

000 001 002 003 004 005 M3CoTBENCH: BENCHMARK CHAIN-OF-THOUGHT OF 006 MLLMs IN MEDICAL IMAGE UNDERSTANDING 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027

ABSTRACT

028
029
030
031 Chain-of-Thought (CoT) reasoning has proven effective in enhancing large lan-
032 guage models by encouraging step-by-step intermediate reasoning, and recent
033 advances have extended this paradigm to Multimodal Large Language Models
034 (MLLMs). In the medical domain, where diagnostic decisions depend on nuanced
035 visual cues and sequential reasoning, CoT aligns naturally with clinical thinking
036 processes. However, Current benchmarks for medical image understanding gener-
037 ally focus on the final answer while ignoring the reasoning path. An opaque process
038 lacks reliable bases for judgment, making it difficult to assist doctors in diagnosis.
039 To address this gap, we introduce a new M3CoTBench benchmark specifically
040 designed to evaluate the correctness, efficiency, impact, and consistency of CoT
041 reasoning in medical image understanding. M3CoTBench features **1**) a diverse,
042 multi-level difficulty dataset covering **24** examination types, **2**) **13** varying-difficulty
043 tasks, **3**) a suite of CoT-specific evaluation metrics (correctness, efficiency, impact,
044 and consistency) tailored to clinical reasoning, and **4**) a performance analysis of
045 multiple MLLMs. M3CoTBench systematically evaluates CoT reasoning across di-
046 verse medical imaging tasks, revealing current limitations of MLLMs in generating
047 reliable and clinically interpretable reasoning, and aims to foster the development
048 of transparent, trustworthy, and diagnostically accurate AI systems for healthcare.
049
050

1 INTRODUCTION

051 In recent years, Chain-of-Thought (CoT) reasoning has proven to be a transformative mechanism in
052 enhancing the problem-solving capabilities of Large Language Models (LLMs) (Chu et al., 2024). By
053 generating intermediate reasoning steps before arriving at a final answer, CoT improves transparency
054 and structured decision-making in LLMs. Notable advancements include models like OpenAI's
055 o1 (OpenAI, 2024b) and o3-mini (OpenAI, 2025), which exhibit consistent, step-by-step logical
056 reasoning across multi-turn interactions, and DeepSeek-R1 (DeepSeek-AI et al., 2025) that excels at
057 decomposing complex tasks into fine-grained subtasks. Building on these successes, researchers have
058 extended CoT to Multimodal Large Language Models (MLLMs) (Wang et al., 2025), enabling joint
059 processing of multiple modalities. Multimodal CoT (MCoT) frameworks now integrate visual and
060 textual evidence into coherent multi-step explanations, with methods like Chain-of-Spot (Liu et al.,
061 2024b), TextCoT (Luan et al., 2024), and DCoT (Jia et al., 2024) emphasizing region-of-interest
062 analysis. Recent breakthroughs, such as OpenAI's o3 (OpenAI, 2024c) model, further demonstrate
063 CoT's potential for image-based reasoning, while applications in healthcare, robotics, and autonomous
064 driving highlight its versatility across domains.
065

066 In medical MLLMs, CoT reasoning is uniquely critical due to the complexity of medical image
067 interpretation (Liu et al., 2024a). Clinicians rely on systematic diagnostic processes that involve
068 iterative observation, verification against key features, and knowledge-based refinement. Explicit
069 reasoning chains are essential to ensure safety, trustworthiness, and alignment with clinical guidelines.
070 However, current medical imaging benchmarks focus solely on final-answer accuracy, neglecting the
071 quality of intermediate reasoning steps (Wu et al., 2024; Ye et al., 2024; Hu et al., 2024). For instance,
072 state-of-the-art Medical MLLM benchmarks evaluate VQA performance without assessing **how** or
073 **why** a model arrives at an answer. This gap limits the development of clinically reliable AI systems, as
074 two models could produce identical answers through fundamentally flawed or incomparable reasoning
075 paths. Such a lack of scrutiny over intermediate reasoning increases the risk of unnoticed errors,
076 misdiagnoses, and overconfidence in models that appear accurate on surface metrics.
077
078

To address these challenges, we introduce a novel M3CoTBench benchmark that is designed to evaluate and standardize CoT reasoning in medical image interpretation. Specifically, we propose a novel curation pipeline, which includes 1) the collection of diverse and high-quality medical images, 2) automated data annotation, and 3) manual review and calibration. By bridging the gap between medical diagnostic workflows and AI-driven reasoning, M3CoTBench not only facilitates transparent evaluation but also paves the way for developing clinically trustworthy MLLMs. Our contributions redefine evaluation standards in medical imaging, emphasizing the need for interpretable, step-by-step reasoning in high-stakes applications. Our work is guided by three core principles:

- **Diverse Medical VQA Dataset.** We curate a 1,079-image QA dataset spanning 24 modalities, stratified by difficulty and annotated with step-by-step reasoning aligned to clinical workflows.
- **Multidimensional CoT-Centric Metrics.** Evaluation criteria for reasoning correctness, efficiency, impact, and consistency, enabling granular performance analysis for various MLLMs.
- **Comprehensive Model Analysis.** We evaluate general-purpose and medical MLLMs by quantitative metrics and case studies, highlighting strengths and failure modes in clinical reasoning to guide future improvements.

2 RELATED WORK

2.1 MULTIMODAL LARGE LANGUAGE MODELS

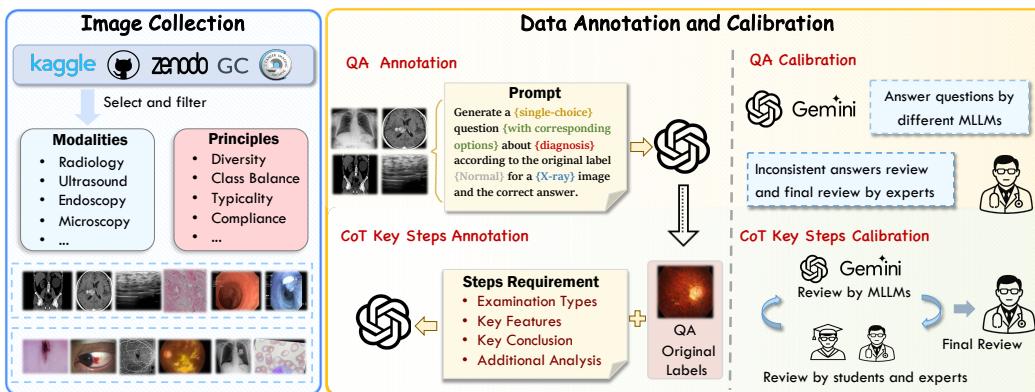
Inspired by recent advances in large language models like LLaMA (Touvron et al., 2023) and GPT (Ouyang et al., 2022), MLLMs extend text-centric architectures by embedding visual features into the latent language space, enabling diverse image-grounded text generation. The LLaVA-OneVision (Li et al., 2024) family combines large-scale image/video corpora with instruction fine-tuning to excel across single-image, multi-image, and video tasks. LLaVA-CoT (Xu et al., 2024b) introduces a multistage prompting strategy incorporating summarization, visual analysis, reasoning, and conclusion. Qwen-2.5-VL (Bai et al., 2025) advances document parsing, diagram understanding, and step-by-step reasoning using dynamic resolution and temporal encoding. InternVL2.5 (Chen et al., 2024c) introduces a unified multimodal architecture with improved alignment and instruction-following capabilities across image and video inputs. Its tuned variant (Wang et al., 2024) further enhances CoT reasoning via multimodal preference optimization. Closed-source GPT-4o (OpenAI, 2024a) exemplifies integration of real-time vision, audio, and text reasoning. In medicine, specialized MLLMs adapt these techniques to clinical data: Med-Flamingo (Moor et al., 2023) augments Flamingo (Alayrac et al., 2022) with medical image–text pretraining for few-shot VQA; LLaVA-Med (Li et al., 2023) aligns visual content with biomedical concepts using PubMed captions and GPT-4 instructions; RadFM (Wu et al., 2023) pretrains on 2D/3D radiologic scans. Rapid progress demands more effective evaluation, underscoring the need for benchmarks targeting detailed diagnostic inference in complex multimodal contexts.

2.2 MEDICAL MULTIMODAL BENCHMARKS

Medical multimodal benchmarks evaluate how well MLLMs interpret and reason over clinical imaging data. VQA-RAD (Lau et al., 2018) is an early radiology VQA dataset with clinician-annotated QA pairs. PathVQA (He et al., 2020) extends VQA to pathology by pairing textbook and digital pathology images with expert-reviewed questions. SLAKE (Liu et al., 2021) offers English–Chinese radiology QA enriched with semantic labels linked to a structured medical knowledge base. FMBench (Wu et al., 2024) is the first to systematically assess fairness in MLLMs, incorporating clinical tasks, demographic-aware evaluation, and a novel disparity metric. Quilt-VQA (Seyfioglu et al., 2024) targets histopathology VQA using real-world images and curated questions. OmniMedVQA (Hu et al., 2024) aggregates diverse datasets spanning multiple modalities and anatomy, requiring models to integrate heterogeneous inputs and justify their answers. GMAI-MMBench (Ye et al., 2024) unifies 284 global datasets into a large-scale multimodal QA benchmark covering a broad range of clinical scenarios. Despite these advances, most benchmarks still focus on surface-level Q&A and rarely evaluate deep diagnostic reasoning, such as inferring disease etiology or treatment decisions from imaging findings. Moreover, they often lack annotations for intermediate reasoning steps, limiting their effectiveness in assessing CoT-style clinical inference.

108 2.3 COT-RELATED MLLM BENCHMARKS
109

110 Research on reasoning in multimodal models has advanced through several dedicated benchmarks.
111 Visual-CoT (Shao et al., 2024) introduces a large-scale dataset of image-Q&A pairs, augmented
112 with region annotations and step-by-step rationales, along with a multi-turn reasoning pipeline for
113 interpretable, region-focused CoT tasks. M³CoT (Chen et al., 2024b) provides a comprehensive
114 benchmark spanning diverse domains and requiring complex multi-step visual–textual reasoning.
115 MME-CoT (Jiang et al., 2025) extends this line of work by contributing high-quality data across
116 six domains and proposing three novel metrics to assess CoT quality, robustness, and efficiency.
117 CoMT (Cheng et al., 2025) introduces a benchmark that requires both multimodal inputs and outputs
118 to evaluate the visual reasoning abilities of LVLMs, addressing the limitations of traditional text-only
119 outputs in multimodal CoT tasks. MMIR (Yan et al., 2025) is designed to evaluate MLLMs’ ability
120 to detect and reason about semantic inconsistencies in layout-rich multimodal content, revealing
121 significant shortcomings in current models and highlighting the need for more advanced cross-modal
122 reasoning capabilities. While these benchmarks have advanced CoT reasoning in natural image
123 domains, analogous resources remain scarce in the medical field, where rigorous diagnostic reasoning,
124 interpretability, and domain expertise are essential. This gap underscores the need for medically
125 grounded benchmarks that can assess step-by-step clinical inference in multimodal settings.



138 Figure 1: **Curation of M3CoTBench benchmark** that encompasses three sections: 1) carefully
139 curated medical images from various public sources, 2) multi-type and multi-difficulty QA generation
140 via LLMs and expert calibration, 3) and structured annotation of key reasoning steps aligned with
141 clinical diagnostic workflows.

144 3 CURATION OF M3CoTBENCH
145

146 The collection of images, construction of QA pairs, the annotation of key CoT steps, and manual
147 review/calibration are carefully designed in Figure 1.

149 3.1 DATA COLLECTION
150

151 All images in M3CoTBench are sourced from public datasets, with selection guided by principles of
152 diversity, representativeness, class balance, and compliance.

- 154 • **Diversity.** Images are collected from 55 public medical datasets, encompassing diverse imaging
155 modalities, examination types, and anatomical regions (Table A1), with broad geographical
156 coverage (Figure A3) and diverse temporal ranges of publishing.
- 157 • **Typicality.** To ensure large intra-dataset variance, image features are extracted by Biomed-
158 CLIP (Zhang et al., 2023), and a semantically distinct subset is selected by maximizing the
159 minimum pairwise feature distance.
- 160 • **Class balance.** Each dataset includes multiple categories, with a balanced class distribution
161 maintained through manual review based on original labels.

162 • **Compliance.** Datasets with usage restrictions or labeled as “no derivatives” are excluded, ad-
 163 dressing compliance issues often neglected in prior benchmarks.
 164

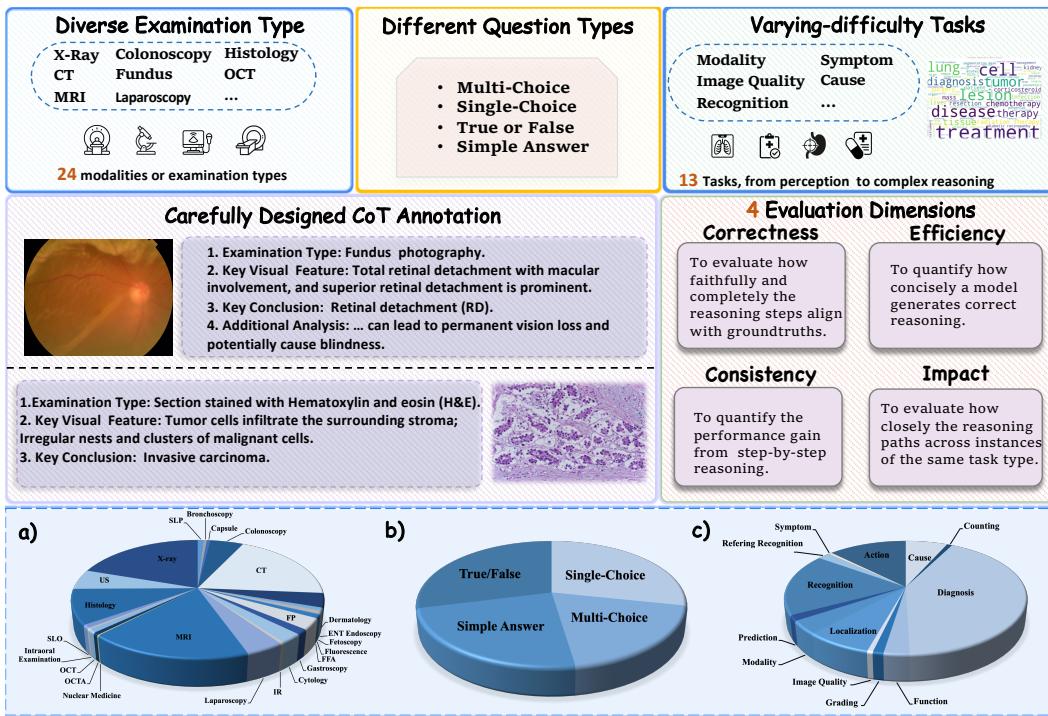


Figure 2: **Overview of M3CoTBench benchmark.** **Top:** The benchmark covers 24 imaging modalities/examination types, 4 question types, and 13 clinical reasoning tasks. **Middle:** CoT annotation examples and 4 evaluation dimensions. **Bottom:** The distribution of image-QA pairs across *a*) modalities, *b*) question types, and *c*) tasks.

3.2 DATA ANNOTATION AND CALIBRATION

Question-Answer Pairs Generation. We employ a unified pipeline for generating QA pairs, with all questions and candidate answers initially fully generated by GPT-4o, and subsequently calibrated by three different MLLMs and human experts to ensure the validity of the questions and the correctness of the answers.

- **Conversion of Existing Datasets.** To accommodate the original purpose of each dataset, we tailor strategies to different data types. Starting with existing QA pairs from public VQA and image classification datasets, we use GPT-4o to rewrite them into more diverse formats, such as single-choice, multiple-choice, true/false, and short-answer questions. For segmentation datasets, we concatenate the raw image with its corresponding mask and ask targeted questions about the masked region; for object detection datasets, we generate spatial questions, such as requesting a rough anatomical location or estimating bounding box coordinates; and for image quality assessment and disease grading tasks, we present paired images and formulate comparative questions.
- **Generation of Inference-driven Medical Questions.** To enrich the complexity of QA tasks and better support reasoning capabilities, we provide GPT-4o with the original label and prompt it to generate questions with corresponding answer options grounded in that information. For example, given a slit lamp image labeled “severe keratitis with corneal ulcer”, GPT-4o is prompted to create a multi-choice question about causes, such as “What might be the cause of this condition? (Select all that apply)”, with answer options including bacterial, viral, fungal infections, trauma, allergic reactions, etc. The correct answers align with clinically relevant causes associated with the diagnosis. This approach introduces hierarchical difficulty and inference-driven tasks that go beyond surface-level recognition, fostering deeper medical reasoning.

216 • **AI and Human Expert Calibration Process.** For calibration, we leverage three different MLLMs
 217 to answer each image-question pair independently. If any MLLM’s response differs from the
 218 initially generated answer, a human expert, an experienced doctor, intervenes to make the final
 219 judgment. Additionally, the expert reviews all images and QA pairs comprehensively to perform
 220 a final quality check and calibration. This combined AI-human validation ensures high accuracy
 221 and reliability of the dataset.

222 **Rationale for the step design.** Our CoT steps, (1) confirming the image’s nature (modality/examina-
 223 tion type), (2) identifying key visual features, (3) drawing diagnostic conclusions, and (4) providing
 224 further medically informed analysis, are derived from clinician interviews and established theories of
 225 medical reasoning.

226 • **Validation via doctor interviews.** Before designing the CoT steps, we interviewed clinicians,
 227 radiologists, and sonographers from five hospitals. Most described their workflow as: identify
 228 the imaging modality, observe key features, draw core conclusions, and then perform additional
 229 analyses such as etiology or treatment planning. One doctor noted that intuition may guide an
 230 initial hypothesis, which is then verified through feature inspection. These findings support our
 231 chosen steps as both sufficient and necessary for medical reasoning.

232 • **Theoretical support from medical cognition.** Our CoT design draws on established cognitive
 233 models. a) Hypothetico-deductive reasoning (Elstein et al., 1978): Clinicians generate and
 234 iteratively test hypotheses; our steps follow this natural cycle. b) Pattern recognition (Norman
 235 et al., 2007): Experienced doctors rapidly spot salient imaging patterns; our early focus on key
 236 features reflects this process. c) Dual-process theory (Arvai, 2013): Intuitive and analytical
 237 reasoning interact; our annotations capture this by allowing preliminary intuitive judgments
 238 followed by feature-based verification and further analysis.

239 **CoT key steps Generation.** To ensure effective CoT in medical VQA that mirrors clinicians’
 240 cognitive workflow from perception to judgment, we first leverage MLLMs to annotate CoT key
 241 steps, which then undergo repeated cycles of review, feedback, and revision by medical experts and
 242 students before senior experts confirm the final CoT annotations.

243 • **MLLM-Based Annotation.** For each image-question-answer instance, we provide GPT-4o and
 244 Gemini-2.5-Pro with the image, the question, the answer, and any relevant contextual information
 245 from the original annotations. For example, underlying labels used to construct the question
 246 itself, complex questions about treatment, causes, prediction, or function are often derived from
 247 simpler labels such as disease type, which are also provided as input. Additionally, the model
 248 generates reasoning steps following an expert-designed four-step clinical structure: (1) confirming
 249 the nature of the image, such as the imaging modality and examination type; (2) identifying
 250 key visual features; (3) drawing diagnostic conclusions, including the relevant disease, organ,
 251 or tissue; and (4) providing additional analysis based on medical knowledge, such as treatment
 252 strategies or associated symptoms. It is worth noting that we condition the model by specifying
 253 the expected reasoning steps based on the task type. For instance, modality questions omit steps
 254 (3) and (4), while diagnostic questions skip step (4). GPT-4o and Gemini-2.5-Pro then generate
 255 the corresponding key reasoning steps accordingly. Finally, the final results were generated again
 256 by GPT-4o, which integrated annotation information from both GPT-4o and Gemini-2.5-Pro.

257 • **AI and Human Expert Calibration Process.** To ensure high-quality and medically reliable
 258 annotations, we adopt a multi-stage human–AI collaborative verification process: a) Initial Student
 259 Review: A medically trained student manually reviews model- or human-generated annotations,
 260 correcting factual, spelling, and formatting errors, and filling in missing key information. Uncer-
 261 tain cases are discussed with experts. b) Automated Multi-Model Checking: The image, question,
 262 and reasoning steps are validated using GPT-4o. c) Expert Review on Model Flags: Any rea-
 263 soning step flagged as “potentially incorrect” by any model is sent to an expert in the relevant
 264 imaging modality for manual review. d) Consensus Resolution: When experts identify issues, the
 265 involved experts and student reviewers hold brief online or asynchronous discussions to resolve
 266 disagreements. Three such meetings and multiple asynchronous discussions were held. Final
 267 reasoning steps and conclusions are updated based on consensus. e) Final Expert Read-through:
 268 Experts conduct a final pass on each sample to ensure that the image, question, reasoning chain,
 269 and answer are medically correct, consistent, and compliant with benchmark standards.

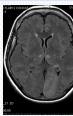
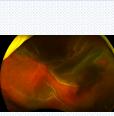
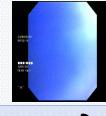
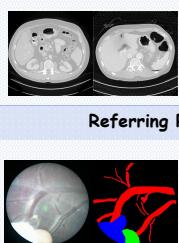
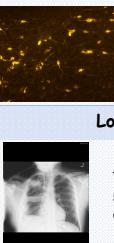
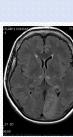
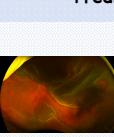
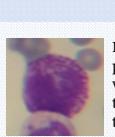
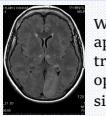
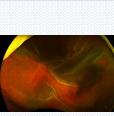
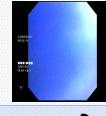
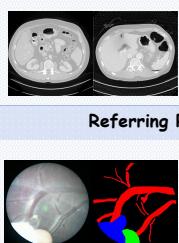
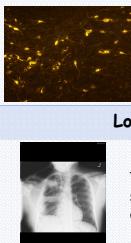
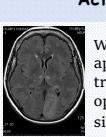
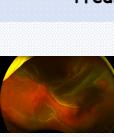
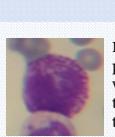
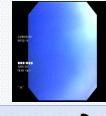
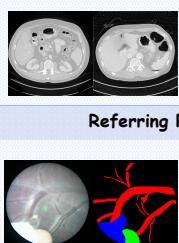
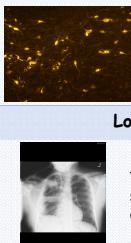
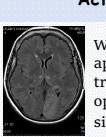
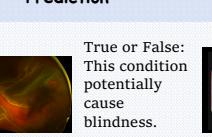
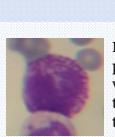
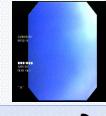
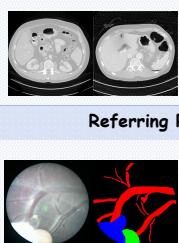
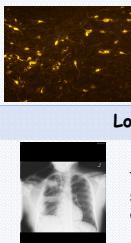
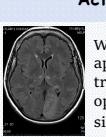
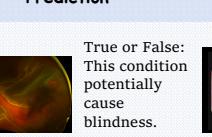
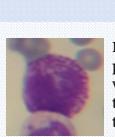
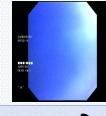
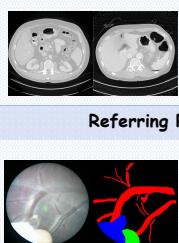
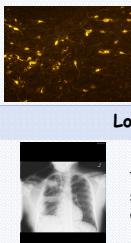
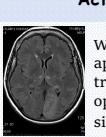
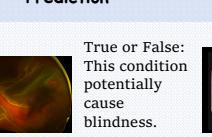
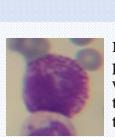
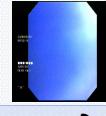
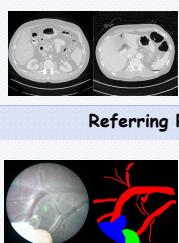
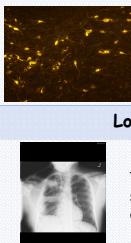
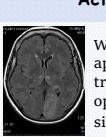
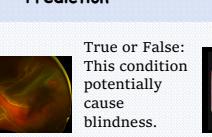
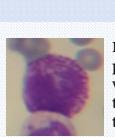
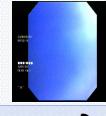
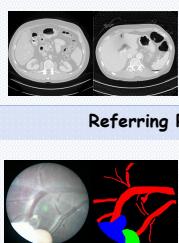
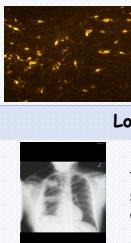
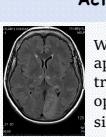
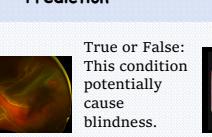
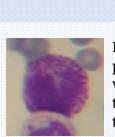
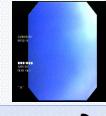
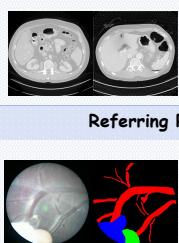
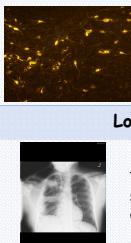
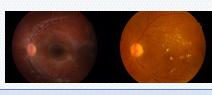
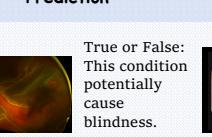
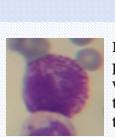
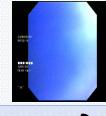
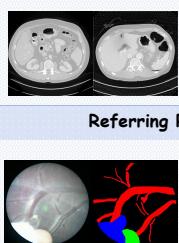
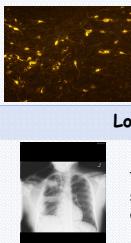
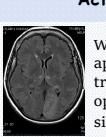
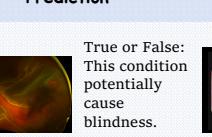
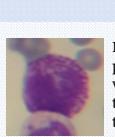
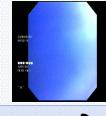
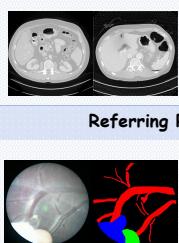
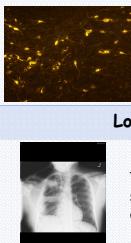
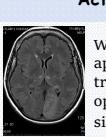
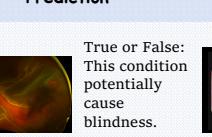
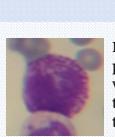
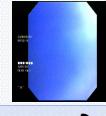
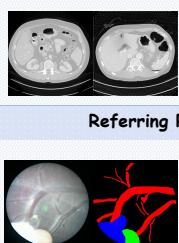
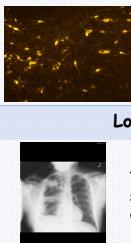
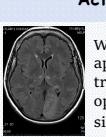
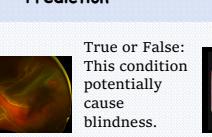
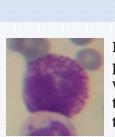
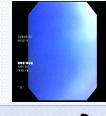
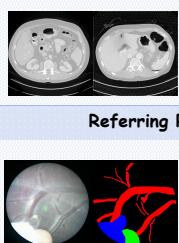
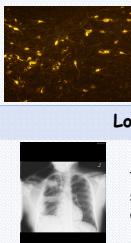
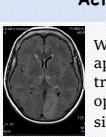
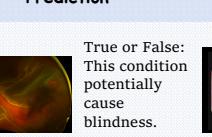
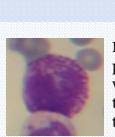
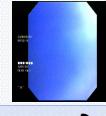
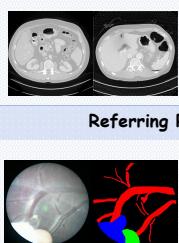
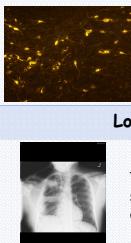
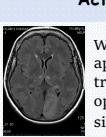
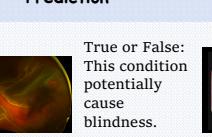
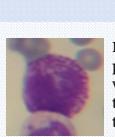
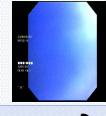
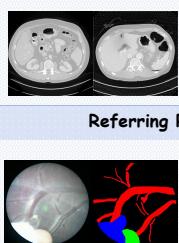
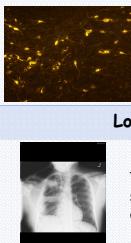
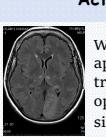
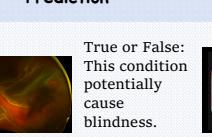
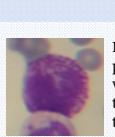
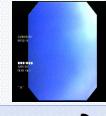
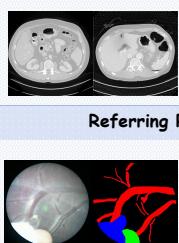
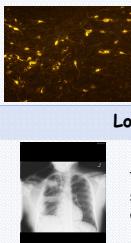
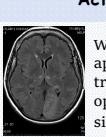
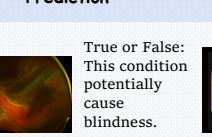
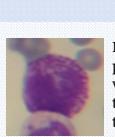
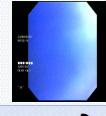
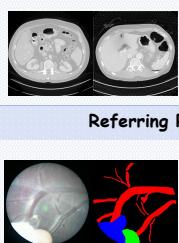
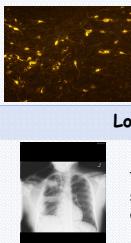
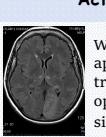
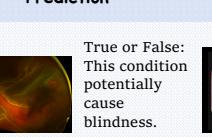
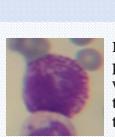
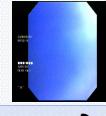
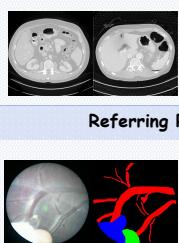
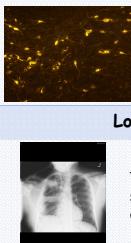
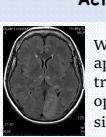
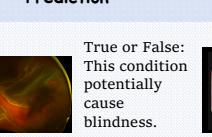
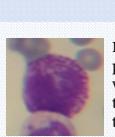
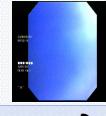
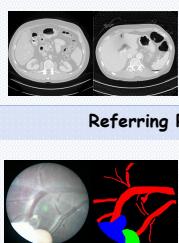
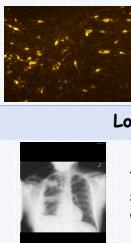
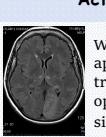
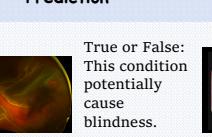
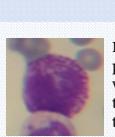
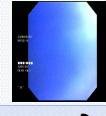
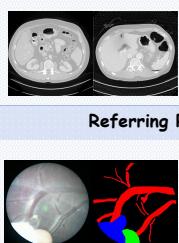
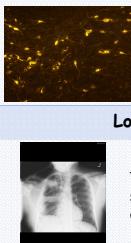
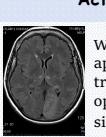
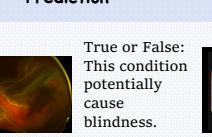
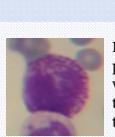
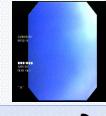
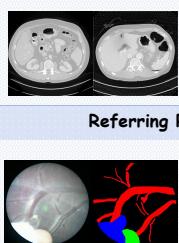
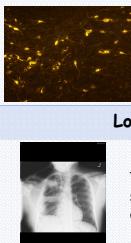
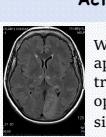
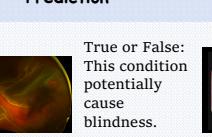
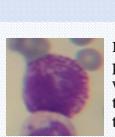
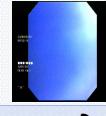
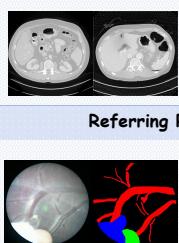
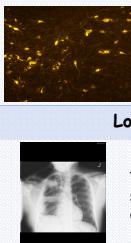
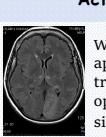
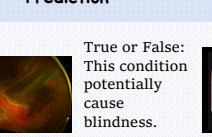
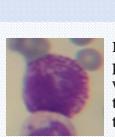
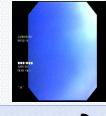
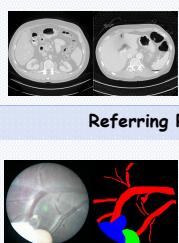
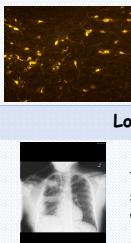
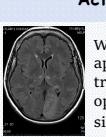
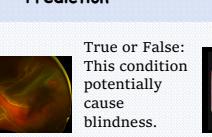
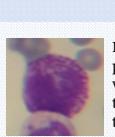
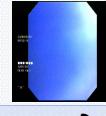
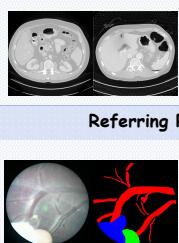
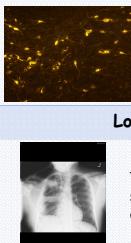
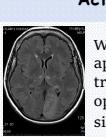
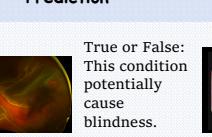
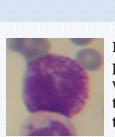
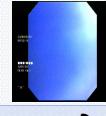
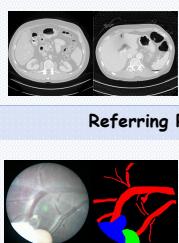
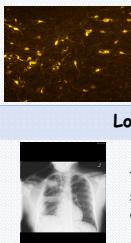
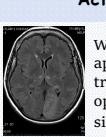
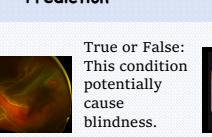
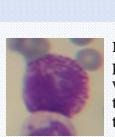
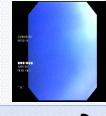
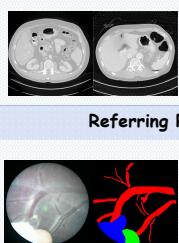
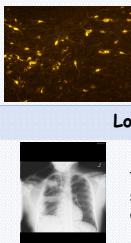
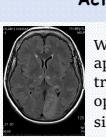
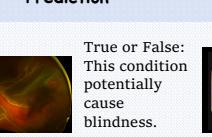
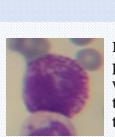
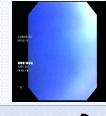
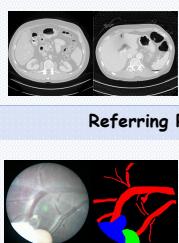
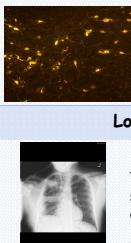
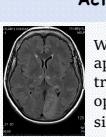
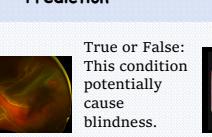
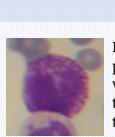
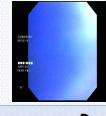
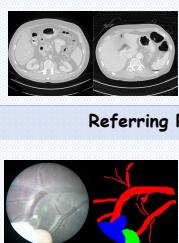
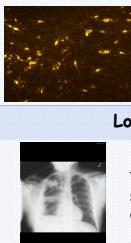
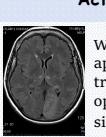
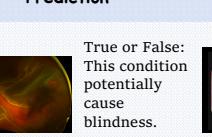
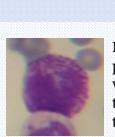
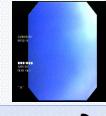
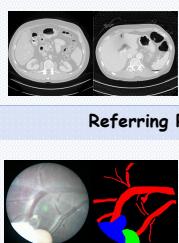
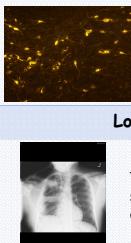
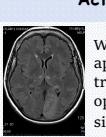
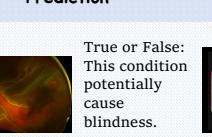
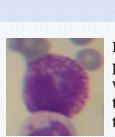
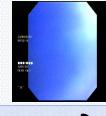
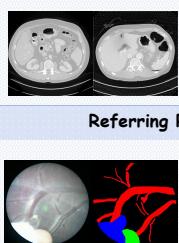
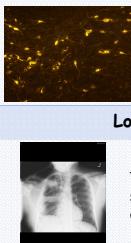
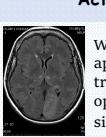
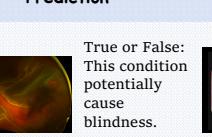
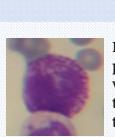
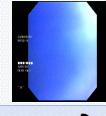
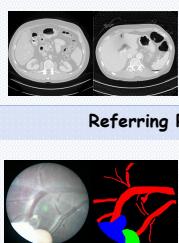
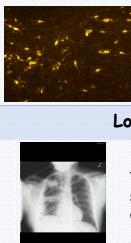
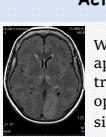
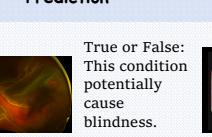
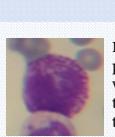
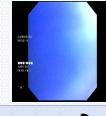
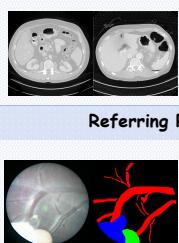
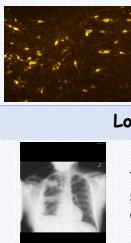
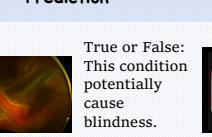
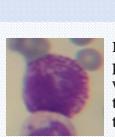
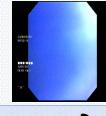
270 3.3 DATA COMPOSITION AND CATEGORIZATION
271272 As shown in Figure 2, M3CoTBench includes diverse image-QA pairs with multiple question formats
273 and task types of varying difficulty. It covers a broad range of imaging modalities across several
274 categories. Tasks span from basic perception to advanced medical reasoning, enabling comprehensive
275 evaluation of MLLMs.276 **QA Types.** We include four question formats: single-choice, multiple-choice, true/false (judgment),
277 and short-answer, spanning 13 task types with varying difficulty levels.
278279 **Examination Types.** The dataset encompasses 24 imaging modalities and examination methods,
280 which can be organized into six major categories: ophthalmic imaging, radiology, endoscopy, mi-
281 croscopy, ultrasound-based examinations, and surface-level inspections. Representative modalities
282 within these categories include slit lamp photography (SLP), fundus photography (FP), optical co-
283 herence tomography (OCT), optical coherence tomography angiography (OCTA), scanning laser
284 ophthalmoscopy (SLO), fundus fluorescein angiography (FFA), X-ray, computed tomography (CT),
285 magnetic resonance imaging (MRI), ultrasound (US), infrared reflectance (IR), nuclear medicine,
286 fetoscopy, laparoscopy, colonoscopy, gastroscopy, capsule endoscopy, bronchoscopy, ENT endoscopy,
287 cytology, fluorescence microscopy, dermoscopy, and intraoral examination.288 **Task Types.** To thoroughly assess the reasoning ability of MLLMs, we design questions spanning a
289 broad spectrum of clinical tasks, including: Examination Type, Image Quality, Recognition, Referring
290 Recognition, Localization, Diagnosis, Grading, Prediction, Function, Symptom, Counting, Cause,
291 and Action. These categories range from low-level perception tasks (e.g. assessing image quality)
292 to high-level clinical reasoning (e.g. identifying causal factors or suggesting next actions). Such
293 a taxonomy is constructed to test MLLMs’ ability to bridge the gap between visual perception
294 and domain knowledge reasoning, challenging both their vision-language alignment and medical
understanding. Some example image-question pairs can be seen in Figure 3.295 Table 1: Criterion comparison for current benchmarks. ✓: Satisfied. ✗: Unsatisfied.
296

297 Dataset	#Img/#QA	Exam. Type	Task	Question Type	CoT Annotation	Eval. Dimension			
						298 Corr.	299 Imp.	300 Eff.	301 Cons.
VQA-RAD (Lau et al., 2018)	315 / 3515	3	8	2	✗	✓	✗	✗	✗
SLAKE (Liu et al., 2021)	642 / 14028	3	10	2	✗	✓	✗	✗	✗
Quilt-VQA (Seyfioglu et al., 2024)	985 / 1283	2	5	2	✗	✓	✗	✗	✗
OmniMedVQA (Hu et al., 2024)	118010 / 127995	12 [†]	5	1	✗	✓	✗	✗	✗
GMAI-MMBench (Ye et al., 2024)	- / 25831	38 [†]	6	1	✗	✓	✗	✗	✗
M3CoTBench	1079 / 1079	24	13	4	✓	✓	✓	✓	✓

302 [†] The way of classifying modalities differs from this paper.
303304 4 EVALUATION SUITE OF M3COTBENCH
305306 We evaluate CoT reasoning based on four aspects: correctness, efficiency, impact, and consistency.
307 Here, correctness measures whether the generated reasoning steps are accurate; efficiency reflects the
308 additional inference time introduced by reasoning; impact quantifies the overall effect of reasoning on
309 answer accuracy compared to direct prediction without reasoning; and consistency assesses whether
310 similar tasks tend to follow similar reasoning paths.
311312 **Evaluation of Reasoning Correctness.** To comprehensively evaluate the accuracy of the model’s
313 reasoning steps, we quantify the alignment between the generated reasoning sequence and expert-
314 annotated reasoning paths. Specifically, we compute the following metrics:
315

316
$$\text{Avg Precision} = 1/N \sum_{i=1}^N |\mathcal{R}^{(i)} \cap \mathcal{A}_{k^*}^{(i)}| / |\mathcal{R}^{(i)}|, \text{ Avg Recall} = 1/N \sum_{i=1}^N |\mathcal{R}^{(i)} \cap \mathcal{A}_{k^*}^{(i)}| / |\mathcal{A}_{k^*}^{(i)}|. \quad (1)$$
 317
318

319 Here, \mathcal{R} denotes the set of reasoning steps generated by the model, and $\{\mathcal{A}_k\}$ represents all annotated
320 gold reasoning paths for a given question. Since multiple valid reference paths may exist, we choose
321 the reference \mathcal{A}_{k^*} with the highest overlap with \mathcal{R} . Precision measures the proportion of model-
322 generated steps that are correct, while recall quantifies the coverage of reference reasoning steps. The
323 F1 score is used to combine both aspects to provide a holistic evaluation of CoT correctness.
324

324	Examination Type	Image Quality	Counting
325	What is this procedure in the image?	True or False: The image on the left is of higher quality than the one on the right.	How many cells are there in this image?
326	Recognition	Referring Recognition	Localization
327	Which category does this image most likely belong to?	...What does the red region in the right image represent in the left image?	Where is the subcutaneous air collection?
328	Diagnosis	Grading	Symptom
329	What is the correct diagnosis based on this image?	True or False: The retinopathy in the left image is more severe than in the right image.	Which of the following symptoms is this patient most likely to experience?
330	Action	Prediction	Function
331	What are appropriate treatment options for this situation?	True or False: This condition potentially cause blindness.	During defense against parasitic infections, by which mechanism do this type of cells assist the immune response?
332			
333			
334			
335			
336			
337			
338			
339			
340			
341			
342			
343			
344			
345			
346			
347			
348			
349			
350			
351			
352			
353			
354			
355			
356			
357			
358			
359			
360			
361			
362			
363			
364			
365			
366			
367			
368			
369			
370			
371			
372			
373			
374			
375			
376			
377			
378			
379			
380			
381			
382			
383			
384			
385			
386			
387			
388			
389			
390			
391			
392			
393			
394			
395			
396			
397			
398			
399			
400			
401			
402			
403			
404			
405			
406			
407			
408			
409			
410			
411			
412			
413			
414			
415			
416			
417			
418			
419			
420			
421			
422			
423			
424			
425			
426			
427		<img alt="Anatomical diagram of a	

378 categories (e.g. *modality, feature, diagnosis, additional analysis*). To evaluate path consistency, we
 379 first select the reference path by maximizing its average similarity with all generated paths:
 380

$$381 \quad P^{(t)} = \arg \max_P \sum_{i=1}^N \text{sim}(P, P_i^{(t)}), \quad (3)$$

$$384 \quad \text{sim}(P, P_i^{(t)}) = |\text{LCS}(P, P_i^{(t)})| / \max(|P|, |P_i^{(t)}|). \quad (4)$$

385 The task-level consistency score is then defined as the average similarity between each path and the
 386 canonical reference:
 387

$$388 \quad C_{\text{path}}^{(t)} = 1/N \sum_{i=1}^N \text{sim}(P^{(t)}, P_i^{(t)}). \quad (5)$$

391 Average score over all tasks: $C_{\text{path}} = 1/M \sum_{t=1}^M C_{\text{path}}^{(t)}$, where $M = 13$. A higher $C_{\text{path}} \in [0, 1]$
 392 indicates that the model has strong structural stability in its CoT.
 393

394 5 EXPERIMENTS

395 5.1 EXPERIMENT SETUP

396 **Evaluation Models.** We select top-performing MLLMs for comprehensive CoT evaluation. We
 397 test models such as LLaVA-OneVision(7B) (Li et al., 2024), Qwen2.5-VL (7B, 72B) (Bai et al.,
 398 2025), Llama-3.2-Vision-Instruct(11B, 90B) (Meta AI, 2024), which are not trained for the reasoning
 399 capability. We also include closed-source GPT-4o (OpenAI, 2024a) and Gemini 2.5 Pro (Google
 400 DeepMind, 2024) as a strong baseline model. Besides, we test recent models targeting reasoning like
 401 LLaVA-CoT (11B) (Xu et al., 2024a). Finally, we evaluate some models specifically designed for the
 402 medical domain, like LLaVA-Med (7B) (Li et al., 2023), HuatuoGPT-Vision-7B-Qwen2.5VL (Chen
 403 et al., 2024a) and HealthGPT (Lin et al., 2025).
 404

405 **Implementation Details.** We define the CoT prompt as: *Please generate a step-by-step answer,
 406 including all intermediate reasoning steps, and provide the final answer at the end.* The direct
 407 prompt is defined as: *Please directly provide the final answer without any additional output.* For
 408 all experiments, the batch size is set to 1 to ensure independent processing of each sample, and the
 409 temperature is uniformly set to 0.1. For evaluation, we use GPT-4o for all assessment criteria. All
 410 local inference experiments were conducted on a server with NVIDIA H20 GPUs. APIs are used for
 411 closed-source MLLMs, Qwen2.5-VL-Instruct, and Llama-3.2-Vision series.
 412

414 5.2 QUANTITATIVE RESULTS

415 The experimental results can be seen in Table 2, from which there are some interesting findings:
 416

417 **Correctness.** LLaVA-CoT exhibits relatively strong performance under the CoT setting, likely
 418 due to its architecture and training process, which emphasize structured reasoning chains while
 419 minimizing irrelevant or misleading steps. This design helps preserve accuracy and suggests that
 420 CoT effectiveness depends not only on prompt structure but also on a model’s inherent ability to
 421 generate reliable intermediate reasoning. In contrast, medical-specific models such as LLaVA-Med
 422 and HuatuoGPT-Vision show much lower correctness scores, indicating limitations in generalizing
 423 to complex reasoning tasks beyond domain-specific patterns. Importantly, the correctness of CoT
 424 reasoning is closely tied to overall performance: aside from LLaVA-Med, which performs poorly
 425 even without CoT, models producing high-accuracy CoT tend to suffer less degradation when CoT
 426 is applied. This implies that effective CoT designs can improve medical image understanding and
 427 reasoning by enhancing the model’s ability to structure and verify intermediate steps.
 428

429 **Efficiency.** After introducing step-by-step reasoning prompts, models show markedly different
 430 latency behaviors. LLaVA-CoT, the only open-source model explicitly optimized for CoT reasoning,
 431 experiences minimal additional delay. Some closed-source models show moderate, acceptable latency
 432 increases due to a few extra decoding steps. In contrast, Qwen2.5-VL-7B-Instruct, experiences a
 433 substantial increase in latency, likely due to repeated processing of visual inputs and the lack of

432
 433 Table 2: **M3CoTBench results for MLLMs.** $\uparrow(\downarrow)$: the higher(lower) the better. $F1, P, R$: the aver-
 434 age of F1 score(%), Precision(%), and Recall(%). Acc_{direct} and Acc_{step} : accuracy(%) of generated
 435 answers by directly and CoT. I, E, L , and C_{path} : Impact, Efficiency, Latency, and Consistency score,
 436 respectively. Optimal / sub-optimal results are highlighted in **bold** / underline.

437 Model	438 Correctness			439 Impact		440 Efficiency		441 Consistency	
	442 $F1(\uparrow)$	443 $P(\uparrow)$	444 $R(\uparrow)$	445 Acc_{step}	446 Acc_{direct}	447 $I(\uparrow)$	448 $E(\uparrow)$	449 $L(\downarrow)$	450 $C_{path}(\uparrow)$
<i>Open-source MLLMs</i>									
LLaVA-OV-7B (Li et al., 2024)	39.95	39.33	40.60	34.85	41.80	-6.95	16.36	11.06	0.783
LLaVA-CoT (11B) (Xu et al., 2024a)	61.27	71.36	53.68	40.59	40.69	-0.10	<u>22.38</u>	<u>1.35</u>	0.630
Qwen2.5-VL-7B-Instruct (Bai et al., 2025)	41.92	37.06	48.26	35.13	43.93	-8.80	18.85	15.45	0.822
Qwen2.5-VL-72B-Instruct (Bai et al., 2025)	50.03	44.58	57.01	46.25	55.24	-8.99	13.55	7.76	0.853
Llama-3.2-11B-Vision (Meta AI, 2024)	36.97	32.34	43.14	39.85	44.21	-4.36	13.97	<u>1.13[†]</u>	0.823
Llama-3.2-90B-Vision (Meta AI, 2024)	47.72	39.26	47.72	42.63	51.81	-9.18	11.95	5.30	0.811
<i>Closed-source MLLMs</i>									
Gemini 2.5 Pro (Google DeepMind, 2024)	57.08	46.53	73.82	57.10	58.60	-1.50	9.95	1.68	0.835
Claude-Sonnet-4 (Anthropic, 2024)	56.31	<u>52.09</u>	61.28	45.06	46.34	-1.28	17.01	2.68	0.871
GPT-4o (OpenAI, 2024a)	54.46	50.70	58.84	49.85	52.64	-2.79	13.32	5.81	0.834
GPT-4.1 (OpenAI, 2023)	54.41	45.26	<u>68.21</u>	<u>54.82</u>	<u>55.82</u>	-1.00	19.53	4.88	<u>0.863</u>
<i>Medical MLLMs</i>									
LLaVA-Med(7B) (Li et al., 2023)	31.85	37.98	27.43	27.99	28.36	<u>-0.37</u>	37.68	2.67	0.660
HuatuoGPT-Vision-7B (Chen et al., 2024a)	33.70	32.34	35.19	33.64	43.47	<u>-9.83</u>	15.21	20.97	0.833
HealthGPT(3.8B) (Lin et al., 2025)	53.79	53.21	54.38	41.24	43.93	<u>-2.69</u>	16.82	8.33	0.578

451 [†] Due to issues related to the API, the inference speed of Llama-3.2-11B-Vision is particularly slow.

452
 453 embedding caching. HuatuoGPT-Vision-7B-Qwen2.5 exhibits the largest slowdown, likely because
 454 each reasoning step redundantly triggers the full vision-language pipeline. Overall, explicit CoT
 455 support and visual embedding reuse emerge as key factors for efficient CoT execution.

456 **Impact.** In this accuracy comparison, closed-source models generally outperform their open-source
 457 counterparts, with Gemini 2.5 Pro and GPT-4.1 achieving the highest scores. Among open-source
 458 systems, Qwen2.5-VL-72B-Instruct stands out, delivering performance close to proprietary models.
 459 Most medical-specific models lag behind, reflecting limited generalization in complex medical reason-
 460 ing tasks. Notably, CoT prompting fails to yield consistent gains in medical image understanding and
 461 can even slightly reduce precision, likely because it introduces unnecessary or misleading reasoning
 462 steps in domains where diagnostic decisions depend more on visual cues than logical inference. The
 463 problem is especially pronounced when medical models lack robust multimodal grounding, and
 464 CoT may further raise hallucination risk or distract attention from critical features, as recently noted
 465 in (Li et al., 2025). Some prior studies have discussed this phenomenon. (Mishra & Thakkar, 2023)
 466 points out that CoT is highly sensitive, and unreasonable reasoning chains may substantially degrade
 467 performance. The effects of CoT in (Jiang et al., 2025) are measured: most perception tasks showed
 468 decreased performance, while about half of the reasoning tasks declined. In some open-ended medical
 469 VQA tasks, enabling CoT in Gemini-2.5-Flash resulted in worse performance than non-CoT mode,
 470 with a drop of 1.28% (Hong et al., 2025). Interestingly, LLaVA-CoT shows the smallest accuracy
 471 drop with CoT, likely due to its reasoning design that avoids irrelevant steps, while closed-source
 472 models remain stable thanks to stronger multimodal fusion and richer training data. Making CoT
 473 genuinely effective for medical image understanding remains an open challenge.

474 **Consistency.** Apart from models like LLaVA-CoT, LLaVA-Med, and HealthGPT, most models show
 475 relatively high consistency, following similar reasoning paths on the same tasks. Closed-source
 476 models are particularly consistent, likely due to larger, carefully curated datasets, rigorous fine-tuning,
 477 and strict output and reasoning protocols. These factors help ensure their outputs are accurate, stable,
 478 and repeatable, reducing variability in intermediate steps and final answers, which is especially
 479 important in high-stakes medical tasks.

480 5.3 QUALITATIVE ANALYSIS

481
 482 By analysis of model outputs with errors, systematic errors are emerging within the intermediate steps
 483 in CoT rather than merely at the final prediction. For example, in the pathology question the CoT
 484 output misclassified the case as *Dysplasia* even though the early reasoning correctly noted “cellular
 485 atypia”, but then failed to verify the key criterion of “full-thickness epithelial involvement with an
 486 intact basement membrane”. Such qualitative inspection highlights three factors:

486 1. **Incomplete verification of decisive diagnostic features.** Although the CoT reasoning often
 487 identified some relevant abnormalities, it frequently omitted or misweighted critical criteria, such
 488 as the extent of epithelial involvement in the pathology case, thereby allowing early misreadings
 489 to dominate the conclusion and persist through the subsequent steps.

490 2. **Weakened vision-language grounding during step-wise verbalization.** By forcing the model
 491 to translate visual cues into descriptive textual representations before decision-making, CoT
 492 increased the risk of information distortion, subtle semantic drift, and gradual loss of fine visual
 493 detail. In the hematology example, this intermediate translation process led to an inaccurate
 494 verbal focus on nuclear shape while neglecting the defining cytoplasmic granules, their relative
 495 prominence, and characteristic spatial distribution.

496 3. **Error accumulation along the reasoning chain.** Once an early descriptive mistake occurred,
 497 subsequent steps propagated and rationalized the error, producing a seemingly coherent but
 498 ultimately incorrect explanation that became harder to override with additional context.

500 These observations indicate that the degradation under CoT reflects deeper vulnerabilities in how
 501 visual evidence is interpreted and verified across multiple reasoning stages. Representative examples
 502 and detailed error analyses are provided in Appendix D.2.

504 6 CONCLUSION

506 In this work, we introduce M3CoTBench, a novel benchmark designed to evaluate CoT reasoning in
 507 MLLMs for medicine. Our benchmark addresses the critical gap between answer correctness and
 508 reasoning quality in clinical AI systems by incorporating diverse imaging modalities or examination
 509 types, step-by-step reasoning annotations, and tailored multi-dimensional evaluation metrics across
 510 medical cases of varying difficulty, from simple pattern recognition to complex diagnostic reasoning,
 511 enabling fine-grained analysis of model capabilities. Through comprehensive assessments of state-
 512 of-the-art MLLMs, we demonstrate limitations of existing models in generating interpretable and
 513 clinically aligned reasoning. We hope this benchmark will inspire future research toward more
 514 transparent, trustworthy, and practically valuable AI systems for healthcare and beyond. More
 515 discussions about limitations and social impact can be seen in Appendix E and Appendix F.

516 ETHICS STATEMENT

519 We have ensured that our study and dataset construction follow ethical standards, with no direct
 520 involvement of human subjects, and no foreseeable risk of harm. Data usage complies with privacy
 521 and legal requirements, and we have aimed to mitigate potential biases in annotations and model
 522 evaluation. We disclose no conflicts of interest or sponsorship that could influence the results.

524 REPRODUCIBILITY STATEMENT

526 We have already elaborated on all the models or algorithms proposed, experimental configurations,
 527 and benchmarks used in the experiments in the main body or appendix of this paper. Furthermore, we
 528 declare that the entire code used in this work will be released after acceptance.

530 REFERENCES

532 Covid-19 lung ct scans. <https://www.kaggle.com/datasets/luisblanche/covidct/data>, 2020.

533 Entrep challenge: Advancing vision-language ai for ent endoscopy analysis, 2025. URL <https://aichallenge.hcmus.edu.vn/acm-mm-2025/entrep>.

536 Maruf Adewole, Jeffrey D. Rudie, Anu Gbadamosi, Oluyemisi Toyobo, Confidence Raymond,
 537 Dong Zhang, Olubukola Omidiji, Rachel Akinola, Mohammad Abba Suwaid, Adaobi Emegoakor,
 538 Nancy Ojo, Kenneth Aguh, Chinasa Kalaiwo, Gabriel Babatunde, Afolabi Ogunleye, Yewande
 539 Gbadamosi, Kator Iorpagher, Evan Calabrese, Mariam Aboian, Marius Linguraru, Jake Albrecht,
 Benedikt Wiestler, Florian Kofler, Anastasia Janas, Dominic LaBella, Anahita Fathi Kzeroonni,

540 Hongwei Bran Li, Juan Eugenio Iglesias, Keyvan Farahani, James Eddy, Timothy Bergquist,
 541 Verena Chung, Russell Takeshi Shinohara, Walter Wiggins, Zachary Reitman, Chunhao Wang,
 542 Xinyang Liu, Zhifan Jiang, Ariana Familiar, Koen Van Leemput, Christina Lukas, Maire Piraud,
 543 Gian-Marco Conte, Elaine Johansson, Zeke Meier, Bjoern H Menze, Ujjwal Baid, Spyridon Bakas,
 544 Farouk Dako, Abiodun Fatai, and Uduanna C Anazodo. The brain tumor segmentation (brats)
 545 challenge 2023: Glioma segmentation in sub-saharan africa patient population (brats-africa), 2023.

546 Moulay A. Akhloufi and Mohamed Chetoui. Chest XR COVID-19 detection. <https://cxr-covid19.grand-challenge.org/>, August 2021. Online; accessed September 2021.

547 Walid Al-Dhabayani, Mohammed Gomaa, Hussien Khaled, and Aly Fahmy. Dataset of breast
 548 ultrasound images. *Data in brief*, 28:104863, 2020.

549 Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
 550 Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language
 551 model for few-shot learning. *Advances in neural information processing systems*, 35:23716–23736,
 552 2022.

553 Shams Nafisa Ali, Md. Tazuddin Ahmed, Tasnim Jahan, Joydip Paul, S. M. Sakeef Sani, Nawshaba
 554 Noor, Anzirun Nahar Asma, and Taufiq Hasan. A web-based mpox skin lesion detection sys-
 555 tem using state-of-the-art deep learning models considering racial diversity. *Biomedical Signal
 556 Processing and Control*, 98:106742, 2024.

557 Max Allan, Alex Shvets, Thomas Kurmann, Zichen Zhang, Rahul Duggal, Yun-Hsuan Su, Nicola
 558 Rieke, Iro Laina, Niveditha Kalavakonda, Sebastian Bodenstedt, et al. 2017 robotic instrument
 559 segmentation challenge. *arXiv preprint arXiv:1902.06426*, 2019.

560 Anthropic. Claude sonnet 4. <https://www.anthropic.com/index/clause>, 2024. Large Language Model.

561 Guilherme Aresta, Teresa Araújo, Scotty Kwok, Sai Saketh Chennamsetty, Mohammed Safwan,
 562 et al. Bach: Grand challenge on breast cancer histology images. *Medical Image Analysis*,
 563 56:122–139, August 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.05.010. URL <http://dx.doi.org/10.1016/j.media.2019.05.010>.

564 Joseph Arvai. Thinking, fast and slow, daniel kahneman, farrar, straus & giroux, 2013.

565 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
 566 Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
 567 Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
 568 Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-v1 technical report. *arXiv
 569 preprint arXiv:2502.13923*, 2025.

570 Sophia Bano, Francisco Vasconcelos, Luke M Shepherd, Emmanuel Vander Poorten, Tom Vercauteren,
 571 Sebastien Ourselin, Anna L David, Jan Deprest, and Danail Stoyanov. Deep placental vessel
 572 segmentation for fetoscopic mosaicking. In *Medical Image Computing and Computer Assisted
 573 Intervention—MICCAI 2020: 23rd International Conference, Lima, Peru, October 4–8, 2020,
 574 Proceedings, Part III* 23, pp. 763–773. Springer, 2020.

575 Sophia Bano, Alessandro Casella, Francisco Vasconcelos, Sara Moccia, George Attilakos, Ruwan
 576 Wimalasundera, Anna L David, Dario Paladini, Jan Deprest, Elena De Momi, et al. Fetreg:
 577 Placental vessel segmentation and registration in fetoscopy challenge dataset. *arXiv preprint
 578 arXiv:2106.05923*, 2021.

579 Asma Ben Abacha, Sadid A. Hasan, Vivek V. Datla, Joey Liu, Dina Demner-Fushman, and Henning
 580 Müller. Vqa-med: Overview of the medical visual question answering task at imageclef 2019. In
 581 *Working Notes of CLEF 2019*, volume 2380 of *CEUR Workshop Proceedings*, Lugano, Switzerland,
 582 September 9–12 2019. CEUR-WS.org. URL https://ceur-ws.org/Vol-2380/paper_272.pdf.

583 Sartaj Bhuvaji, Ankita Kadam, Prajakta Bhumkar, and Sameer Dedge. Brain tumor classification
 584 (mri). <https://www.kaggle.com/datasets/sartajbhuvaji/brain-tumor-classification-mri>, 2020.

594 Federico Bolelli, Luca Lumetti, Shankeeth Vinayahalingam, Mattia Di Bartolomeo, Arrigo Pellacani,
 595 et al. Segmenting the Inferior Alveolar Canal in CBCTs Volumes: the ToothFairy Challenge.
 596 *IEEE Transactions on Medical Imaging*, pp. 1–17, Dec 2024. ISSN 1558-254X. doi: <https://doi.org/10.1109/TMI.2024.3523096>.

598 Mateusz Buda, Ashirbani Saha, and Maciej A Mazurowski. Association of genomic subtypes of
 599 lower-grade gliomas with shape features automatically extracted by a deep learning algorithm.
 600 *Computers in biology and medicine*, 109:218–225, 2019.

602 Junying Chen, Ruyi Ouyang, Anningzhe Gao, Shunian Chen, Guiming Hardy Chen, Xidong Wang,
 603 Ruifei Zhang, Zhenyang Cai, Ke Ji, Guangjun Yu, Xiang Wan, and Benyou Wang. Huatuogpt-
 604 vision, towards injecting medical visual knowledge into multimodal llms at scale, 2024a. URL
 605 <https://arxiv.org/abs/2406.19280>.

606 Qiguang Chen, Libo Qin, Jin Zhang, Zhi Chen, Xiao Xu, and Wanxiang Che. M3cot: A novel
 607 benchmark for multi-domain multi-step multi-modal chain-of-thought. In *Proceedings of the 62nd*
 608 *Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp.
 609 8199–8221, 2024b.

610 Zhe Chen, Jiannan Wu, Wenhui Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
 611 Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning
 612 for generic visual-linguistic tasks. In *Proceedings of the IEEE/CVF Conference on Computer*
 613 *Vision and Pattern Recognition*, pp. 24185–24198, 2024c.

615 Zhiui Cheng, Qiguang Chen, Jin Zhang, Hao Fei, Xiaocheng Feng, Wanxiang Che, Min Li, and Libo
 616 Qin. Comt: A novel benchmark for chain of multi-modal thought on large vision-language models.
 617 In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 23678–23686,
 618 2025.

619 Zheng Chu, Jingchang Chen, Qianglong Chen, Weijiang Yu, Tao He, Haotian Wang, Weihua Peng,
 620 Ming Liu, Bing Qin, and Ting Liu. Navigate through enigmatic labyrinth a survey of chain of
 621 thought reasoning: Advances, frontiers and future. In *ACL*, 2024.

622 Marco Cipriano, Stefano Allegretti, Federico Bolelli, Federico Pollastri, and Costantino Grana.
 623 Improving Segmentation of the Inferior Alveolar Nerve through Deep Label Propagation. In
 624 *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 21105–21114.
 625 IEEE, Jun 2022. ISBN 978-1-6654-6947-0. doi: <https://doi.org/10.1109/CVPR52688.2022.02046>.

627 Noel Codella, Veronica Rotemberg, Philipp Tschndl, M Emre Celebi, Stephen Dusza, David
 628 Gutman, Brian Helba, Aadi Kalloo, Konstantinos Liopyris, Michael Marchetti, et al. Skin lesion
 629 analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging
 630 collaboration (isic). *arXiv preprint arXiv:1902.03368*, 2019.

631 DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
 632 Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
 633 Zhibin Gou, Zhihong Shao, Zhushu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
 634 Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
 635 Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
 636 Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
 637 Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiaoshi Li, Jiawei Wang, Jingchang
 638 Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
 639 Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
 640 Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
 641 Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
 642 Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
 643 Jin, Ruyi Chen, Shanghai Lu, Shangyan Zhou, Shanhua Chen, Shengfeng Ye, Shiyu Wang,
 644 Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng
 645 Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng
 646 Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
 647 Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang,
 Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen,
 Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li,

648 Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang,
 649 Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan,
 650 Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia
 651 He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
 652 Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,
 653 Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang,
 654 Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
 655 Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen
 656 Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025.
 657 URL <https://arxiv.org/abs/2501.12948>.

658 Jianning Deng, Peize Li, Kevin Dhaliwal, Chris Xiaoxuan Lu, and Mohsen Khadem. Feature-based
 659 visual odometry for bronchoscopy: A dataset and benchmark. In *2023 IEEE/RSJ International
 660 Conference on Intelligent Robots and Systems (IROS)*, pp. 6557–6564. IEEE, 2023.

661 Simon Duchesne, Isabelle Chouinard, Olivier Potvin, Vladimir S Fonov, April Khademi, Robert
 662 Bartha, Pierre Bellec, D Louis Collins, Maxime Descoteaux, Rick Hoge, et al. The canadian
 663 dementia imaging protocol: harmonizing national cohorts. *Journal of Magnetic Resonance Imaging*,
 664 49(2):456–465, 2019.

665 Arthur S Elstein, Lee S Shulman, and Sarah A Sprafka. *Medical problem solving: An analysis of
 666 clinical reasoning*. Harvard University Press, 1978.

667 Mohammad Fraiwan, Ziad Audat, Luay Fraiwan, and Tarek Manasreh. Using deep transfer learning
 668 to detect scoliosis and spondylolisthesis from x-ray images. *Plos one*, 17(5):e0267851, 2022.

669 Wilfrido Gómez-Flores, Maria Julia Gregorio-Calas, and Wagner Coelho de Albuquerque Pereira.
 670 Bus-bra: a breast ultrasound dataset for assessing computer-aided diagnosis systems. *Medical
 671 Physics*, 51(4):3110–3123, 2024.

672 Google DeepMind. Gemini 2.5 pro. <https://deepmind.google/technologies/gemini/>, 2024. Accessed:
 673 May 2025.

674 Shivanand Gornale and Pooja Patravali. Digital knee x-ray images. *Mendeley Data*, 1, 2020.

675 Hayden Gunraj, Chi en Amy Tai, and Alexander Wong. Cancer-net pca-data: An open-source
 676 benchmark dataset for prostate cancer clinical decision support using synthetic correlated diffusion
 677 imaging data. *NeurIPS Workshops*, 2023.

678 Palak Handa, Amirreza Mahbod, Florian Schwarzhans, Ramona Woitek, Nidhi Goel, Manas Dhir,
 679 Deepti Chhabra, Shreshtha Jha, Pallavi Sharma, Vijay Thakur, Simarpreet Singh Chawla, Deepak
 680 Gunjan, Jagadeesh Kakarla, and Balasubramanian Raman. Capsule vision 2024 challenge: Multi-
 681 class abnormality classification for video capsule endoscopy, 2025. URL <https://arxiv.org/abs/2408.04940>.

682 Ali Hatamizadeh. *An Artificial Intelligence Framework for the Automated Segmentation and Quanti-
 683 tative Analysis of Retinal Vasculature*. University of California, Los Angeles, 2020.

684 Ali Hatamizadeh, Hamid Hosseini, Niraj Patel, Jinseo Choi, Cameron C Pole, Cory M Hoeferlin,
 685 Steven D Schwartz, and Demetri Terzopoulos. Ravir: A dataset and methodology for the semantic
 686 segmentation and quantitative analysis of retinal arteries and veins in infrared reflectance imaging.
 687 *IEEE Journal of Biomedical and Health Informatics*, 26(7):3272–3283, 2022.

688 Xuehai He, Yichen Zhang, Luntian Mou, Eric Xing, and Pengtao Xie. Pathvqa: 30000+ questions for
 689 medical visual question answering. *arXiv preprint arXiv:2003.10286*, 2020.

690 Steven A. Hicks, Andrea Storås, Pål Halvorsen, Thomas de Lange, Michael A. Riegler, and Vajira
 691 Thambawita. Overview of imageclefmedical 2023 – medical visual question answering for
 692 gastrointestinal tract. In *CLEF2023 Working Notes*, CEUR Workshop Proceedings, Thessaloniki,
 693 Greece, September 18-21 2023. CEUR-WS.org.

694 Jindong Hong, Tianjie Chen, Lingjie Luo, Chuanyang Zheng, Ting Xu, Haibao Yu, Jianing Qiu,
 695 Qianzhong Chen, Suning Huang, Yan Xu, et al. Benchmarking the thinking mode of multimodal
 696 large language models in clinical tasks. *arXiv preprint arXiv:2511.03328*, 2025.

702 Yutao Hu, Tianbin Li, Quanfeng Lu, Wenqi Shao, Junjun He, Yu Qiao, and Ping Luo. Omnimedvqa:
 703 A new large-scale comprehensive evaluation benchmark for medical Ivlm. In *Proceedings of the*
 704 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 22170–22183, 2024.

705

706 Md Nazmul Islam, Mehedi Hasan, Md Kabir Hossain, Md Golam Rabiul Alam, Md Zia Uddin, and
 707 Ahmet Soylu. Vision transformer and explainable transfer learning models for auto detection of
 708 kidney cyst, stone and tumor from ct-radiography. *Scientific Reports*, 12(1):11440, 2022.

709

710 Zixi Jia, Jiqiang Liu, Hexiao Li, Qinghua Liu, and Hongbin Gao. Dcot: Dual chain-of-thought
 711 prompting for large multimodal models. In *The 16th Asian Conference on Machine Learning*
 712 *(Conference Track)*, 2024.

713

714 Dongzhi Jiang, Renrui Zhang, Ziyu Guo, Yanwei Li, Yu Qi, Xinyan Chen, Liuhi Wang, Jianhan
 715 Jin, Claire Guo, Shen Yan, et al. Mme-cot: Benchmarking chain-of-thought in large multimodal
 716 models for reasoning quality, robustness, and efficiency. *arXiv preprint arXiv:2502.09621*, 2025.

717

718 Bai Jieyun and Ou ZhanHong. Pubic symphysis-fetal head segmentation and angle of progression,
 April 2023. URL <https://doi.org/10.5281/zenodo.7851339>.

719

720 Jakob Nikolas Kather, Frank Gerrit Zöllner, Francesco Bianconi, Susanne M Melchers, Lothar R
 721 Schad, Timo Gaiser, Alexander Marx, and Cleo-Aron Weis. Collection of textures in colorectal
 722 cancer histology, May 2016. URL <https://doi.org/10.5281/zenodo.53169>.

723

724 Ural Koç, Ebru Akçapınar Sezer, Yaşar Alper Özkar, Yasin Yarbay, Onur Taydaş, Veysel Atilla
 725 Ayyıldız, Hüseyin Alper Kızılıoğlu, Uğur Kesimal, İmran Çankaya, Muhammed Said Beşler, et al.
 726 Artificial intelligence in healthcare competition (teknofest-2021): stroke data set. *The Eurasian
 journal of medicine*, 54(3):248, 2022.

727

728 Zahra Mousavi Kouzehkanan, Sepehr Saghari, Sajad Tavakoli, Peyman Rostami, Mohammadjavad
 729 Abaszadeh, Farzaneh Mirzadeh, Esmaeil Shahabi Satlsar, Maryam Gheidishahran, Fatemeh Gorgi,
 730 Saeed Mohammadi, et al. A large dataset of white blood cells containing cell locations and types,
 along with segmented nuclei and cytoplasm. *Scientific reports*, 12(1):1123, 2022.

731

732 Jason J Lau, Soumya Gayen, Asma Ben Abacha, and Dina Demner-Fushman. A dataset of clinically
 733 generated visual questions and answers about radiology images. *Scientific data*, 5(1):1–10, 2018.

734

735 Wonkyeong Lee, Fabian Wagner, Adrian Galdran, Yongyi Shi, Wenjun Xia, Ge Wang, Xuanqin Mou,
 736 Md Atik Ahamed, Abdullah Al Zubaer Imran, Ji Eun Oh, et al. Low-dose computed tomography
 737 perceptual image quality assessment. *Medical Image Analysis*, 99:103343, 2025.

738

739 Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan
 740 Zhang, Yanwei Li, Ziwei Liu, et al. Llava-onevision: Easy visual task transfer. *arXiv preprint
 arXiv:2408.03326*, 2024.

741

742 Chunyuan Li, Cliff Wong, Sheng Zhang, Naoto Usuyama, Haotian Liu, Jianwei Yang, Tristan
 743 Naumann, Hoifung Poon, and Jianfeng Gao. Llava-med: Training a large language-and-vision
 744 assistant for biomedicine in one day. *Advances in Neural Information Processing Systems*, 36:
 28541–28564, 2023.

745

746 Xiaomin Li, Zhou Yu, Zhiwei Zhang, Xupeng Chen, Ziji Zhang, Yingying Zhuang, Narayanan
 747 Sadagopan, and Anurag Beniwal. When thinking fails: The pitfalls of reasoning for instruction-
 748 following in llms, 2025. URL <https://arxiv.org/abs/2505.11423>.

749

750 Tianwei Lin, Wenqiao Zhang, Sijing Li, Yuqian Yuan, Binhe Yu, Haoyuan Li, Wanggui He, Hao
 751 Jiang, Mengze Li, Xiaohui Song, et al. Healthgpt: A medical large vision-language model for
 752 unifying comprehension and generation via heterogeneous knowledge adaptation. *arXiv preprint
 arXiv:2502.09838*, 2025.

753

754 Bo Liu, Li-Ming Zhan, Li Xu, Lin Ma, Yan Yang, and Xiao-Ming Wu. Slake: A semantically-
 755 labeled knowledge-enhanced dataset for medical visual question answering. In *2021 IEEE 18th
 International Symposium on Biomedical Imaging (ISBI)*, pp. 1650–1654. IEEE, 2021.

756 Jiaxiang Liu, Yuan Wang, Jiawei Du, Joey Zhou, and Zuozhu Liu. Medcot: Medical chain of thought
 757 via hierarchical expert. In *Proceedings of the 2024 Conference on Empirical Methods in Natural
 758 Language Processing*, pp. 17371–17389, 2024a.

759

760 Shengjie Liu, Chuang Zhu, Feng Xu, Xinyu Jia, Zhongyue Shi, and Mulan Jin. Bci: Breast cancer
 761 immunohistochemical image generation through pyramid pix2pix. In *Proceedings of the IEEE/CVF
 762 Conference on Computer Vision and Pattern Recognition (CVPR) Workshops*, pp. 1815–1824, June
 763 2022.

764 Yanzhen Liu, Sutuke Yibulayimu, Yudi Sang, Gang Zhu, Chao Shi, Chendi Liang, Qiyong Cao,
 765 Chunpeng Zhao, Xinbao Wu, and Yu Wang. Preoperative fracture reduction planning for image-
 766 guided pelvic trauma surgery: A comprehensive pipeline with learning. *Medical Image Analysis*,
 767 102:103506, 2025a. ISSN 1361-8415. doi: <https://doi.org/10.1016/j.media.2025.103506>. URL
 768 <https://www.sciencedirect.com/science/article/pii/S1361841525000544>.

769

770 Yanzhen Liu, Sutuke Yibulayimu, Gang Zhu, Chao Shi, Chendi Liang, Chunpeng Zhao, Xinbao Wu,
 771 Yudi Sang, and Yu Wang. Automatic pelvic fracture segmentation: a deep learning approach and
 772 benchmark dataset. *Frontiers in Medicine*, 12:1511487, 2025b.

773

774 Zuyan Liu, Yuhao Dong, Yongming Rao, Jie Zhou, and Jiwen Lu. Chain-of-spot: Interactive reasoning
 775 improves large vision-language models. *arXiv preprint arXiv:2403.12966*, 2024b.

776

777 Shenghan Lou, Jianxin Ji, Xuan Zhang, Huiying Li, Yang Jiang, Menglei Hua, Kexin Chen, Xiaohan
 778 Zheng, Qi Zhang, Peng Han, Lei Cao, and Liuying Wang. Gastric Cancer Histopathology Tissue Im-
 779 age Dataset (GCHTID). 6 2024. doi: 10.6084/m9.figshare.25954813.v1. URL https://figshare.com/articles/dataset/Gastric_Cancer_Histopathology_Tissue_Image_Dataset_GCHTID_25954813.

780

781 Bozhi Luan, Hao Feng, Hong Chen, Yonghui Wang, Wengang Zhou, and Houqiang Li. Textcot: Zoom
 782 in for enhanced multimodal text-rich image understanding. *arXiv preprint arXiv:2404.09797*,
 783 2024.

784

785 Luca Lumetti, Vittorio Pipoli, Federico Bolelli, Elisa Ficarra, and Costantino Grana. Enhancing
 786 Patch-Based Learning for the Segmentation of the Mandibular Canal. *IEEE Access*, pp. 1–12,
 787 2024. ISSN 2169-3536. doi: <https://doi.org/10.1109/ACCESS.2024.3408629>.

788

789 Christian Matek, Sebastian Krappe, Christian Münzenmayer, Torsten Haferlach, and Carsten Marr.
 An expert-annotated dataset of bone marrow cytology in hematologic malignancies. *The Cancer
 Imaging Archive*, 2021a.

790

791 Christian Matek, Sebastian Krappe, Christian Münzenmayer, Torsten Haferlach, and Carsten Marr.
 792 Highly accurate differentiation of bone marrow cell morphologies using deep neural networks
 793 on a large image data set. *Blood, The Journal of the American Society of Hematology*, 138(20):
 794 1917–1927, 2021b.

795

796 Meta AI. Llama-3.2-90b-vision-instruct, September 2024. URL <https://huggingface.co/meta-llama/Llama-3.2-90B-Vision-Instruct>. Accessed: 2025-05-15.

797

798 Aayush Mishra and Karan Thakkar. Stress testing chain-of-thought prompting for large language
 799 models. *arXiv preprint arXiv:2309.16621*, 2023.

800

801 Agata Momot. Common carotid artery ultrasound images. *Mendeley Data*, 2022.

802

803 Anna Montoya, Hasnin, kaggle446, shirzad, Will Cukierski, and yffud. Ultrasound nerve segmenta-
 804 tion. <https://kaggle.com/competitions/ultrasound-nerve-segmentation>, 2016.

805

806 Michael Moor, Qian Huang, Shirley Wu, Michihiro Yasunaga, Yash Dalmia, Jure Leskovec, Cyril
 807 Zakka, Eduardo Pontes Reis, and Pranav Rajpurkar. Med-flamingo: a multimodal medical few-shot
 808 learner. In *Machine Learning for Health (ML4H)*, pp. 353–367. PMLR, 2023.

809

810 Roberto Morelli, Luca Clissa, Roberto Amici, Matteo Cerri, Timna Hitrec, Marco Luppi, Lorenzo
 811 Rinaldi, Fabio Squarcio, and Antonio Zoccoli. Automating cell counting in fluorescent microscopy
 812 through deep learning with c-resunet. *Scientific Reports*, 11(1):22920, 2021.

810 Geoff Norman, Meredith Young, and Lee Brooks. Non-analytical models of clinical reasoning: the
 811 role of experience. *Medical education*, 41(12):1140–1145, 2007.

812

813 OpenAI. Gpt-4 technical report, 2023. URL <https://arxiv.org/abs/2303.08774>. Accessed: 2025-07-29.

814

815 OpenAI. Hello gpt-4o. <https://openai.com/index/hello-gpt-4o/>, 2024a.

816

817 OpenAI. Learning to reason with llms. <https://openai.com/index/learning-to-reason-with-llms/>,
 818 2024b.

819

820 OpenAI. Thinking with images. <https://openai.com/index/thinking-with-images/>, 2024c.

821

822 OpenAI. Openai o3-mini. <https://openai.com/index/openai-o3-mini/>, 2025.

823

824 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 825 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
 826 instructions with human feedback. *Advances in neural information processing systems*, 35:27730–
 827 27744, 2022.

828

829 Prasanna Porwal, Samiksha Pachade, Ravi Kamble, Manesh Kokare, Girish Deshmukh, Vivek
 830 Sahasrabuddhe, and Fabrice Meriaudeau. Indian diabetic retinopathy image dataset (idrid), 2018.
 831 URL <https://dx.doi.org/10.21227/H25W98>.

832

833 Bo Qian, Hao Chen, Xiangning Wang, Haoxuan Che, Gitaek Kwon, Jaeyoung Kim, Sungjin Choi,
 834 Seoyoung Shin, Felix Krause, Markus Unterdechler, et al. Drac: diabetic retinopathy analysis
 835 challenge with ultra-wide optical coherence tomography angiography images. *arXiv preprint*
 836 *arXiv:2304.02389*, 2023.

837

838 Gwenolé Quellec, Mathieu Lamard, Pierre-Henri Conze, Pascale Massin, and Béatrice Cochener.
 839 Automatic detection of rare pathologies in fundus photographs using few-shot learning. *Medical*
 840 *image analysis*, 61:101660, 2020.

841

842 Md Mizanur Rahman. Brain cancer - mri dataset. *Mendeley Data*, 1, 2024.

843

844 Tawsifur Rahman, Amith Khandakar, Muhammad Abdul Kadir, Khandaker Reajul Islam, Khan-
 845 dakar F Islam, Rashid Mazhar, Tahir Hamid, Mohammad Tariqul Islam, Saad Kashem, Zaid Bin
 846 Mahbub, et al. Reliable tuberculosis detection using chest x-ray with deep learning, segmentation
 847 and visualization. *Ieee Access*, 8:191586–191601, 2020.

848

849 Tawsifur Rahman, Amith Khandakar, Khandaker Reajul Islam, Md Mohiuddin Soliman, Moham-
 850 mad Tariqul Islam, et al. Aseptic loose hip implant x-ray database. <https://www.kaggle.com/ datasets/tawsifurrahman/aseptic-loose-hip-implant-xray-database>, 2022.

851

852 Netherlands Rotterdam Ophthalmic Institute, Rotterdam Eye Hospital. Justraigs challenge training
 853 data set, January 2024. URL <https://doi.org/10.5281/zenodo.10035093>.

854

855 Salman Sajid. Dental condition dataset. <https://www.kaggle.com/datasets/salmansajid05/ oral-diseases>, 2024.

856

857 Mehmet Saygin Seyfioglu, Wisdom O Ikezogwo, Fatemeh Ghezloo, Ranjay Krishna, and Linda
 858 Shapiro. Quilt-llava: Visual instruction tuning by extracting localized narratives from open-source
 859 histopathology videos. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 860 *Pattern Recognition*, pp. 13183–13192, 2024.

861

862 Hao Shao, Shengju Qian, Han Xiao, Guanglu Song, Zhuofan Zong, Letian Wang, Yu Liu, and
 863 Hongsheng Li. Visual cot: Advancing multi-modal language models with a comprehensive dataset
 864 and benchmark for chain-of-thought reasoning. *Advances in Neural Information Processing*
 865 *Systems*, 37:8612–8642, 2024.

866

867 FA Sharifullin, DD Dolotova, TG Barmina, SS Petrikov, LS Kokov, GR Ramazanov,
 868 YR Blagosklonova, IV Arkhipov, IM Skorobogach, NN Cheremushkin, et al. Creation of a
 869 dataset of msct-images and clinical data for acute cerebrovascular events. *Russian Sklifosovsky*
 870 *Journal” Emergency Medical Care”,* 9(2):231–237, 2020.

864 Chaoyin She, Ruifang Lu, Danni He, Jiayi Lv, Yadan Lin, Meiqing Cheng, Hui Huang, Lida Chen,
 865 Wei Wang, and Qinghua Huang. A retrospective systematic study on hierarchical sparse query
 866 transformer-assisted ultrasound screening for early hepatocellular carcinoma, 2025. URL <https://arxiv.org/abs/2502.03772>.

867

868 shenggan, Nicolas Chen, cosmicad, and akshaylamba. Bccd: Blood cell count and detection, 2018.
 869 URL https://github.com/Shenggan/BCCD_Dataset.

870

871 Osamah Taher and Kasim Özcar. Hecapsnet: An enhanced capsule network for automated heel
 872 disease diagnosis using lateral foot x-ray images. *International Journal of Imaging Systems and*
 873 *Technology*, 34(3):e23084, 2024.

874

875 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 876 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 877 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.

878

879 Philipp Tschandl, Cliff Rosendahl, and Harald Kittler. The ham10000 dataset, a large collection of
 880 multi-source dermatoscopic images of common pigmented skin lesions. *Scientific data*, 5(1):1–9,
 881 2018.

882

883 Andru P Twinanda, Sherif Shehata, Didier Mutter, Jacques Marescaux, Michel De Mathelin, and
 884 Nicolas Padoy. Endonet: a deep architecture for recognition tasks on laparoscopic videos. *IEEE*
 885 *transactions on medical imaging*, 36(1):86–97, 2016.

886

887 Weiyun Wang, Zhe Chen, Wenhui Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Jinguo Zhu, Xizhou
 888 Zhu, Lewei Lu, Yu Qiao, et al. Enhancing the reasoning ability of multimodal large language
 889 models via mixed preference optimization. *arXiv preprint arXiv:2411.10442*, 2024.

890

891 Yaoting Wang, Shengqiong Wu, Yuecheng Zhang, Shuicheng Yan, Ziwei Liu, Jiebo Luo, and
 892 Hao Fei. Multimodal chain-of-thought reasoning: A comprehensive survey, 2025. URL <https://arxiv.org/abs/2503.12605>.

893

894 Alexander Wong, Hayden Gunraj, Vignesh Sivan, and Masoom A. Haider. Synthetic correlated
 895 diffusion imaging hyperintensity delineates clinically significant prostate cancer. *Scientific Reports*,
 896 12(3376), 2022. doi: 10.1038/s41598-022-06872-7.

897

898 Chaoyi Wu, Xiaoman Zhang, Ya Zhang, Yanfeng Wang, and Weidi Xie. Towards generalist
 899 foundation model for radiology by leveraging web-scale 2d&3d medical data. *arXiv preprint*
 900 *arXiv:2308.02463*, 2023.

901

902 Peiran Wu, Che Liu, Canyu Chen, Jun Li, Cosmin I Bercea, and Rossella Arcucci. Fmbench:
 903 Benchmarking fairness in multimodal large language models on medical tasks. *arXiv preprint*
 904 *arXiv:2410.01089*, 2024.

905

906 Guowei Xu, Peng Jin, Li Hao, Yibing Song, Lichao Sun, and Li Yuan. Llava-o1: Let vision language
 907 models reason step-by-step. *arXiv preprint arXiv:2411.10440*, 2024a.

908

909 Guowei Xu, Peng Jin, Hao Li, Yibing Song, Lichao Sun, and Li Yuan. Llava-cot: Let vision language
 910 models reason step-by-step, 2024b. URL <https://arxiv.org/abs/2411.10440>.

911

912 Pusheng Xu, Xiaolan Chen, Ziwei Zhao, and Danli Shi. Evaluation of a digital ophthalmologist app
 913 built by gpt4-v (ision). *medRxiv*, pp. 2023–11, 2023.

914

915 Qianqi Yan, Yue Fan, Hongquan Li, Shan Jiang, Yang Zhao, Xinze Guan, Ching-Chen Kuo, and
 916 Xin Eric Wang. Multimodal inconsistency reasoning (mmir): A new benchmark for multimodal
 917 reasoning models. *arXiv preprint arXiv:2502.16033*, 2025.

918

919 Jin Ye, Guoan Wang, Yanjun Li, Zhongying Deng, Wei Li, Tianbin Li, Haodong Duan, Ziyan Huang,
 920 Yanzhou Su, Benyou Wang, et al. Gmai-mmmbench: A comprehensive multimodal evaluation
 921 benchmark towards general medical ai. *Advances in Neural Information Processing Systems*, 37:
 922 94327–94427, 2024.

918 Xu Yiming, Zheng Bowen, Liu Xiaohong, Wu Tao, Ju Jinxiu, Wang Shijie, Lian Yufan, Zhang
919 Hongjun, Liang Tong, Sang Ye, Jiang Rui, Wang Guangyu, Ren Jie, and Chen Ting. Annotated
920 ultrasound liver images, November 2022. URL <https://doi.org/10.5281/zenodo.7272660>.

921
922 Sheng Zhang, Yanbo Xu, Naoto Usuyama, Hanwen Xu, Jaspreet Bagga, Robert Tinn, Sam Preston,
923 Rajesh Rao, Mu Wei, Naveen Valluri, et al. Biomedclip: a multimodal biomedical foundation
924 model pretrained from fifteen million scientific image-text pairs. *arXiv preprint arXiv:2303.00915*,
925 2023.

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

APPENDIX

This supplementary material provides more detailed information about M3CoTBench. The content of each appendix is summarized as follows:

- **Appendix A** Provides a detailed description of how large language models are applied in this work. This includes their use in assisting writing, guiding dataset construction, supporting annotation processes, and contributing to model evaluation.
- **Appendix B** Offers comprehensive information about the dataset used in this study, including the sources of the data, the diseases and abnormalities covered, the distribution of image resolutions, detailed task specifications in the benchmark, and descriptions of Chain-of-Thought (CoT) annotations.
- **Appendix C** Provides an in-depth explanation of the evaluation methodology, including the metrics used, the design of prompts, and additional clarifications on how model performance is measured and interpreted.
- **Appendix D** Presents supplementary experimental results that complement the main paper, along with illustrative case studies that demonstrate model behavior and practical outcomes in various scenarios.
- **Appendix E** Discusses the known limitations of this study, including potential weaknesses in the methodology, dataset coverage, and model generalizability, providing a balanced view of the research.
- **Appendix F** Highlights potential societal implications of this work, considering both beneficial applications and possible risks, and reflecting on the broader impact of deploying such models in real-world scenarios.

A THE USE OF LARGE LANGUAGE MODELS

We use large language models solely for polishing our writing, and we have conducted a careful check, taking full responsibility for all content in this work. In addition, LLMs and MLLMs were also used in the construction of the dataset and the evaluation of models, and the specific usage has been described in detail in the main text.

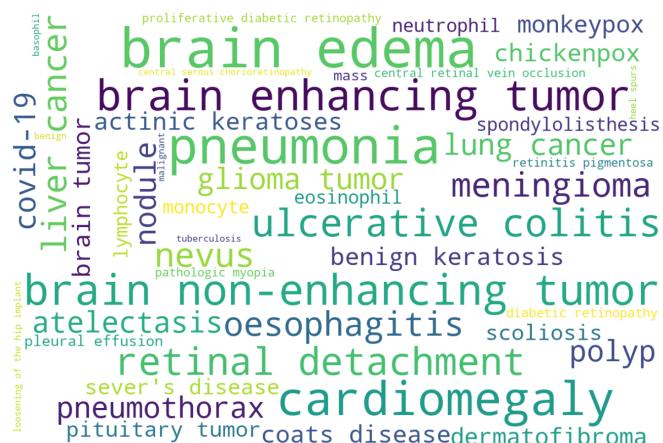


Figure A1: Word cloud for abnormality and diseases included in M3CoTBench The word cloud below visualizes the frequency and variety of these labels, highlighting the spectrum of diagnostic conclusions and imaging findings represented.

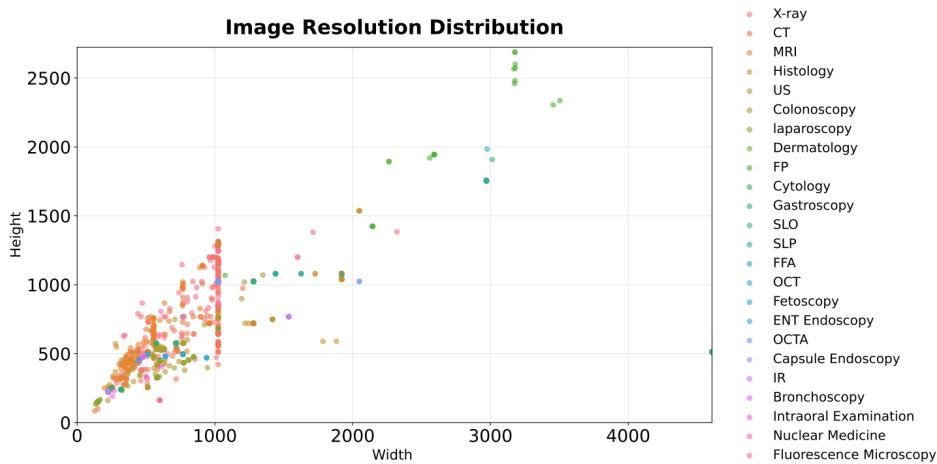
1026 B MORE DETAILS ABOUT THE DATASET

1028 B.1 SOURCE DATASET INFORMATION

1030 Images in the M3CoTBench dataset are collected from 55 publicly available datasets, offering a highly
 1031 diverse and representative foundation for training and evaluating multi-modal medical reasoning
 1032 models. Its comprehensive coverage across modalities, anatomies, time periods, and geographic
 1033 sources ensures broad applicability and robustness in real-world clinical scenarios. The detailed
 1034 information can be seen in Table A1.

1035 B.2 DISEASES AND ABNORMALITIES

1037 This dataset contains a wide range of diseases and abnormalities. A word cloud illustrating their
 1038 distribution is shown in Figure A1.



1055 Figure A2: **Image resolution distribution in M3CoTBench.** Most images are concentrated below a
 1056 width of 1200 and a height of 1500, though some exhibit higher resolutions.

1058 B.3 IMAGE RESOLUTION DISTRIBUTION

1060 For the images, we retained their original sizes as provided in the source datasets, without
 1061 applying any additional compression or resizing. Some images may have been preprocessed
 1062 in their original datasets. However, for tasks such as entity linking, grading, and image quality
 1063 comparison, we concatenate two images side by side, which results in increased image width.
 1064 The resolution distribution information can be seen in Figure A2.

- 1065 • **Diversity in examination types:** The dataset covers 24 imaging modalities and examination methods, which can be grouped into six major categories: ophthalmic imaging, radiology, endoscopy, 1066 microscopy, ultrasound-based examinations, and surface-level inspections. These include slit lamp photography (SLP), fundus photography (FP), optical coherence tomography (OCT), optical 1067 coherence tomography angiography (OCTA), scanning laser ophthalmoscopy (SLO), fundus 1068 fluorescein angiography (FFA), X-ray, computed tomography (CT), magnetic resonance imaging 1069 (MRI), ultrasound (US), infrared reflectance (IR), nuclear medicine, fetoscopy, laparoscopy, 1070 colonoscopy, gastroscopy, capsule endoscopy, bronchoscopy, ENT endoscopy, cytology, fluores- 1071 cence microscopy, dermoscopy, and intraoral examination.
- 1072 • **Diversity in anatomical regions:** The datasets encompass a broad spectrum of anatomical 1073 regions, including but not limited to the eye, skin, chest (lungs and heart), brain, abdomen (liver, 1074 kidney, stomach, etc.), oral cavity, uterus and fetal environment, breast, vertebrae, hip, knee, foot, 1075 blood, and bone marrow. This anatomical diversity supports the evaluation of models' capability 1076 across different clinical tasks and organ systems.
- 1077 • **Diversity in publication years:** The included datasets were published across a wide temporal 1078 range, from earlier benchmarks to very recent contributions. This time span captures the evolution 1079

1080 of imaging quality, annotation practices, and diagnostic standards, making the dataset suitable for
 1081 both historical benchmarking and future-proof model evaluation.

1082 • **Geographic diversity:** The data sources originate from over a dozen countries and regions,
 1083 reflecting a variety of healthcare environments, population demographics, and medical imaging
 1084 protocols. This geographic diversity enhances the robustness, fairness, and real-world applicability
 1085 of models trained on the dataset, particularly in cross-domain or multi-institutional settings. The
 1086 geographic distribution of data sources is illustrated in Figure A3.

1107
 1108 Figure A3: Geographic distribution of data sources in the dataset. Red flags indicate the locations
 1109 of contributing hospitals or institutions, where applicable. Due to the complex and varied origins of
 1110 some datasets, exact source locations may not always be clearly identifiable.

1112 B.4 DETAILED INTRODUCTION TO TASKS

1113 The benchmark encompasses a diverse range of tasks that mirror real-world clinical challenges
 1114 in medical visual-language reasoning. These tasks are designed to evaluate not only a model’s
 1115 ability to recognize and classify visual information, but also its capacity to comprehend spatial,
 1116 procedural, and diagnostic contexts. Broadly, the tasks can be grouped into two conceptual levels:
 1117 **Perceptual-level tasks** focus on low- to mid-level visual understanding, such as identifying image
 1118 modality, recognizing anatomical structures, or assessing image quality. These tasks primarily test
 1119 the model’s capability to extract and interpret observable features from the image. **Knowledge-based**
 1120 **reasoning tasks**, on the other hand, require integration of visual features with clinical knowledge,
 1121 commonsense reasoning, or multi-step inference. These include complex tasks such as diagnosing
 1122 diseases, predicting disease progression, grading severity, planning clinical actions, or identifying
 1123 causal relationships.

1124 • **Modality / Examination Types:** Understanding and recognizing the imaging modality involved,
 1125 such as CT, MRI, X-ray, or OCT, demonstrates the model’s awareness of different diagnostic
 1126 techniques and their clinical contexts.

1127 • **Image Quality Assessment:** Evaluating whether an image is diagnostically adequate, and com-
 1128 paring the relative quality between multiple images when necessary. This reflects the model’s
 1129 ability to judge image usability in clinical practice.

1130 • **Recognition:** General visual recognition tasks, including identifying anatomical structures,
 1131 tissues, or medical devices, without explicit spatial reference.

1132 • **Referring Recognition:** Region-specific identification tasks where the model must recognize or
 1133 interpret a particular area in the image based on the question or accompanying text.

1134

1135

1136

1137

Table A1: Data sources of different modalities in M3CoTBench

1138

1139

Dataset	Anatomical Region	Modality / Examination Type
OphthalVQA (Xu et al., 2023)	Eye	SLP, FP, OCT, US, SLO, FFA
IDRID (Porwal et al., 2018)	Eye	FP
JustRAIGS (Rotterdam Ophthalmic Institute, 2024)	Eye	FP
RIADD (Quellec et al., 2020)	Eye	FP
DRAC 2022 (Qian et al., 2023)	Eye	OCTA
RAVIR (Hatamizadeh et al., 2022; Hatamizadeh, 2020)	Eye	IR
ISIC 2018 (Codella et al., 2019)	Skin	Dermoscopy
HAM10000 (Tschandl et al., 2018)	Skin	Dermoscopy
MSLD v2.0 (Ali et al., 2024)	Skin	Dermoscopy
VQA-RAD (Lau et al., 2018)	Chest, Abdomen, Brain	X-ray, CT, MRI, Nuclear Medicine
VQA-Med-2019 (Ben Abacha et al., 2019)	Chest, Abdomen, Brain	X-ray, CT, MRI, US
SLAKE (Liu et al., 2021)	Chest, Abdomen, Brain	X-ray, CT, MRI
Chest XR COVID-19 (Akhlooui & Chetoui, 2021)	Chest (Lung)	X-ray
TB Chest X-ray (Rahman et al., 2020)	Chest (Lung)	X-ray
Heel Bone (Taher & Özcar, 2024)	Foot	X-ray
Digital Knee X-ray (Gornale & Patravali, 2020)	Knee	X-ray
Vertebrae X-ray (Fraiwan et al., 2022)	Vertebrae	X-ray
Hip Implant X-ray (Rahman et al., 2022)	Shoulder	X-ray
CT Kidney (Islam et al., 2022)	Kidney	CT
COVID-19 Lung CT (cov, 2020)	Lung	CT
Brain Stroke CT (Koç et al., 2022)	Brain	CT
LDCTIQAC 2023 (Lee et al., 2025)	Abdomen	CT
MSCT-Image Dataset (Sharifullin et al., 2020)	Brain	CT
PENGWIN (Liu et al., 2025a;b)	Pelvis	CT
ToothFairy (Bolelli et al., 2024; Lumetti et al., 2024; Cipriano et al., 2022)	Oral Cavity	CT
Brain Tumor (Bhuvaji et al., 2020)	Brain	MRI
LGG Segmentation (Buda et al., 2019)	Brain	MRI
Brain Cancer MRI (Rahman, 2024)	Brain	MRI
BRATS-SSA (Adewole et al., 2023)	Brain	MRI
Cancer-Net PCa-Data (Wong et al., 2022; Gunraj et al., 2023)	Prostate	MRI
SIMON MRI (Duchesne et al., 2019)	Brain	MRI
BUSI (Al-Dhabyani et al., 2020)	Breast	US

1185

1186

1187

1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197

Table A1 (continued): Data sources of different modalities in M3CoTBench

1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233	1234 1235 1236 1237 1238 1239 1240 1241	Dataset	Anatomical Region	Modality / Examination Type
FH-PS-AOP (Jieyun & Zhan-Hong, 2023)		Fetal	US	
Nerve Segmentation (Montoya et al., 2016)		Neck	US	
Carotid Artery (Momot, 2022)		Neck	US	
Liver-US (She et al., 2025)		Liver	US	
Annotated Liver US Dataset (Yiming et al., 2022)		Liver	US	
BUS-BRA (Gómez-Flores et al., 2024)		Breast	US	
Quilt-VQA (Seyfioglu et al., 2024)		Multi-regions	Histology	
BCI (Liu et al., 2022)		Breast	Histology	
Colorectal Histology		Colon and Rectum	Histology	
MNIST (Kather et al., 2016)				
GCHTID (Lou et al., 2024)		Stomach	Histology	
Dental Condition Dataset (Sajid, 2024)		Oral Cavity	Intraoral Examination	
BACH (Aresta et al., 2019)		Breast	Histology	
CMIA Histological Slides		Lung, Breast	Histology	
Fluorescent Neuronal Cells (Morelli et al., 2021)		Brain	Fluorescent Microscopy	
BCCD (shenggan et al., 2018)		Blood	Cytology	
Raabbin-WBC (Kouzehkanan et al., 2022)		Blood	Cytology	
BMC (Matek et al., 2021a;b)		Bone Marrow	Cytology	
EndoVis-17-VLQA (Allan et al., 2019)		Abdomen	Laparoscopy	
m2cai16-tool (Twinanda et al., 2016)		Abdomen	Laparoscopy	
ImageCLEFmed MEDVQA-GI (Hicks et al., 2023)		Gastrointestinal Tract	Colonoscopy, Gastroscopy	
Bronchoscopy Dataset (Deng et al., 2023)		Airway Tract	Bronchoscopy	
Capsule Vision 2024 (Handa et al., 2025)		Gastrointestinal Tract	Capsule Endoscopy	
ENTRep Challenge 2025 (ENT, 2025)		Ear, Nose, Throat	ENT Endoscopy	
FetReg (Bano et al., 2021)		Uterus / Fetal Environment	Fetoscopy	
Fetoscopy Placenta Data (Bano et al., 2020)		Uterus / Fetal Environment	Fetoscopy	

- **Counting:** Quantifying specific elements in an image, such as surgical tools, lesions, polyps, or cells, often requiring precise object detection and differentiation.
- **Localization:** Identifying the spatial location of regions of interest, such as lesions, organs, or abnormal structures, testing the model’s understanding of spatial relations and context.
- **Diagnosis:** Inferring the presence of abnormalities, diseases, or clinical conditions based on image and text input; this is the most common and clinically important task category.
- **Grading:** Assessing the severity or stage of a medical condition, such as cancer staging or diabetic retinopathy levels, requires a nuanced interpretation of visual cues.
- **Symptom Identification:** Recognizing observable clinical signs or inferring underlying symptoms based on the visual features of the image and contextual cues.
- **Clinical Action Planning:** Making decisions about the next steps in patient care, such as recommending further examinations, procedures, or treatment options, demonstrating clinical reasoning ability.
- **Prediction:** Estimating future disease progression, risks of complications, or expected outcomes, often involving multi-modal reasoning over image and text inputs.
- **Functional Understanding:** Interpreting the physiological function of organs, the intended use of medical instruments, or the purpose of surgical actions, integrating procedural and anatomical knowledge.
- **Causal Reasoning:** Identifying the cause or etiology of a symptom or condition, requiring the model to reason about potential underlying mechanisms or prior events.

B.5 CoT ANNOTATION

The CoT annotations are collaboratively generated by medical experts and MLLMs, generally following a four-part structure: {examination type, key feature, key conclusion, additional analysis}. This approach aligns closely with clinical reasoning patterns used by physicians, who often begin by identifying the type of examination or modality, observing key findings, deriving conclusions, and, when necessary, conducting further interpretation or differential diagnosis. The length and structure of CoT vary depending on the task. For tasks such as recognition, diagnosis, and grading, a three-step format, {examination type, key feature, key conclusion}, is generally sufficient. In contrast, more complex tasks like treatment planning, causal reasoning, symptom analysis, prognostic prediction, or functional interpretation often require a four-step annotation to capture the depth of reasoning. When it comes to identifying the imaging modality, CoT length depends on the nature of the question. For example, in general tasks, it may not be necessary to analyze image features to identify the modality explicitly. However, in questions specifically targeting modality identification, CoT annotations typically include two steps, focusing on characteristic visual clues about the imaging technique used. Notably, during examination modality statistics, some subtypes are grouped into broader categories. However, in CoT annotations, these modalities are often distinguished more finely. For example, IHC and HE are treated separately, as are MRI T1-weighted and T2-weighted images. Examples of CoT annotation are shown in Figure A4, Figure A5, and Figure A6.

C SUPPLEMENTARY TO EVALUATION PROCESSES

C.1 EXAMPLES OF PATH SIMILARITY IN REASONING CONSISTENCY EVALUATION

To evaluate the structural stability of reasoning in multi-step tasks, we introduce a **path consistency** metric that measures the similarity of reasoning paths across instances of the same task type. Unlike traditional metrics that treat reasoning steps as unordered, this metric accounts for the sequential structure by comparing generated paths to a canonical reference using the normalized longest common subsequence (LCS). The final score, averaged over all 13 tasks, reflects the model’s ability to follow consistent, interpretable reasoning patterns, a key property for transparency and trust in medical decision-making. Here are some examples to show the specific calculation method:

Consider the following reasoning paths, where each element is one of {*modality, feature, diagnosis, treatment*}, representing a progression from identifying the imaging type, describing visual findings, inferring clinical conditions, to suggesting appropriate medical interventions.

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

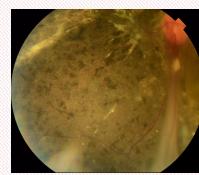
1349

a) What examinations need to be done next?**CoT Annotation**

1. Examination type: Scanning laser ophthalmoscopy (SLO).
2. Key features: Severe tortuosity and engorgement of all branches of the central retinal vein can be seen; extensive deep blot and flame-shaped hemorrhages involving the peripheral retina and posterior pole; and severe disc edema and hyperemia.
3. Key conclusion: The likely diagnosis based on this image is central retinal vein occlusion.
4. Additional Analysis (action suggestions): Fluorescein angiography demonstrates retinal circulation patterns and identifies areas of nonperfusion, while OCT reveals macular edema and structural changes characteristic of venous occlusive disease.

b) What might be the cause of this condition?**CoT Annotation**

1. Examination type: Fundus photography.
2. Key features: Scattered old pigmentary deposits are visible on the retina, with peripapillary fibrous proliferation and sickle-shaped retinal folds emanating from the optic disc.
3. Key conclusion: The likely diagnosis based on this image could be suspicious chronic tractional retinal detachment (TRD).
4. Additional Analysis (causal Reasoning): Chronic TRD develops from prolonged fibrovascular proliferation creating mechanical traction on retinal tissue, commonly seen in advanced proliferative diabetic retinopathy with inadequate glycemic control.

**c) What disease is most likely associated with the picture? (Select one option)**

A. Liver Cancer B. Hepatitis

C. Cirrhosis D. Fatty liver disease

CoT Annotation

1. Examination type: CT.
2. Key features: Within the large organ located in the left of the image (consistent with the liver), there is a distinct shaped, focal area. This area exhibits a slightly darker appearance compared to the surrounding liver tissue. Its borders are generally discernible but not uniformly sharp.
3. Key conclusion: The image demonstrates a hepatic lesion and the likely diagnosis is liver cancer.

d) What lifestyle measures should be taken to manage this situation?

(Select all that apply)

A. Reduce salt intake
B. Engage in regular moderate exercise
C. Smoke more to relieve stress
D. Avoid excessive alcohol consumption
E. Maintain a healthy weight
F. Skip medications without consulting a doctor
G. Monitor blood pressure regularly
H. Eat more processed foods

CoT Annotation

1. Examination type: X-ray.
2. Key features: The cardiac silhouette appears broad, occupying a significantly large proportion of the transverse width of the thoracic cavity. The widest transverse diameter of the cardiac silhouette visibly spans more than half of the maximal transverse diameter of the thoracic cage. Both the right cardiac border and the left cardiac border extend broadly towards their respective lateral chest walls.
3. Key conclusion: The likely diagnosis is cardiomegaly.
4. Additional Analysis (action suggestions/option analysis): Option A: Salt reduction prevents fluid retention and hypertension. Option B: Moderate exercise strengthens cardiovascular system under guidance. Option C: Smoking worsens cardiovascular disease directly. Option D: Alcohol excess causes cardiomyopathy and arrhythmias. Option E: Weight loss reduces cardiac workload. Option F: Medication adherence crucial for disease management. Option G: Blood pressure monitoring ensures treatment effectiveness. Option H: Processed foods worsen hypertension and inflammation.

e) What surgical or medical instruments visible in the image? (Select one option)

A. No instruments present

B. Scalpel

C. Metal clip

D. Surgical sponge

CoT Annotation

1. Examination type: Colonoscopy.
2. Key features: Three separate silver-colored cylindrical structures in the image.
3. Key conclusion: There are three metal clips in the image.

1350

1351

1352

1353

1354

a) What are the primary functions of the instrument in this image? (Select all that apply)

- Retrieval of resected tissue or polyps
- Coagulation of bleeding vessels
- Prevention of contamination or spillage during specimen removal
- Inflation of the abdominal cavity
- Visualization enhancement
- Safe extraction of specimens through trocars
- Biopsy sampling
- Closure of mucosal defects

CoT Annotation

- Examination type: Laparoscopy.
- Key features: The visible tool is light gray to white in color with a matte, slightly textured surface. It appears to be made of a thin, flexible material, exhibiting multiple folds and drapes. A section of the material is visible in a rolled or gathered configuration.
- Key conclusion: The tool shown in the image is specimen bag.
- Additional Analysis (functions): Option A: Designed to contain and remove resected tissues from body cavity. Option B: Plastic bag lacks energy source for coagulation. Option C: Prevents spillage of infectious contents and malignant cell seeding. Option D: Insufflation achieved through specialized trocar, not specimen bag. Option E: Visualization is endoscope function, not retrieval bag. Option F: Contains specimen allowing extraction through small trocar safely. Option G: Used for retrieval after resection, not for taking samples. Option H: Closure performed with clips or sutures, not retrieval bags.

1360

1361

1362

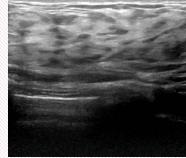
1363

1364

1365

b) What does this image most likely represent? (Select one option)

A. Normal B. Benign
C. Malignant D. None of above

**CoT Annotation**

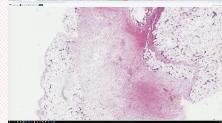
- Examination type: Ultrasound.
- Key features: The image displays a heterogeneous, mottled gray echotexture in the upper portion. Below this, there are distinct, thin, parallel hyperechoic (bright) linear structures interspersed with hypoechoic (darker gray) regions. These linear structures are smooth and appear continuous. The overall echotexture appears organized and consistent throughout the depicted area. There is an absence of distinct, irregularly shaped focal anechoic (black) or intensely hyperechoic (white) lesions, or areas of distorted architecture.
- Key conclusion: The diagnosis conclusion is Normal.

1374

1375

c) What kind of pathological process does the image most likely suggest? (Select one option)

A. Inflammatory edema
B. Hemangioma formation
C. Lymphedema-like process
D. Necrotizing lesion

**CoT Annotation**

- Examination type: Section stained with hematoxylin and eosin (H&E).
- Key features: The image displays extensive areas of packed, eosinophilic (pink-stained) fibrous tissue. Within both the pink fibrous tissue and the adjacent adipose tissue, irregular, clear, and empty or very pale-staining spaces of varying sizes are observable. The white, vacuolated fat cells within the adipose tissue appear separated by pale, amorphous material or thin pink septa.
- Key conclusion: The image suggests Lymphedema-like process.

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

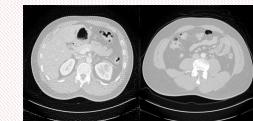
1396

d) True or False: The staining method shown in the image is hematoxylin and eosin (H&E) staining.

CoT Annotation

- Examination type: Immunohistochemical (IHC) staining.
- Key features: The image shows scattered brown reaction product (likely DAB) over a very lightly counter-stained background.

e) True or False: The image on the left is of higher quality than the one on the right.

**CoT Annotation**

- Examination type: CT.
- Key features: The image on the right has a much smoother appearance with significantly less grainy noise compared to the left. The image on the right shows fewer streaking artifacts, especially visible around the body contour, which are prominent in the left image. Better Soft Tissue Delineation: Structures and boundaries within the soft tissues (e.g., bowel loops, fat planes) are more clearly defined and have better contrast on the right.
- The image on the left is of higher quality than the one on the right.

1397

1398

1399

1400

1401

1402

1403

Figure A5: Examples of CoT annotations with corresponding images and questions in M3CoTBench (2). Different types of questions are annotated with different lengths of CoT steps. For example, diagnostic (b, c) and image quality (d) questions involve three annotation steps, function understanding (a) question is annotated with four steps, and examination type (d) is annotated with two steps as the modality is the conclusion itself.

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415

a) True or False: This abnormality will certainly progress to squamous cell carcinoma if untreated.

CoT Annotation

1. Examination type: Dermatological image.
2. Key features: The image displays a localized skin lesion characterized by a central, roughly circular depression. Within and immediately surrounding this depression, there is yellowish, irregular, and adherent scaly material. The skin surrounding the central area of scales and depression exhibits a reddish discoloration. The overall skin texture in the observed area appears somewhat irregular and roughened.
3. Key conclusion: The likely diagnosis is actinic keratoses.
4. Additional Analysis (prediction): Actinic keratoses (AKs) are precancerous lesions, often caused by chronic sun exposure. While they can progress to squamous cell carcinoma (SCC), not all of them will. The risk of progression is relatively low.

macular edema and structural changes characteristic of venous occlusive disease.

b) How many polyps are in the image?

CoT Annotation

1. Examination type: Gastroscopy.
2. Key features: The visible surface appears generally flat and continuous, without any distinct, elevated, or protuberant masses. The mucosal lining displays natural folds and creases, but no localized exophytic growths are observed. The texture of the surface is relatively uniform throughout the visible area, lacking discrete, raised lesions.
3. Key conclusion: There is no polyp in the image.

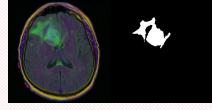
c) True or False: The left image shows higher knee osteoarthritis severity than the right.

CoT Annotation

1. Examination type: X-ray.
2. Key features: In the left image, the joint space is relatively well preserved; only mild narrowing. In the right image, obvious joint space narrowing, subchondral sclerosis, and possible osteophyte formation.
3. Key conclusion: The left image shows higher knee osteoarthritis severity than the right.

d) The figure consists of two images side by side. The image on the right is a segmentation mask of a specific region in the image on the left. What does the white area in the right image represent in the left image? (Select one option)

A. Glioma lesion B. Brain edema
C. Cerebrospinal fluid D. Skull
E. Normal brain tissue



CoT Annotation

1. Examination type: MRI(FLAIR).
2. Key features: The white area in the right image exhibits an irregular and complex shape. This irregular shape and its precise contours in the right image spatially correspond directly to a distinct, large, and brightly colored (green and light blue) area observed within the brain parenchyma in the left image. It is located within the brain parenchyma, with internal signal intensity variations, appearing as differing color intensities. The white color in the right image highlights this specific bright region by sharply contrasting it against the dark background, visually representing the boundaries of this particular area from the original scan.
3. Key conclusion: The white area in the right image likely represents glioma tumor.

e) Which of the following symptoms is this patient most likely to experience? (Select all that apply)

A) RUQ pain (Right Upper Quadrant pain)
B) Jaundice
C) Dark urine
D) Clay-colored stools
E) Weight loss

CoT Annotation

1. Examination type: CT.
2. Key features: A significantly enlarged, ovoid, low-attenuation structure is visible in the right upper quadrant, adjacent to the liver. Multiple small, irregular, very high-attenuation foci are present within the lumen of this enlarged structure. Numerous branching, tubular, low-attenuation structures are visible throughout the liver parenchyma, appearing wider than typical intrahepatic vessels. A distinctly prominent, tubular, low-attenuation structure is observed in the area consistent with the common bile duct, measuring larger than expected.
3. Key conclusion: The possible diagnosis is cystic duct and common bile duct obstruction.
4. Additional Analysis (symptom analysis): Option A: RUQ pain is possible. Obstruction often causes pain in the right upper quadrant due to biliary colic or inflammation. Option B: Jaundice is possible. CBD obstruction blocks bile flow, leading to buildup of bilirubin in the blood. Option C: Excess conjugated bilirubin is excreted in the urine, darkening its color. Option D: Clay-colored stools are possible. Lack of bile pigments in the intestine leads to pale or clay-colored stools. Option E: Weight loss is less likely initially. Not a typical early symptom of bile duct obstruction, though possible in malignancy or prolonged illness.

Figure A6: Examples of CoT annotations with corresponding images and questions in M3CoTBench (3). Different types of questions are annotated with different lengths of CoT steps. For example, counting (b), grading (c) and referring recognition (d) questions involve three annotation steps, and prediction (a) and symptom (e) questions are annotated with four steps.

1453
1454
1455
1456
1457

1458 • **Example 1:** $P_1 = [\text{modality, feature, diagnosis}]$, $P_2 = [\text{feature, modality, diagnosis}]$. Then the
 1459 LCS is $[\text{modality, diagnosis}]$ and $[\text{feature, diagnosis}]$. $|\text{LCS}(P_1, P_2)| = 2$, thus
 1460

1461
 1462
 1463 $\text{sim}((P_1, P_2)) = \frac{2}{\max(3, 3)} = \frac{2}{3} \approx 0.67.$ (A1)
 1464

1465
 1466
 1467 • **Example 2:** $P_1 = [\text{modality, diagnosis, treatment}]$, $P_2 = [\text{modality, feature, diagnosis, treatment}]$. Then the LCS is $[\text{modality, diagnosis, treatment}]$
 1468 $|\text{LCS}(P_1, P_2)| = 3$, thus
 1469

1470
 1471
 1472
 1473 $\text{sim}((P_1, P_2)) = \frac{3}{\max(3, 4)} = \frac{3}{4} = 0.75.$ (A2)
 1474
 1475

1476
 1477 • **Example 3:** $P_1 = [\text{modality, feature, treatment}]$, $P_2 = [\text{modality, feature, diagnosis, treatment}]$. Then the LCS is $[\text{modality, diagnosis, treatment}]$
 1478 The $|\text{LCS}(P_1, P_2)| = 3$, thus
 1479

1480
 1481
 1482
 1483 $\text{sim}((P_1, P_2)) = \frac{3}{\max(3, 4)} = \frac{3}{4} = 0.75.$ (A3)
 1484
 1485

1486
 1487 • **Example 4:**
 1488

1489
 1490 $P_1 = [\text{feature, modality, diagnosis, treatment}]$, $P_2 = [\text{modality, feature, diagnosis, treatment}]$.
 1491 Then the LCS is $[\text{modality, diagnosis, treatment}]$ and $[\text{feature, diagnosis, treatment}]$. The
 1492 $|\text{LCS}(P_1, P_2)| = 3$, thus
 1493

1494
 1495
 1496 $\text{sim}((P_1, P_2)) = \frac{3}{\max(3, 4)} = \frac{3}{4} = 0.75.$ (A4)
 1497

1498
 1499
 1500 **C.2 EVALUATION PROMPTS**
 1501

1502 During evaluation, we use GPT-4o to assess the correctness of each step. Since the feature description
 1503 and additional analysis parts of the CoT annotations are relatively subjective, with multiple valid
 1504 expressions for the same meaning, we adopt more lenient instructions for these components. In
 1505 contrast, we apply stricter criteria to the examination modality and key conclusion steps.
 1506

1507
 1508
 1509 **C.2.1 EVALUATION PROMPTS FOR ANSWER ACCURACY**
 1510

1511 The prompt for calculating accuracy for both direct outputs and CoT outputs is shown below:

1512 Prompt for calculating accuracy for both direct outputs and CoT outputs
1513
1514 **You are a medical evaluation expert:**
1515
1516 #Your tasks:
1517 1. From the model's prediction below, **extract the final answer only** (ignore reasoning,
1518 explanations, or intermediate answers).
1519 2. Judge whether this extracted final answer matches the provided ground-truth answer.
1520 #Type instruction:
1521 Return ONLY a JSON object with the EXACT format below (no extra text):
1522 [
1523 { {
1524 "match": true or false,
1525 "final_answer": "the extracted final
1526 answer text"
1527 } }
1528 Inputs:
1529
1530 Question:
1531 {question}
1532
1533 Ground-truth Answer:
1534 {answer}
1535
1536 Model's Prediction:
1537 {prediction}

C.2.2 EVALUATION PROMPTS FOR PRECISION CALCULATION

1541 The prompt for precision calculation is:

Prompt for calculating precision for CoT outputs

Given a solution with multiple reasoning steps for an image-based problem, reformat it into well-structured steps and evaluate their correctness:

Step 1: Reformatting the Solution

Step 1: Reformulating the Solution
Convert the unstructured solution into distinct reasoning steps while:

- Preserving all original content and order.
- Not adding new interpretations.
- Not omitting any steps.

Step Types

1. Image Modality or Exam Method
 - Describes the imaging type or procedure used (e.g., CT, MRI).
 - Focuses on technical aspects without interpretation.
2. Key Image Feature Analysis
 - Pure visual observations.
 - Describes visible structures or abnormalities in the image.
 - Pure observation without inference.
3. Identification, Localization, or Diagnostic Conclusion
 - Provides specific findings or diagnosis based on image features
 - Includes reasoning and clinical conclusions.

1566 • Classification conclusion for cells or organs.
 1567
 1568 4. Knowledge-Based / Differential / Exploratory Analysis
 1569 • Includes disease progression prediction, organ/cell/instrument function, treatment or
 1570 further examination suggestions, cause analysis of disease or abnormalities, other
 1571 medical knowledge, and step-by-step analysis of multiple-choice options.
 1572 # Step Requirements
 1573 • Each step must be atomic (one conclusion per step)
 1574 • No content duplication across steps
 1575 • Initial analysis counts as background information
 1576 • Final answer determination counts as logical inference
 1577
 1578 Step 2: Evaluating Correctness
 1579 Evaluate each step against:
 1580 # Ground Truth Matching
 1581 • For modality or examination types: Must strictly correspond to ground truth; different
 1582 wording allowed if meaning is equivalent.
 1583 • For image feature description: Lenient matching, largely overlap and similar meaning
 1584 with ground truth are fully accepted as correct, as long as there is no contradiction.
 1585 • For key conclusions: Should strictly correspond to ground truth; different wording allowed
 1586 if meaning is matched or entailed.
 1587 • For additional analysis: Lenient matching, largely overlap and similar meaning with
 1588 ground truth are fully accepted as correct, as long as there is no contradiction.
 1589
 1590 # Reasonableness Check
 1591 • Premises must not contradict any ground truth or correct answer.
 1592 • Logic is valid.
 1593 • Conclusion must not contradict any ground truth.
 1594 • Conclusion must support or be neutral to the correct answer.
 1595
 1596 # Judgement Categories
 1597 • Match: Aligns with ground truth.
 1598 • Reasonable: Valid but not in ground truth.
 1599 • Wrong: Invalid or contradictory.
 1600 • N/A: For background information steps.
 1601
 1602 # Output Requirements
 1603 1. The output format MUST be in valid JSON format without ANY other content.
 1604 2. For highly repetitive patterns, output it as a single step.
 1605
 1606 Here is the JSON output format:
 1607
 1608 [
 1609 {
 1610 "step_type": "image description | logical inference
 1611 | background information",
 1612 "premise": "Supporting evidence
 1613 (required only for logical inference)",
 1614 "conclusion": "Stated outcome of this step",
 1615 "judgment": "Match | Reasonable |
 1616 Wrong | N/A"
 1617 }
 1618]
 1619

```

1620
1621 Your task is to reformat the following solution into discrete reasoning steps, and evaluate
1622 each step based on the ground truth.
1623 Input:
1624 [Problem]
1625
1626 {question}
1627
1628 [Solution]
1629
1630 {solution}
1631
1632 [Correct Answer]
1633
1634 {answer}
1635
1636 [Ground Truth Information]
1637
1638 {gt\_annotation}
1639
1640
1641
1642

```

C.2.3 EVALUATION PROMPTS FOR RECALL CALCULATION

The prompt for recall calculation is:

Prompt for calculating recall for CoT outputs

You are an expert system for verifying solutions to medical image-based problems. Your task is to match the ground truth middle steps with the provided solution:

Input Format:

1. Problem: The original question/task.
2. A Solution of a model.
3. Ground Truth: Essential steps required for a correct answer.

Matching Process:

You need to match each ground truth middle step with the solution. Match Criteria:

- The middle step should match in the content or is directly entailed by a certain content in the solution.
- For subjective or descriptive steps such as image feature descriptions, treatment suggestions, disease causes, or cellular functions, match leniently: A step is considered “Matched” if the overall meaning largely overlaps with the solution and there is no contradiction, even if wording differs. Exact wording or structure is not required as long as the clinical implication is preserved.
- For objective steps such as specific diseases, lesion names, or image modalities, match more strictly: The terminology must refer to the same medical concept, though phrasing may differ (e.g., “retinal detachment” vs. “detached retina” is acceptable). Partial overlap is permitted, but the key meaning cannot be changed.

In all cases, evaluate whether each ground truth step is represented in the solution, either explicitly or with clear implication.

Output Format:

JSON array of judgments:

```

1666 [
1667 {
1668   "step_index": <integer>,
1669   "judgment": "Matched" | "Unmatched"
1670
1671
1672
1673

```

```

1674
1675     }
1676 ]
1677 # Additional Rules:
1678 1. Only output the JSON array with no additional information.
1679 2. Judge each ground truth middle step in order, without omitting any step.
1680 Here is the problem, answer, solution, and the ground truth middle steps:
1681 [Problem]
1682 {question}
1683 [Answer]
1684 {answer}
1685 [Solution]
1686 {solution}
1687 [Ground Truth Information]
1688 {gt_annotation}
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

```

C.2.4 EVALUATION PROMPTS FOR STEP ORDER RECOGNITION

When computing CoT consistency, it is necessary to determine the order of the reasoning steps in the model's output. This requires first classifying the type of each step. Our prompt is as follows:

Prompt for step order recognition

Our prompt consists of two main parts: a system instruction section (`system_prompt`) and an output format section (`OUTPUT_FORMAT`). The system part defines how the AI should analyze medical image responses, while the output format specifies the JSON structure, with the AI response to be analyzed being passed into the system through the `text` parameter:

```

{
  "modality_reasoning_segments":
    [AI's major segments that primarily focus on imaging
    techniques/examination methods],
  "observation_reasoning_segments":
    [AI's major segments that primarily focus on describing
    what is directly visible in the image],
  "conclusion_reasoning_segments":
    [AI's major segments that primarily focus on making
    definitive identifications, diagnoses,
    or final determinations],
  "knowledge_reasoning_segments":
    [AI's major segments that primarily focus on external
    clinical knowledge/context beyond
    what's visible],
  "modality_first_position":
    [character position where first modality-focused
    segment appears],
  "observation_first_position":

```

```

1728
1729     [character position where first observation-focused
1730     segment appears],
1731     "conclusion_first_position":
1732     [character position where first conclusion-focused
1733     segment appears],
1734     "knowledge_first_position":
1735     [character position where first knowledge-focused
1736     segment appears],
1737     "modality_reasoning_order":
1738     [1-4 based on which type of segment appears first,
1739     0 if not present],
1740     "observation_reasoning_order":
1741     [1-4 based on which type of segment appears first,
1742     0 if not present],
1743     "conclusion_reasoning_order":
1744     [1-4 based on which type of segment appears first,
1745     0 if not present],
1746     "knowledge_reasoning_order":
1747     [1-4 based on which type of segment appears first,
1748     0 if not present],
1749     "total_segments":
1750     [total number of major reasoning segments AI used],
1751     "reasoning_pattern": "[A simple, high-level sequence
1752     of the primary reasoning categories, e.g.,
1753     'Modality -> Observation -> Conclusion']"
1754 }
```

System Prompt: You are an expert AI reasoning analysis assistant. Analyze AI responses to medical image questions by identifying the AI's own major logical segments and categorizing each segment by its PRIMARY focus.

ANALYSIS INSTRUCTIONS:

1. Disregard any purely introductory or framing sentences (e.g., "I'll analyze this image..."). Only analyze segments that contain substantive reasoning.
2. Respect the AI's own major structural divisions (steps, sections, or natural paragraph breaks).
3. Categorize each major segment by its single, dominant reasoning type.
4. For the reasoning_pattern field, create a concise, high-level sequence of the primary categories. Do not include step numbers or repeat categories for consecutive segments of the same type.

SEGMENT CATEGORIES:

- MODALITY_REASONING: Segments about imaging techniques, examination methods, image types, technical aspects (e.g., "This is an endoscopic image", "This appears to be a chest X-ray")
- OBSERVATION_REASONING: Segments describing what is directly visible - anatomical structures, visual characteristics, findings without making definitive conclusions (e.g., "The tissue appears red", "I can see circular structures")
- CONCLUSION_REASONING: Segments making definitive identifications, diagnoses, final determinations, or conclusive statements about what something IS (e.g., "This is scoliosis", "There is no bleeding present")
- KNOWLEDGE_REASONING: Segments applying external clinical knowledge beyond the image - explaining what signs to look for, clinical context, background medical information (e.g., "Active bleeding would typically appear as...", "Treatment options include...")

CRITICAL DISTINCTIONS:

- Simply mentioning "endoscopic image" within observation = MODALITY
- Describing visible red tissue = OBSERVATION
- Explaining what bleeding signs look like = KNOWLEDGE
- Stating "no bleeding present" = CONCLUSION

Analyze the following: {text}

1782

1783 # CRITICAL: You must respond with ONLY valid JSON format. Do not include any other

1784 text before or after the JSON object.

1785 Your output must be valid JSON in this exact format:

1786 {OUTPUT_FORMAT}

1787

1788

D SUPPLEMENTARY TO EXPERIMENTS

1789

1790 D.1 SUPPLEMENTARY RESULTS

1791

The radar plot for performances of some MLLMs on M3CoTBench is shown in Figure A7. Due to space limitations, we only reported the latency and efficiency metrics in the main text. Here, we present the average response time per question for each MLLM under both the direct and step-by-step settings, as shown in the Table below. As shown in Table A2, most MLLMs exhibit a significant increase in response time under the step-by-step (CoT) setting compared to the direct response setting. This is expected due to the inherently longer generation process of multi-turn reasoning. In general, closed-source commercial models tend to have higher latency than open-source models in both settings, likely because they employ larger architectures or more complex inference pipelines. For example, Gemini2.5-pro and GPT-4 variants demonstrate relatively high response times compared to smaller open-source models such as Qwen2.5-VL-7B and LLaVA-OV-7B. When comparing models of different scales, larger models usually incur higher latency due to increased computational cost; however, some exceptions exist, potentially due to optimization and deployment differences. Notably, the Llama-3.2-11B-Vision model shows an abnormally high latency in the direct setting, even exceeding that of its larger 90B counterpart, suggesting deployment inefficiencies rather than pure model complexity as the cause.

1807

It is also important to note that public APIs are often affected by uncontrollable external factors such as server load, throttling policies, or background queuing. And the local experiments and API-based evaluations were conducted on different hardware environments, which may contribute to latency differences. Therefore, while the measurements reflect general trends in efficiency, they are subject to variability and may not precisely represent the models' inherent computational latency. This constitutes a limitation of our experiments.

1813

Table A2: Comparison of the average response time per question for MLLMs under direct and step-by-step reasoning conditions. Optimal / sub-optimal results are highlighted in **bold** / underline.

1814

1815

Model	T_{direct}	T_{CoT}
LLaVA-OV-7B (Li et al., 2024)	0.7034	7.7822
LLaVA-CoT (Xu et al., 2024a)	5.5613	7.4875
Qwen2.5-VL-7B-Instruct (Bai et al., 2025)	0.5188	8.0152
Qwen2.5-VL-72B-Instruct (Bai et al., 2025)	1.7144	13.3034
Llama-3.2-11B-Vision (Meta AI, 2024)	8.5518	9.6951
Llama-3.2-90B-Vision (Meta AI, 2024)	2.3694	12.5677
Gemini2.5-pro (Google DeepMind, 2024)	13.8923	23.3392
Claude-Sonnet-4 (Anthropic, 2024)	4.2489	11.4011
GPT-4o (OpenAI, 2024a)	2.3639	13.7521
GPT-4.1 (OpenAI, 2023)	2.2465	10.9657
LLaVA-Med (Li et al., 2023)	0.8703	2.3244
HuatuoGPT-Vision (Chen et al., 2024a)	<u>0.5310</u>	11.1364
HealthGPT (Lin et al., 2025)	0.6395	<u>5.3322</u>

1828

1829

D.2 CASE STUDY

1830

D.2.1 EXAMPLE 1

1831

Comparison of answers from Qwen2.5-VL-7B-Instruct and the annotated CoT steps.

1833

Q: What is the most appropriate term to describe this finding? (Select one option)

1834

A. Hyperplasia

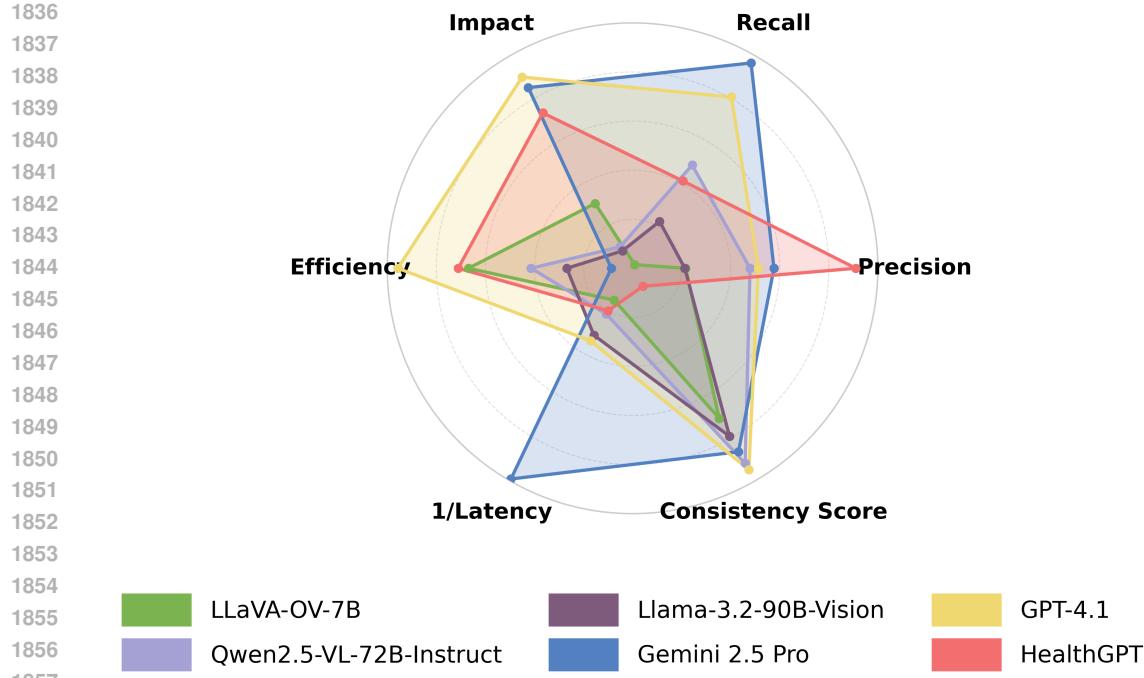


Figure A7: **Performances of some MLLMs on M3CoTBench:** Closed-source models such as Gemini 2.5 Pro perform well in terms of CoT correctness, negative CoT impact, consistency, and latency. However, Gemini 2.5's relatively low efficiency scores are likely due to the longer absolute inference time.

B. Dysplasia

C. Carcinoma in situ

D. Invasive carcinoma

Correct Answer: C.

The direct answer is C., and the CoT Answer is B.

The output of CoT prediction is shown below:

To determine the most appropriate term to describe the finding in the provided image, we need to analyze the characteristics of the tissue shown and compare them with the definitions of the given options.

Hyperplasia: This is an increase in the number of cells in a tissue without any abnormal changes in the cell structure or function. The image shows an increase in cellularity, but the cells appear to be normal in structure and function, which is not typical for hyperplasia.

Dysplasia: This is a precancerous condition where there is a change in the normal structure of cells, leading to an abnormal growth pattern. The cells in the image appear to have abnormal nuclei and cytoplasm, which is a characteristic of dysplasia.

Carcinoma in situ: This is a term used to describe a cancer that is confined to the epithelial layer and has not invaded the underlying stroma. The image shows a well-defined area with abnormal cells, but there is no evidence of invasion into the underlying stroma.

Invasive carcinoma: This is a cancer that has invaded the underlying stroma and has the potential to spread to other parts of the body. The image does not show any invasion into the underlying stroma, so this term is not applicable.

Given the analysis, the most appropriate term to describe the finding in the image is:

1890

B. Dysplasia

1891

The intermediate reasoning process is as follows:

1892

The image shows an increase in cellularity.

1893

The cells appear to have abnormal nuclei and cytoplasm, which is characteristic of dysplasia.

1894

There is no evidence of invasion into the underlying stroma, so it is not carcinoma in situ or invasive carcinoma.

1895

Hyperplasia typically does not involve abnormal cell structure or function, which is not the case here.

1896

Final answer: B. Dysplasia

1897

The annotated CoT steps are shown below:

1898

1. Section stained with hematoxylin and eosin (H&E).

1899

2. The cells show significant cytologic atypia and pleomorphism. The abnormal cells involve the entire thickness of the epithelium, but no invasion beyond the basement membrane. The architectural disturbance is pronounced, but the basement membrane remains intact.

1900

3. The likely diagnosis is Carcinoma in situ.

1901

Analysis:

1902

When using CoT reasoning, Qwen7b gave an incorrect answer because it failed to integrate and weigh key medical diagnostic information accurately. Although it recognized abnormal nuclei and cytoplasm, it overlooked the critical criterion for carcinoma in situ that abnormal cells involve the entire thickness of the epithelium while the basement membrane remains intact. The CoT reasoning focused too much on cellular abnormalities and incorrectly classified the finding as dysplasia, without effectively distinguishing differences in the extent of cell involvement and structural integrity. Additionally, the model did not fully utilize the important information about the absence of basement membrane invasion, leading to a wrong conclusion. In contrast, the direct answer mode relied more on memorized mappings learned during training, which led to the correct answer. Based on the authoritative annotations you provided, explicitly emphasizing these key diagnostic features in the CoT prompt and guiding the model to verify these criteria during reasoning systematically could help build a more rigorous reasoning process and avoid such errors in complex medical questions.

1903

D.2.2 EXAMPLE 2

1904

Comparison of answers from HuatuoGPT-Vision and the annotated CoT steps.

1905

Q: Which type of cell is this most likely to be? (Select one option)

1906

A. Basophil

1907

B. Monocyte

1908

C. Neutrophil

1909

D. Eosinophil

1910

Correct Answer: A.

1911

The direct answer is A., and the CoT Answer is C.

1912

***The output of CoT prediction is shown below:** To determine which type of cell this is, let's analyze its characteristics step by step:*

1913

Shape and Size

1914

The cell in the image appears to be round with a large nucleus that occupies most of the cell volume.

1915

Nucleus Characteristics:

1916

***Basophils:** Have an oval or kidney-shaped nucleus.*

1917

***Monocytes:** Have a horseshoe- or kidney-shaped nucleus.*

1944 *Neutrophils: Typically have multi-lobed nuclei (usually 3-5 lobes).*
 1945 *Eosinophils: Have bilobed or ring-like nuclei.*
 1946 *Cytoplasmic Granules:*
 1948 *Basophils: Contain dark purple granules due to basophilic substances like DNA/RNA and heparin.*
 1949 *Monocytes: May contain small granules but are generally less granulated than other cells.*
 1950 *Neutrophils: Have fine chromatin without distinct granules.*
 1952 *Eosinophils: Characterized by bright red-orange cytoplasmic granules containing eosinophil peroxidase enzyme.*
 1955 *Given these observations, it seems that the cell has a large rounded nucleus typical for neutrophils, yet lacks significant granulation seen typically in eosinophils. This suggests we might lean towards identifying it as either a monocyte or a neutrophil based on shape alone; however, further confirmation would require additional information such as staining properties specific to each cell type under microscopic examination.*
 1960 *Therefore, considering all aspects mentioned above, I conclude that the cell depicted here is most likely a neutrophil because of its characteristic multi-lobed nucleus despite lacking definitive granular features visible at this magnification level.*
 1963 *So my final answer is: C. Neutrophil*
 1964 **The annotated CoT steps are shown below:**
 1966 *1. Hematology or Cytology 2. The cell is roughly circular to oval in shape. The cytoplasm is densely filled with prominent, coarse, dark purple to violet-colored granules. These granules largely obscure the underlying nucleus, which appears as a dark, irregular central area. 3. The cell is a Basophil.*
 1968 **Analysis:** In this case, the model’s CoT reasoning led to an incorrect classification because it overlooked the most critical diagnostic feature emphasized in the annotated CoT: the presence of coarse, dark purple granules that densely fill the cytoplasm and partially obscure the nucleus, defining characteristics of a basophil. Instead, the model’s reasoning assumed a clearly visible, multi-lobed nucleus and minimal granulation, which contradicts the image description in the annotated steps. This contrast highlights a key failure in the model’s visual interpretation during CoT: while the direct answer correctly selected basophil, the CoT reasoning introduced assumptions that conflicted with observable features. The error demonstrates how CoT, when not properly grounded in domain-specific visual cues, can mislead the model away from an otherwise correct prediction.

E LIMITATION DISCUSSION

E.1 ANNOTATION DISCREPANCIES BETWEEN EXPERTS, AI, AND PUBLIC DATASETS

1983 The question-answer pairs and CoT annotations were generated through collaboration between
 1984 medical experts and AI, while also referencing labels from existing public datasets. In some cases,
 1985 discrepancies arose between expert judgment and dataset labels. We generally prioritized the public
 1986 dataset labels as the highest authority. However, we frequently encountered inconsistencies or potential
 1987 errors in these labels. In such cases, we made efforts to verify through repeated reviews and multiple
 1988 AI model assessments, but we cannot guarantee that every annotation step is fully accurate.

E.2 DISEASE-SPECIFIC LABELS MAY IMPLY UNJUSTIFIED DIAGNOSTIC PRECISION

1992 Some annotations involve specific diseases (e.g., COVID-19, certain cancers), directly inherited from
 1993 the original dataset labels. These labels may have been informed by additional contextual information
 1994 unavailable in the image alone. In reality, making a definitive diagnosis from a single image is often
 1995 not feasible, even for trained physicians. By retaining these disease-specific labels, the task may
 1996 set an unrealistically high bar for MLLMs, possibly exceeding what is expected of human experts.
 1997 To address this, we aimed to phrase our labels cautiously using formulations like “the most likely
 diagnosis is...”.

1998
1999

E.3 SUBJECTIVITY IN EXPRESSION MAY AFFECT MATCHING

2000
2001
2002
2003
2004
2005
2006
2007

Although we adopted relatively permissive matching criteria to account for variation in wording, certain annotation statements inevitably involve subjective interpretation, particularly when describing subtle visual findings or formulating likely diagnoses. These subjective elements can introduce variability in phrasing that, despite semantic similarity, may not be captured perfectly by automated matching methods. Furthermore, medical descriptions often allow for multiple valid expressions of the same observation, and differences in terminology, level of detail, or emphasis may lead to mismatches during evaluation. This issue is particularly relevant for open-ended reasoning tasks, where the boundary between correct and incorrect answers can be nuanced.

2008

E.4 EVALUATION FULLY CONDUCTED WITH GPT-4O

2009
2010
2011
2012
2013
2014
2015
2016

All evaluation of model outputs was conducted using GPT-4o. While GPT-4o has demonstrated strong performance in general reasoning and medical question answering, it remains an AI system with inherent limitations. In complex or ambiguous cases, the model may misinterpret medical terminology, overlook subtle differences between options, or apply inconsistent grading criteria. Additionally, its judgments may be influenced by prompt wording or prior context, leading to potential evaluation bias. The absence of human cross-validation means that certain edge cases could be mis-scored, especially in domains requiring precise domain knowledge, such as pathology or hematology.

2017
2018
2019
2020
2021
2022
2023
2024
2025

For evaluation circularity concerns, although using a greater variety of models might lead to further improvement, the current annotation workflow is already effective in ensuring high-quality annotations while minimizing model bias. Specifically, by integrating two models, GPT-4o and Gemini-2.5-Pro, through multiple processing steps and incorporating manual expert correction, the risk of dominance by a single model has been significantly reduced. Experimental results also show that GPT-4o, which participated in the annotation, was not the top performer in the evaluation, which in turn serves as evidence that circular evaluation bias has been effectively controlled. Moreover, the final evaluation is based on comparing outputs with the annotated ground truth, rather than relying on the model to independently generate judgments, further reducing the risk of circularity.

2026
2027
2028

E.5 NO INTER-ANNOTATOR AGREEMENT SCORES ARE REPORTED

2029
2030
2031
2032
2033
2034

Inter-annotator agreement scores: Because this workflow is not fully parallel, we acknowledge that inter-annotator agreement scores are not reported, which is a limitation of this study. However, the multi-stage review process, combining initial student review, multi-model automated checks, targeted expert verification, consensus discussions, and final read-through, ensures high-quality annotations while minimizing bias from any single reviewer or model. This careful workflow allows us to produce reliable reference reasoning chains suitable for evaluating MLLMs in medical image understanding.

2035
2036
2037
2038
2039
2040
2041
2042

E.6 NO MULTIPLE EXPERIMENTAL RUNS, AND NO CONFIDENCE INTERVALS WERE REPORTED.

Due to cost and time constraints, this study only conducted a single evaluation and did not report confidence intervals or significance tests. We acknowledge that repeating experiments and reporting confidence intervals would provide more rigorous and reliable results. In future versions, we plan to include multiple runs and statistical significance analyses to further strengthen the robustness of our findings.

2043
2044

E.7 LIMITED EXPLORATION OF PROMPTS AND ABLATION STUDIES

2045
2046
2047
2048
2049
2050
2051

In this study, we did not conduct a comprehensive exploration of alternative prompting strategies or perform extensive ablation experiments to evaluate the impact of prompt design choices systematically. Variations such as adjusting the level of detail, explicitly guiding reasoning steps, or introducing domain-specific constraints could potentially influence model performance. Similarly, ablation studies, such as removing specific reasoning cues, altering input formatting, or testing under different context lengths, might have provided more profound insights into model behavior. The absence of these experiments limits our ability to fully characterize how sensitive the results are to prompt engineering and task setup.

2052 **F SOCIAL IMPACT DISCUSSION**
20532054 The proposed M3CoTBench benchmark carries several important implications for the development
2055 and evaluation of medical AI systems:
20562057 **F.1 ADVANCING INTERPRETABLE MEDICAL AI**
20582059 By explicitly evaluating the reasoning chains of MLLMs, M3CoTBench encourages transparency in
2060 how models arrive at their predictions. Understanding intermediate reasoning steps allows researchers
2061 and clinicians to better align AI behavior with clinical decision-making processes, fostering trust
2062 and supporting responsible deployment in medical research and practice. In high-stakes medical
2063 applications, interpretability is critical: clinicians can verify whether model reasoning is consistent
2064 with established diagnostic criteria, and researchers can identify failure modes that may not be
2065 apparent from final predictions alone.
20662067 **F.2 IMPROVING MODEL EVALUATION IN MEDICAL AI**
20682069 Most existing benchmarks focus solely on final predictions, overlooking the reasoning process that
2070 leads to those outcomes. M3CoTBench fills this gap by providing a structured framework to assess
2071 the correctness, consistency, and efficiency of CoT reasoning across diverse medical imaging tasks.
2072 This enables a more nuanced analysis of model performance, highlighting specific strengths and
2073 weaknesses in reasoning patterns that are essential for complex diagnostic scenarios. By systematically
2074 evaluating intermediate steps, M3CoTBench supports the development of models that are not only
2075 accurate but also capable of robust and verifiable decision-making.
20762077 **F.3 PROMOTING RIGOROUS DEVELOPMENT OF TRUSTWORTHY AI SYSTEMS**
20782079 By emphasizing the evaluation of reasoning quality rather than only accuracy, the benchmark guides
2080 the design of models that are not only correct but also interpretable and reliable. This focus on
2081 transparent reasoning can help mitigate risks associated with opaque AI decisions in clinical settings,
2082 enabling more accountable AI deployment. Moreover, by providing standardized metrics for reasoning
2083 quality, M3CoTBench encourages best practices in medical AI development, fostering the creation of
2084 models that adhere to both technical and ethical standards.
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105