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ABSTRACT

In this work, we focus on improving the novel class generalization of few-shot
learning. By addressing the difference between feature distributions of base and
novel classes, we propose the adaptive feature distribution method which is to
finetune one scale vector using the support set of novel classes. The scale vector
is applied on the normalized feature distribution and by using one scale vector to
reshape the feature space manifold, we obtain consistent performance improve-
ment for both in-domain and cross-domain evaluations. By simply finetuning one
scale vector using 5 images, we observe a 2.23% performance boost on 5-way
1-shot cross-domain evaluation with CUB over statistics results of 2000 episodes.
This approach is simple yet effective. By just finetuning a single scale vector we
provide a solution of reducing number of parameters while still obtain generaliza-
tion ability for few-shot learning. We achieve the state-of-the-art performance on
mini-Imagenet, tiered-Imagenet as well as cross-domain evaluation on CUB.

1 INTRODUCTION

With the plethora of available large-scale data, deep learning has achieved significant advancements.
However multiple factors such as high labelling costs, scarce availability of classes of interest or the
expensive need for experts for label generation set limits of applying large-scale data. To address
this challenge, the problem of few-shot learning was formulated which has received considerable at-
tention in recent years|Vinyals et al.|(2016); |Snell et al.|(2017); Finn et al.{(2017); Ravi & Larochelle
(2016); Hartharan & Girshick]|(2017)).

For a supervised learning problem with data set (z1,¥1), ...(Zn, yn )(x; € X feature space, y; € Y
label space), by using the hypothesis class(h(.; w)), we want to minimize {(h(x; w),y) on new
samples. With the assumption that training samples and test samples are i.i.d from the same unknown
distribution D over X x ), the problem is optimized over the Empirical Risk Minimization(ERM).
For multi-class classification with deep neural network, the hypothesis class related to the scenario
can be divided into two functionalities: the feature extractor Fy(z;) parameterized by 6, the classifier
C(- | w) for a given class weight vector w. Basically to achieve a good classification performance
over the large-scale dataset, h(.; w) is expected to be highly invariant and this property empowers
the feature extractor Fy(z;) with good feature invariance ability if we consider variations that are
generally in the objects such as shapes, lights and etc.

Few-shot learning proposes a great challenge as the estimation of the distribution is hard to achieve
with a few samples. Meta-learning methods on few-shot learning lead a direction of adapting to
a hypothesis class with few samples, which directly back-propagates the loss between testing set
with the h(.; w) proposed with the training set. Recent work meta-Baseline Chen et al.[ (2020)pro-
posed to conducts meta-training with a pre-trained feature extractor on base classes which leads
to a large-margin performance improvement of meta-training. Moreover, they observe that during
meta-training stage, models are better generalized on the base classes while evaluation performance
on novel classes largely dropped.

The novel class generalization which is defined as evaluation performance on novel classes following
Chen et al.| (2020) is essential for improving few-shot learning into practice. Training of algorithms
on few-shot learning are conducted with base classes which are relatively large-scale in the sense
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Figure 1: Illustration on AFD: with samples from support sets of novel classes, features are obtained
by using a pre-trained feature extractor F and then these features are passed through the feature
normalization layer which is parameterized by a scale vector; with using a non-parametric evaluation
metrics gradients flow into optimizing the scale vector.

of plenty number of classes with hundreds of images. Methods in metric-based learning |Chen et al.
(2019); |Gidaris & Komodakis| (2019); |Wang et al.| (2018); (Gidaris & Komodakis| (2018)) and meta-
learning (Chen et al| (2020) prove that training in this way benefits the capture of large variations
which is crucial for discriminative features. However, as the feature extractor on base classes is
trained under maximum likelihood, features are also trained to be invariant for discriminating these
base classes, as shown in Fig@ Then the evaluation on novel classes would suffer from the feature
distribution difference between base and novel classes, and cross-domain between base and novel
classes could enlarge this feature distribution difference. Objects(or images) in different domains
carry different aspects of information which leads to different discriminative features or features in
common among categories.

Attempts of improving novel class generalization include finetuning method proposed in|Chen et al.
(2019). In|Chen et al.| (2019), they proposed to finetune the novel class weights using the support
set of novel classes with competitive results. However if feature distribution of novel classes suffers
from scattering, even with a plenty of data finetuning the novel class weights without any optimiza-
tion on the feature side is not promising for finding a good decision boundary, not to mention with
only a few samples.

In our work, we propose the adaptive feature distribution to improve the novel class generalization.
Following the idea of finetuning using a handful of samples, we apply a non-parametric distance
first to construct the hypothesis class and then by only finetuning a scale vector which applied on
the normalized feature distribution, we achieve the effects of adaptive feature distribution on novel
classes.

Our Contributions: 1) We address the importance of further understanding the feature distribution
for novel classes. Using DB-index which measures the quality of feature distributions for novel
classes to select feature extractors, we observe a consistent performance boost on all three evalu-
ation datasets. We believe introducing analysis on feature distributions and clustering quality of
novel classes is informative to the community. 2) We propose to improve novel class generalization
through adapting the feature distribution of novel classes. And by only finetuning one scale vector
using support sets of novel classes, we showcase the supreme generalization of this method espe-
cially on cross-domain evaluations. We achieve the state-of-the-art performance on mini-Imagenet,
tiered-Imagenet as well as cross-domain evaluation on CUB. 3) This approach is simple yet effec-
tive. By just finetuning a single scale vector we provide a solution of reducing number of parameters
while still obtain generalization ability for few-shot learning.

2 PRIOR ART

There have been many approaches to few-shot learning explored recently, namely are fast-adaptation
methods Finn et al.|(2017);|Rusu et al.|(2018); Sun et al.|(2019));|Chen et al.[(2020), model optimiza-
tion based methods|Ravi & Larochelle (2016), metric learning based methods [Vinyals et al.| (2016);
Snell et al.| (2017); Ren et al.|(2018); Sung et al.| (2018); |(Guo & Cheung|(2020); |Li et al.| (2020)) and
methods which use ridge regression and support vector machine Bertinetto et al.| (2018); |[Lee et al.
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Figure 2: MNIST Illustration of Feature Distribution Difference between Base and Novel Classes.
The feature extractor(Lenet) is trained with 0-6 base classes. We plot the feature distribution for
base classes and novel classes. As shown in 2-D space, novel classes features are more scattered
compared with compact feature distribution of base classes. Meanwhile, novel class features tend to
project on the direction of base class weights(shown as the gray line).

(2019). There have also been studies focusing on discovering projective feature embeddings Simon
et al.| (2018}; 2020). Recently, a few studies utilized a variety of techniques in machine learning
towards few shot classification. Techniques like self-supervised training, self-training through semi-
supervised learning and model ensembles showed a boost result when applied on few-shot learning
problem |Gidaris et al.| (2019); [Dvornik et al.| (2019); |L1 et al.| (2019b)). Modules were also invented
to enhance feature discrimination|L1 et al.|(2019a); Hou et al.| (2019). Recently approaches have also
explored combination with Graph Neural Networks |Garcia & Brunal(2017); Kim et al.|(2019).

3 ADAPTIVE FEATURE DISTRIBUTION: FINE-TUNING THE SCALE OF
FEATURE DISTRIBUTION ON NOVEL CLASSES

In this section, we introduce how we realize the adaptive feature distribution with a learnable scale
vector and the effects on novel class feature space by only finetuning the scale vector with a few
samples.

The Few-Shot Problem Formulation. Evaluation datasets in few-shot learning are separated into
base, validation and test classes. Base classes which is used in training involves a relatively large
number of labelled training samples. And validation classes or test classes are treated as novel
classes, which correspondingly used for validation and testing purpose. For few-shot learning sce-
narios, one episode is defined as K-way IN-shot learning where K is the number of classes, IV is
the number of training images(support set) and K classes are firstly sampled from the novel classes;
N samples in the support set as well as the query set(samples used for evaluating the episode per-
formance) are sampled within each K classes. For one K-way N-shot episode, we use Sy and @y,
to denote the support and query set accordingly for k € K novel classes.

We use a pre-trained feature extractor Fy to subtract features. We use f; = Fjp(x;) to represent the
feature for z;. We first add a feature normalization layer with a scale vector s:

f, =~ x5 (1)

Where: = £ >, fiando = £ >, (F — p)2.

In this layer, features from all training samples are first normalized in a way that values of every
element on the feature vectors are regularized by following the normal distribution. A scale vector
s is then multiplied with the normalized feature. s serves as the “adaptive” part that by tuning the
value of s, we are scaling the normalized feature distribution. s is flexible in the sense that every
element on s scales up or down on every element of features and this in general leads to the reshape
of feature space manifold. Then by fine-tuning s with classification loss on novel classes, we expect
to the reshape of feature space manifold could fast adapt the features for novel classes especially on
cross-domain cases.
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In the fine-tuning stage, we first construct our evaluation metrics in an non-parametric way. We use
average feature of the support set Sy, as the class weight wy, with a softmax loss:

N
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y=wl = Z 3)
€s;

By using this non-parametric metrics, we decrease the number of parameters to be trained in the
fine-tuning stage while still follows the maximum likelihood estimation to predict the probability
p(y|x). And this allows flexibility of fine-tuning the feature space with adaptive feature distribution.
We analyze the gradient flow in the fine-tuning stage in the following.

The derivative ofz; with f; is:
aZj
of;

= w; )

For an input z;, the derivative of z; with Ly is:

aLf_{Pj_l J=yi (5)
0z; P; J# i

oL -

S5 = Pu = Dwy + 3 Piw; (©)
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Meanwhile as s is element-wisely multiplied with f;, the gradient at location ¢ for s is(we omit the
notation of location c to simplify the notation):

ofi _ fi—n
" = 7
Jds o M
Then we have the gradient for s at any location on s with sample x; as:
fi—
Vs = 1L, — D, + Y Pyl ®)

J#Yi
For fine-tuning only using K-way N-shot samples, P, ~ 1(for 1-shot case, P,, = 1) the gradient
during training can be approximated as:

K
VS:fig_uZijj Z Zf:c (9)

J#Yi J#£Yi T€S;

To simplify the notation, we use the gradient for 1-shot case to conduct further discussion, which is:

fimp~ | f—p
_ Ji Jj
Vs == > P, 5 (10)

By conducting the gradient descent, we have s = s — V.

To give a direct impression of how this fine-tuning changes the feature space manifold, we illustrate
the change on s brought by gradient descent intuitively. First of all, the normalization on f ensures
that the value is ’soft bounded”, which will not cause the extreme values on the gradient. For some
locations where elements are encoded "common” information, values of f; and f; are similar. And
in the opposite way, elements in other locations are encoded “discriminative” information where
values of f; and f; are largely different. In this case, Vs could be relatively large or negative which
leads to scaling up the feature distribution at those locations. Then the difference between features
are further enlarged correspondingly. In this case, the manifold of the feature space will fast adapt
to the shape where distinguished parts are enlarged.
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4 OVERALL FRAMEWORK

In this section, we introduce the overall framework that we conduct the few-shot classification prob-
lem.

4.1 TRAINING CLASSIFICATION ON BASE CLASSES

The model Fy(x) that is trained on the base classes Kpqs.. TO obtain a better feature invariance,
we use the 12-normalized Softmax (Chen et al.[(2019); Ranjan et al.| (2017); |Wang et al.| (2017); Q1

et al.[(2018) with cross entropy loss, which utilize softmax under the constraint of ||w,, Hg =1and
2
[Ep(xi)llz = 1:

Npase

1
— log
Npase 4= f”‘i“ exp S cos(wi, Fy(x;))

expScos(wyTi,Fg(xi))

(1)

Lsy =

4.2 EVALUATION ON NOVEL CLASSES

Given an K-way N-shot episode of few-shot classification, for each class k € K we have a support
set S, = (z1,41),, (zn,yn) and a query set Qr = (z1,91),", (xar, yar). With the pretrained
feature extractor Fy(x), we follow the same metric of cosine distance in equationwhen evaluating
on novel classes; and the novel class weight wy, is the average feature of the support set Sy, Qi et al.
(2018)); /Chen et al.| (2020):

1
we=1 > Fy(x) (12)
xXESk
The predicted probability that x € @ belongs to class k is:

exp cos(w, Fy(x))
Z;il exp cos(w] , Fy(x))

ply = klx) = (13)

4.3 FINE-TUNING SCALE VECTOR ON NORMALIZED FEATURE DISTRIBUTION.

For the fine-tuning part, we conduct experiments with data augmentation and without data augmen-
tation separately. With data augmentation, when we construct our the non-parametric evaluation
metrics in equation. [2] the average feature used for novel class weight are generated from samples
without data augmentation while features as input to the evaluation metrics are from samples after
data augmentation. By doing this, we ensures the minimum change of the novel class prototype(class
weight) and the maximum of sample variations around the class prototype. The fine-tuning without
data augmentation follows the methodology in Section 2.

4.4 MODEL SELECTION FOR NOVEL CLASSES.

After we train the classification on base classes, we come to the model selection of using which
model as the feature extractor for novel classes. The feature extractor with the best classification
accuracy or from the later epochs may not be a good choice. To obtain a high classification accuracy,
features trained by supervised classification at the later stage of training may suffer the “overfitting”
to the seen classes. In other words, features would be projected precisely to directions of class weight
vectors in order to get a high classification accuracy. By using these models as the feature extractor
for novel classes, features of the novel classes could be separately projected onto the directions of
the base classes which enlarge the scattering of that feature distribution indeed. Using the few-
shot performance on validation set could be one choice, however as we are approaching the adaptive
feature distribution, we consider the model selection from the perspective of measuring the quality of
feature distribution. We use DB-index |Davies & Bouldin|(1979) as the criterion for model selection,
which evaluates the clustering quality by considering the separation of the clusters and the tightness
inside the clusters. And interestingly, we found that models with lower DB-index are generally
models around the epoch after the first time of decreasing the learning rate. In our experiments,
models with lower DB-index on validation set are selected.
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Backbone mini-ImageNet tiered-ImageNet
Models 1-shot \ 5-shot 1-shot \ 5-shot

“[Finn et al.[(2017) Conv-4-64 | 48.70+1.84 | 63.10 £0.92 | 51.67 = 1.81 | 70.30 £ 0.08
Sung et al.|{(2018) Conv-4-64 | 50.44+0.82 | 65.32£0.70 - -

" |Gidaris et al.[(2019) WRN-28-10 | 62.93 £0.45 | 79.87 £0.33 | 70.53 £ 0.51 | 84.98 £ 0.36
Gidaris & Komodakis|(2019) | WRN-28-10 | 61.07+£0.15 | 76.75 +£0.10 | 68.18 £ 0.16 | 83.09 +0.12
Rusu et al.[(2018) WRN-28-10 | 61.76 £0.08 | 77.59 £0.12 | 66.33 = 0.05 | 81.44 £+ 0.09
Gidaris & Komodakis|(2019) | WRN-28-10 | 60.06 +£0.14 | 76.39 £ 0.11 | 68.18 £ 0.16 | 83.09 +0.12
Li et al.|(2019a) ResNetl8 | 62.05+0.55 | 78.63 £0.06 | 64.78 £0.11 | 81.05 +0.52
Dvornik et al.[(2019) ResNetl8 | 59.48 £0.62 | 75.62+0.48 | 70.44 £0.32 | 85.43 +0.21
Oreshkin et al.|(2018) ResNet12 | 58.50 £0.30 | 76.70 £ 0.30 - -
Ravichandran et al.|[(2019) ResNet-12 60.71 77.26 66.87 82.64
Lee et al.[(2019) ResNetl2 | 62.64 £0.61 | 78.63 £ 0.46 | 65.99 £0.72 | 81.56 & 0.53
Sun et al.|{(2019) ResNet12 61.2+£1.8 75.5£0.8 - -
Simon et al.|(2020) ResNet-12 | 64.60 +0.72 | 79.51 £0.50 | 67.39 = 0.82 | 82.85 £ 0.56
Guo & Cheung|(2020) ResNet-12 | 63.124+0.08 | 78.40 £0.11 | 67.69 +0.11 | 82.82 £0.13
Li et al.[(2020) ResNet-12 - - 67.10 £0.52 | 79.54 £ 0.60
Chen et al.[(2020) ResNet-12 | 63.17+0.23 | 79.26 £0.17 | 68.62 +0.27 | 83.29 £0.18

" Baseline ResNetl2 | 59.38 £0.44 | 76.83 £0.33 | 63.51 £0.48 | 80.46 +0.38
Baseline* ResNetl2 | 63.73 +0.44 | 80.59 +£0.31 | 68.68 £0.49 | 84.03 +£0.35
AFD ResNet12 | 63.70 +0.44 | 80.81 £0.31 | 68.72 +0.49 | 84.23 £+ 0.35

Table 1: Results on mini-ImageNet and tiered-ImageNet for 5-way evaluation. The results are the
average accuracy with 95% confidence intervals based on the same 2000 test episodes among all our
experiments. The 95% confidence intervals is reference to comparing with other methods.

5 EXPERIMENTAL VALIDATION

We evaluate the our adaptive feature distribution method in both in-domain case and cross-domain
case. In-domain case is defined as the base and novel classes are from the same datsets and cross-
domain case refers to the situation that base and novel classes are from different datasets and gener-
ally the datasets have domain difference.

5.1 EVALUATION DATASETS AND IMPLEMENTATION DETAILS

5.1.1 EVALUATION DATASETS

Dataset 1: mini-ImageNet Vinyals et al.| (2016) is a standard benchmark for few-shot image clas-
sification benchmark, which consists of 100 randomly chosen classes from ILSVRC-2012 Rus-
sakovsky et al.| (2015). And these classes are randomly split into 64, 16 and 20 classes for meta-
training, meta-validation and meta-test set respectively. Each class contains 600 images of size
84 x 84. We use the common split used in |Lee et al.[(2019).

Dataset 2: tiered-ImageNet Ren et al.|(2018) is a larger subset of ILSVRC-2012 Russakovsky et al.
(2015), composed of 608 classes which are split into meta-training, meta-validation and meta-testing
set with 351, 97 and 160 classes respectively. All images are of the size 84 x 84.

Dataset 3: CUB-200-2011 |Wah et al.| (2011) contains 200 classes and 11,788 images in total.
Following the evaluation protocol of Hilliard et al.| (2018)), the dataset is split into 100 base, 50
validation and 50 novel classes. We use the same splits as|Chen et al.[(2019) for testing. This dataset
serves as the test set for the cross-domain evaluation.

5.1.2 ARCHITECTURE AND TRAINING DETAILS

Baseline Network Architecture. We utilize the ResNet-12 network architecture following|Lee et al.
(2019) to train the baseline and backbone classification model. However in contrast to |[Lee et al.
(2019), we use a global average pooling after the last residual block following which the feature
length becomes 640 and the feature layer is followed by a 1-d batchnorm layer without affine.
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method 5-way 1-shot | 5-way 5-shot
MatchingNetsVinyals et al.[(2016) - 53.07 £0.74
MAMLFinn et al.|(2017) - 51.34 £0.72
ProtoNetSnell et al.[(2017) - 62.02 £0.70
Linear Classifier(Chen et al.| (2019)) - 65.57 £ 0.7
Cosine Classifier(Chen et al.| (2019)) - 62.04 £0.76
Diverse 20 FullDvornik et al.| (2019) - 66.17 £ 0.55
Baseline 46.31 £0.43 | 64.154+0.38

Baseline* 49.26 + 0.43 | 69.56 + 0.39

AFD 50.99 +0.43 | 70.64 + 0.38

Table 2: Domain Difference Testing on CUB Dataset using the mini-ImageNet Trained Model.
Results for MatchingNets, MAML and ProtoNet are fromChen et al.|(2019).

Training hyperparameters. All networks were trained with SGD along with Nesterov momentum
of 0.9 and weight decay of 5 x 10~*. The initial learning rate is set as 0.1 which was decreased
by a factor of 10 every 50 epochs for a total of 150 epochs. The batch size was kept at 256. Data
argumentation was applied for baseline classification following |Lee et al.| (2019), which included
horizontal flip, random crop, and color (brightness, contrast, and saturation) jitter.

Fine Tuning on the Novel Class Support Set. We finetune on the novel class training set using
Adam with learning rate 5 x 1073 by back-propagating the gradient from the whole batch, and
early stop in this case is crucial that we finetune 3 epochs for 1-shot and 5 epochs for 5-shot case in
cross-domain cases and 3 epochs for both 1-shot and 5-shot in in-domain cases. The scale vector is
initialized as 1.

In our experiments, Baseline refers to the pre-trained feature extractor of the last epoch for training;
Baseline* refers to the pre-trained feature extractor selected using density based clustering index.
And we use Baseline* as the feature extractor for all our finetuning experiments.

5.2 COMPARING PERFORMANCE ON IN-DOMAIN AND CROSS-DOMAIN CASES

Performance of model selection are consistent. We observe that using the DB-index to select
feature extractors gain consistent performance improvement among all three evaluation datasets.
And this could serve as a good sign of studying the feature transfer-ability from the perspective of
feature distribution.

AFD Shows Improvement on In-Domain Evaluations. Shown in Table[I AFD improves the
performance on 5-shot with 0.22% and 0.2% separately for minilmagenet and tieredlmagenet. One
thing to notice is that the performance of our Baseline* already surpass performance of most works.
AFD still leads to performance improvement while using a well presumed feature extractor.

AFD shows superior generalization to cross-domain evaluations. Shown in Table[2] by simply
finetuning using 5 images for 1-shot case and 25 images for 5-shot case, we observe 1.73% and
1.08% performance improvement from statistical results among 2000 episodes.

5.3 ABLATION STUDIES ON FINE-TUNING

The results of ablation studies are shown in Table[3]

Effects of Applying Data Augmentation during Finetuning: The major obstacle of few-shot
learning is the lack of samples which is essential for improving the novel class generalization. Al-
though we only train 3 epochs, the effects of data augmentation are still obvious. Only for 1-shot
case with minilmagenet-trained feature extractor the performance is worse than without using data
augmentation. This could be caused with the reason that the feature extractor is trained with a rel-
atively small data, features abstracted then are not stable to optimize which is serve when adding
data augmentation with only 5 training samples. Otherwise, we observe performance improvement
of 0.47% for 5-shot with minilmagenet-trained feature extractor and 0.18%, 0.65% for 1-shot and
5-shot with tieredImagenet-trained feature extractor. As we only use the basically simple data aug-
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Models Components mini-ImageNet | tiered-ImageNet
dot-product | cosine | data-aug | 1-shot | 5-shot | 1-shot | 5-shot

Baseline 46.31 | 64.15 | 46.52 | 65.59
Baseline* 49.26 | 69.56 | 54.67 | 74.94
finetune-weight v v 48.60 | 68.64 | 54.25 | T4.87
v 51.49 | 70.17 | 55.00 | 74.56

v v 50.99 | 70.60 | 55.18 | 75.21

AFD v v 50.99 | 70.64 | 55.18 | 75.21

Table 3: Ablation Studies on CUB. All experiments are in 5-way evaluations. The results are the
average accuracy based on 2000 test episodes. Episodes are the same over all experiments. The 95%
confidence intervals are approximately the same(with 0.01 difference among experiments), and we
put the values correspondingly: 0.43, 0.38, 0.48, 0.39.

mentation strategy, further work to explore the effective data augmentation for finetuning on novel
classes are promising.

Effects of Different Feature Extractor: Firstly by using a feature extractor trained with larger
dataset, the performance on cross-domain cases boost a lot which indicates the importance of a good
feature embedding. And for AFD, the performance improvement on 1-shot are 1.73% and 1.08% for
minilmagenet model and tieredImagenet model; on 5-shot are 0.51% and 0.27% for minilmagenet
model and tieredImagenet model. This illustrates that AFD are able to fast adapt features especially
when the quality of feature embedding is not good. However, with a better feature extractor allows
better improvement of using data augmentation in AFD as discussed above.

Effects of Different Metrics: We compare the results of using different metrics(dot-product and
cosine metrics with scaleWang et al.| (2017)) in our non-parametric evaluation for fine-tuning. The
performance is almost the same. As different metrics affect how well can we achive the predicted
probability and in our case, as illstrated in Section 2, the predicted probability is around 1 already.
Then different metrics serve similar efforts of adapting features for novel classes.

The Importance of Fine-tuning Features: We compare AFD with only finetuning the novel class
weight method. For finetuning the novel class weight, we use average features from support set as
the weight initialization and the hyper-parameters settings are the same as mentioned above. We
observe performance drop by only finetuning the novel class weight, which are 0.66%, 0.92% for
1-shot and 5-shot with mini-ImageNet trained feature extractor, 0.42%,0.07% for 1-shot and 5-shot
with tiered-ImageNet trained feature extractor. For cross-domain cases, features for novel classes
are not well discriminative and constrained for the same class. As features are not optimized, only
finetuning the novel class weights linear relating to features will actually drop the performance.
This illustrates the importance of adapting features of novel classes. By AFD, we get consistent and
essential performance improvement: 1.73% and 0.51% for 1-shot and 5-shot with mini-ImageNet
trained feature extractor, 1.08% and 0.27% for 1-shot and 5-shot with tiered-ImageNet trained fea-
ture extractor. This showcases the powerful effects of AFD under cross-domain cases, compared
with the simplicity lies in AFD.

6 CONCLUSION

We propose an finetuning on adaptive feature distribution to improve the novel class generalization
for few-shot learning. And the performance improvement on both in-domain and cross-domain
evaluation showcases the superior generalization brought by this simple yet effective method. With
the proposed AFD method, we also address the importance of further understanding and analyzing
the feature distribution of novel classes.
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