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Abstract

The advancement of Electronic Health Records (EHRs) and machine learning
have enabled a data-driven and personalised approach to healthcare. One step
in this direction is to uncover patient sub-types with similar disease trajectories
in a heterogeneous population. This is especially important in the context of
mechanical ventilation in intensive care, where mortality is high and there is
no consensus on treatment. In this work, we present an approach to clustering
mechanical ventilation episodes, using a multi-task combination of supervised,
self-supervised and unsupervised learning techniques. Our dynamic clustering
assignment is guided to reflect the phenotype, trajectory and outcomes of the
patient. Experimentation on a real-world dataset is encouraging, and we hope that
this could translate into actionable insights in guiding future clinical research.

1 Introduction and Related Work

Patients on mechanical ventilation are a highly heterogeneous group, with widely differing outcomes.
Some have relatively healthy lungs e.g. if they are recovering from surgery on another organ;
whereas others have varying degrees of pulmonary failure. Pulmonary failure can be acute e.g.
Acute Respiratory Distress Syndrome (ARDS) and deteriorate rapidly, or chronic, typically evolving
slowly. Unfortunately, patients on ventilators have high mortality [21, 24] and there is no established
consensus on optimal treatment strategies from randomised controlled trials [2]. Therefore, there is
great potential benefit to be gained from phenotype discovery in order to guide future clinical studies.

To this end, we have developed a dynamic clustering approach for mechanically ventilated patients
in the ICU. Previous work shows us that simple clustering techniques have revealed actionable
sub-phenotypes by secondary analysis of RCT data. For example, latent trajectory modelling of
inflammatory biomarkers has revealed sub-types of ARDS [9]. Clustering of transcriptomic data has
revealed patient populations that in which steroid therapy may be beneficial in sepsis [1]. Routinely
collected data has also been used to find simple trajectory clusters for sepsis based on physiological
parameters [3] which have been shown to have differential response to fluids.

We know that temporal neural network architectures can handle the heterogeneous population in
the ICU, both using supervised [27, 11] and unsupervised [20, 39] approaches. Temporal clustering
approaches have been applied successfully to other domains e.g. in Parkinson’s [41], diabetes [28]
and cystic fibrosis [17] and increasingly in intensive care as discussed above.

We have designed our clusters to share similarities in phenotype, trajectory and outcomes. We
generate a cluster for each hour of a patient’s stay, meaning that if an event happens which alters the
predicted trajectory and outcomes, there will be a shift in the cluster assignment. This is interesting,
not only because it can reveal which events are associated with these shifts, but also what might
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Figure 1: Overview of our model. Only one timestep, t, is shown for simplicity. F and S are the
number of time series and static variables respectively. At timestep t, the static variables (yellow)
and preceding time series variables (grey) and their corresponding decay indicator variables (orange,
explained under ‘Time Series’ in B.2) are given to the encoder, which produces an embedding (green)
for timestep t. This is then given to the decoder networks (yellow), forecasting network (purple) and
the predictor network to obtain the four patient outcomes (red), outlined in Section 2. After training
is complete, the test embeddings are used for clustering.

have happened if the ventilation strategy had been different. We hope that our work could someday
translate into actionable insights in guiding future clinical research.

2 Methods

Broadly, our strategy was to train a temporal encoder to embed the patient data at every timestep
(this is analogous to returning all the hidden states for an LSTM model). We used a mixture of
supervised, unsupervised and self-supervised learning to do this (see Section D below). Once the
encoder training was complete, we used an unsupervised method to cluster the embeddings, so that
we get a cluster for every timestep in the patient’s ventilation episode. The code can be found at:
https://github.com/EmmaRocheteau/Mechanical-Ventilation-Clustering.

The data consisted of both timeseries and static features (Section 3). The supervised tasks included
two binary tasks: hospital mortality and the risk of receiving a tracheostomy1, and two duration tasks:
the remaining length of stay (LoS) from timestep t, and their remaining ventilation duration (VD).
This ensured that the patient outcomes are stored within the embedding. In addition, we trained
a decoder to reconstruct timestep t and the static data. This is an unsupervised approach which
encourages the embedding to retain the patient phenotype. Finally, we predicted timestep t+ 1, a
self-supervised approach designed to embed the patient trajectory. See Figure 1 for a schematic.
After training was complete, we performed k-medoids on the embeddings to obtain the clusters.

Encoder In recent years, LSTMs have been by far the most popular model for predicting clinical
outcomes and have achieved state-of-the-art results [11, 29, 25, 36]. They have also been applied
to other patient prediction tasks e.g. forecasting diagnoses and medications [6, 19], and mortality
prediction [5, 11, 30]. More recently, the Transformer model [38] has marginally outperformed the
LSTM when predicting LoS [31]. Rocheteau et al. [27] showed that Temporal Pointwise Convolution
(TPC) outperformed both the LSTM and Transformer models on mortality and LoS. Therefore, we
chose to investigate these three encoders. Further details on both the encoder implementations and
k-medoids clustering are given in Section C.

3 Data

We used the Amsterdam UMC database version 1.0.2 [35], which contains 23,106 ICU admissions
from 20,109 patients admitted between 2003 and 2016. We selected all of the mechanical ventilation
episodes with a minimum duration of 4 hours, capping the maximum duration after 21 days to reduce
computational costs. This corresponded to 14,836 episodes which occurred during 13,502 ICU

1A tracheostomy is a procedure designed for long term mechanical ventilation of a patient.
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Table 1: Encoder performance on the prediction tasks averaged over 5 independent training runs. The
error margins are 95% confidence intervals. For mortality and tracheostomy, higher AUROC and
AUPRC is better; for LoS and VD, lower MAD and MSLE is better. (a) shows the full multi-task
setting as shown in Figure 1, (b) is a variational alternative to the full task setting. Statistically
significant differences are indicated by daggers († = p < 0.05, ‡ = p < 0.001). If the result is
significantly better than the comparison models*, it is highlighted in blue, if it is significantly worse
it is highlighted in pink. *In (a) the statistical testing compares the three model types, in (b) each
model type is compared to its corresponding ‘non-variational’ model in table (a).

(a)

In-Hospital Mortality Tracheostomy Length of Stay Vent. Duration
Model AUROC AUPRC AUROC AUPRC MAD MSLE MAD MSLE

TPC 0.833±0.010† 0.644±0.013‡ 0.804±0.007‡ 0.507±0.020† 7.20±0.13‡ 0.359±0.010‡ 3.24±0.07‡ 0.210±0.008‡
Transformer 0.697±0.012 0.434±0.019 0.760±0.012 0.419±0.033 8.46±0.07 0.495±0.007 3.95±0.20 0.256±0.016
LSTM 0.823±0.002 0.608±0.008 0.774±0.002 0.473±0.015 9.16±0.06 0.663±0.008 5.57±0.04 0.681±0.011

(b)
TPC 0.807±0.006‡ 0.584±0.014‡ 0.775±0.008‡ 0.437±0.012‡ 9.06±0.10‡ 0.555±0.018‡ 4.42±0.03‡ 0.347±0.006‡

Transformer 0.660±0.023† 0.373±0.039† 0.714±0.020‡ 0.353±0.018† 9.42±0.27‡ 0.623±0.020‡ 4.63±0.27‡ 0.359±0.030‡

LSTM 0.803±0.004‡ 0.555±0.006‡ 0.748±0.005‡ 0.411±0.010‡ 10.2±0.1‡ 0.813±0.016‡ 5.95±0.04‡ 0.775±0.007‡

admissions from a cohort of 12,597 unique patients. We selected 31 time series features and 14 static
features. The data were split such that 70%, 15% and 15% were used for training, validation and
testing respectively. These were split by patient, not ventilation episode, to avoid data leakage from
the train set. Further details on the data preprocessing are provided in Section B.

4 Results

(a) – Full Task Setting The TPC model performs significantly better than the LSTM and Trans-
former on the outcome tasks (Table 1a), which is in line with previous findings in MIMIC-IV and
eICU [27]. The superiority of the TPC model is also evident in the variational and ablation experi-
ments. Interestingly, the Transformer performs poorly on the binary tasks but better on the duration
tasks with respect to the LSTM. Additionally, the LSTM performs the best on the reconstruction and
forecasting tasks (Table 14a). Possible reasons for these findings are discussed in Section 5.

(b) – Variational Embedding Spaces We experimented with making the embeddings ‘variational’,
by representing the embedding as a set of means and standard deviations to allow sampling of
embedding coordinates. The rationale was that by forcing the embedding space to be smoother,
we might improve the quality of the clustering as the distances between patients in the embedding
space become more reliable. However, this was found to universally hurt performance (Table 1b
and Table 14b) and it produced clusters which were more homogeneous in terms of outcomes and
features, which was counter to the aim of producing clinically distinct clusters.

Ablation Study We performed an ablation study on the tasks used to train the representation space.
The full set of results and analysis are included in Secyion A.1 the Appendix. However, the trend is
such that the best results for all tasks (except for the duration tasks) are achieved when all tasks are
included (Table 4). The reason for the exception is in the duration only task setting (g), is explored
further in the discussion. Overall, our ablation study indicates that having multiple competing learning
objectives has a stabilising effect on learning the representation.

Cluster Analysis As the best performing encoder, we focused on analysing the clusters produced
by the TPC model. The cluster in which each patient spent the majority of their time in was assigned
its primary cluster. Table 2 and 3 show summary statistics for each cluster. These are described in
much more detail in Section A.2, along with visualisations. Here we will simply say that:

• Cluster 1 contains the sickest patients, with an average mortality of 72.0%. They also
have signs of severe respiratory distress. We could describe this phenotype as a ‘early,
life-threatening pulmonary injury’ patient group.

• Cluster 2 also display substantial mortality and severe pulmonary dysfunction. However they
are also characterised by very long LoS and VD, with consequent high rates of tracheostomy.
This might be described as a ‘pulmonary critical illness’ phenotype.
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Table 2: Average outcomes by cluster ± 95% confidence intervals for the TPC model. Each patient
has been classified into a primary cluster, which is the cluster that they spent the majority of their
time in. LoS and VD are shown in days.

Cluster Patients Mortality (%) Tracheostomy (%) Length of Stay Vent. Duration

1 232 72.0±5.8 1.3±1.5 3.8±0.8 2.4±0.3
2 133 34.6±8.2 38.3±8.4 30.0±3.6 21.4±2.2
3 1,292 1.9±0.7 1.5±0.7 2.8±0.3 0.7±0.0
4 347 4.0±2.1 31.1±4.9 22.0±1.8 7.4±0.9
5 227 26.0±5.7 8.4±3.6 13.0±1.6 7.2±0.9

Table 3: Key features averaged by cluster ± 95% confidence intervals. ‘Urgency’ is a flag given to
the patient at admission. Mandatory Ventilation (MV) settings are provided in Table 13. The peak
inspiratory pressure, P/F Ratio and PEEP are expressed in mmHg. A normal P/F ratio at sea level is
≈400-500mmHg; whereas 200-300mmHg is consistent with mild ARDS [10]. Lung compliance is
expressed in ml/cmH2O (normal for a mechanically ventilated patient is 50-100ml/cmH2O).

Cluster Age 70+ (%) Sex (% male) Urgency (%) MV (%) Peak Insp. Pressure Lung Comp. P/F Ratio PEEP

1 52.2±6.5 59.7±6.3 63.4±6.3 68.3±0.8 25.3±0.2 32.7±0.5 217±2 10.09±0.07
2 54.1±8.6 65.8±8.1 39.1±8.4 43.2±0.4 23.2±0.1 36.8±0.3 220±1 9.97±0.03
3 39.8±2.7 69.7±2.5 14.9±1.9 38.6±0.6 16.1±0.1 58.8±0.7 260±1 6.78±0.03
4 25.9±4.6 68.4±4.9 41.5±5.3 22.1±0.4 17.8±0.1 57.5±0.4 237±1 8.19±0.28
5 40.1±6.4 69.6±5.9 43.2±6.5 41.8±0.5 20.3±0.1 47.1±0.4 243±1 8.83±0.38

• Cluster 3 have the best outcomes, with short LoS and low mortality. This is a ‘short stay’
phenotype of most likely perioperative patients.

• Cluster 4 have relatively low mortality but high rates of tracheostomy. We could therefore
describe them as a ‘general critical illness’ phenotype.

• Cluster 5 shows a moderate to severe group, who do not display the pulmonary injury of
cluster 1. Therefore this is an ‘early, life-threatening non-pulmonary injury’ phenotype.

Reliability We investigated the reproducibility of these phenotypes. We chose to analyse the
clusters in the following settings: i) alternative encoder models, ii) retraining the TPC model with
different random seeds and iii) varying the value of k. The clusters were found to be surprisingly
stable, with key features of the extracted phenotypes remaining similar between models. With
increasing value of k, we noticed that rather than completely rearranging the position of the clusters,
increasing k progressively subdivides existing clusters, hinting that the clusters are hierarchically
organised (more in the discussion). The full analysis is included in Section A.3.

5 Discussion

We evaluated the use of TPC model, trained using supervised, unsupervised and self-supervised
learning techniques, for the purposes of phenotype discovery in mechanically ventilated patients. We
will discuss the most important findings in turn.

Firstly, we reaffirmed that the TPC model performs better than alternative encoders on EHR data for
patient outcome prediction. This time on the Amsterdam UMC database [35], and with added tasks.

Secondly, we found that the Transformer outperformed LSTM on LoS and VD, but performed much
worse on the mortality task, and slightly worse on the tracheostomy task. This may be because the
task weighting was more favourouble to the LSTM and TPC models, whereas the Transformer would
have benefited from greater weighting towards the binary tasks. Another possibility is that the binary
tasks particularly benefit from biases in the LSTM and TPC encoders, because these models naturally
emphasise recent timepoints (and these are especially important for solving the mortality task). As for
the reason that the Transformer performs better on tracheostomy than mortality, it could be because
there is positive correlation between the LoS, VD and tracheostomy tasks. Solving the duration tasks
makes the tracheostomy task easier, whereas the relation to mortality is more complex (Figure 2).

To briefly comment on the reconstruction results in Table 14 in the Appendix; it may seem surprising
that the LSTM model performs best on the reconstruction and forecasting tasks. However, this could
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be explained if the LSTM is creating simpler ‘lower level’ representations that are easier to translate
back to the original data using two-layer decoder networks.

Thirdly, Table 4 reveals a general trend that the more tasks that are added, the better results across all
the tasks, with particular benefits to the tracheostomy task. The exception to this was the duration
only setting. There are two possible explanations for the discrepancy:

1. The weighting of the duration task was not sufficient.
2. The tracheostomy task (but not mortality) reduces the performance on the duration tasks.

The former does not seem likely, because the Transformer is probably over-weighting the duration
tasks, and yet, it follows the same trend as the LSTM and TPC. The latter may appear to be counter-
intuitive, because the duration tasks are correlated with tracheostomy. Usually this is an advantage of
multitask learning, because it enhances the signal:noise ratio when certain types of noise only apply
to one task. However, looking closely at Figure 2, we can see that there is an area of patients near
the bottom of the figure, in cluster 5. These patients have long VD and LoS but have been separated
from the other long stay patients in clusters 2 and 4. The separation can be attributed to these patients
never receiving tracheostomies, therefore the tracheostomy task forces the representation space to
separate these groups when they would be otherwise be aligned. Given the simple nature of the
predictor networks, this may harm the performance on the duration tasks because the predictor cannot
effectively map these patients to appropriately long LoS. This theory would be formally tested by
accompanying the duration tasks with the mortality task only.

Finally, regarding the repeatability of the clustering, we demonstrated that key aspects of the learned
representations (both of different encoders and TPC instances) are consistently recognised. The
separation on other traits, especially when distinguishing the sickest patients from the moderately ill,
was more malleable. This suggests that perhaps there is not a well defined distinction between these,
but rather a scale of deterioration, through which an arbitrary line can be drawn.

6 Limitations and Future Work

Hierarchical Clustering It is evident that certain clusters are more related than others. A tree
based hierarchy of clusters seems more natural than a flat structure. We are particularly interested in
modifying an approach for genetics data [23, 4, 7], and are hoping to apply it to the ICU.

Contrastive Learning We are investigating the use of contrastive learning to regularise the em-
bedding space e.g. in [40]. Currently, there is no explicit loss to enforce relative positioning of the
embeddings. Despite this, we have empirically found the clusters presented in this paper to be very
stable, both temporally and to encoder type. This is likely to be because our predictor and decoder
networks are very simple, meaning that the embedding space does not have the freedom to model
similar patient trajectories (which should be in the same cluster) in disparate parts of the embedding
space. Nevertheless, contrastive learning could provide further regularisation.

Generalisability While we have shown that the clusters are surprisingly stable, repeating the work
on another dataset (e.g. MIMIC-IV or eICU) would strengthen this assessment.

7 Summary

While we acknowledge important limitations in our work, we have shown that:

1. The TPC model outperforms alternative encoders on patient outcome prediction tasks.
2. We can generate clinically meaningful and interpretable clusters using this technique.
3. The phenotypes are similar across choices of encoder and number of clusters.
4. The cluster assignment is remarkably stable over time, and membership is determined early

on. This is particularly encouraging as a substrate for future intervention studies, because
they rely on phenotyping before any intervention.

5. Stable cluster transitions do occur but they are infrequent. Studying these transitions with a
view towards understanding the causes is an important avenue for future work.
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A Further Analyses

A.1 Ablation Study

We performed an ablation study on the tasks used to train the representation space. The results are
shown in Table 4. Firstly, we see that the best results for all tasks (except for the duration tasks) are
achieved in the full multi-task setting. Not a single metric improves in the other ablation settings,
and yet at least one metric showed a deterioration in performance (the exception in task setting (g) is
discussed below). Overall this indicates that having multiple competing learning objectives has a
stabilising effect on learning the representation.

(c) – No Forecasting Experiment (c) included all the tasks except forecasting one timestep ahead.
When we compare experiment (c) to (a), we see that the results are mostly similar, but there is
a consistent decrease in performance, which is statistically significant at the p<0.05 level on the
tracheostomy task (AUPRC in the TPC model and AUROC in the Transformer model). On the
reconstruction task, again the performance is similar but statistically worse in the last timestep
reconstruction in the LSTM model. This means that the forecasting task is contributing slightly to the
performance in (a), but the benefit is small.

(d) – No Reconstruction Experiment (d) removes both the timestep t reconstruction and the static
data reconstruction tasks, but keeps the forecasting task. The effect size is larger than in (c), but again
is only statistically significant on the tracheostomy task. The forecasting task performs significantly
worse in the Transformer and LSTM models without the reconstruction.

(e) – Prediction Tasks Only Experiment (e) includes the binary and duration prediction tasks, but
no reconstruction or forecasting. The performance again deteriorates, particularly on the tracheostomy
task, we also start to see a more noticeable deterioration in the duration tasks, although this is not yet
statistically significant.

Table 4: Prediction task results for the task ablation study. The full task setting from Table 1a has
been repeated for ease of comparison. Various task ablations are compared to (a): (c) includes all
tasks except for the forecasting task, (d) includes all tasks except for the reconstruction tasks, (e)
includes only the prediction tasks, (f) is only the binary tasks, and (g) is only the duration tasks. The
colour scheme, metrics and statistical test comparisons are explained in the legend to Table 1.

(a)

In-Hospital Mortality Tracheostomy Length of Stay Vent. Duration
Model AUROC AUPRC AUROC AUPRC MAD MSLE MAD MSLE

TPC 0.833±0.010 0.644±0.013 0.804±0.007 0.507±0.020 7.20±0.13 0.359±0.010 3.24±0.07 0.210±0.008
Transformer 0.697±0.012 0.434±0.019 0.760±0.012 0.419±0.033 8.46±0.07 0.495±0.007 3.95±0.20 0.256±0.016
LSTM 0.823±0.002 0.608±0.008 0.774±0.002 0.473±0.015 9.16±0.06 0.663±0.008 5.57±0.04 0.681±0.011

(c)
TPC 0.831±0.006 0.645±0.009 0.796±0.006 0.499±0.016† 7.24±0.12 0.360±0.005 3.26±0.07 0.210±0.004
Transformer 0.675±0.052 0.399±0.079 0.743±0.011† 0.406±0.022 8.44±0.29 0.492±0.024 3.95±0.25 0.251±0.026
LSTM 0.820±0.003 0.608±0.003 0.773±0.005 0.473±0.014 9.16±0.04 0.663±0.005 5.60±0.05 0.685±0.010

(d)
TPC 0.832±0.005 0.645±0.016 0.796±0.007 0.483±0.020† 7.28±0.09 0.362±0.007 3.29±0.06 0.213±0.002
Transformer 0.698±0.017 0.431±0.041 0.743±0.008† 0.391±0.008 8.44±0.23 0.492±0.019 3.91±0.39 0.253±0.033
LSTM 0.820±0.003 0.608±0.007 0.773±0.002 0.464±0.011 9.19±0.04 0.669±0.006 5.59±0.03 0.688±0.010

(e)
TPC 0.828±0.004 0.643±0.010 0.798±0.005 0.480±0.020† 7.38±0.20 0.367±0.020 3.24±0.07 0.212±0.012
Transformer 0.676±0.019† 0.410±0.034 0.736±0.021† 0.383±0.026 8.67±0.27 0.509±0.024 4.12±0.22 0.268±0.017
LSTM 0.819±0.005 0.604±0.013 0.773±0.002 0.475±0.008 9.20±0.04 0.669±0.008 5.61±0.04 0.691±0.012

(f)
TPC 0.823±0.006† 0.626±0.014† 0.793±0.002† 0.477±0.017† - - - -
Transformer 0.669±0.036 0.373±0.048† 0.737±0.021† 0.400±0.038 - - - -
LSTM 0.817±0.003† 0.597±0.007† 0.767±0.003‡ 0.458±0.016 - - - -

(g)
TPC - - - - 6.99±0.10† 0.341±0.007† 3.08±0.09† 0.180±0.004‡

Transformer - - - - 8.18±0.12‡ 0.472±0.012† 3.68±0.18† 0.224±0.009†

LSTM - - - - 9.05±0.05† 0.644±0.006‡ 5.55±0.01 0.668±0.003†

(f) – Binary Tasks Only Experiment (f) follows the trend of worsening performance as tasks
are removed. This means that the mortality and tracheostomy tasks consistently benefit from
supplementary tasks which help to distinguish signal from noise.
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(g) – Duration Tasks Only Experiment (g) shows unexpected results; all of the models return
better results when only predicting LoS and VD. This is not what has been observed previously in
multitask settings ([27, 11]). This is discussed further in Section 5.

However, overall the trend is such that the more tasks that are included, the better the average results
across tasks.

A.2 Cluster Analysis

As the best performing encoder, we have focused on analysing the clusters produced by the TPC model.
In order to analyse the average differences between the patients in each cluster, it was necessary to
flatten the clustering into one ‘primary’ cluster per patient. This was to prevent confusion, since
patients can enter multiple clusters during their ICU stay (sometimes only for one or two timepoints),
and this is disproportionately true of the long stay patients. The cluster in which each patient spent the
majority of their time in was assigned its primary cluster. If there were multiple modes, then the mode
experienced later in the sequence was chosen. The next two sections A.2.1 and A.2.2 characterise
the behaviour of the primary clusters. Section A.2.3 will then analyse the dynamic aspects of the
clustering from multiple perspectives.

A.2.1 Differences in Phenotype and Outcomes

Table 2 shows the mean outcomes for each cluster. We also analysed some key features in the original
data, to visualise differences in patient phenotype that the model identified. The average values of
key features in patients divided by primary cluster are shown in Table 3. Broadly we can say that:

• Cluster 1 contains the sickest patients, with an average mortality of 72.0%. They are short
stay patients and unsurprisingly they have the lowest rate of tracheostomy as most do not
survive or stay long enough to require complex respiratory weaning. Table 3 shows they are
primarily ventilated with ‘mandatory’ ventilation settings, meaning the machine is deciding
the respiratory rate, and either the tidal volume or pressure differential across the lung.
Furthermore, they have the least compliant lungs with higher peak inspiratory pressure
and higher PEEP. This means that the physical properties of the lung have been damaged
and it is harder to inflate the lung. The P/F ratio is also very low, which indicates that
the lung function is also impaired i.e. the patients cannot absorb as much oxygen. This is
in keeping with severe respiratory distress. We could describe this phenotype as a ‘early,
life-threatening pulmonary injury’ patient group.

• Cluster 2 also display substantial mortality and, again, from Table 3 it becomes clear
that these patients also represent a group with severe pulmonary dysfunction like cluster
1. However this phenotype is characterised by very long LoS and VD, with consequent
high rates of tracheostomy: this phenotype represents patients who are difficult to wean
from mechanical ventilation with resultant long ICU stay. This might be described as a

‘pulmonary critical illness’ phenotype.

• Cluster 3 have the best outcomes, with short LoS and low mortality. They are extubated
without tracheostomy, because they have less pulmonary injury. This appears to be a ‘short
stay’ phenotype who require a brief period of organ support, perhaps after significant surgery.

• Cluster 4 have relatively low mortality but high rates of tracheostomy. Table 3 shows modest
levels of respiratory failure and good lung compliance. Thus, whilst these patients are
difficult to wean from mechanical ventilation (like cluster 2), this is due to factors that
are not primarily related to pulmonary pathology: once they receive a tracheostomy they
are rapidly liberated from mechanical ventilation. We could therefore describe them as a

‘general critical illness’ phenotype.

• Cluster 5 shows a moderate to severe group, who are not as acutely unwell as cluster 1, but
are still high-risk. From Table 3 we see that pulmonary injury is not a prominent feature
so we could characterise these patients as ‘early, life-threatening non-pulmonary injury’
patients.

Overall, the findings from Tables 2 and 3 show that there are statistically significant and clinically
meaningful differences between the clusters. These can be visualised in Figure 2, which provides
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Figure 2: t-SNE plots for the TPC model. For these figures, 1500 random samples were selected
from the test set and projected. In each plot, a different attribute has been highlighted.

maps of the representation space, showing how the clusters relate to one another as well as the
distribution of outcomes and features.

A.2.2 Medoid Analysis

The medoids produced by the clustering algorithm are shown in Figure 3 and give a description of
a representative patient in each cluster. Note that each medoid corresponds to both a patient and a
specific time-point in their ventilation episode2.

• The medoid patient for cluster 1 (female, age 60-69) died 4 hours after the episode shown
without a tracheostomy. Her deterioration is predictable from multiple parameters in the
data but infection (high WBC) and pulmonary dysfunction are particularly noteworthy.

• The typical medoid patient representing cluster 2 (male, 80+ years old) received a tra-
cheostomy 19 days after the episode shown, and was discharged at 23 days. This patient

2Not all of the ventilation episode for each patient is shown in Figure 3 – only from the start until the medoid
time.
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required late as well as early mandatory ventilation suggesting that he ran into later pul-
monary complications – mostly likely infectious since his CRP remains high throughout the
stay.

• The medoid patient in cluster 3 (female, age 60-69) was discharged from hospital the
day after her brief window of ventilation. She does not display substantial physiological
derangement.

• The patient in cluster 4 (female, age 60-69) received a tracheostomy 3 days after the sequence
shown. Her lung compliance and P/F ratio are both high compared to clusters 1 and 2,
indicating better lung function. Therefore, we can conclude that she needed a tracheostomy
for reasons other than lung injury. This is also supported her ventilator settings: low peak
inspiratory pressure and PEEP and no mandatory ventilation modes. Her end tidal CO2
levels suggest a degree of hypoventilation which improves as she is slowly weaned from
mechanical ventilation.

• Lastly, the patient in cluster 5 (female, 80+ years old) stayed for 9 further days in hospital
before being discharged. The short duration of ventilation and relatively normal pulmonary
physiology is again consistent with a non-pulmonary phenotype.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Time since ICU admission (hours)

Figure 3: Raw data from each of the medoids. The data have been standardised around the mean
value for each feature. Red means the value is high and blue means low. We can see that each medoid
largely follows the average pattern for the cluster shown in Table 3. WBC is white blood count, CRP
is C Reactive Protein, ABP is arterial blood pressure.

A.2.3 Temporal Analysis

Broadly, there are two perspectives when evaluating the dynamic aspects of this clustering.

One is the ‘Markovian’ perspective, where we can examine the transition function between clusters.
This is shown in Figure 4. Unsurprisingly, this reveals that the patient is always most likely to remain
in the same cluster. However the most common inter-cluster transitions are from cluster 5 to cluster 4,
and cluster 1 to cluster 5. Note that these clusters are next to one another and share lengthy borders
in Figure 2. Most of the patients who transition to ‘Died’ come from cluster 1, and most of the
‘Discharged’ patients come from cluster 3.

The other perspective is to look at the number of patients in each cluster at different time points
after admission, and observe the transitions between them (Figure 5). Transitions from cluster 3 to
‘extubated’ are very common within the first day, but then they almost disappear by 3 days. This
cannot be seen with the Markovian perspective in Figure 4. Cluster 2 contains patients with the
longest ventilation episodes, which can be seen by its low rate of attrition over time.

Number of clusters per patient Figure 6 shows that most patients remain in only one cluster
during their ventilation episode. However, when the distribution is broken down by primary cluster,
we can see that this is heavily driven by the behaviour of cluster 3 patients, which tend to remain in
cluster 3 for their entire ventilation duration (note that they tend to have short VDs so this is not so
surprising). In contrast, clusters 2 and 5 most commonly appear alongside other clusters during a
single ventilation episode. This means that for most episodes attributed to cluster 2 or 5, there are
transitions either into or out of these clusters. These are explored next.
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Figure 4: A transition matrix for the TPC model, showing the probability of entering each cluster at
time t+ 1, plus the categories ‘discharged’ or ‘died’, given their cluster at time t.

Figure 5: A sankey plot showing the evolution of the clustering across time. We begin at 4 hours to
allow the clustering to stabilise at the start of the time series. At 21 days there are still some patients
without a final outcome (mostly from cluster 2) but this is because they are ventilated for longer than
21 days and have been right censored.

Cluster transitions The clusters produced by the TPC model are remarkably stable over time,
given that there is no explicit loss incentive to constrain the representation to behave in this way.
Figure 7 shows the distribution of timepoints that the patients first enter their primary cluster. Clusters
2 and 3 are particularly likely to accurately assigned during the first hour of ventilation (87% and
89% respectively), while cluster 4 is the least likely to be identified early (64%).

Next, we investigated what we will refer to as ‘stable’ transitions between clusters. In order to
be characterised as stable, the origin cluster needed to remain stable in the 5 hours preceding the
transition, and the patient was not permitted to re-enter the origin cluster for 5 hours following the
transition. This was primarily to screen out patients who were at the boundary between two clusters,
continually crossing back and forth but not representing a true transition from one to the other. Before
screening, there were 22,036 cluster transitions, corresponding to 870 separate ventilation episodes
(39% of the total in the test set). Of these transitions, only 291 represented stable movement between
clusters. We further removed any transitions between two clusters that had fewer than 15 transition
examples, as this would be insufficient to analyse. The remaining 230 transitions are shown in
Table 5.

Firstly, it is noteworthy that the outcomes reflect the destination cluster, not the origin cluster. The
exception to this is the ‘urgency’ column, which is not an outcome, but a label assigned at admission
and hence is more likely to reflect the origin cluster (although it is worth mentioning that the origin
cluster is not necessarily the cluster at admission).
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Figure 6: Distribution of the number of clusters that the patient enters during their ventilation episode,
separated by primary cluster (shown by the colour key). For example, cluster 3 (purple) mainly
appears on its own i.e. the patient starts the episode in cluster 3 and remains in cluster 3 for the whole
duration, whereas cluster 5 (red) rarely appears on its own.

Figure 7: Percentage of patients who enter their primary cluster, by time since the start of the
ventilation episode.

Cluster 5 stands out as being disproportionately involved in inter-cluster transitions. Of these, the
most common is 5→3, which occurs when the model overestimates the risk to the patient early
on in the ventilation episode. Not shown in Figure 5, is that the average predicted risk of death
drops from 56.4% 5 hours prior to the transition, to 41.7% at the point of transition. There is also
a corresponding reduction in tracheostomy risk (-13%), LoS (-17.1% after adjustment3) and VD
(-26.4% after adjustment) as predicted by the model, and dramatic improvements in physiological
parameters such as lung compliance (+35%) and P/F ratio (+15%).

Another interesting transition is 3→1, which happens when the model initially believes the patient to
be relatively healthy, but then quickly re-adjusts to predict poor outcomes. Looking in more detail at
the raw data, we discovered that these patients are younger (only 23.5% are 70+), which could explain
why the model was initially optimistic and why the deterioration is so rapid4. We also observed a
deterioration in the lung compliance (-26.3%) and P/F ratios (-12.8%), and a change in the ventilator

3There is a 5 hour gap between these predictions, therefore this time difference needs to be removed from the
first prediction.

4This is because younger patients can mask a problem by compensating deceptively well, until they reach a
point where the homeostatic mechanisms can no longer cope.
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Table 5: Stable cluster transitions (origin cluster → destination cluster) with a count of ≥15, sorted by
destination cluster. The median rather than the mean time is displayed to show a more representative
time of transition (as there is positive skew).

Transition Count Median Time Mortality (%) Tracheostomy (%) Urgency (%) VD LoS

3→1 17 3 76.5 0.0 47.1 0.5 0.7
5→1 29 16 51.7 10.3 55.2 4.3 5.3

1→3 28 11 10.7 0.0 67.9 1.0 2.6
5→3 46 9 15.2 4.3 41.3 1.2 6.5

2→4 28 17 10.7 21.4 42.9 6.2 12.8
5→4 27 10 11.1 7.4 48.1 3.4 9.1

1→5 25 3 44.0 4.0 68.0 3.9 6.5
3→5 15 4 13.3 13.3 53.3 1.9 4.6
4→5 15 56 26.7 26.7 46.7 6.6 11.5

settings – namely higher PEEP and peak inspiratory pressure and lower tidal volumes – reflecting a
drop in lung compliance of the patients. Most of these patients died within 12 hours of the transition
to cluster 1.

A.3 Cluster Reliability

Choice of encoder Figure 8 compares the cluster assignments using different encoder models. It is
encouraging that there is a strong cohesion between some of the clusters, meaning that the models
are picking out genuine and consistent patterns in the data.

If we examine the TPC/LSTM comparison (far left in Figure 8) we can see that clusters 2, 3 and 4
in the TPC correspond to 5, 3 and 1 respectively in the LSTM. In addition, clusters 1 and 5 (TPC)
imperfectly map to 2 and 4 (LSTM) – the main difference being that some additional patients in
cluster 5 in the TPC map to cluster 2 in the LSTM. This means that the k-medoids algorithm has
placed a different boundary between these groups in the clustering process. Looking back to Figure 2,
clusters 1 and 5 are revealed to be neighbours – in fact, cluster 5 appears to envelope cluster 1,
suggesting that 1 is a sub-cluster of 5. This is also consistent with the clinical picture shown in
Table 2, where the main difference is that cluster 1 appear to have acute pulmonary dysfunction,
most likely in addition to other organ failures. Therefore, the explanation for this discrepancy is
that the LSTM has a more generous threshold than the TPC for inclusion in its highest risk ‘early,
life-threatening pulmonary injury’ category (cluster 2).

Figure 8: A comparison of the cluster assignments produced by different encoders. We can see that
there is strong cohesion between some of the clusters. For example, cluster 3 appears to be the same
in all three models.

In the TPC/Transformer comparison, the clusters largely correlate, except that cluster 5 patients in
the TPC have been placed into cluster 4 in the Transformer. Further investigation revealed these to
be patients with increased risk of receiving a tracheostomy (i.e. the patients which lay closest to the
decision boundary between the clusters).

The LSTM/Transformer comparison mirrors some of the correlations in TPC/LSTM but the mapping
is less precise. This could be because the models do not perform as well, making the representations
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less reliable. It could also be because the models have different affinities for the various tasks, creating
divergent biases in the representation space.

It is worth noting that in all three models, cluster 3 is the most distinct. This is unsurprising because
it corresponds to patients whose physiology is closest to ‘normal’. Therefore this group is the most
homogeneous and can always be identified easily.

Figure 9: A comparison of the cluster assignments produced by TPC models which have been trained
with different random seeds.

Retraining TPC We retrained the TPC model 5 times with different initialisation generated by
different random seeds and compared the resulting clusters to the original (Figure 9). Overall, there
is strong cohesion between the models, but sometimes there are shifts in the boundaries between
neighbouring clusters in Figure 2. Especially between cluster 5 (moderate-severe) and cluster 1
(severe), where some models (TPC 2, TPC 3, TPC 4) allow patients in cluster 5 to enter their ‘cluster
1’ equivalent. Nevertheless, very distinct phenotypes are almost never mixed e.g. clusters 2 and 3, 1
and 4, or 1 and 3 (as defined by the TPC 1 model). As in the encoder comparisons, cluster 3 is always
well characterised.

Number of clusters The value of k was determined using the elbow method. In Figure 10, we
show how the clusters would appear with increasing value of k. What is most striking is that each
time a cluster is added, the new cluster either inserts itself within an existing cluster, or it appears at
the intersection between existing clusters. For example, as we move from 2 to 3 clusters, the new
cluster 3 is almost completely contained within the old cluster 1. This pattern of sub-dividing an
existing cluster generally continues until we reach 6 and 7 clusters, when the new cluster inserts itself
at the boundary between two or more old clusters. In other words, increasing the value of k does
not completely shift the position of all of the clusters, but rather it carefully subdivides them. The
importance of this behaviour with increasing value of k is discussed in the next section.

Figure 10: Cluster labels with increasing number of clusters (from k=2 to k=7).
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B Data Preprocessing

Of the 14,836 episodes extracted from the Amsterdam data, 13,783 ended in extubation or death of
the patient, 648 ended with a tracheotomy procedure occurring within 21 days, 399 patients were still
on ventilation at 21 days, and 6 patients were converted to a non-invasive ventilation setting. Figure 6
shows a summary of the cohort.

Table 6: Cohort summary for the Amsterdam UMC database. ‘Remaining LoS’ refers to the remaining
duration in the hospital after the start of the ventilation episode.

Number of ventilation episodes 14,836
Train 10,395
Validation 2,230
Test 2,208

Sex (% male) 66.6%
Total LoS in days (mean) 8.26
Total LoS in days (median) 2.13
Remaining LoS in days (mean) 7.26
Remaining LoS in days (median) 2.01
VD in days (mean) 3.95
VD in days (median) 0.83
In-hospital mortality 14.6%
Tracheostomy patients 7.4%
‘Urgent’ patients 28.1%

Number of input features 45
Time series 31
Static 14

B.1 Static Features

We extracted 14 static features from the admissions table (Table 7). Discrete and continuous variables
were scaled to the interval [-1, 1], using the 5th and 95th percentiles as the boundaries, and absolute
cut offs were placed at [-4, 4]. Binary variables were coded as 1 and 0. Categorical variables were
converted to one-hot encodings, with the exception of ‘agegroup’, ‘heightgroup’ and ‘weightgroup’.
These appear as ordered categories e.g. [18-39, 40-49, 50-59, 60-69, 70-79, 80+] for agegroup. We
converted these to an ordered set centred on 0, [-1, -0.6, -0.2, 0.2, 0.6, 1], to preserve the quantitative
significance of each category.

Table 7: Static features used in the model. ‘Null Height’ and ‘Null Weight’ were added as indicator
variables to indicate when the height or weight were missing and have been imputed with the mean
value. We added the variables ‘Admission Count’ and ‘Ventilation Episode Count’ based on previous
admissions and ventilation episodes.

Feature Type Source Table

Sex Binary admissions
Age Group Discrete admissions
Height Group Discrete admissions
Weight Group Discrete admissions
Admission Count Discrete
Ventilation Episode Count Discrete
Urgency Binary admissions
Previous Ward Categorical admissions
Specific Location in ICU Categorical admissions
Physician Speciality Categorical admissions
Weight Source Categorical admissions
Height Source Categorical admissions
Null Height Binary
Null Weight Binary
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B.2 Time Series

For each ventilation episode, we selected 31 time series variables, mostly from the numericitems table
(these are shown in Table 12). We used a semi-automatic process for feature selection. To be included,
the variable had to be present in at least 25% of patient stays, and these were further narrowed
down with advice from Dr Ari Ercole. We extracted ‘diagnosissubgroups’ using a query from the
AmsterdamUMCdb github repository [34] and ventilator settings from listitems. The ventilator
settings classification is given in Table 13. We engineered the features ‘lung compliance’ and ‘P/F
ratio’ because they are clinically important, and we have previously noted that neural networks are
unreliable when performing divisions. We calculated lung compliance as:

Lung Compliance =
0.73556× Expiratory Tidal Volume
Peak Inspiratory Pressure − PEEP

(1)

where 0.73556 is a conversion factor to convert lung compliance to its usual unit of ml/cmH2O. We
calculated the P/F ratio as:

P/F Ratio =
PaO2

FiO2
(2)

where FiO2 is expressed as a fraction rather than a percentage.

The time series variables were standardised in the same manner as the static features. To help the
model cope with this missing data, we re-sampled according to one-hour intervals and forward-filled
the data over the gaps. Note that this is more realistic than interpolation as the clinician would only
have the most recent value. After forward-filling was complete, any data recorded before the ICU
admission was removed.

Decay Indicators With the forward-filling method alone, the model would not know whether a
particular data point was genuine or whether the data had been imputed. This is important because
the sampling itself may be informative, for example a deteriorating patient may have more frequent
investigations. To mitigate for this, we added ‘decay indicators’ to specify where the data had been
imputed, and if it had, how long it had been since the genuine measurement was taken. The decay
was calculated as 0.8j , where j is the time since the last recording. This is similar in spirit to the
masking used by Rocheteau et al. [27], Che et al. [5].

C Additional Implementation Details

D Prediction Tasks

D.1 Remaining Length of Stay and Ventilation Duration

We assigned a remaining length of stay (LoS) and remaining ventilation duration (VD) target to each
hour of the ventilation episode, ending when the patient dies or is extubated. The remaining LoS
is calculated by subtracting the time elapsed in the ICU from the total LoS. The remaining VD is
calculated by subtracting the time elapsed in the ventilation episode from the total VD. We only
trained on data from the first 21 days of the ventilation episode to protect against batches becoming
overly long and slowing down training.

The remaining LoS and VD each have a significant positive skew which makes the duration tasks
more challenging. We partly circumvent this by replacing the commonly used mean squared error
(MSE) loss with mean squared log error (MSLE), as in Rocheteau et al. [27].

D.2 Mortality and Tracheostomy

Unlike the duration tasks, these tasks are static, i.e. the labels do not change during the ventilation
episode. Both tasks have significant class imbalance (only 14.6% and 7.4% of patients died or
received a tracheostomy respectively). In order to encourage the model to prioritise learning these
important outcomes, we applied class weighting to the task (where the weight is proportional to the
inverse of the frequency of each outcome). We used binary crossentropy as the loss function for both
tasks.
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D.3 Reconstruction and Forecasting

As shown in Figure 1, we use the embedding to reconstruct the timestep t, and forecast one timestep
(t+1) ahead. For the reconstruction of t and forecast of t+1, we apply the mean squared error since
the data can (very approximately) be assumed to be Gaussian centred at 0 following normalisation.
We also reconstruct the following static features: sex, urgency of admission, agegroup, weightgroup,
and heightgroup. The first two are binary, and so we apply the binary crossentropy loss function. The
other three are ordered categorical (as explained in Section B.1), therefore we use the mean squared
error loss function. Since these tasks are auxiliary (we are not interested in the performance as an
outcome of the model), we reported the their loss function values (see Section D.3) as ‘metrics’ since
they do not need to be interpretable.

The relative weightings of all of these tasks are given in Section E.

D.4 Model Architecture

We tested three different encoder models to generate the embeddings. They were all trained as follows.
Firstly, the time series are given to the encoder network which processes and then combines them
with the static features. These are then passed through a small two-layer pointwise convolution to
generate the embeddings (shown in green on Figure 1). These are given to a predictor network, a
reconstruction network and a forecasting network.

The predictor network is one layer, with four outputs, corresponding to the four outcome tasks –
tracheostomy, mortality, LoS and VD. For the binary predictions, we apply a sigmoid activation
function to generate a prediction between 0 and 1 and for the duration predictions we apply an
exponential function. This is intended to help to circumvent a common issue seen in previous models
(e.g. Harutyunyan et al. [11], as they struggle to produce predictions over the full range of durations
when the data is very skewed) because it effectively allows the upstream network to model log(LoS)
instead of LoS. The log(LoS) distribution is much closer to a Gaussian distribution than the remaining
LoS. No activation function is placed on the outputs of the forecasting or time series reconstruction
networks, because the variables are continuous. Batch normalisation [14] and dropout [32] is used to
regularise the model. The hyperparameter search methodology is described in Section E.

The LSTM [13] is very similar to the one used in a recent eICU benchmark paper including LoS
prediction [29]. The Transformer [38] is very similar to its original implementation except that we
added temporal masking to impose causality5 (see Section E for their hyperparameters).

D.5 TPC Model Architecture

We use a Temporal Pointwise Convolution (TPC) [26] network as one of our encoders. This is a model
that takes advantage of both temporal convolution (to analyse trends) and pointwise convolution (to
look for any important variable interactions). It is inspired by the way that clinicians would approach
an assessment of a patient e.g. they might check how the respiratory rate is changing over time, and
they may also look at combination features e.g. the PaO2/FiO2 ratio. The components of the network
are briefly explained below.

Temporal Convolution Temporal Convolution Networks (TCNs) [37, 15] are models that convolve
over the time dimension. The TPC model uses stacked TCNs to extract temporal trends in the
data. Unlike most implementations, it does not share weights across features i.e. weight sharing is
only across time. This is because the features in a typical EHR differ sufficiently in their temporal
characteristics and warrant specialised processing. In TCNs, the receptive field sizes6 are highly
adaptable. They can be increased by using greater dilation, larger kernel sizes or by stacking more
layers. By contrast, recurrent neural networks such as LSTM can only process one time step at a
time, and Transformers have a weaker sense of temporal structure e.g. periodicity, which is central to
understanding time series in the EHR.

5The processing of each timepoint can only depend on current or earlier positions in the sequence.
6‘Receptive field’ refers to the width of the filter. For TCNs this corresponds to a timespan.
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Figure 11: One layer of the TPC model. F is the number of time series features. T is the time series
length. Y is the number of temporal channels per feature in the previous TPC layer (except for the first
layer where Y is 1; decay indicators (explained under ‘Time Series’ in B.2) make up this channel).
Zt−1 is the cumulative number of pointwise outputs from all previous TPC layers. Y∗ and Z∗ are
the number of temporal channels per feature and pointwise outputs respectively in the current TPC
layer. Zt = Zt−1+ Z∗. The differently coloured temporal filters indicate independent parameters.
d is the temporal dilation, k is the kernel size. Decay indicator features (B) are shown in orange, f
static features are shown in yellow. The skip connections consist of F original features (grey) and
Zt+1 pointwise outputs (light blue). We ignore the batch dimension for clarity.

Pointwise Convolution Pointwise (or 1x1) convolution [18] is typically used to reduce the dimen-
sions in an input [33]. However in the TPC model it is used to compute interaction features from the
existing feature set at each timepoint.

Skip Connections Skip connections [12] allow each layer to see the original data and the pointwise
outputs from previous layers. This helps the network to cope with infrequently sampled data.

Temporal Pointwise Convolution The full model combines temporal and pointwise convolution in
parallel. Figure 11 shows just one layer, however our implementation has 6 layers stacked sequentially
(Table 8). With each successive TPC layer, the temporal dilation is increased by 1.
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Figure 12: Overview of the encoding framework. F, T, Y∗, Z∗, Zt and f are defined in the caption to
Figure 11. The original time series (grey) along with the decay indicators (orange) (explained under
‘Time Series’ in Section B.2) are processed by n TPC layers. If a baseline model were used instead of
TPC, the time series output dimensions would be M x T, where M is the LSTM hidden size or dmodel

in the Transformer (this is in place of the light blue and grey output in the TPC model). The diagnoses,
d, are embedded by a diagnosis encoder – a single fully connected layer of size D. The time series
(blue and grey), diagnosis embedding (purple) and static features (yellow) are concatenated along the
feature axis, and a two-layer pointwise convolution is applied to obtain the embeddings (green).

D.6 K-Medoids Clustering

We used k-medoids clustering to cluster the learned embeddings. K-medoids is similar to k-means,
except that it operates with medoids rather than centroids. This means that the medoids will always
be a true observation in the data, while that is not usually the case for centroids. The main advantage
is that k-medoids are less sensitive to outliers than k-means, which is more suitable in this context
where the data is noisy and heavily skewed7.

Both k-means and k-medoids operate on pairwise similarities. We decided to use Euclidean distance
rather than cosine similarity. This is because intuitively, it is not only the direction that the patient is
moving in that matters, but also the distance along that axis. For example, if a particular ‘direction’
represents acute decompensated heart failure, we also care how severe the decompensation is.

As detailed in Section D.4, we applied batch normalisation [14] to the embeddings, to ensure that the
embedding distribution remained within a reasonable range. The value of k (5 for all models) was
chosen using the elbow method (see Section E.1 in the Appendix).

E Hyperparameter Search Methodology

All the encoders have hyperparameters that can broadly be split into three categories: time series
specific, non-time series specific and global parameters (shown in more detail in Tables 8, 9 and 10).
The hyperparameter search ranges have been included in Table 11. We ran 10 hyperparameter trials

7Preliminary experiments revealed that k-means were more likely to produce small clusters which lay far
away from the rest of the data, because it is more affected by outliers. This made the clustering process less
reliable and reproducible.
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to optimise the remaining parameters for the TPC, LSTM, and Transformer models. The number of
epochs was determined by selecting the best validation performance from a model trained over 300
epochs (early stopping was then used for each individual model). All deep learning methods were
implemented in PyTorch [22] using PyTorch Lightning [8] and were optimised using Adam [16].

We also optimised for the weighting between the tasks. We simply multiplied the loss for each
component by a hyperparameter. The best overall learning curves were found when the task weighting
coefficients were: 0.5 for the duration tasks, 1 for the binary tasks, 0.1 for time series reconstruction
and forecasting, and 0.002 for binary feature reconstruction. The reason for the small weighting
for binary feature reconstruction was that the task appeared very easy for the models, especially
predicting the sex of the patient, and so the representation became dominated with this at the expense
of the other tasks.

Table 8: The TPC model has 11 hyperparameters (Main Dropout and Batch Normalisation have been
repeated in the table because they apply to multiple parts of the model). We allowed the model to
optimise a custom dropout rate for the temporal convolutions because they have fewer parameters
and might need less regularisation than the rest of the model. The best hyperparameter values are
shown in brackets. Hyperparameters marked with * were fixed across all of the models.

TPC Specific
Temporal Specific Pointwise Specific

Temp. Channels (6) Point. Channels (14)
Temp. Dropout (0.05) Main Dropout* (0.05)
Kernel Size (3)

Batch Normalisation* (True)
No. TPC Layers (6)

Non-TPC Specific Global Parameters

Batch Normalisation* (True) Batch Size (128)
Main Dropout* (0.05) Learning Rate (0.0001)
Final FC Layer Size* (16) Embedding Size (128)

Table 9: The LSTM model has 8 hyperparameters. We allowed the model to optimise a custom
dropout rate for the LSTM layers. Note that batch normalisation is not applicable to the LSTM layers.
The best hyperparameter values are shown in brackets. Hyperparameters marked with * were fixed
across all of the models.

LSTM Specific Non-LSTM Specific Global Parameters

Hidden State (128) Batch Normalisation* (True) Batch Size (128)
LSTM Dropout (0.05) Main Dropout* (0.05) Learning Rate (0.0001)
No. LSTM Layers (2) Embedding Size (128)

Table 10: The Transformer model has 9 hyperparameters. Note that batch normalisation is not
applicable to the Transformer layers (the default implementation uses layer normalisation). The best
hyperparameter values are shown in brackets. Hyperparameters marked with * were fixed across all
of the models.

Transformer Specific Non-Transformer Specific Global Parameters

No. Attention Heads (2) Batch Normalisation* (True) Batch Size (128)
Feedforward Size (256) Main Dropout* (0.05) Learning Rate (0.0001)
dmodel (16)
Transformer Dropout (0.05)
No. Transformer Layers (6)

E.1 Number of Clusters

The value of k was determined using an average value from the elbow method across various encoders.
Specifically we looked for the point at which the Within Cluster Sum of Squares (WCSS) started to
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Table 11: Hyperparameter Search Ranges. We took a random sample from each range and converted
to an integer if necessary. For the kernel sizes (not shown in the table) the range was dependent on the
number of TPC layers selected (because large kernel sizes combined with a large number of layers
can have an inappropriately wide range as the dilation factor increases per layer). In general the range
of kernel sizes was around 2-5 (but it could be up to 10 for small numbers of TPC Layers).

Hyperparameter Lower Upper Scale

Batch Size 4 512 log2
Dropout Rate (all) 0 0.5 Linear
Learning Rate 0.0001 0.01 log10
Batch Normalisation True False
Final FC Layer Size 16 64 log2
Point. Channels 4 16 log2
Temp. Channels 4 16 log2
LSTM Hidden State Size 16 256 log2
dmodel 16 256 log2
Feedforward Size 16 256 log2
No. Attention Heads 2 16 log2
No. TPC Layers 1 12 Linear
No. LSTM Layers 1 4 Linear
No. Transformer Layers 1 10 Linear

tail off with increasing values of k. Figure 13 shows an example elbow plot. We selected the value 5
across all the models.

Figure 13: Elbow plot for the TPC model.
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Table 12: Time Series features. The features which do not have a source table were calculated
from the other features available in the data. ‘Mandatory Ventilation’ and ‘Patient Triggered’ were
calculated from the ventilator settings as outlined in Table 13.

Feature Type Source Table

ABP gemiddeld Continuous numericitems
Ademfreq. Continuous numericitems
Alb.Chem (bloed) Continuous numericitems
Bilirubine (bloed) Continuous numericitems
CRP (bloed) Continuous numericitems
End tidal CO2 concentratie Continuous numericitems
Exp. tidal volume Continuous numericitems
Glucose (bloed) Continuous numericitems
Hartfrequentie Continuous numericitems
Ht (bloed) Continuous numericitems
Kalium (bloed) Continuous numericitems
Kreatinine (bloed) Continuous numericitems
Lactaat (bloed) Continuous numericitems
Leuco’s (bloed) Continuous numericitems
Natrium (bloed) Continuous numericitems
O2 concentratie Continuous numericitems
P/F ratio Continuous
PC Continuous numericitems
PEEP (Set) Continuous numericitems
PO2 (bloed) Continuous numericitems
Piek druk Continuous numericitems
Saturatie (Monitor) Continuous numericitems
Temp. Continuous numericitems
Thrombo’s (bloed) Continuous numericitems
TroponineT (bloed) Continuous numericitems
UrineCAD Continuous numericitems
lung compliance Continuous
mandatory ventilation Binary
pCO2 (bloed) Continuous numericitems
pH (bloed) Continuous numericitems
patient triggered Binary
Time in the ICU Discrete
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Table 13: Ventilator Settings Classification, used to produce the features ‘Patient Triggered’ and
‘Mandatory Ventilation’ in Table 12.

Patient Triggered Ventilation Mandatory Ventilation

Bi Vente MMV
NAVA VC
PRVC PC
PRVC (trig) Pressure Controled
PS/CPAP (trig) PC (No trig)
SIMV(PC)+PS PRVC (No trig)
SIMV(VC)+PS VC (No trig)
VC (trig) CPPV
VS IPPV
SIMV_ASB SIMV
CPAP BIPAP
BIPAP-SIMV/ASB
MMV_ASB
MMV/ASB
ASB
IPPV/ASSIST
CPPV/ASSIST
CPPV_Assist
IPPV_Assist
SIMV/ASB
CPAP_ASB
PS/CPAP
BIPAP/ASB
CPAP/ASB

Table 14: Losses for the reconstruction tasks and forecasting task averaged over 5 independent
training runs. The error margins are 95% confidence intervals. See Section D.3 for explanations of
the losses shown. The meaning of (a), (b), the colour scheme and statistical tests are defined in the
legend to Table 1.

(a)

Model Reconstruction Tasks Forecasting
Last Timestep Static (Binary) Static (Other)

TPC 0.334±0.004 0.013±0.000 0.210±0.038 0.334±0.005
Transformer 0.351±0.005 0.013±0.000 0.354±0.005 0.347±0.001
LSTM 0.297±0.006‡ 0.012±0.001† 0.078±0.010‡ 0.299±0.004‡

(b)
TPC 0.345±0.002‡ 0.013±0.000 0.332±0.006‡ 0.345±0.003‡

Transformer 0.355±0.006 0.013±0.000† 0.356±0.001 0.353±0.005†

LSTM 0.322±0.003‡ 0.012±0.000 0.266±0.004‡ 0.323±0.003‡
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Table 15: Reconstruction and forecasting losses for the task ablation study. The full task setting from
Table 14(a) has been repeated for ease of comparison. The following task ablations are compared
to (a): (c) includes all tasks except for the forecasting task, (d) includes all tasks except for the
reconstruction tasks. The colour scheme and statistical test comparisons are explained in the legend
to Table 1.

(a)

Model Reconstruction Tasks Forecasting
Last Timestep Static (Binary) Static (Other)

TPC 0.334±0.004 0.013±0.000 0.210±0.038 0.334±0.005
Transformer 0.351±0.005 0.013±0.000 0.354±0.005 0.347±0.001
LSTM 0.297±0.006 0.012±0.001 0.078±0.010 0.299±0.004

(c)
TPC 0.334±0.004 0.012±0.000 0.198±0.020 -
Transformer 0.349±0.007 0.013±0.000 0.358±0.007 -
LSTM 0.305±0.003† 0.011±0.000 0.085±0.010 -

(d)
TPC - - - 0.339±0.006
Transformer - - - 0.355±0.007†

LSTM - - - 0.309±0.006†
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