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ABSTRACT

Despite its remarkable success and widespread adoption in various domains, opti-
mal transport (OT) has a rather simple structure, relying on bipartite graphs with
only two layers of nodes for transportation. In this paper, we propose a multi-
layered OT approach that extends the original two-layer structure to handle trans-
portation problems across multiple hierarchical levels. Within this framework,
the source distribution flows through intermediate layers, before reaching the tar-
get distribution. Unlike previous variants of OT that involve multiple distribu-
tions, our multi-layered OT typically involves uncertain intermediate distributions,
which need to be computed based on the relationships between the preceding and
succeeding distributions. Under entropic regularization, MLOT-Sinkhorn algo-
rithm is further proposed for multi-layered OT, which can be accelerated using
GPUs and significantly outperforms general solvers such as Gurobi. The theoret-
ical results of our entropic MLOT are also given in this paper. In the experiments,
we validate its speed advantage and convergence performance. We further vali-
date its feasibility through Text-Image retrieval and intermediate image computing
task, which demonstrates reformulating the problems as MLOT can achieve better
results. Source code will be made available.

1 INTRODUCTION

Optimal Transport (OT) (Peyre & Cuturi, 2019) has been an increasingly important mathematical
tool for solving various machine learning problems, with success in a wide range of applications,
ranging from domain adaptation (Tzeng et al., 2017), learning generative models (Arjovsky et al.,
2017), network designing (Xu & Cheng, 2023), self-supervised contrastive learning (Caron et al.,
2020), to long-tail recognition (Peng et al., 2021) etc. It allows for the comparison of probability
distributions, combining the underlying geometric structure of the sample space.

Figure 1: MLOT scenario: mass are transported
among several unknown intermediates, aiming to mini-
mize total cost on a geometric distance.

However, real-world transportation (Bektaş
et al., 2019) scenarios are inherently com-
plex, which previous simple transportation of-
ten failed to capture. As shown in Fig. 1, we
take an example in cross-border e-commerce
operations, considering a scenario involving
Amazon and FedEx. The source and target dis-
tributions are fixed: Amazon’s warehouses in
different regions (source) have a known distri-
bution of product availability, and the demand
from customers (target) is also pre-determined
based on market forecasts. However, the inter-
mediate distributions, such as the logistics flow
through various transit points (e.g. ports, FedEx
sorting hubs) are uncertain and need to be opti-
mized. In this context, the transportation prob-
lem transitions from a two-layer network to a multi-layerd one, which also motivates us to delve into
the theory of optimal transport within a multi-layered framework.
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In this paper, we propose a new variant of optimal transport called multi-layered optimal transport
(MLOT) that extends the original two-layered transportation structure to multi-layered case. As
shown in Fig.1, we assume the known source and target distributions in the source and target lay-
ers, along with the known cost matrices between layers. Our objective is to determine intermediate
distributions and the transportation plan (i.e., coupling) between layers. Similar to vanilla OT, this
problem fundamentally boils down to a linear programming problem (Dantzig, 2002) and one can
employ the network simplex method (Grigoriadis, 1986) to solve it, although it proves to be ineffi-
cient. Building on prior work (Cuturi, 2013), we endeavor to accelerate the solution of MLOT using
matrix iteration algorithms for GPU acceleration.

To achieve fast computation and obtain an approximate solution, we apply entropic regularization
to MLOT. The MLOT-Sinkhorn algorithm is proposed through alternating iterations of scaling vari-
ables (Cuturi, 2013) and intermediate distributions. Theoretical results for our MLOT are also pre-
sented, including the global convergence of our MLOT-Sinkhorn algorithm. We first do the experi-
ments with a small enough coefficient for entropic regularization. The results demonstrate that our
MLOT-Sinkhorn algorithm can achieve an objective function close to the solution obtained from
Gurobi, but with speeds several tens to hundreds of times faster for larger problem sizes. Further-
more, we view zero-shot retrieval based on CLIP (Radford et al., 2021) as a transportation problem
and utilize MLOT to enhance inference through data augmentation. Specifically, we consider the
first layer as features of query images, the second layer as features of the text to be retrieved (i.e.,
captions), and the third layer as features of the augmented images in the first layer. We employ
the MLOT-Sinkhorn algorithm for solving this, and experimental results confirm that this inference
method has significantly improved compared to previous softmax-based methods without requiring
additional training. Besides, based on the calculation of intermediate distributions, we conducted
image interpolation experiments. The results indicate that the interpolated images generated us-
ing MLOT are relatively clear, serving as a viable alternative method for barycentric interpolation.
Finally, this paper contributes:

1) We propose MLOT, where we extend the traditional bipartite graph to a multi-layer structure.
Source marginals transport mass to uncertain immediate marginals and then further transport the
mass to the target marginal.

2) Entropic regularization is applied to MLOT, and the MLOT-Sinkhorn algorithm is derived to
obtain an approximate solution for MLOT. Experimental results demonstrate that MLOT-Sinkhorn
achieves a solution close to the linear programming solution computed by Gurobi while significantly
outperforming Gurobi in terms of computation speed.

3) We present a novel method to convert Zero-shot Text-Image retrieval tasks into MLOT prob-
lems using augmented data. This transformation improves retrieval accuracy by effectively utilizing
multi-layer information.

4) Building upon the calculation of intermediate distributions, we applied MLOT to image inter-
polation computations. Experimental results demonstrate that the intermediate images produced by
MLOT-Sinkhorn are relatively clear, providing a promising alternative for barycentric interpolation.

2 PRELIMINARIES AND RELATED WORK

Entropic Optimal Transport. The OT theory can be traced back to (Monge, 1781) where the objec-
tive is to seek a mapping that minimizes the total cost of transporting mass from a source measure to
a target measure. Kantorovich (Kantorovich, 1942) introduces the idea of using probabilistic trans-
port instead of a deterministic map, which is now commonly known as Kantorovich’s formulation
of OT. Specifically, given the cost matrix C ∈ R+

m×n and two histograms (a,b) where n and m are
numbers of dimensions, Kantorovich’s OT involves solving the coupling P (i.e. the joint probability
matrix):

min
P∈U(a,b)

< C,P > where U(a,b) = {P ∈ R+
mn|P1n = a,P⊤1m = b}. (1)

Relaxing with the entropic regularization (Wilson, 1969) is one of the simple yet efficient methods
for solving OT, which can be formulated as:

min
P∈U(a,b)

< C,P > −ϵH(P), (2)
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where ϵ > 0 is the coefficient for entropic regularization H(P), and H(P) can be specified as
H(P) = − < P, logP − 1m×n > . The objective in Eq. 2 is ϵ-strongly convex, and thus it has
a unique solution, which satisfies P∗

ϵ = diag(u)Kdiag(v), where K = e−C/ϵ is the Gibbs kernel
associated to the cost matrix C and (u,v) are two (unknown) scaling variables (Cuturi, 2013).

Optimal Transport with Multiple Marginals. Instead of coupling two histograms (a,b) in Kan-
torovich problem (Kantorovich, 1942), the multi-marginal optimal transportation (Abraham et al.,
2017) couples K histograms (ak)Kk=1 by solving the following multi-marginal transport:

min
P∈U((ak)k)

< C,P >=
∑
k

nk∑
ik=1

Ci1,i2,...,iKPi1,i2,...,iK (3)

where Ci1,i2,...,iK is n1 × · · · ×nK cost tensor and the valid coupling set U((ak)
K
k=1) is defined as

U((ak)k) = {P ∈ R+
n1×n2...nK

|∀k, ∀ik,
∑
l ̸=k

nl∑
il=1

Pi1,...,iK = ak,ik}. (4)

Note the Multi-Marginal Optimal Transport has various applications including image processing (Rabin et al.,
2012), financial mathematics for derivative pricing (Galichon et al., 2014) and so on (Pass, 2015). Compared
with MLOT, the Multi-Marginal Optimal Transport approach differs in that all of its marginals are deterministic,
and its objective is to compute the coupling tensor between multiple marginals, rather than the coupling between
two marginals in this paper.

Optimal Transport on a Graph. The optimal transport on graphs can be traced back to (Feldman & McCann,
2002), which first calculates the shortest distances between source nodes and target nodes to create a cost
matrix, subsequently using it to compute the 1-Wasserstein distance. This approach transforms the problem
into a linear program, and more precisely, a min-cost flow problem, which has been utilized and extended to
define and study traffic congestion models. Recently, (Le et al., 2022) introduced a new variant called Sobolev
transport (ST), designed for measures supported on graphs, which allows for a closed-form expression for faster
computation. Additionally, (Le et al., 2024) generalized Sobolev transport with an Orlicz structure (Orlicz,
1932). However, the above works rely on the calculating the shortest distances on graph firstly, so they do
not directly compute the transport couplings in the graph. In this paper, we attempt to directly compute the
transportation between nodes in a multi-layer structure. We propose an algorithm that can compute the optimal
flow as well as intermediate distributions directly based on ground metric, no need for shortest path on graph.

3 METHODOLOGY

3.1 MULTI-LAYERED OPTIMAL TRANSPORT

Formulation. We first give the definition of our Multi-Layered Optimal Transport (MLOT). Given the known
source distribution a1 and target distribution aK , our MLOT aims to transport the source distribution through
intermediate uncertain distributions (a2,a3, . . . ,aK−1) to the target distribution aK , where Ck ∈ R+

nk×nk+1

is known as the cost matrix between ak and ak+1. Our goal is to solve for the optimal couplings (Pk)
K−1
k=1 and

the intermediate distributions (ak)
K−1
k=2 with the following optimization:

min
(Pk)k,(ak)k

K−1∑
k=1

< Ck,Pk > s.t. Pk1nk+1 = ak, and P⊤
k 1nk = ak+1, ∀k = 1, . . . ,K − 1. (5)

Note that when K = 2, our MLOT degenerates to the original Kantorovich OT as proposed in Eq. 1. One
efficient way to solve the above problem is through Graph OT methods based on the shortest path algorithm,
as proposed by (Titouan et al., 2019), where the shortest path distances between source and target nodes are
first computed, followed by a heuristic algorithm to determine the final solution. However, such algorithms
do not directly involve the computation of intermediate distributions (ak)

K−1
k=2 , limiting their applicability in

real-world scenarios. For instance, in the cross-border e-commerce operations problem mentioned in the intro-
duction, if we introduce capacity constraints for goods transportation at ports, which are indeed present in real
scenarios and need to be considered, the original shortest path-based algorithms become impractical.

Relation to Wasserstein Barycenter. We found that our MLOT can be linked to the Wasserstein barycen-
ter. When considering the distributions (bs)

S
s=1, the Wasserstein barycenter among them aims to learn the

distribution a which optimizes:

min
(Ps)s,s

S∑
s=1

λs < Ds,Ps > s.t. Ps1 = bs, Ps1 = a ∀s = 1, 2, . . . , S (6)
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Figure 2: Transportation results of MLOT on synthetic Line and Ring data (refer to the data setup in Section 4)
and the thickness of the green line is directly proportional to the value of transportation. By varying the
iterations, couplings become sharper, and eventually converge to optimal transportation of entropic MLOT.

where Ds is the distance matrix between a and bs. As mentioned in MLOT formulation, our MLOT assumes
that the source and target distributions are known, and the objective is to compute the intermediate distributions.
In contrast, the Wasserstein barycenter assumes that one or several target distributions of the transportation are
known, and the goal is to compute the source distribution. Specifically, when S = 2 in Eq.6 and K = 3 in Eq.5,
the optimization of our MLOT is equivalent to solving the Wasserstein barycenter by setting C1 = D⊤

1 and
C2 = D2. In this paper, following (Cuturi, 2013), we consider MLOT under entropic regularization in the next
subsection, where we directly compute the coupling between each pair of layers and intermediate distributions
instead of relying on indirect calculations through shortest paths.

3.2 MLOT WITH ENTROPIC REGULARIZATION AND MLOT-SINKHORN ALGORITHM.

In this subsection, we attempt to introduce entropy regularization to MLOT in order to obtain a GPU-friendly
Sinkhorn-like algorithm, which can iteratively compute an approximate solution for MLOT through matrix
iterations. Unlike the case of vanilla OT, MLOT not only requires optimizing coupling Pk but also involves
considering intermediate distribution ak. Here, we contemplate applying entropy regularization to both, leading
to the formulation of entropic MLOT as:

min
(Pk)k,(ak)k

K−1∑
k=1

(
< Ck,Pk > −ϵH(Pk)

)
− τ

K−1∑
k=2

H(ak) s.t. ∀k,Pk1nk+1 = ak,P
⊤
k 1nk = ak+1,

(7)
where ϵ > 0 and τ > 0 are coefficients for the regularization terms H(Pk) and H(ak), respectively. The
optimization described above is essentially a convex optimization problem, ensuring the existence of a unique
optimal solution. In particular, as ϵ → 0 and τ → 0, the entropic MLOT in Eq. 7 degenerates to the original
MLOT in Eq. 5. Furthermore, we can further derive properties of the solution as follows by using the method
of Lagrange multipliers.
Proposition 1 (Solution Form). The solutions to Eq. 7 is unique and the solution of couplings have the follow-
ing form for k = 1, . . . ,K − 1:

Pk = Diag(uk)SkDiag(vk) (8)
where Sk {(uk, vk)}k are the set of unknown scaling variables. While the solution of the intermediate distri-
butions satisfying following equations for k = 2, 3, . . . ,K − 1:

ak =

{
(uk ⊙ vk−1)

−ϵ/τ τ > 0(
(S⊤

k−1uk−1)⊙ (Skvk)
)1/2

τ = 0
(9)

The proof are given in Appendix B. Compared to entropic OT, the coupling form of MLOT is similar, both
expressed as the product of the Gibbs kernel Sk and two diagonal matrices. The difference lies in the fact that
our MLOT requires further computation of intermediate distributions as shown in Eq. 9, which implies that the
matrix iteration algorithm corresponding to it is inevitably more complex than the Sinkhorn algorithm based on
Entropic OT.
Proposition 2. Redefine a general KL divergence as

K̃L(P|S) =
∑
ij

Pij log
Pij

Sij
−Pij + Sij , (10)

4
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Figure 3: Impact visualization of ε on the MLOT-Sinkhorn algorithm solutions, generated by varying ε =
8× 10−2, 8× 10−3, 8× 10−4, and 0 (Gurobi) with τ = 0. The experiments is conducted on Line data. As ε
decreases, the solution of our algorithm progressively converges towards the exact solution of Eq. 5.

the optimization in Eq. 7 is equivalent to the following minimization, where (Sk)ij = e−(Ck)ij/ϵ, and ∆k =
1nk/nk represents uniform distribution:

min
(Pk)k,(ak)k

ε

K−1∑
k=1

K̃L(Pk|Sk) + τ

K−1∑
k=2

KL(ak|∆k). (11)

The proof is given in Appendix C. Prop. 2 shows the optimal solutions (Pk)k, (ak)k exactly minimize the
weighted summation of two KL divergence. Compared to entropic OT, the KL projection of Pk is similar. The
difference lies in two places, one is that MLOT includes the summation of KL divergence for all layers, the
other is that MLOT also contains the KL projection of the intermediate layers. Expect for the different form
between entropic OT and MLOT, they share the similar static Schrödinger form, i.e. the optimization on KL
projection. Therefore many methods in entropic OT can be applied to MLOT, such as Bregman Sinkhorn.
Proposition 3 (Convergence with ε and τ ). When regularization on intermediate is cancelled (τ = 0), the
unique solution (Pε,τ

k )k of Eq. 7 converges to the optimal solution P⋆
k of Eq. 5, as ε→ 0.

(Pε,0
k )k

ε→0−→ argmin(Pk)k

K−1∑
k=1

< Ck,Pk > . (12)

When intermediate is regularized by τ , given fixed ε = ε0, the unique solution (Pε0,τ
k )k of Eq. 7 converges to

(Pε0,0
k )k as τ → 0.

(Pε0,τ
k )k

τ→0−→ argmin(Pk)k

K−1∑
k=1

< Ck,Pk > −ε0H(Pk). (13)

Algorithm 1: MLOT-Sinkhorn Algorithm
Input : Source distribution a1, target distribution

aK , distance metrics (Ck)k, ε, τ
Output: Couplings (Pk)k and intermediate

distributions (ak)k
Initialize Sk = exp(−Ck/ε), uk = 1, vk = 1

for ∀k = 1, 2, . . .K − 1 and ak = 1/Nk for
∀k = 2, 3, . . .K − 1;

while not Converge do
for k = 1, 2, . . . ,K − 1 do

uk ← ak ⊘ Skvk;
vk ← ak+1 ⊘ S⊤

k uk;
if k > 1 then

Update ak via Eq. 15;
end

end
end
Calculate Pk ← Diag(uk)Sk Diag(vk) for
∀k = 1, 2, . . .K − 1;

return (Pk)k and (ak)k;

The proof is in Appendix. D. Prop. 3 is essentially
due to the fact that entropic regularization is a contin-
uous function. This property demonstrates good con-
vergence of MLOT. Eq. 12 and Eq. 13 show respec-
tively that the regularization problem converges to the
non-regularization case for both couplings and inter-
mediate. Fig. 3 and Fig. 4 show visually the effect of
these two convergences.

MLOT-Sinkhorn Algorithm. Next, we delve into al-
gorithm design for solving the entropic MLOT, which
is GPU-friendly and hence accelerates the approxima-
tion of the optimal solution of MLOT. Based on the
above Proposition, here we propose MLOT-Sinkhorn
algorithm, the Sinkhorn-like iterative method for cal-
culating the optimal solution of Eq. 7 via matrix-
vector iterations. To get the results, an intuitive idea
is to iteratively update the coupling Pk and interme-
diate distributions ak until convergence. Thus for up-
dating the coupling Pk, based on the solution form
Pk = diag(uk)Sdiag(vk) and the marginal con-
straints (i.e. Pk1nk+1 = ak and P⊤

k 1nk = ak+1), we derive the following iterations for u
(l)
k and v

(l)
k

given the iteration number l:

u
(l+1)
k =

a
(l)
k

Skv
(l)
k

, and v
(l+1)
k =

a
(l)
k+1

S⊤
k u

(l+1)
k

, (14)
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Figure 4: Impact visualization of τ on the MLOT-Sinkhorn. The experiment is conducted on Line data, by
fixed ε = 1 × 10−3 and varying τ = 2 × 10−1, 2 × 10−2, 2 × 10−3, and 0 (without regularization on
intermediate). As τ decreases, the solution progressively converges towards the solution without regularization
on intermediate.

where initialization is set as vk = 1nk and ak = 1/Nk. Furthermore, for the iteration of the immediate
distribution, due to Eq. 9 in Prop. 1, we can update a(l+1) via

a
(l+1)
k =

{ (
u
(l+1)
k ⊙ v

(l+1)
k−1

)−ϵ/τ
τ > 0(

(S⊤
k−1u

(l+1)
k−1 )⊙ (Skv

(l+1)
k )

)1/2
τ = 0

(15)

for k = 2, . . . ,K − 1. Then, we iteratively alternate between solving Eq.14 for the underlying coupling Pk

and Eq.15 for intermediate distributions for all k until convergence. This process allows us to obtain the final
solutions (Pk)k and (ak)k. Note in the limit as ϵ→ 0 and τ → 0 (or τ = 0), empirical evidence demonstrates
that the iterative results of our MLOT-Sinkhorn approach closely approximate the exact solution of MLOT
obtained using Gurobi.

Global Convergence of MLOT-Sinkhorn Algorithm Then we give the global convergence analysis of MLOT-
Sinkhorn iteration, which is greatly simplified using the Hilbert projective metric defined as:

dH
(
u,u′) def.

= logmax
i,j

uiu
′
j

uju′
i

Several important properties of Hilbert metric are studied in Appendix A.1. For solution form Pk =
Diag(uk)Sk Diag(vk) of MLOT-Sinkhorn’s iterations, a proposition was presented as follow.

Proposition 4. For all layers, the worst bound of error of ul+1
k is guaranteed by:

dH
(
ul+1
k ,u∗

k

)
= O

[(
γ2(γ + 2)

2− 2γ2 − γ3

)l
]

(for τ = 0)

dH
(
ul+1
k ,u∗

k

)
= O

[(
γ

1− (ε/τ)γ

(
γ +

2ε

τ
γ +

ε

τ

))l
]

(for τ > 0),

(16)

where u∗ is the unique optimal scaling variable, ul+1 is the (l + 1)-th iteration of the scaling variable, and
γ ∈ [0, 1] stands for the maximum contraction radio of Sk:

γ = maxk λ(Sk)
def.
= sup

{
dH(Sky,Sky

′)

dH(y,y′)
, y,y′ ∈ Rn

+

}
,

which shows that the positive matrix Sk is a strict contraction on the cone of positive vectors.

This proposition is proved in Appendix A. The bound for dH
(
vl+1
k ,v∗

k

)
follows a similar form as uk. Eq. 16

implies that given an approximate radio δ, for proper setting of ε, τ , the MLOT-Sinkhorn algorithm will perform
linear convergence to a δ-approximate solution in O(log δ) iterations.

Relation to the Dynamic OT and Schrödinger bridge Fundamentally, our MLOT is akin to Dynamic Optimal
Transport (Tong et al., 2020) in that both can be seen as calculating the intermediate steps of the entire transport
process. The difference lies in the fact that we fix the positions of each layer or the cost matrices between two
layers in our MLOT, while in Dynamic OT, the locations are continuous throughout the entire space. The
relationship between the Schrödinger bridge (De Bortoli et al., 2021) and our entropic MLOT is similar to the
relationship between the aforementioned two OT variants; both can be regarded as special cases in a discrete
state. Therefore, our MLOT can offer new perspectives and approximate computations for Dynamic OT and
the Schrödinger bridge. More details and discussion can be found in Appendix G.
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Figure 5: Convergence performance of MLOT on synthetic line dataset, varying 3 layers (top) and 10 layers
(bottom). Total points number is 1000, and each layers’ number is artificially set. Two indicators are recorded:
convergence error and KL difference from ground truth. The left part (red lines) are without regularization on
intermidiate, and the right part (blue lines) are with regularization on intermidiate, where ε is fixed to 1×10−3.
The effect of a gradual decrease in both ε and τ leads to more accurate result and slower convergence speed.

4 EXPERIMENTS

The experiments of MLOT are conducted on a machine with an NVIDIA GeForce RTX 4090 GPU with 24GB
memory. The machine is equipped with an Intel(R) Core(TM) i9-10920X CPU, with a base clock frequency of
3.50GHz. This CPU features 12 cores and 24 threads.

4.1 EXPERIMENTS ON SYNTHETIC DATA

In this section, numerical simulation experiments were conducted to validate the efficiency of the MLOT-
Sinkhorn algorithm, especially with small values of ε and τ , as well as to study the convergence performance
with respect to these parameters. We first create synthetic datasets by randomly generating a lot of points
according to specific multi-layer structure.

Datasets and Experimental Setting. We artificially created synthetic datasets as follows. Scenarios of the
MLOT problem were modelled with randomly distributed points. The key information of this synthetic dataset
includes: Total number of points N (Problem size), Number of layers K, Number of points per layer (nk)k,
Shape of the layers, and Distance between layers D. Based on the shape of the layers, the synthetic dataset
can be divided into two parts: Line and Ring. In Line Datasets, points on each layer are distributed on the
same straight line with uniform probability, and the lines are parallel to each other. The distance matrix is
determined by the Euclidean distance. In Ring Datasets, points on each layer is distributed with uniform
probability on a circle, with all circles sharing a common centre. The radius increasing with the index of
layers. The distance matrix is determined by the Archimedean spiral length, computed as Appendix E. We
adopt Gurobi, a commercial LP solver running on CPUs, as baseline. Additionally, our proposed algorithm is
compared to another method that transforms the problem into traditional OT: This process firstly uses shortest-
path algorithm (implemented in C++) to transform K − 1 distance matrix into a direct matrix from source to
target, and then solves it using Python library for traditional OT.

Then we present the results of our experiments conducted on synthetic datasets, which are designed to validate
the performance of the MLOT-Sinkhorn algorithm. We first assess its efficiency and running time compared to
existing solvers, followed by an evaluation of its convergence performance under various settings.

Validation of efficiency and running time of MLOT-Sinkhorn. A visual representation of the Synthetic
dataset is shown in Fig. 2. The thickness of the green line is proportional to the value of transportation. Top
row: features a Line dataset with N = 66, K = 6, (nk)k = {3, 10, 20, 20, 10, 3}, D = 1, where points
in each layer are uniformly distributed along a line of length 6. Bottom row: displays a Ring dataset with
N = 40, K = 4, (nk)k = {5, 15, 15, 5}, D = 1, with points uniformly distributed around a circular ring. The
MLOT problem is configured with both source and target distributions being uniform, in order to make optimal
couplings approach a one-to-one transport. The parameters of MLOT-Sinkhorn are set to ε = 1×10−3, τ = 0.
Fig. 2 illustrates how the solutions returned by MLOT-Sinkhorn evolve with increasing iterations. Since the
couplings are initialized as uniform transports, the resulting solutions transition from being even to increasingly

7
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Gurobi Short Path+Sinkhorn MLOT(τ = 0) MLOT(τ > 0)
Problem Size Objective Time(s) Objective Time(s) Objective Time(s) Objective Time(s)

Experiment on synthetic Line data.

1× 102 1.0684 0.078 1.0692 0.168 1.0692 2.229 1.0702 1.409
1× 103 0.4082 6.644 0.4099 10.249 0.4106 2.356 0.4126 1.605
2× 103 0.6323 43.875 0.6336 13.342 0.6342 2.896 0.6349 1.941
5× 103 0.1463 329.635 0.1487 67.815 0.1508 11.275 0.1519 7.399
1× 104 Out Of Memory 0.3710 421.267 0.3707 41.154 0.3708 27.323
2× 104 Out Of Memory 0.1129 2575.662 0.1137 161.594 0.1139 110.042

Experiment on synthetic Ring data.

1× 102 2.3843 0.157 2.3848 0.339 2.3874 2.967 2.3900 2.060
1× 103 2.0319 20.470 2.0341 1.242 2.0396 3.340 2.0403 2.156
2× 103 2.0402 45.588 2.0427 2.723 2.0481 3.583 2.0484 2.269
4× 103 2.0222 323.822 2.0249 15.324 2.0301 5.421 2.0303 3.508
1× 104 Out Of Memory 2.1536 336.061 2.1588 47.382 2.1589 30.213
2× 104 Out Of Memory 2.1521 3125.446 2.1573 183.724 2.1573 124.7420

Table 1: Experiment on synthetic Line dataset and Ring datasets. The objective and time cost (on seconds)
are evaluated by comparing our proposed MLOT-sinkhorn (τ = 0 and τ > 0) with other two baselines. Our
proposed algorithms provide highly accurate (avg. error < 1% in Line data and avg. error < 1% in Ring data)
results in much more efficient time.

sharp, ultimately approaching the scenario of minimal cost. We carefully examined the accuracy and running
time of the MLOT-Sinkhorn algorithm when both ε and τ are small. Experiments were conducted on both the
Line dataset and the Ring dataset, varying the problem size N from 1 × 102 to 2 × 104. In the Line dataset,
we set K = 3, (nk)k = {N/4, N/2, N/4}, D = 0.1, with points in each layer uniformly distributed along
a line of length 20. For the Ring dataset, we also set K = 3, (nk)k = {N/4, N/2, N/4}, D = 1, and
points in each layer uniformly distributed around the ring. The parameters for two MLOT-Sinkhorn are set
as ϵ = 1 × 10−3, τ = 0 and ϵ = 1 × 10−3, τ = 2 × 10−3. The stopping condition is either when the
number of iterations exceeds 20000 or when the difference in update is less than 10−15.The results are shown
in Tab. 1. For various problem sizes, the objective values obtained from MLOT are highly consistent with
those from the Gurobi solver, with average relative errors being less than 0.7%. In addition to its accuracy,
MLOT-Sinkhorn operates several times faster than Gurobi and dynamic programming. As the problem size
increases, the memory requirements for the Gurobi solver become prohibitive, leading to ”Out of Memory”
when problem size reaches 1 × 104. In contrast, MLOT-Sinkhorn can efficiently handle larger problem sizes
while maintaining high speed and accuracy. The results display the efficiency of our algorithm.

Convergence performance of MLOT-Sinkhorn. An demonstration of the convergence of MLOT-Sinkhorn
is illustrated in Fig. 3 and Fig. 4. The depth of color in the heatmaps indicates the magnitude of the transport
values at each location, while the central bar graphs represent the intermediate distributions computed by the
algorithm. This experiment aims to showcase the convergence properties regarding ε and τ as proven in Prop. 3.
The Experiment is conducted on Line dateset, with N = 100, K = 3, (nk)k = {25, 50, 25}, D = 5, where
points in each layer are uniformly distributed along a line of length 20. Both the source and target distributions
were randomly generated and normalized. In Fig. 3, τ is set to 0, and a series of decreasing ε values are
employed, comparing to the ground truth solution of Eq. 5 (ε = 0), which illustrate the convergence of MLOT-
Sinkhorn with respect to ε. In Fig. 4, ε is fixed as 1× 10−3, and a series of decreasing τ values are employed,
demonstrating the convergence of MLOT-Sinkhorn with respect to τ .

We further carefully investigate the convergence of the MLOT-Sinkhorn algorithm with respect to ε and τ .
Experiment is conducted on Line dateset with N = 1000, D = 5, and points in each layer uniformly distributed
along a line of length 20. For different layer numbers, we manually set (nk)k, in order to create a dataset
shape that ”gradually increases from the source to the intermediate layers, and then gradually decreases to
the target”. Two indicators that characterize convergence performance are recorded: the convergence error
of (uk)k and (vk)k, and the KL difference from ground truth of intermediate layer. The results are shown
in Fig. 5. Top row: features K = 3 with (nk)k = {250, 500, 250}. Bottom row: features K = 10 with
(nk)k = {25, 50, 125, 150, 150, 150, 150, 125, 50, 25}. The left section (red lines) represents cases without
regularization on the intermediate layers, i.e. τ = 0, where ε decreases from 2× 10−2 to 8× 10−4. From the
graph, it is evident that smaller ε values lead to solutions closer to the ground truth, although they require longer
to converge for (uk)k, (vk)k. The right section (blue lines) incorporates regularization on the intermediate
layers, with ε fixed at 1 × 10−3. As τ decreases from 4 × 10−2 to 2 × 10−3, the graphs similarly show
that smaller τ values yield solutions closer to the ground truth, though they also require more time to achieve
iterative convergence.
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Table 2: Comparison of zero-shot retrieval performance between standard softmax inference and our proposed
MLOT algorithm on COCO and Flickr30k datasets. Results are presented for two model structures (ViT-B/32
and RN50x64) across both Text-to-Image and Image-to-Text retrieval tasks, measured by R@1, R@5, and
R@10 metrics.

COCO Flickr30k
Text⇒Image Image⇒Text Text⇒Image Image⇒Text

Structure Inference R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

ViT-B/32 softmax 29.02 52.84 64.26 49.82 74.64 83.10 24.42 42.96 51.00 34.34 54.44 61.97
MLOT(Ours) 35.10 61.22 72.18 50.66 75.10 83.32 27.42 49.95 59.81 41.03 65.31 74.28

RN50x64 softmax 35.64 60.18 70.14 57.38 80.58 87.96 33.12 52.57 60.02 45.13 65.33 71.67
MLOT(Ours) 43.06 70.26 79.56 57.98 81.12 88.06 41.64 65.49 74.67 54.03 77.35 84.61

4.2 CLIP-BASED ZERO-SHOT INFERENCE FOR TEXT-IMAGE RETRIVAL

Image-Text Retrieval is a traditional multimodal task aimed at establishing an efficient correspondence between
images and their descriptive text. Zero-shot retrieval aims to retrieve relevant items without any prior training
on specific categories or datasets. Currently, this task has gained traction due to the increasing availability of
pretrained models like CLIP (Radford et al., 2021).

In the traditional CLIP-based zero-shot retrieval process for Image-to-Text retrieval, the cosine similarity, mul-
tiplication of query image’s embedding and all candidate captions’ embedding, is used for predicting the most
relevant match. However, this approach relies solely on two layers of information. To address this limita-
tion, a new method for zero-shot retrieval is proposed. By augmenting the query image, we transform the
Image-to-Text retrieval task into a Image-to-Text-to-Image MLOT problem. Additional layers of information
are therefore incorporated. This multi-layered approach improves the retrieval recall by leveraging richer con-
textual information across multiple layers.

Datasets and Experimental Setting. For traditional downstream task image-text retrieval, we use
COCO2017 (Lin et al., 2015) and Flickr30k (Young et al., 2014) dateset. For COCO2017, we use the 5k val-
idation set, which has 5000 images and 25014 captions in total. For Flickr30k, we use the whole 30k dataset,
which has 31783 images and exactly 5 captions for each image. For our experiments, CLIP model (Radford
et al., 2021) is employed to compute feature embedding of images and texts. Two different structure of CLIP:
ViT-B/32 and RN50x64, are involved.

Figure 6: Procedures of converting Image-to-Text re-
trieval into MLOT problem.

We propose a novel approach that leverages CLIP
model to transform the retrieval problem into a
Multi-Layered Optimal Transport (MLOT) problem.
The cost metric in OT framework can be given by
the negative cosine similarity between the normal-
ized embeddings. We then can efficiently model the
relationships between images and texts across multi-
ple layers, as shown in Fig. 6. To formulate Multi-
Layered OT problem, we implement data augmen-
tation techniques. Specifically, we apply horizontal
flipping to the images in the Image-to-Text task, and
randomly select two captions from the available an-
notations for each image in the Text-to-Image task.
The flipped query images or the synonymous cap-
tions are regarded as the third layer in MLOT. Therefore we effectively construct a K = 3 multi-layered
transport scenario. Once the MLOT problem is formulated, we run the MLOT-Sinkhorn iterations. This MLOT
problem ultimately returns two couplings, representing the similarity matches from the intermediate to the
query and from the intermediate to the augmented query. A natural approach to handle this is to take their
arithmetic mean as the final prediction, since this takes full advantage of the results from multiple layers.

Baselines. The CLIP model can be used for zero-shot image-text retrieval by computing cosine similarity
in the embedding space. For baseline comparison, the softmax function is applied to the similarity scores to
produce probability distributions, enabling the retrieval of the top-K image-caption pairs. The widely-used
R@k(k = 1, 5, 10) in cross-modal retrieval is reported for performance evaluation, which is the proportion of
matched samples found in the top-K retrieved results.

Experimental Results. As shown in Tab. 4, the results demonstrate significant improvements in zero-shot
retrieval compared to the softmax inference method across both COCO and Flickr30k datasets. Converting
into MLOT problem significantly enhances the recall rate of zero-shot retrieval. On average, the recall rate is
improved by 6.1% for the Transformer architecture and by 8.2% for the ResNet architecture across both retrieval
tasks. These results indicate that our novel inference method, leveraging the MLOT framework, effectively
captures the relationships between images and text.
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Figure 7: Intermediate images between given picture, generated by MLOT. The intermediate layers (ak)k])
computed by MLOT-Sinkhorn are regarded as grayscale distribution of intermediate images. Top row: refor-
mulating as 4 layers MLOT, which gives out 2 intermediate images. Second row: reformulating as 5 layers
MLOT, which gives 3 intermediate images. Left: clean pictures transportation. Right: Transportation involved
a more complex leopard image. Results demonstrate the effectiveness of reformulation as MLOT.

4.3 VISUAL EXPERIMENTS ON INTERMEDIATE DISTRIBUTIONS

Calculating image interpolation is a traditional task, aimed at generating intermediate images between two
given input images, often used to create smooth transitions or fill in missing data. This task is mostly addressed
by calculating the barycenter of two given images, where different weights are set to generate a coherent series
of intermediate images. However. this method requires multiple computations with different weights. In con-
trast, we propose a new method based on MLOT, which can directly generate K intermediate images in a single
calculation. For a grayscale image, it can be viewed as a probability distribution vector of grayscale values.
The gradual transition between two images exactly corresponds to the transport process of two grayscale value
distributions. The transfer cost during this process should be determined by the relative distances between pixel
locations. Thus, the cost matrix D is defined on pixel-wise Euclidean distance between two 64x64 grid. Tran-
sitioning from a given image through several intermediate images to ultimately arrive at another image closely
aligns with the MLOT problem. Therefore, a natural approach is to use D as the cost matrix between any two
layers, reformulating the task into solving the MLOT problem. Ultimately, the MLOT solution’s intermediate
layers should exactly represent the (grayscale distributions of the) intermediate images. We conducted tests on
four grayscale images, each sized 64x64. As shown in Fig. 8, the left part features clean alphabet images, while
the right part showcases a more complex leopard image. MLOT was applied varying 4 layers and 5 layers
respectively, and the results indicate that our proposed method is effective. The intermediate layers calculated
by MLOT can be directly interpreted as intermediate images at varying degrees of transition.

4.4 SUMMARY OF EXPERIMENTAL RESULTS

In this section, we summarize the key findings from our experiments. We confirmed the effectiveness and
convergence of the MLOT-Sinkhorn algorithm, observing that it maintains a significant speed advantage while
achieving a high level of accuracy (avg. error < 0.7%). Furthermore, the algorithm can smoothly transition
to precise solutions both for regularization on ε and τ . On the practical side, we highlighted the utility of
the MLOT framework in two distinct tasks: Text-Image Retrieval and Intermediate Image Computing. By
reformulating the original problems into a multi-layer structure, we significantly enhanced the utilization of
intermediate information. In the zero-shot retrieval task, our approach achieved an average improvement of
7.2% over Softmax. In the image-related task, we validated that the intermediate distributions in the MLOT
solution visually represent interpolations between two images, providing an alternative method to compute
interpolations without relying on Wasserstein barycenters.

5 CONCLUSION AND FUTURE WORK

In this paper, we propose Multi-layered Optimal Transport (MLOT), a novel approach extending traditional op-
timal transport to handle complex, multi-stage transportation scenarios. We then introduce the MLOT-Sinkhorn
algorithm, leveraging entropic regularization for efficient computation on GPUs. Our method demonstrates su-
perior performance in both speed and accuracy compared to existing solvers. Through experiments on zero-shot
inference for Text-Image retrieval and intermediate image calculation, we validate MLOT’s effectiveness and
its potential to advance optimal transport applications in various fields. In future work, we believe that OT
theory can be integrated and enhanced with a broader range of real-world scenarios, such as facility location
problems (Cornuéjols et al., 1983), to enrich the application of matrix iteration algorithms based on OT in
various operations research problems.
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A GLOBAL CONVERGENCE OF MLOT-SINKHORN

This section study the convergence of entropic regularized OT.

A.1 PROPERTY OF HILBERT METRIC

To measure the gap between iterative result and optimal coupling, Hilbert metric is introduced. dH(u,u′) :=

logmax
i,j

uiu
′
j

uju
′
i
. Firstly, several mathematical properties of Hilbert Metric are studied as follow.

1. dH
(
a
b
, c
d

)
= dH(ad,bc) ⩽ dH(a, c) + dH(b,d)

Proof: By definition:

LHS = logmax
aicj · bjdi

bidj · ajci
= dH(ad, cb)

Separating the product, we have:

LHS ⩽ logmax
aicj

ajci
+ logmax

bjdi

bidj
= dH(a, c) + dH(b,d)

2. dH(aε,bε) = |ε|dH(a,b)

Proof: By definition: LHS = logmax
aε
ib

ε
j

aε
jb

ε
i

. Since the operation is to maximize for all i, j, whether

ε > 0 or ε < 0 will obtain the maximum or minimum at same row/column combination. Therefore
the exponent can be separated out as absolute value.

3. dH(ta, tb) = dH(ta, tb)

Proof: If t ∈ Rn
+ and a, b ∈ Rn×m

+ . Then expand the by definition will prove this property straight
forward. If t ∈ Rw×n

+ , the situation becomes more complicated, which we will discuss immediately
below.
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A.2 INTRODUCTION OF CONTRACTION RADIO

In the solution form diag(uk)Sk diag(vk), the constant argument Sk is critical in the convergence process.
(Peyre & Cuturi, 2019) points out how matrix production influences Hilbert metric. (Franklin & Lorenz, 1989)
generalizes this as a nature of a matrix, which can be regraded as contraction radio during iteration. As the
following proposition shows.

dH(Sv,Sv′) ≤ λ(S)dH(v,v′)

where λ(S) =

√
η(S)−1√
η(S)+1

and η(S) := max
ijkl

SikSjl

SjkSil

The λ(S) here is defined as

sup

{
dH(Sy,Sy′)

dH(y,y′)
, y,y′ ∈ Rn

+

}
, aiming to extract constant from Hilbert metric. Notice that λ(S) is larger than 0 and less than 1, we call it
contraction radio, denoted as γ.

A.3 PROOF OF CONVERGENCE

The case τ > 0 Iteration steps (Suppose the l-th iteration):

ul+1
k = al

k ⊘ Skv
l
k (17)

vl+1
k = al

k ⊘ S⊤
k u

l
k (18)

al+1
k =

(
ul+1
k ⊙ vl+1

k−1

)−ϵ/τ (19)
Denote the optimal value as u∗

k,v
∗
k,a

∗
k. Now consider the Hilbert distance between l + 1-th iteration to the

optimal value:

dH(ul+1,u∗) = dH

(
al

Svl
,
a∗

Sv∗

)
(20)

⩽ λ(S)
[
dH

(
al,a∗

)
+ dH

(
vl,v∗

)]
(21)

dH
(
vl+1,v∗

)
= dH

(
al

S⊤ul
,

a∗

S⊤u∗

)
(22)

⩽ λ(S)
[
dH

(
al,a∗

)
+ dH

(
ulu∗

)]
(23)

dH
(
al,a∗

)
= dH

((
ul ⊙ vl

)− ε
τ
, (u∗ ⊙ v∗)

− ε
τ

)
(24)

⩽
ε

τ

[
dH

(
ul,u∗

)
+ dH

(
vl,v∗

)]
(25)

The layer number k is not important here, since we can simply replace all al
k,u

l
k,v

l
k, γk by the biggest one in

this iteration, which guarantee a worst bound.

Substitute Eq. 23 into Eq. 25, we have:

dH
(
al,a∗

)
⩽

ε

τ

1 + γ

1− (ε/τ)γ
· dH

(
ul,u∗

)
Substitute this into Eq. 21, finally we have:

dH
(
ul+1,u∗

)
⩽

γ

1− (ε/τ)γ

(
γ +

2ε

τ
γ +

ε

τ

)
· dH

(
ul,u∗

)
Which indicates the Hilbert difference between ul and optimal u∗ converges in a exponential speed.

dH
(
ul+1,u∗

)
= O

[(
γ

1− (ε/τ)γ

(
γ +

2ε

τ
γ +

ε

τ

))l
]

Since the contraction radio γ is less than 1 (What’s more, in experiment we find that γ is always around 0.50̃.7),
and ε/τ is always set less than 0.5, then dH

(
ul+1,u∗)→ 0.

The case τ = 0 Iteration steps (Suppose the l-th iteration):

ul+1
k = al

k ⊘ Skv
l
k

vl+1
k = al

k ⊘ S⊤
k u

l
k

al+1
k =

(
(S⊤

k−1u
l+1
k−1)⊙ (Skv

l+1
k )

)1/2 (26)
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The remain proof is similar as the case τ > 0.

dH
(
al,a∗

)
⩽

1

2
γk−1dH

(
ul+1
k−1,u

∗
k−1

)
+

1

2
γkdH

(
vl+1
k ,v∗

k

)
⩽

1

2
γdH

(
ul+1

)
+

1

2
γdH

(
vl+1

) (27)

, in which we denote max
k

γk as γ, and represent all layer’s Hilbert distance by the biggest one in this iteration

dH
(
al,a∗), etc. We have:

(2− 2γ2 − γ3)dH
(
al,a∗

)
⩽ γ2(1 + γ)dH

(
ul,u∗

)
(28)

Combine Eq. 21, Eq. 23 and Eq. 28, finally we have:

dH
(
ul+1,u∗

)
⩽

γ2(γ + 2)

2− 2γ2 − γ3
· dH

(
ul,u∗

)
Which indicates the Hilbert distance between ul and optimal u∗ converges in a exponential speed.

dH
(
ul+1,u∗

)
= O

[(
γ2(γ + 2)

2− 2γ2 − γ3

)l
]

B PROOF OF PROP.1

The case τ = 0.

The entropic regularized MLOT can be formulated as

min
{Pk},{ak}

K−1∑
k=1

(
< Ck,Pk > −ϵH(Pk)

)
− τ

K−1∑
k=2

H(ak) (29)

subject to
Pk1 = ak and P⊤

k 1 = ak+1 ∀k = 1, . . . ,K − 1. (30)
The Lagrange multiplier function is

L =

K−1∑
k=1

(
< Ck,Pk > −ϵH(Pk)

)
− τ

K−1∑
k=2

H(ak)

−
K−1∑
k=1

< fk,Pk1− ak > − < gk,P
⊤
k 1− ak+1 >

(31)

Firstly,
∂L

∂Pk
= Ck + ε logPk − fk1

⊤ − 1⊤gk = 0

⇒ Pk = Diag
(
efk/ε

)
· e−Ck/ε ·Diag

(
egk/ε

) (32)

Set that: uk = efk/ε,vk = egk/ε,Sk = e−Ck/ε, we have:

Pk = Diag(uk)Sk Diag(vk) (33)

Due to Pk1 = ak and P⊤
k 1 = ak+1 We have:

uk =
ak

Skvk
, uk =

ak+1

S⊤
k uk

(34)

What’s more, when τ = 0:
∂L

∂ak
= fk + gk−1 = 0 (35)

Thus, uk ⊙ vk−1 = 1 Then we have:
ak

Skvk
⊙ ak

S⊤
k−1uk−1

= 1

ak =

[
ak

Skvk
⊙ ak

S⊤
k−1uk−1

] 1
2

, fork = 2, ...,K − 1

(36)
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The case τ > 0.

The Lagrange multiplier function is

L =

K−1∑
k=1

(
< Ck,Pk > −ϵH(Pk)

)
− τ

K−1∑
k=2

H(ak)

−
K−1∑
k=1

< fk,Pk1− ak > − < gk,P
⊤
k 1− ak+1 >

(37)

Firstly,
∂L

∂Pk
= Ck + ε logPk − fk1

⊤ − 1⊤gk = 0

⇒ Pk = Diag
(
efk/ε

)
· e−Ck/ε ·Diag

(
egk/ε

) (38)

Set that: uk = efk/ε,vk = egk/ε,Sk = e−Ck/ε, we have:

Pk = Diag(uk)Sk Diag(vk) (39)

Due to Pk1 = ak and P⊤
k 1 = ak+1 We have:

uk =
ak

Skvk
, uk =

ak+1

S⊤
k uk

(40)

What’s more, when τ > 0
∂L

∂ak
= τ log ak + fk + gk−1 = 0

ak = (uk ⊙ vk−1)
−ϵ/τ

(41)

C PROOF OF PROP.2

From the definition of K̃L and (Sk)ij = e−(Ck)ij/ϵ, we have

K−1∑
k=1

K̃L(Pk|Sk) =

K−1∑
k=1

∑
ij

(
(Pk)ij log(Pk)ij − (Pk)ij + (Pk)ij

(Ck)ij
ε

+ (Sk)ij

)

=

K−1∑
k=1

∑
ij

(
(Pk)ij (log(Pk)ij − 1) +

1

ϵ
(Pk)ij(Ck)ij + (Sk)ij

)

=
1

ϵ

K−1∑
k=1

< Ck,Pk > −εH(Pk) + Const .

(42)

and
K−1∑
k=2

K̃L(ak|∆k) =

K−1∑
k=2

∑
i

ak)i (log ak)i + lognk − 1)

=

K−1∑
k=2

∑
i

ak)i (log ak)i − 1) + lognk

∑
i

ak)i

=
1

τ

K−1∑
k=2

H(ak) + Const .

(43)

Notice that the Const in expression is irrelevant when it comes to solving optimization problems. Therefore
min

(Pk)k,(ak)k
ε
∑K−1

k=1 K̃L(Pk|Sk) + τ
∑K−1

k=2 K̃L(ak|∆k) is exactly equivalent to Eq. 7.

D PROOF OF PROP.3

Convergence with ε In this part, we prove that the entropic regularization on couplings will converge to
original MLOT. We consider a sequence (εl)l > 0 such that εl → 0. We denote (Pεl

k )k as the optimal solution

15
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of Eq. 7 with ε = εl, τ = 0, and denote (P⋆
k)k as the optimal solution of Eq. 5. By optimality of (Pεl

k )k and
(P⋆

k)k for their respective optimization problems, we have:

K−1∑
k=1

< Ck,P
εl
k > −εlH(P

εl
k ) ⩽

K−1∑
k=1

< Ck,P
⋆
k > −εlH(Pk⋆)

K−1∑
k=1

< Ck,P
⋆
k > ⩽

K−1∑
k=1

< Ck,P
εl
k >

(44)

Therefore:

0 ⩽
K−1∑
k=1

< Ck,P
εl
k −P⋆

k > ⩽
K−1∑
k=1

εl [H(P
εl
k )−H(P⋆

k)] (45)

Since entropic function H(P) is continuous and inner product here is always positive, the limitation εl → 0
shows that Pεl

k = P⋆
k, ∀k = 1, 2, ...,K − 1, which proves Eq. 12.

Convergence with τ In this part, we prove that the entropic regularization on both couplings and intermedi-
ates will converge to the problem that only regularize couplings, given the fixed ε0. We consider a sequence
(τl)l > 0 such that τl → 0. We denote (Pτl

k )k as the optimal solution of Eq. 7 with ε = ε0, τ = τl, and denote
(Pε0

k )k as the optimal solution of Eq. 7 without regularization on intermediates. By optimality of (Pτl
k )k and

(Pε0
k )k for their respective optimization problems, we have:

K−1∑
k=1

< Ck,P
τl
k > −ε0H(P

τl
k )− τl

K−1∑
k=2

H(a
τl
k ) ⩽

K−1∑
k=1

< Ck,P
ε0
k > −ε0H(Pε0

k )− τl

K−1∑
k=2

H(aε0
k )

K−1∑
k=1

< Ck,P
ε0
k > −ε0H(Pε0

k ) ⩽
K−1∑
k=1

< Ck,P
τl
k > −ε0H(P

τl
k )

(46)

Therefore:

0 ⩽
K−1∑
k=1

< Ck,P
τl
k −Pε0

k > −ε0 [H(P
τl
k )−H(Pε0

k )] ⩽
K−1∑
k=2

τl [H(a
τl
k )−H(aε0

k )] (47)

Similarly, since entropic function H(a) is continuous, the limitation τl → 0 shows that regularization on
intermediate can converge to non-regularization on intermediate:

K−1∑
k=1

< Ck,P
τl
k > −ε0H(a

τl
k ) =

K−1∑
k=1

< Ck,P
ε0
k > −H(aε0

k ).

E ARCHIMEDEAN DISTANCE BETWEEN TWO POINTS

Archimedes’ spiral is curve expressed as r(θ) = b(θ − θ0). Suppose two a spiral passes through two points
(r1, θ1), (r2, θ2). The curve’s parameters can be determined as:

b =
r2 − r1
θ2 − θ1

, θ0 =
θ1r2 − θ2r1
r2 − r1

(48)

The length of the curve is:

dl =
√

dr2 + (rdθ)2

⇒ L =

∫ r2

r1

√
1 +

r2

b2
dr

=
r

2b

√
b2 + r2 +

b

2
ln

(
r +

√
b2 + r2

) ∣∣∣∣∣
r2

r1

(49)

Under the circumstances in Ring Data, where the radii of neighbouring rings differ by 1, thus b = 1/ (θ2 − θ1).
Further denote θ2 − θ1 as a. Let:

F (r) =
r

2

√
1 + a2r2 +

1

2a
ln

(
ar +

√
1 + a2r2

)
(50)

Then the Archimedean distance between two points can be written as F (r2)− F (r1).
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F SUPPLEMENTARY EXPERIMENTS FOR REBUTTAL

Table 3: Solving the reformulated MLOT problem returns 2 coupling P1,P2, which are regarded as probabil-
ity prediction metrix. In our submission, P1 +P⊤

2 is adopted for final prediction. This table displays the R@k
results using single coupling (either P1 or P2) instead. And the table below shows how many predicted labels
are same among P1 and P2.

COCO Flickr30k
Text⇒Image Image⇒Text Text⇒Image Image⇒Text

Structure Inference R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

ViT-B/32
softmax 29.02 52.84 64.26 49.82 74.64 83.10 24.42 42.96 51.00 34.34 54.44 61.97

MLOT(Ours) 35.10 61.22 72.18 50.66 75.10 83.32 27.42 49.95 59.81 41.03 65.31 74.28
1-Coupling Pred 29.0

∣∣28.6 52.4
∣∣52.1 64.3

∣∣62.8 49.7
∣∣49.9 74.7

∣∣74.6 83.3
∣∣83.3 21.5

∣∣21.7 41.0
∣∣41.1 50.6

∣∣50.6 40.9
∣∣37.6 64.8

∣∣61.2 73.8
∣∣70.7

RN50x64
softmax 35.64 60.18 70.14 57.38 80.58 87.96 33.12 52.57 60.02 45.13 65.33 71.67

MLOT(Ours) 43.06 70.26 79.56 57.98 81.12 88.06 41.64 65.49 74.67 54.03 77.35 84.61
1-Coupling Pred 35.8

∣∣35.8 60.7
∣∣60.1 71.1

∣∣70.6 58.0
∣∣56.6 81.1

∣∣80.4 88.3
∣∣86.9 33.7

∣∣33.5 55.8
∣∣55.8 65.0

∣∣65.3 53.7
∣∣50.9 77.1

∣∣74.7 84.5
∣∣82.4

COCO Flckr30k
Backbone Structure Text⇒Image Image⇒Text Text⇒Image Image⇒Text

ViT-B/32 38.6 (19319/5000× 10) 80.2 (40083/5000× 10) 38.4 (122114/10× 31783) 54.5 (171811/10× 31783)
RN50x64 39.7 (19851/5000× 10) 78.6 (39299/5000× 10) 39.8 (126438/10× 31783) 65.8 (209178/10× 31783)

Table 4: The wall-clock computation time for the Image-Text Retrieval task
COCO Flickr30k

Structure Inference Text⇒Image Image⇒Text Text⇒Image Image⇒Text

ViT-B/32 softmax 5.12 68.50 57.12 33.15
MLOT(Ours) 19.32 439.37 229.31 1128.97

RN50x64 softmax 7.81 205.55 52.65 28.09
MLOT(Ours) 46.06 1131.11 262.74 2175.40

Table 5: Experiment on synthetic Line dataset, with different setting of layers shape (Differs from
experiment in the paper, whose source/target node’s number is set to be smallest).

Gurobi MLOT(τ = 0) MLOT(τ > 0)
N (nk)k Objective Time(s) Objective Time(s) Objective Time(s)

1500 [500, 250, 250, 500] 0.8694 7.163 0.8733 4.091 0.8746 3.279
2600 [800, 500, 500, 800] 0.7705 25.329 0.7753 3.268 0.7747 4.034
3000 [1000, 500, 500, 1000] 0.4159 29.312 0.4261 8.137 0.4238 10.059
3600 [1000, 800, 800, 1000] 0.4087 59.697 0.4213 8.466 0.4191 10.331
4000 [1000, 1000, 1000, 1000] 0.4161 163.600 0.4257 8.520 0.4247 10.282
5000 [1500, 1000, 1000, 1500] 0.1594 148.347 0.1719 8.278 0.1690 10.422
6000 [2000, 1000, 1000, 2000] 0.0950 167.729 0.1124 9.955 0.1086 14.366
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Figure 8: Comparison of two methods computing intermediate images: via Barycenter and via
MLOT. The figure shows the situation of K = 5 (need to generate 3 images). The top row shows
the results generated by MLOT, where all intermediates images are computed within single com-
putation procedure. The botton row shows the results generated by Barycenter, where 3 times of
computation is needed, setting λ = 0.25, 0.5, 0.75 respectively.

Table 6: Experiment on synthetic Line dataset with layer number K = 3. We randomly generate
flow constraints sk for each layer, i.e. ak ⩽ sk, k = 2, 3 . . .K − 1. Our proposed MLOT-Sinkhorn
still provide a highly accurate result compared with Gurobi. This demonstrate our algorithm’s
adaptability towards constraints on flow.

Without- Adding Random Constraints
-Constraints MLOT(τ = 0) Gurobi

N Objective Objective Time(s) Objective Time(s)

1× 103 0.6447 0.9349 12.3 0.9331 5.5
2× 103 0.6305 0.9458 16.4 0.9450 26.5
3× 103 0.3426 0.8426 19.8 0.8395 68.9
4× 103 0.3667 0.7216 20.6 0.7188 193.8
5× 103 0.1550 0.7306 18.4 0.7206 417.5
6× 103 0.5088 0.5456 31.2 0.5426 818.5

G STATIC SCHRÖDINGER BRIDGE PROBLEM AND MLOT

The SB problem is a classical problem. In the discrete-time setting, given density

p(x0:N ) = p0(x0)

N−1∏
k=0

pk+1|k(xk+1 | xk)

which describes the process adding noise to the data. We aim to find π⋆ ∈ PN+1 such that:

π⋆ = argmin {KL(π | p) : π ∈ PN+1, π0 = pdata , πN = pprior }

This dynamic formulation admits a static analogue:

πs,⋆ = argmin {KL(πs | p0,N ) : πs ∈ P2, π
s
0 = pdata, π

s
N = pprior}

Solving the full Schrodinger Bridge problem, especially in its continuous form, can be computationally difficult.
Several numerical methods were proposed, such as IPF (Chen et al., 2021), DifussionSB (De Bortoli et al.,
2023).
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Under mild assumptions, the static SB problem can be seen as an entropy-regularized optimal transport prob-
lem:

πs,⋆ = argmin
{
−Eπ⋆

[
log pN|0 (XN | X0)

]
−H(πs) : πs ∈ P2, π

s
0 = pdata , π

s
N = pprior

}
The KL form of MLOT problem is presented in Eq. 2:

min
(Pk)k,(ak)k

ε

K−1∑
k=1

K̃L(Pk|Sk) + τ

K−1∑
k=2

KL(ak|∆k)

As proved in Appendix.C, minimizing the part τKL(ak|∆k) is equivalent to minimizing H(ak). Therefore,
our MLOT problem shares a similar KL divergence structure to the discrete form of the Schrödinger
bridge.

By drawing this parallel, we suggest that in the special case where SB problem is discrete, MLOT-Sinkhorn
provides a potential approach to solving the SB problem.
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