanced capabilities of
Mora in this domain.

A detailed comparison of tasks between Mora and Sora is presented in Table 14. This comparison
demonstrates that, through the collaboration of multiple agents, Mora is capable of accomplishing
the video-related tasks that Sora can undertake. This comparison highlights Mora’s adaptability and
proficiency in addressing a multitude of video generation challenges.

Table 14: Task comparison between Sora, Mora and other existing models.

Tasks Example Sora Mora Others

Text-to-video GenerationText-to-video generation

Text-guided image-to-video 
generation

Extend generated videos

Video-to-video editing

Connect videos 

simulate digital worlds

! ! (Girdhar et al., 2023; Wang et al., 2023a; Chen et al., 2024a; Ma et al., 2024b)

Image-to-Video Generation

Text-to-video generation

Text-guided image-to-video 
generation

Extend generated videos

Video-to-video editing

Connect videos 

simulate digital worlds

! ! (Blattmann et al., 2023; pik; Gen, a)

Extend Generated Videos

Text-to-video generation

Text-guided image-to-video 
generation

Extend generated videos

Video-to-video editing

Connect videos 

simulate digital worlds

! ! -

Video-to-Video Editing

Text-to-video generation

Text-guided image-to-video 
generation

Extend generated videos

Video-to-video editing

Connect videos 

simulate digital worlds

! ! (Molad et al., 2023; Liew et al., 2023; Ceylan et al., 2023)

Connect Videos

Text-to-video generation

Text-guided image-to-video 
generation

Extend generated videos

Video-to-video editing

Connect videos 

simulate digital worlds ! ! (Chen et al., 2023c)

Simulate Digital Worlds

Text-to-video generation

Text-guided image-to-video 
generation

Extend generated videos

Video-to-video editing

Connect videos 

simulate digital worlds

! ! -
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D DISCUSSION

Advantages of Mora. Mora introduces a groundbreaking multi-agent framework for video generation,
advancing the field by enabling a variety of tasks such as text-to-video conversion and digital world
simulation. Unlike closed-source counterparts like Sora, Mora’s open framework offers seamless
integration of various models, enhancing flexibility and efficiency for diverse applications. As an
open-source project, Mora significantly contributes to the AI community by democratizing access to
advanced video generation technologies and fostering collaboration and innovation. Future research
is encouraged to improve the framework’s efficiency, reduce computational demands, and explore
new agent configurations to enhance performance.

Limitations of Mora. Mora faces significant limitations, including challenges in collecting high-
quality video datasets due to copyright restrictions, resulting in difficulties in generating lifelike
human movements. Its video quality and length capabilities fall short compared to Sora, with
noticeable degradation beyond 12 seconds. Mora also struggles with interpreting and rendering
motion dynamics from prompts, lacking control over specific directions. Furthermore, the absence of
human labeling information in video datasets leads to results that may not align with human visual
preferences, highlighting the need for datasets that adhere to physical laws.
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Figure 16: Some video examples generated by Mora.
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