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ABSTRACT

A common practice when training Deep Neural Networks is to force the learned
representations to lie on the standard unit hypersphere, with respect to the Lo
norms. Such practice has been shown to improve both the stability and final
performances of DNNs in many applications. In this paper, we derive a unified
theoretical framework for learning representation on any L,, hyperspheres for
classification tasks, based on Maximum A Posteriori (MAP) modeling. Specifically,
we give an expression of the probability distribution of multivariate Gaussians
projected on any L,, hypersphere and derive the general associated loss function.
Additionally, we show that this framework demonstrates the theoretical equivalence
of all projections on L, hyperspheres through the MAP modeling. It also provides a
new interpretation of traditional Softmax Cross Entropy with temperature (SCE-7)
loss functions. Experiments on standard computer vision datasets give an empirical
validation of the equivalence of projections on L, unit hyperspheres when using
adequate objectives. It also shows that the SCE-7 on projected representations,
with optimally chosen temperature, shows comparable performances. The code
is publicly available at https://anonymous.4open.science/r/map_
code-71C7/\

1 INTRODUCTION

Cross-entropy (CE) is the most commonly used loss function for classification, even though it is often
modified |Ahn et al.|(2021)); (Caccia et al.|(2022)); Wang et al.|(2017) or coupled with additional loss
terms [Hinton et al.| (2015); L1 et al.| (2019). On the other hand, many studies in the literature address
designing output normalization. [Bouchard| (2007) introduced upper bounds for improving softmax
computation stability. |De Brebisson & Vincent (2015)) introduced a family of functions behaving
as normalizing functions and gave experimental justifications for softmax alternatives. Other sparse
alternatives have similarly been developed Martins & Astudillo|(2016)); Laha et al.|(2018); |Liu et al.
(2017). Further studies considered the probabilistic modeling of the trained feature space explicitly.
Wan et al.|(2018) have leveraged a Gaussian mixture model coupled with a CE. Additional studies
also consider a similar setting, opposing the obtained loss function to the traditional Softmax Cross
Entropy (SCE)|Yan et al.|(2020).

It is known that the softmax operation can be interpreted as resulting from the formulation of the a
posteriori distribution of the class given the data and that the search for the a posteriori maximum
leads, with a Gaussian assumption, to the standard cross-entropy criterion; see for example (Bishop),
2006, Section 4.2, pages 197-199).

A standard practice when training Deep Neural Networks is to force the learned representations to
lie on the standard unit hypersphere, with respect to the Ls norms. Such practice has been shown to
improve both the stability and final performances of DNNs in many applications, see e.g. |Wang et al.
(2017); Tian et al.|(2019); Zimmermann et al.|(2021); |Chen et al.|(2020). However, this is usually not
directly accounted for when deriving a loss function for the whole classification process, including
the projection step.

In this paper, we first recall the MAP approach for the DNN classification problem and give an
explicit connection to SCE and its variant Softmax Cross-Entropy with temperature (SCE-7) and
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bias Zhang et al.| (2018)); |Agarwala et al.| (2020). Indeed, we show that SCE can be interpreted as
a MAP with a class-conditional isotropic Gaussian hypothesis on the standard scaled-simplex (the
standard simplex scaled by a factor ). Similarly, we demonstrate that the temperature parameter used
for re-scaling the network outputs in SCE-7 can be expressed as the ratio between the scaling factor
r and the Gaussian distributions v variance. The insights given by the MAP approach allow us to
give a meaningful interpretation of the SCE and, more than that, to consider more general scenarios.
Specifically, we investigate the impact of a particular family of nonlinear output transformations:
projections onto L,, hyperspheres, notably to compare performances with SCE and assess the impact
of p. While the already mentioned Lo projections are commonly adopted, the general case of L,
projections is widely unexplored. Different L, norms change the geometry of hyperspheres, affecting
how data is projected and separated. For instance, with p > 2, hyperspheres become more flattened,
while p < 2 makes them more angular, which can enhance class separation in certain directions, see

Figure[T]

Building on the MAP approach to learn representations, we derive the expression of the probability
distribution for Gaussian distributions projected on general L,, hyperspheres. This introduces the
Projected Gaussian Distribution (PGD), a generalization of the Angular Gaussian Distribution
presented in Michel et al.| (2024)). From this expression, we establish the theoretical equivalence
of all L, projections in the MAP setting. Eventually, we experiment with PGD through the MAP
framework as well as with SCE-7 on output projected on the L,, unit-sphere. Finally, we conclude
that PGD and SCE-T can lead to comparable performances, in case of a L, projection layer,
provided optimal v values are used for any values of p and show that leveraging PGD or projecting on
the hypercube can improve stability concerning the variance. In summary, we make the following
contributions:

* we highlight a connection between the MAP approach and SCE variants, which give
additional insight on the loss function;

* we propose an expression of PGD, the distribution of a Gaussian distribution on any L,
hypersphere;

» we show that projecting on the hypercube or leveraging PGD benefits stability with regard
to v, while maintaining performance on par with the best SCE-7 strategy.
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(a) 3D Gaussians on the unit-cube. (b) 2D L,, spheres.

Figure 1: (a) [llustration of Gaussian-sampled points projected onto 3D unit-cube. Gaussians are
centered around the standard basis. (b) 2D L, hyperspheres visualisation for various p values.

2 RELATED WORK
In this section, we give a short overview of related works and concepts.

Softmax-Cross Entropy and its variants. One of the most widely used loss functions for classi-
fication tasks is the Cross-Entropy, commonly combined with the softmax function applied to the
output layer|Goodfellow et al.| (2016). Numerous works have been proposed as alternatives to the
traditional softmax operator, such as sparse alternative Martins & Astudillo|(2016)); Liu et al.| (2017);



Laha et al.|(2018)) or spherical softmax |De Brebisson & Vincent (2015). Similarly, prototype-based
alternatives to SCE have been developed [Bytyqi et al.|(2023); |Wei et al.| (2023)); Mettes et al.| (2019).
Another variant of SCE introduces a temperature parameter Wang et al.| (2017); Pang et al.|(2019),
which results in the following loss function:

ezu/‘r
Lop(z) =— 1(y =c¢)log ——— €Y
Cz::l Zf:l ezj/T

where y is the true label of z, L the total number of classes, z.the cth component of z and 7 € R™*
the temperature. The usage of temperature similarly goes beyond SCE and has been studied in
contrastive learning |[Zhang et al.| (2021)); [Khosla et al.| (2020)); |Chen et al.| (2020). However, such
studies are mostly empirical, and there is a lack of studies going beyond intuition.

MAP for learning representations. Maximum A Posteriori is a fundamental probabilistic method
and has been applied to countless problems |Gauvain & Lee (1994)); Santini & Del Bimbo| (1995);
in the context of DNNs, Michel et al. Michel et al.| (2024)) applied a natural MAP framework for
learning representations on the unit-hypersphere. Other probabilistic modeling also derived similar
loss functions [Hasnat et al.| (2017). However, to the best of our knowledge, no explicit link to the
SCE-7 loss and its implication in terms of interpretation has been developed in earlier research.

Projection on L, hyperspheres. While projection on the unit-hypersphere (a.k.a. normalization)
is a common practice in representation learning |Grill et al.| (2020); [Khosla et al.| (2020); Mettes et al.
(2019); Michel et al.[(2024)), it is often bounded to the Ly hypersphere. In adversarial training, L,
metric is also used for measuring the distance between the original and the attacked sample Mao et al.
(2019); |Tramer & Boneh| (2019). Few studies of the general family of L, projections for DNNs in
the context of image classification exist. An attempt to leverage L,, normalization of the penultimate
layer can be found in|[Trivedi et al.|(2022).

3 FroM MAP 10 SCE

In this section, we recall that SCE, and even SCE-7 can be recovered as special cases from the MAP
learning framework. This provides the groundwork for presenting further extensions of cost functions,
incorporating the notion of projection on L, hyperspheres.

3.1 POSTERIOR EXPRESSION FROM LATENT REPRESENTATION

As introduced in Section |1} we are interested in expressing the posterior p(c|x). We start from
the consideration that Deep Neural Networks (DNN) are fundamentally encoders that can learn
a mapping between an input 2 € R” to a latent representation z € R?, where D and d are the
dimensions of the input and the latent representation respectively and D > d. From this point, the
posterior estimation problem becomes estimating p(c|z). By the Bayes rule and expressing f(z) by
marginalizing across considered classes, p(c|z) can be expressed as:

clz) = fc(z)ﬂc
P = S e

where 7 are class priors, L the total number of classes and f;(z) the conditional p.d.f. of z given c.
Considering latent representations as DNN outputs such that z = ®y(z), with 0 the trainable DNN
parameters; we can rewrite previous expression:

@
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3.2 MAXIMUM A POSTERIORI LOG-LOSS

For a set of b of observations (z;, y; )1<i<p, Where the y; € [1, L] are the labels of classes and z; € R,
we want to maximize p(y; - - - Yp|Z1 - - - Zp). Let us consider such observations to be independent. The



objective becomes maximizing HCL:1 [;er, p(clz:) with I. = {i € [1,0] | y; = c}. The posterior
distribution can thus be expressed as ‘

p(ys - yolza - HH fo(@)me )
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A more practical log-loss form can obtained from equation 4] by taking the average of the logarithm:

o8 (B,0) = Zzl fC‘I’G—XZ))C 5)
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With |B| the size of batch B = (z;,¥;)1<i<p. In the MAP framework, we minimize ﬁlj\‘}a p as
described in equation 3}

3.3 GAUSSIAN HYPOTHESIS AND EQUAL PRIORS

The MAP framework described above heavily depends on the choice of the class-conditional p.d.f.
fe(.). A reasonable assumption is that these p.d.f follow a Gaussian distribution and that all priors
are equal. Thus, we derive Proposition [3.Tand give the proof in Appendix [A]

Proposition 3.1. Let {r;}1<;<1, be a basis of RE such that v = r - e; withr € R and {e1hi<i<r
the standard basis of RF. Under the following assumptions:

* the conditional probability density functions {fi(.) }1<i<r follow an isotropic Gaussian
distribution of variance v centered around means {r;}1<;<rL;

* classes priors {m }1<i<1, are equal;

the loss ﬁﬁip takes the following form:

SCDG (xw)c
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with ®g(x;). the c-th component of ®g(x;), the output of the model given the input x;.

3.4 CONNEXION WITH SCE AND ITS VARIANTS

Under simple assumptions, the MAP framework leads to the E APap @S deﬁned in equation @ When
= = 1, we recover the usual SCE loss. Additionally, if we define 7 = 7, then we recover the
SCE- loss. Thus, we can interpret SCE-7 as a MAP with a class conditional Gaussian hypothe51s on
the standard scaled-simplex whose scaling ratio r and variance v are conditioned such that = = 7.
This statement similarly holds for SCE when 7 = 1. Furthermore, the Softmax operation appears
naturally in this modeling. From this interpretation, two scenarios can be identified. If the learned
representation is projected on the unit-hypersphere, » = 1, and if we assume that these projections
are also Gaussian, then variance v follows by the remodeling as 7 = v.

Of course, the Gaussian assumption of the projection on the hypersphere is questionable. In Sec-
tion 4.4} we discuss the validity of this assumption and we give the expression of the Projected
Gaussian Distribution in Section E} Moreover, if the learned representations are not constrained, it
follows that 7 and v are learned such that the relation 7 = 2 is respected.

Another popular practice when tackling classification problems is prototype learning [Zhang et al.
(2020); ILin et al.| (2023); [Yang et al.| (2018)); Ho et al.| (2021)); Wei et al.| (2023); |De Lange &
Tuytelaars| (2021). The main idea is to compare the learned representations to a set of prototypes
P ={p1, -+ ,pr}. The probabilities are computed using a modified version of the softmax, such as

detailed in Equation 7]
Z'Pi
ProtoSoftmax(z, P); = Lei @)
Zj:l e*'Pi



Moreover, several studies introduce an additional class-dependent coefficient in the softmax operator,
referred to as softmax with bias or re-weighted softmax: [Jodelet et al.| (2021); |[Ren et al.| (2020);
Legate et al.[(2023).

Proposition 3.2. Starting from the MAP log-loss defined in Equation [} under the following assump-
tions:

* The prototypes ‘P lie on a hypersphere.

* The conditional probability density functions { fi(.) }1<i<r follow an isotropic gaussian
distribution of variance v centered around means P

* The variance v of the isotropic Gaussians is equal to one.

Then, the MAP log-loss is equivalent to the SCE with prototype and bias loss.

4 LEARNING ON THE L, HYPERSPHERE

We showed that minimizing an SCE-7 objective with representations learned on the unit-sphere gives
control over the Gaussian variance, provided that the projection itself is considered Gaussian. In
this section, we discuss the impact of invertible and non-invertible transformations on the resulting
distribution and on MAP training objective, in the case of projections on L, hyperspheres.

4.1 MAP WITH ADDITIONAL TRANSFORMATIONS

In the following, we show that non-invertible transformations change the resulting distribution of the
transformed representation in the MAP framework and introduce the family of projections on L,
hyperspheres.

4.1.1 INVERTIBLE TRANSFORMATIONS

In the above, we have modeled the conditional distribution f,(.) for a class ¢ through the intermediate
variable z € R¥, the neural network output. Let us now consider that an additional transformation A :
RY — RY is applied to z. If h(.) is a one-to-one invertible transformation, the conditional probability
density function ¢, of the resulting variable { = h(z) can be expressed as in Equation (8| Murphy
(2022)).

_ fe(2)

() = 17,

With J, (¢) the Jacobian of h and |.J, ()] its determinant evaluated at ¢. Starting from Equation[2] it
follows that trying to express the posterior p(c|¢) with regard to ¢ leads to:

fe(2)
4e(O)me [EAGING
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Thus, combining invertible transformations with the MAP framework gives strictly identical a poste-
riori probability distributions. This observation also holds for Cross-Entropy given the equivalence
showed in Section

®)

p(c¢) =

4.1.2 PROIJECTIONS ON L, HYPERSPHERES

This family of transformations reduces the vector’s dimensionality, resulting in a non-invertible
transformation. We define such transformations as 7; : R* — R* on z = (21, -, z1,) € R such

that:
z
Ti,(2) = 70> (10)
' =1l
with z the output representation of the neural network, ||z||, = (ZZ.L:1 |2:|P)*/? and | z;| the absolute

value of z;.



4.2 PROJECTED GAUSSIAN DISTRIBUTION

Given the previous analysis, we argue that using SCE-7 on projected representation is not theoreti-
cally justified. Indeed, the result of a radial projection (equivalently, normalization) of a Gaussian
distribution on the L,, unit hypersphere is most likely not Gaussian. Additionally, such transformation
being non invertible, the obtained MAP objective should be adapted accordingly. We propose an
analytical expression for the projection of a Gaussian distribution on any L,, hypersphere and give
the proof of this result in Appendix [B]

Proposition 4.1. Let p,d € N™*. For z € R? following a d-variate Gaussian of mean p € S;,l and

covariance matrix ¥ = 021, the distribution of u, the projection of z on Sg such that u = = j ‘ is
»
defined by:
T
> (k)T (44 2)
PGD —1x? (% Tl Tl 22
2P () = e S SRR "
o n! 5
d
. p r 4 r 2
with k2 = Hg\Q\z, ay = (2)2(u7%u> a normalization factor and w = ||u|\2(p 1)
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4.3 PGD-LOSS EXPRESSION

We define L%, ,, on the standard simplex by combining PGD from equatlon. 11]and the MAP log-loss
from equation [5}

gx “P (T, (o (%))

L2 (B.6) ZZI ), ) (12)
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4.4 SCE-7 ON L, HYPERSPHERE

SCE-T can be used with representations projected onto the L,, hypersphere, even though the Gaussian
assumption is not fulfilled. Various works have shown that SCE-7 can empirically achieve competitive
performances on the Lo hypersphere |De Brebisson & Vincent (2015); |Wang et al.|(2017). In our set-
ting, a potential justification of such results is the validity of a Gaussian projection approximation for
small variance values. Indeed, the projection of a multivariate Gaussian along one of its components
is a Gaussian. We refer to this projection as an axial projection. While such a result does not hold for
radial projections (or normalizations), we can show that the radial and axial projections tend to result

in the same projections when v tends to 0. Let us consider z = [z1, - - - , z1,] € RE, a vector sampled
from a Gaussian centered around ey = [1,0---,0] € RE. It follows:
Z1 Z2 ZL
= andz, =[1,29, - ,2L] (13)
: {IIZIIp’IIZIIp’ ’Izlp} ‘ T

with z,, and z, being the radial L, and axial projections respectively. It follows that

z —er zZ, —e1 [|zp — zall2 — 0 (14)
v —0 v —0 v — 0

Hence, the smaller the variance, the more likely axial and radial projections will lead to the same
resulting Gaussian distribution. A geometric interpretation is that for small variance values, the
hypersphere surface around the mean can be approximated by a plane perpendicular to the mean
direction. Of course, such approximation differs for different values of p, in the case of p = oo, the
surface is a plane perpendicular to the mean. In the case of p = 2, the surface might be considered
planar locally. Hence, we expect the optimal value of v when training with SCE-7 to be proportional
to the value of p.

4.5 PROJECTION EQUIVALENCE

In Section we have given an expression of the PGD on any L, hypersphere. Remarkably,
changing the value of p only impacts the normalization term a,;. Indeed, for the other term depending



on u, denoting u, = IIJLH , we have for any p € N**:
P
T u T
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Therefore, when plugging the expression of PGD from equation [T1]into the MAP log-loss expression
from equation [5] the normalization factors simplify, and the resulting loss is unchanged, no matter the
value of p used when projecting. It follows that, in the MAP framework, every projection is equivalent
to a projection on the unit hypersphere with the correct probabilistic modeling. As discussed in
section this result was predictable as every projection on the L,, unit sphere can be deduced
from another through an invertible transformation. This is true in our MAP framework since the
normalization term a,, is de facto ignored.

5 EXPERIMENTS

In the following section, we conduct experiments on standard computer vision datasets for image
classification. We compare the performances of SCE, SCE-7, and the loss function derived from
MAP with the PGD model and confirm our intuitions based on our insights from the MAP modeling.

5.1 EXPERIMENTAL SETUP

Datasets. To compare the presented losses, we use 3 benchmark datasets. CIFAR10 Krizhevsky
(2009)) is composed of 50,000 train images and 10,000 test images for 10 classes. All images are
of size 32x32. CIFAR100 [Krizhevsky| (2009) is similarly composed of 50,000 32x32 train images
and 10,000 test images but has 100 classes. Imagenet100 is a subset of the ILSVRC-2012 Deng et al.
(2009)) classification dataset. Different from Tiny-ImagNet, ImageNet100 is composed of the 100
first classes of ILSVRC-2012. This corresponds to a total of 130,000 224x224 train images and 5,000
224x224 test images.

Losses and projections. In these experiments, we compare the performances of the following
losses: SCE, SCE-7 and PGD-loss. Additionally, we compare projections on various L;, hyperspheres
with p € {0.5,1,2,3,00}.

Implementation details For each loss, we train a ResNet18|He et al.[(2016) from scratch for 300
epochs with an Adam Kingma & Ba (2014) optimizer, learning rate 1e~*, and a batch size value of
256. We also use data augmentations. Namely, random horizontal flip, random crop and color jitter.
The main results showed in Table[I| have been obtained with the best variance values after conducting
a hyper-parameter search. More details can be found in Appendix [D]

5.2 RESULTS

Accuracy. Table[I|shows the obtained accuracy at the end of training for SCE, SCE-7 and PGD
losses on considered datasets. The value of p indicates the hypersphere on which representations
are projected. For baseline, performances of SCE and SCE-7 without projection are also reported.
Following previous studies, it can be observed that projecting representations on the Ly hypersphere
leads to a significant increase in performance, given that the optimal variance (or equivalently
temperature) is used. Furthermore, we observe that similar performances can be obtained on all
datasets for any projection strategies with SCE-7. Eventually, the obtained results with PGD are
on par with the best SCE-7 results. In the case of PGD, we indicate no values of p since the loss is
independent of the projection strategy.

Impact of v. We study the impact of the variance parameter for SCE-7 and PGD losses on CIFAR10
and CIFAR100. Figure [2] shows the accuracy at the end of training with SCE-7 on CIFAR10 for
various values of p and v. For each value of p, an optimal value of v can be found to obtain the best
performances. Notably, a strong performance degradation occurs for large variances rather than for
smaller variances. However, a lower variance value might hinder training stability. Additionally,
according to the intuition given in Section and similar to the results presented in Table (1} the



CIFAR10 CIFAR100 ImageNet100

Loss p Acc. v Acc. v Acc. v

SCE no proj. || 90.44+044 N/A 65.4420.64 N/A 63.38 N/A
SCE-7  noproj. || 90.93031 2.3 66.2020.69 2.7 64.16 2.7

SCE-r p=0.5 || 92.15+0.19 0.006 | 68.56+033 5e-05 | 66.52 5e-05
SCE-r p=1 92.48+0.13  0.15 68.62+0.38  0.007 | 65.84 0.007
SCE-r p=1.5 || 92.32+030 0.30 68.19+045 0.035 | 67.32 0.025
SCE-r p=2 92.14x021 045 68.67x048  0.050 | 67.34 0.050
SCE-r p=3 92.22+045  0.50 68.90+0.30  0.09 66.98 0.09
SCE-r p=o0 91912027 0.40 68.69+0.37  0.22 67.16 0.22
PGD any 92.3620.26  0.35 68.84+0.18  0.12 66.30 0.21

Table 1: Accuracy (%) of different losses and projections strategies on CIFAR10, CIFAR100,
and ImageNet. SCE corresponds to Softmax Cross-Entropy and SCE-7 corresponds to SCE with
temperature and PGD to the PGD loss defined in[I2] The values of p and v used for training are
similarly reported. For CIFAR10 and CIFAR100, the average and standard deviation over 5 runs are
reported, while only 1 run was realised for ImageNet100.

Accuracy

0.00 0.25 0.50 0.75 1.00

var

Figure 2: Accuracy at the end of training a ResNet18 on CIFAR100 with a MAP objective (or
equivalently SCE-7) for different (p, v) values. The top left part is zoomed in for better readability.

larger the value of p, the greater the resulting optimal variance is. Plus, SCE-7 performances gain
in stability with regard to v for larger values of p. We discuss this phenomenon in more detail in
Section[5.3] Moreover, Figure [3|shows the final accuracy when training with SCE-7 on CIFAR10,
and comparable observations as on CIFAR100 can be made.

Since the proposed PGD loss is invariant with p, Figure 4] shows only the impact of v on the final
accuracy when training with PGD. Notably, PGD exhibits similar performances to SCE-7 with
p = 00, not only in terms of maximum performance but also in terms of stability with regard to v.
We discuss such similarity in Section[5.3]

5.3 DISCUSSIONS

From the results presented above, we make the following observations. 1) Similar results can
be obtained for SCE-7 and PGD losses on any L, hypersphere. We believe this to be a direct
consequence of Gaussian projections tending to be Gaussian for smaller values of v. In this situation,
SCE-7 becomes a valid theoretical objective to minimize since we showed its equivalence to the
MAP log-loss objective. In that sense, given the appropriate variance is used, SCE-7 and PGD losses
should give similar final solutions, hence the obtained accuracies. 2) The sensitivity to v in term of
accuracy is larger for smaller values of p. We believe this to be a consequence of the resulting flatness
of the L,, hypersphere around the mean vector. When p < 1, the obtained shape is an astroid whose
shape is particularly sharp around the standard basis vectors. When p = oo, the resulting shape is a
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Figure 3: Accuracy at the end of training on Figure 4: Accuracy after traini'ng a ResNet18
CIFAR10 with a SCE-7 objective for different on CIFAR100 and CIFAR10 with the PGD for

values of p and variance. different values of v.

hypercube where each face is centered around a vector of the standard basis. In that case, the L, is
exactly planar locally, even when moving further from the mean. In other words, large values of p
make an easier approximation of the projection as Gaussian, and the larger the value of p, the more
this approximation holds even for greater variances. 3) The PGD loss is more stable than the SCE-7
loss with regard to v if p # oo and displays similar stability when p = co. Since PGD is the resulting
distribution from a radial projection, the Gaussian approximation is not necessary, and the model
remains valid even for larger values of v. However, a performance drop is still observed when v
is getting too large, notably on CIFAR100. Even with a more accurate estimation of the projected
distribution, when v is too large, the model might not be discriminative enough for the classification
task due to excessive overlap in the modeled Gaussian. Eventually, as discussed above, when p = oo
the approximation of the projected as a Gaussian is the most valid when compared to lower values of
p. In that sense, PGD and SCE-7 present similar behaviour since both are sound modeling. On top of
the previously listed advantages, the infinite norm is extremely simple and stable to compute and
should be considered as an alternative to the L, norm when training DNNs.

6 CONCLUSION

This paper provides a unified perspective on the connection between output normalization and loss
functions in classification problems. By extending the Maximum-a-Posteriori (MAP) approach
to encompass both the loss function and output normalization, we have established theoretical
connections between the Softmax Cross-entropy (SCE) and its variants, including SCE-7 and SCE
with prototype and bias. Our results demonstrate that SCE-7 can be interpreted as a MAP with a
class-conditional isotropic Gaussian hypothesis on the standard simplex and that the temperature
can be expressed as the ratio between, the scaling factor and the variance of Gaussian distributions.
However, we indicated that such an objective is not theoretically adapted when projecting on the
L, hypersphere. Therefore, we have introduced the Projected Gaussian Distribution (PGD) to
model Gaussian distributions projected on any L,, hypersphere. We showed that in our framework,
projections on L, hyperspheres are equivalent for all values of p. Moreover, we showed that even
though SCE-7 cannot be justified by our theory in general, it is a valid approximation for small
variance values. Finally, we give evidence that PGD and SCE-7 on the hypercube present several
advantages over other values of p, such as greater stability with respect to v and computational
simplicity in the case of the hypercube.

Eventually the modeling is based on the assumption that the network outputs can be approximated by
a Gaussian distribution; which can be a limitation in some specific cases. Presented performances
and comparisons are established with a specific DNN and problem setting (image classification); of
course, different figures can be obtained with other settings. As a future study, we plan to investigate
training with a maximum likelihood approach equipped with PGD, or considering mixtures other
than Gaussian. Another research topic would be exploring prototype learning on L,, hyperspheres.
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A PROOF OF PROPOSITION 3.1

Starting with Equation[3] the conditional probabﬂlty distribution of Z given Y = c follows a Gaussian
distribution centered around r, € R%, with covariance matrix ,:

folz) = (2m)F2 |,z T R ) (16)

with T being the superscript for the transpose operator and |3, | the determinant of ¥.... The conditional
Gaussian are isotropic if X, = v, - I with I being the identity matrix of size L and v, the variance
for class c. In such situation, f.(.) becomes

folz) = (Qmjc)fL/?e T llz=7rell3 (17)

Combining Equations equation [5]and equation [I7]leads to the general form below.

(2
L:Gauss B 9 | Z Z IOg I3 v )
c=14€l, Zm (2mv)~ L/2,~ 7o [P0 (xi)—mi|[3

(=1

/2, 7 1®0 (xi)—rel 3

(18)
L/2 - ®o(xi) " e~ D=z llrell3
A S I
c=1liel. Zﬂ'l “ll ':DG(XJT 27,1 ||d>9(x1)||2 2 ]
Now, with equal variances, previous Equation equation [I8]simplifies to:
Ldg(x;)7 re
7rC ev
£Gauss B 9 1
Z 2 (1)

C_l’LGI Zﬂ'l ev‘be(xl) ‘T

The means are assigned to the re-scaled standard basis vectors such that r. = r - e, with e, =
[0,0,...,1,0,...0] a vector where every component is 0 except the c-th component and ¢ € [1, L].
Therefore, the previous equation can be rewritten like in Equation[20]and this ends the proof:

s 6”
[:Gauss B 9 |B| ZZI c
c=14i€l, Zﬂ'l . evéé(xi)T e

ZZI 7Tc ev@y(xl)c

c=14i€l, 2 :
i - ev@@(x,)L

(Xi)T'ec

(20)

B PROOF OF PROPOSITION [4.1]

Let z be a random vector of R? with a Gaussian distribution of mean g and covariance matrix :

1 Ll )
= ——(z— b)) — 21
) = Gy o (- WS @
and define 5 5 ~
= = = — (22)
z[l,  llzlly 7

the projected vector onto the unit sphere S¢ = {x € R : |[z||, = 1}. The marginal of z on S is
called projected-normal in Jupp & Mardial (2009).

We present several expressions for the density function fi;(w) of the normalized vector w. Building
on previous work by |Pukkila & Radhakrishna Rao| (1988)) and extending the result to general cases
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where p # 2, we provide a recursively computable integral representation, proving a result which has
been stated inSaw| (1978)) without direct proof. Furthermore, we derive a closed-form expression in
terms of a special function. To begin with, we establish a change-of-variable formula for z — (r, u),
where u is constrained to live in Sg. Let r = ||z||,. We begin with a result on the change of variable

z — (r,u), where u is constrained to live in S¢.

Proposition B.1. If z has a probability density fz(z), with = € R?, then the transformation
z — (r,u), where u is constrained to live in Sz‘f leads to the density fruy(r,u):

pd—1
fru(ru) = ————fz(r.u) (23)

a5

with respect to d, the element of area of the surface Sg.

Proof. Let & = ®(zy,--- ,z4) define a surface element in R?. A general result in Courant| (2011)
pages 301-302, states that for any function, we have

217... )
/ /le’ a)dz dzd_/ / T

@2 P2
where @, = 22 and dy, = Yo Tz o dzg g with Bz, 20) = Bzl = |22,
we have
P2 4+ P2 = \/E (plzi|P—sign(z))? (24)
2 1 —1
1215573 = pllzllhm (25)

with £ = 7P, we have d¢ = d(r?) = prP~Ldr.

Now, if we let z = ru, it becomes clear that d, = ri=1d_ ., where d, is the element of area of
S and d,, is the element of area of the surface ||.|[, = r. On the other hand, we have ||z|[5~ =
P~ |u|[5~!. Combining these elements, we obtain:
pd—1
fz(z1, za)dz = fru(r,u)drd, = Tall- ————[z(rw)drdo (26)
2(p 1

which gives the result.

Remark B.2. Observe that with p = (p—1)

ulryu) =74t fz(ru).

Proposition B.3. The projection of a normal distribution on Sg is:

(uTs~ 1)~ %

1 o0 1
fo(u) = e TS exp <—2>\2> / 7"t exp <—2r’2 NIV uT21u> dr’ @27
™)z |X|z 0

. o Tvy—1 % — u (p—1) 7 — 22
with A = (' X 'p)z, a = 7“#271“)%, = ||u\|2p 1) and ji = Y

Proof. By a direct application, we get the density for a normal distribution:

rd=1 1 _
(o) =~ (g u = w5 u )
e it T\ 72
(28)
e e ( 1 Tyt )e ( 1 20T M+ ra TRt )
=——F—exp|—= xp | — =7 r
T 2n)t 2w ot = M 2 #
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with w = ||u|\2(p 1)- The density for fy(u) is obtained by marginalizing fru(r, ) over r:

fo() = [ fro(r,u)dr. Letr’ = r(u”S~u)?; then
uTe~1u)~% 1 _ Rl 1 u'y
f““):((zmm)%wexp () [ oo (et o
0
. o Tv—1 1 _ ©
Denoting A = (' X7 )2, w = 7(«#2 e and o1 = e 1”)é,whlch finally gives equatlon

Remark B.4. Withp = 2,4 = 0 and ¥ = o%1, which means that x is distributed as a centered
isotropic Gaussian, equation 27| reduces to

= d
o) = G / e <_;T/2>dr' (i) = — (30)
2 7-[_2

(2m) Wd—1

where we used uu = 1 and the known property

o 1 d
/ rd=1 exp <—r2)dr —925-1T () . (31
0 2 2

Equation equation@]shows that fy (u) is the uniform distribution on the unit-sphere, where wq_1 is
the surface of the unit-sphere.

Starting with equation 29} we can now state the first result, which is due to [Pukkila & Radhakrishna
Raol| (1988)).

Proposition B.5. With A = (u7x~! )% and o = ZT%’ the probability density of the normalized
Gaussian vector is

ol = L g (1 (07 - ?) Y ate) (2)

(2m) 2t [Z b 2

with

1 2
Ii(e) \/ﬂ/ exp( 2(r—a) )dr (33)

and can be computed as
Iy(a) = alj—1(a) + (d — 2) 142 (),

with I = ®(«) and Iy = ¢(a) + a®(«), where ¢(.) and D(.) are respectively the standard normal
probability density function and cumulative distribution function.

Proof. Completing the square in the argument of the exponential under the integral in equation [29]
gives equation [32] with the definition of I, in equation 33] Integration by part of I; yields the
recurrence equation. Finally, the initial values follow by direct calculation. O

The main drawback of Equation equation [32is that it relies on an integral form, although this integral
can be easily evaluated through a recurrence. In contrast, Equation equation [27] allows us to express
the density as a series. We present this result in the general case and recover the result stated in|Saw.
(1978) without proof.

ags 5 _ 1 _ u _ p—1
Proposition B.6. With A = (u'S )2, u = S o= (“Tz‘jlﬂ)%, w = \|u||é(p_)l) the
probability density of the normalized Gaussian vector is

F(g) (UTZAUV% LN (T F(d; )
- 23" (s ) 34
folw) pLds 53w ‘ k:O( ‘ H) %) .
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Proof. In the integral in equation we can expand the exponential exp (Ar a7 X! ) in Taylor
series, so that

o 1
/ ré=lexp (—27"2 + Ar uTE_1ﬂ> dr
0

I _12 Ool _Tx—1-\F
_/0 r exp< 2T)]§k!()\ru2 ,u) dr
:Z% (/\ﬂTZ_lﬁ)k/ rd 1+kexp< 17“2)
k=0 0
- 2%—12% (T ) T (T)
k=0

where the last line follows from the identity equation[31] Plugging this in equation[27)and simplifying
yield equation O

For p = 2, we can observe that the first term in equation [34]is the inverse of the unit-sphere’s surface
wq—1. Still for = 2, in the isotropic case where > = 0?1, equationreduces to

N4 . kD (455)
folw)=—3Fe 20y (wlh) 250 (36)
271’5 k=0 k'r (§>
where we used the fact that u”« = 1 and where f is now fi = T” T This is the formula given in
ulp)?2

Saw|(1978)), up to minor notations differences. Finally, for g = 0, equation@]reduces to the uniform
distribution on the unit-sphere fi(u) = 1/wq—_1.

Finally, it is possible to obtain a closed form in terms of a special function.

Proposition B.7. With A\ = (uTS'p)2 and v = % the probability density of the
uTY—1y)2
normalized Gaussian vector is

(uTE_lu)_%

folw) = 2m) 5[ Fw

P T(@)D-a (V2y), (37)
where D _ 4 is a Parabolic cylinder function.

Proof. A result in the celebrated Tables of integrals, Series and Products of Gradshteyn and Ryzhik
states, (Zwillinger et al., 2014} eq. 3.462), that

> v—1_—Bz*—~zx _ —v/2 2 v
¥ e dz = (20) T(v)e % D_, < for 5 >0,v >0 (38)
J 7
where D, is a parabolic cylinder function, (Zwillinger et al.| 2014} eq. 9.240). We see that the
integral in equationhas precisely this form, with v = d, 8 = 1/2, and v = A\a? X~ fx. Plugging
this in equation [27) and rearranging yield equation [37} O

Corollary B.8. Let p,d € NT*. For z € R? following a d-variate Gaussian of mean p € Sg and

covariance matrix ¥ = o021, the distribution of u, the projection of z on Sg such that w =Ty, (2) is
defined by:

00 uTjL n d n
PGD 1o Patatem)" T (5 1 5)
9P (u, pe) = ae 2% Y ; (39)
n=0 n' r (5)
with k2 = Hf:% and a,, a normalization factor.
. . . : T(4)(uTu) 2
Proof. Starting from equation [34{leads to equation [39|with a,, = —2~—F—+— [
22w
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C PROOF OF PROPOSITION[3.2]

Trivial starting from Equation equation |19|and replacing r. by p..

D HYPER-PARAMETER SEARCH

We conducted a small hyper-parameter for the optimizer and v to obtain the results presented in
Table[T] The values tested are presented in Table[2]

D.1 HARDWARE AND COMPUTATION

For the compared methods, we trained on RTX A5000 for 300 epochs. The training time consumption
is 4 hours for CIFAR10 and CIFAR100 and 60 hours for ImageNet100.
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Loss \ Parameter Values
CIFARI10
SCE optim [SGD, Adam]
Ir [0.0001, 0.001, 0.01, 0.1]
optim [SGD, Adam]
SCE-1 Ir [0.0001, 0.001, 0.01, 0.1]
v [0,0.5,1,1.5,2,2.1,2.2,---,3,4]
optim [SGD, Adam]

SCE-7,p=0.5 Ir

[0.0001, 0.001, 0.01, 0.1]

v [0.005, 0.006, 0.007, 0.008, 0.009, 0.01, 0.01, 0.1, 0.2,- - -, 1.0]
optim [SGD, Adam]|
SCE-1,p=1 Ir [0.0001, 0.001, 0.01, 0.1]
v [0.05,0.1,0.15, - - -, 0.95, 1]
optim [SGD, Adam]
SCE-1,p=1.5 Ir [0.0001, 0.001, 0.01, 0.1]
v [0.05,0.1,0.15, - - -, 0.95, 1]
optim [SGD, Adam]
SCE-1,p=2 Ir [0.0001, 0.001, 0.01, 0.1]
v [0.05,0.1,0.15, - - -, 0.95, 1]
optim [SGD, Adam]
SCE-7,p=3 Ir [0.0001, 0.001, 0.01, 0.1]
v [0.05,0.1,0.15, ---,0.95, 1]
optim [SGD, Adam]
SCE-7,p = o0 Ir [0.0001, 0.001, 0.01, 0.1]
v [0.05,0.1,0.15, - - -, 0.95, 1]
CIFAR100
SCE optim [SGD, Adam]
Ir [0.0001, 0.001, 0.01, 0.1]
optim [SGD, Adam]
SCE-7 Ir [0.0001, 0.001, 0.01, 0.1]
v [0,0.5,1,1.5,2,2.1,2.2---,3,4]
optim [SGD, Adam]
SCE-7,p = 0.5 Ir [0.0001, 0.001, 0.01, 0.1]
v [le=5, 2e75, ..., le %, 1e 3, 1e72,0.1,0.2, - - -, 1.0]
optim [SGD, Adam]
SCE-1,p=1 Ir [0.0001, 0.001, 0.01, 0.1]
v [0.001, 0.002, -- -, 0.01,0.02, ---,0.1,0.2, - - -, 1]
optim [SGD, Adam]
SCE-7,p=1.5 Ir [0.0001, 0.001, 0.01, 0.1]
v [0.005,0.01,---,0.1,0.2,---,0.1,0.2, 1]
optim [SGD, Adam]
SCE-7,p=2 Ir [0.0001, 0.001, 0.01, 0.1]
v [0.01,0.02, ---,0.05,0.1,0.15, - - -, 0.95, 1]
optim [SGD, Adam]
SCE-1,p=3 Ir [0.0001, 0.001, 0.01, 0.1]
v [0.01,0.02,---,0.030.1,0.2,---, 1]
optim [SGD, Adam]
SCE-7,p = o0 Ir [0.0001, 0.001, 0.01, 0.1]
v [0.05,0.1,0.15,0.16, ---,0.3,04, ---, 1]
ImageNet100
optim [Adam]
SCE Ir [0.0001]
optim [Adam]
SCE-7 Ir [0.0001]
v [2.7]
optim [Adam]
SCE-7,p = 0.5 Ir [0.0001]
v [le™5,2e75, -+, le™ 1e73,172,0.1,0.2, - - -, 1.0]
optim [Adam]
SCE-1,p=1 Ir [0.0001]
v [0.007]
optim [Adam]
SCE-7,p=1.5 Ir [0.0001]
v [0.02, 0.025,0.030, 0.035]
optim [Adam]
SCE-1,p=2 Ir [0.0001]
v [0.05]
optim [Adam]
SCE-1,p=3 Ir [0.0001]
v [0.09]
optim [Adam]
SCE-7,p = o0 Ir [0.0001]
v [0.12,0.19,0.2,0.21, 0.22, 0.23]

Table 2: Hyper-parameters for every method on CIFAR10, CIFAR100 and ImageNet100
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