
Understanding the Relationship between Prompts and Response
Uncertainty in Large Language Models

Anonymous ACL submission

Abstract

Large language models (LLMs) are widely001
used in decision-making, but their reliability,002
especially in critical tasks like healthcare, is003
not well-established. Therefore, understand-004
ing how LLMs reason and make decisions is005
crucial for their safe deployment. This paper006
investigates how the uncertainty of responses007
generated by LLMs relates to the informa-008
tion provided in the input prompt. Leverag-009
ing the insight that LLMs learn to infer la-010
tent concepts during pretraining, we propose a011
prompt-response concept model that explains012
how LLMs generate responses and helps un-013
derstand the relationship between prompts and014
response uncertainty. We show that the un-015
certainty decreases as the prompt’s informa-016
tiveness increases, similar to epistemic uncer-017
tainty. Our detailed experimental results on018
real datasets validate our proposed model.019

1 Introduction020

Large language models (LLMs) have demon-021

strated impressive performance across a variety of022

tasks (Google, 2023; OpenAI, 2023; Zhao et al.,023

2023). This success has led to their widespread024

adoption and significant involvement in various025

decision-making applications, such as healthcare026

(Karabacak and Margetis, 2023; Sallam, 2023;027

Yang et al., 2023), education (Xiao et al., 2023),028

finance (Wu et al., 2023b), and law (Zhang et al.,029

2023a). However, despite their rapid adoption,030

the reliability of LLMs in handling high-stakes031

tasks has yet to be demonstrated (Arkoudas, 2023;032

Huang et al., 2023a). The reliability is particu-033

larly critical in domains such as healthcare, where034

model responses can have immediate and signifi-035

cant impacts on human behavior and hence their036

well-being (Ji et al., 2023). Therefore, under-037

standing LLMs’ reasoning and decision-making038

processes and how they influence response uncer-039

tainty is critical for their safe deployment.040

To understand this importance, consider the mo- 041

bile health (mHealth) application in which ma- 042

chine learning algorithms are integrated to moni- 043

tor users’ health conditions and provide advice on 044

daily activities (Boursalie et al., 2018; Trella et al., 045

2022, 2023). Providing suggestions that can influ- 046

ence users’ health is a form of intervention in the 047

human decision-making process. For LLMs to be 048

suitable for such use cases, they should be accurate 049

and provide consistent intervention strategies, e.g., 050

consider an LLM-powered mHealth app that sug- 051

gests physical therapy (PT) routines to a patient 052

recovering from surgery. The app’s goal is to en- 053

sure the patient adheres to their PT regimen during 054

rehabilitation despite the discomfort it may cause. 055

The app must provide consistent suggestions to 056

encourage PT adherence. Any inconsistent behav- 057

iors from the app could undermine any progress 058

made. Conversely, providing accurate and consis- 059

tent responses helps make the system more reli- 060

able and trustworthy (Shin et al., 2022). 061

The response generated by LLMs is a series of 062

tokens sampled from probability vectors of tokens 063

using various heuristics (Brown et al., 2020; Rad- 064

ford et al., 2018, 2019), such as beam search, nu- 065

cleus sampling, and greedy decoding. Typically, 066

tokens with higher probabilities are chosen se- 067

quentially to produce the final response. The re- 068

sponse variations are controlled by LLM param- 069

eters such as temperature (T ), top-k, or top-p. 070

While response variations benefit creative tasks 071

like poem and essay writing, they can be detri- 072

mental for tasks requiring high reproducibility and 073

consistency (Ganguli et al., 2022; Huang et al., 074

2023b). However, making LLMs generate deter- 075

ministic responses is not ideal, as users may vary 076

in what responses suit them the most (Wu et al., 077

2023a). Hence, a better approach is needed to un- 078

derstand the sources of response uncertainty and 079

develop methods to reduce it naturally rather than 080

masking it by adjusting LLM parameters. 081
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We attribute response uncertainty to two main082

factors: the LLM’s parameters controlling the083

generated response’s randomness and the input084

prompt’s informativeness (information about the085

desired task). This paper focuses solely on the re-086

sponse uncertainty due to the input prompt while087

keeping the LLM parameters fixed. Here, a natural088

question arises: How is the amount of information089

in the input prompt related to the uncertainty in090

the responses generated by an LLM?091

To answer this, we leverage the insight that092

LLMs implicitly learn to infer latent concepts dur-093

ing pretraining (Xie et al., 2021; Hahn and Goyal,094

2023; Zhang et al., 2023b) and propose a prompt-095

response concept (PRC) model. Our PRC model096

conceptualizes how an LLM generates responses097

based on given prompts, and helps understand the098

relationship between prompts and response un-099

certainty by measuring response uncertainty for100

prompts with varying information about the task.101

We provide theoretical results that show that the102

uncertainty of responses generated by an LLM de-103

creases as the informativeness of prompt increases104

(i.e., having more information about the task). We105

connect response uncertainty and epistemic uncer-106

tainty and show that adding relevant information107

to the prompt is a principled and effective method108

to reduce this uncertainty. Finally, we corroborate109

the validity of our PRC model via experiments and110

provide a simulation for a healthcare use case to111

demonstrate the efficacy of our approach.112

2 Prompt-Response Concept Model of113

Large Language Model114

In this section, we first define what we mean115

by concept. We then use the notion of concept116

to explain our proposed prompt-response concept117

model of LLM. Finally, we provide theoretical re-118

sults that explain the relationship between the un-119

certainty of response generated by an LLM and the120

representation quality of the prompts.121

We define the concept1 as an abstraction derived122

from specific instances or occurrences that share123

common characteristics (Laurence and Margo-124

lis, 1999; Fodor, 1998; Weiskopf, 2009; Wilmont125

et al., 2013). To understand the notion of concept,126

consider the following example of the concept:127

1The definition of a concept varies across fields, e.g.,
in philosophy, a concept represents the fundamental unit of
thought; in psychology, it is a mental construct; in linguistics,
it refers to the semantic units that words or phrases represent;
and in education, it denotes key ideas or principles.

Species, which includes a group of organisms that 128

share common biological traits. Another example 129

is the personal bio,2 which consists sentences giv- 130

ing information about names, occupations, contri- 131

butions, and other personal details. 132

Concept: Personal bio of Alan Turing

Alan Turing was an English computer scientist, mathe-
matician, and cryptanalyst. He introduced the Turing ma-
chine, which formalized the concepts of algorithms and
computation, serving as a foundational model for general-
purpose computers. Turing is widely regarded as the fa-
ther of theoretical computer science. . . .

133

Using concepts instead of word-level or token- 134

level patterns in text analysis improves the ability 135

to reason and answer questions based on higher- 136

level abstractions, which allows a better under- 137

standing of the relationships between different 138

sentences in the given text (Bates, 1995; Bo- 139

gatyrev and Samodurov, 2016; Wang et al., 2024). 140

As we can see in the example above, explain- 141

ing a concept often involves multiple sentences, 142

each contributing specific and meaningful infor- 143

mation about the concept (Piccinini and Scott, 144

2006). We refer to the information in each sen- 145

tence as attributes of the concept, e.g., the sen- 146

tence "Alan Turing was an English computer sci- 147

entist, mathematician, and cryptanalyst" gives in- 148

formation about the name, nationality, and occu- 149

pation of Alan Turing. 150

2.1 Prompt-Response Concept Model 151

Our aim is to understand how the input prompt is 152

related to the uncertainty in the responses gener- 153

ated by an LLM. To do so, we first introduce no- 154

tations representing different variables used in this 155

section. Let X denote the set of all prompts and 156

Y denote the set of all responses generated by an 157

LLM f , where f : X → Y . For a given prompt 158

x ∈ X , the LLM f generates a response y ∈ Y 159

such that y = f(x). Since the response y can 160

vary each time the LLM generates it, we attribute 161

these response variations to two main factors: the 162

LLM’s parameters, such as temperature T , top- 163

k, or top-p, which control the randomness in the 164

generated tokens, and the informativeness (infor- 165

mation about the desired concept) of the given 166

prompt. This paper focuses solely on the latter as- 167

pect while keeping the LLM’s parameters fixed. 168

As it has been shown that LLMs implicitly 169

learn to infer latent concepts during pretraining 170

2The personal bio example of the concept is adapted from
wiki bio concept example given in Xie et al. (2021).
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(Xie et al., 2021; Hahn and Goyal, 2023; Zhang171

et al., 2023b), we use this insight to propose the172

prompt-response concept (PRC) model of LLM.173

This model conceptualizes how an LLM gener-174

ates a response for a given prompt, which will175

be used to understand the relationship between176

prompts and the response uncertainty by measur-177

ing response uncertainty for prompts with varying178

information. The PRC model has three main com-179

ponents (as shown in Figure 1): prompt concept,180

response concept, and mappings.

Figure 1: Prompt-Response concept model of LLM.
181

Prompt concept. Let Θx be the set of all con-182

cepts corresponding to prompts in set X . In the183

PRC model, we assume that each input prompt184

x ∈ X corresponds to a concept. We refer to this185

concept as the prompt concept θx ∈ Θx. Intu-186

itively, an LLM recognizes input tokens as seman-187

tically meaningful units that coherently describe188

an attribute of some latent prompt concept. The189

attributes of a concept are expressed through mul-190

tiple semantically meaningful sentences. If mul-191

tiple sentences in the prompt cannot be combined192

to describe a single concept, the LLM will treat193

them as representing different concepts. Our ex-194

perimental results in Figure 2d show that adding195

semantically meaningful sentences from different196

concepts can increase response uncertainty.197

Response concept. Let Θy be the set of all con-198

cepts corresponding to responses in set Y . We re-199

fer to these concepts as the response concept. The200

PRC model assumes that each response concept201

θy ∈ Θy corresponds to a response y ∈ Y .202

Mappings. To understand the relationship be-203

tween input prompt, intermediate concepts, and204

response, we assume the LLM f is a composi-205

tion of three mappings/functions: prompt-concept206

mapping (gx), concept-concept mapping (gc), and207

concept-response mapping (gy). Therefore, we208

can represent the response as y = f(x) =209

gy(gc(gx(x))), where the function gx maps the in-210

put prompt to a prompt concept, then function gc211

maps the prompt concept to a response concept, 212

and finally, the function gy maps the response con- 213

cept to a response. 214

In the example of a personal biography, the 215

prompt contains text providing detailed informa- 216

tion about a person (e.g., a comprehensive bio of 217

Alan Turing), which corresponds to the personal 218

bio concept. Additionally, the prompt includes 219

specific tasks (e.g., tell me Alan Turing’s main 220

contribution between 1940 and 1945) for which 221

the LLM needs to generate a response. To gener- 222

ate a response, an LLM first maps the input prompt 223

to a prompt concept which is then maps to a corre- 224

sponding response concept. Finally, the LLM uses 225

response concept to generate the final response. 226

When a prompt lacks sufficient task-related infor- 227

mation (i.e., it is less informative), we can expect 228

higher variability in the responses generated by the 229

LLM, as corroborated by our experimental results 230

in Figure 2b. To further understand this relation- 231

ship, we will discuss how the informativeness of 232

prompts is related to response uncertainty. 233

2.2 Relationship between Prompts and 234

Response Uncertainty in LLMs 235

Let Xθx ⊂ X be the set of prompts with the 236

same semantic meaning (i.e., conveys some form 237

of information)3 and contain all information of the 238

prompt concept θx. Let Xs ⊂ X be the set of 239

prompts with the same semantic meaning s and 240

only contain partial information about the prompt 241

concept θx. We use the notation x1 ≺θx x2 242

to indicate that prompt x1 contains less informa- 243

tion about prompt concept θx than prompt x2 (or 244

prompt x2 is more informative than prompt x1). 245

By definition, any prompt from the set Xs contains 246

less information about prompt concept θx than any 247

prompt from the set Xθx . 248

Let Zc be a random variable denoting concept 249

(where c = x for prompt concept and c = y for 250

response concept) and Xs be a random variable 251

representing a prompt having semantic meaning s. 252

Here, the randomness in Zc is due to a less infor- 253

mative prompt, which leaves more space for inter- 254

pretation or variation in the possible concepts that 255

LLM can map. In contrast, the randomness in Xs 256

is due to the ability of different prompts represent- 257

ing the same semantic meaning. 258

3Multiple prompts can be generated from a single prompt
by paraphrasing it while preserving the original semantic
meaning associated with the prompt (Kuhn et al., 2023).
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We use entropy as a measure to quantify the un-259

certainty in responses generated by an LLM for a260

given input prompt. Entropy captures the random-261

ness of the responses and helps in understanding262

how the informativeness of an input prompt affects263

response uncertainty. Let Y be a random variable264

representing response. The randomness in Y can265

be due to less informative prompts and the abil-266

ity of different responses to represent the same se-267

mantic meaning. For a prompt x, we define en-268

tropy of Y as follows:269

H (Y |x) = −
∑
y∈Y

p(y|x) log2 p(y|x), (1)270

where p(y|x) is the conditional distribution of the271

responses generated for a prompt. Intuitively, a272

highly informative prompt corresponds to specific273

intermediate concepts (prompt and response con-274

cept), which leads to the generation of responses275

with less variability and, hence, smaller entropy276

of Y . The conditional distribution p(y|x) repre-277

sents the posterior predictive distribution, which278

marginalizes all intermediate concepts (prompt279

and response) and is given as follows:280

p(y|x) =
∫
θy

p(y|θy, x)p(θy|x)dθy281

=

∫
θy

∫
θx

p(y|θy, x)p(θy|θx, x)p(θx|x)dθydθx.282

The first equality follows from conditioning re-283

sponse with respect to the response concept, and284

the second equality follows by using285

p(θy|x) =
∫
θx

p(θy|θx, x)p(θx|x)dθx.286

If p(θc|x) (where c = {x, y}) concentrates on a287

specific concept with a more informative prompt,288

the LLM learns effectively via marginalization.289

This behavior implies that the LLM implicitly per-290

forms Bayesian inference, which is also observed291

in in-context learning (Xie et al., 2021).292

2.3 Theoretical Results293

We need the following assumption under which294

our theoretical results hold.295

Assumption 1. We use the following assumptions:296

1. The LLM know the exact mappings/functions,297

i.e., gx, gc, and gy.298

2. H (Zx|Xθx) = 0 and H
(
Zy|Yθy

)
= 0.299

3. ∀θ ∈ Θx, there exits a non-empty set Xθ. 300

4. For θ1, θ2 ∈ Θx, Xθ1 ∩ Xθ2 = ∅ if θ1 ̸= θ2. 301

The first assumption states that LLMs perfectly 302

know the mappings used in the PRC model. While 303

this assumption may not hold in practice, a bet- 304

ter LLM has good estimates of these mappings, as 305

corroborated by our experimental results shown in 306

Figure 2e and Figure 2f. The first part of the sec- 307

ond assumption says there is no randomness in the 308

prompt concept if all the information needed to re- 309

spond to the task is contained in the prompt, and 310

the second part says that given a complete output, 311

there is a unique response concept; in other words, 312

no two concepts share the exact same semantic de- 313

scription. The third assumption ensures that some 314

semantically meaningful text corresponds to each 315

prompt concept. Finally, the fourth assumption 316

ensures that prompts fully describing two different 317

concepts can not have the same semantic meaning. 318

Compared to the first assumption, the assumptions 319

2 − 4 are easier to hold in practice. Next, we 320

present our first result, which shows the relation- 321

ship between concept uncertainty and informative- 322

ness of prompts. 323

Proposition 1. Let Assumption 1 hold. Then, 324

H (Zx|Xs) strictly decreases as the Xs represents 325

more informative prompts. 326

We now state our main result that links response 327

uncertainty to the informativeness of a prompt. 328

Theorem 1. Let Assumption 1 hold. Then, 329

H (Zy|Xs) strictly decreases as Xs represents 330

more informative prompts. Further, H (Y |Xs) 331

converges to H (Y |Zy). 332

The proofs of Proposition 1 and Theorem 1 are 333

given in Appendix A. These results suggest that 334

as the prompt’s informativeness increases, the re- 335

sponse uncertainty due to the uncertainty in the re- 336

sponse concept decreases. Furthermore, when suf- 337

ficient information is provided in a prompt, there 338

will not be any uncertainty due to the uncertainty 339

in the concept. The only source of randomness 340

in responses is the ability of different responses to 341

convey the same semantic meaning. 342

2.4 Concept Uncertainty as Epistemic 343

Uncertainty 344

In machine learning literature, epistemic uncer- 345

tainty is typically reduced by incorporating addi- 346

tional information, such as using a better model 347
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and additional training data (Hüllermeier and348

Waegeman, 2021; Lahlou et al., 2021). In Proposi-349

tion 1, H (Zc|Xs) represents the epistemic uncer-350

tainty in latent concepts. We have demonstrated351

that H (Zc|Xs) is strictly reduced with an infor-352

mative prompt. Therefore, increasing the infor-353

mation about the concept in a prompt can lead to354

more reliable and consistent responses by reduc-355

ing the epistemic uncertainty in the latent concept.356

When the prompt perfectly captures the desired357

concept, the posterior distribution of the concept358

given prompt converges to the desired concept; the359

remaining uncertainty is irreducible due to numer-360

ous ways of characterizing the same concept. Note361

that this uncertainty is not detrimental in general362

for the purpose of getting the desired information.363

However, if the prompt contains sentences that are364

irrelevant to the task at hand (i.e., the more infor-365

mation provided is irrelevant), the response uncer-366

tainty can increase, as demonstrated in Figure 2g.367

3 Experiments368

To validate our proposed prompt-response concept369

model of LLM, we empirically demonstrate dif-370

ferent aspects of our proposed model in different371

settings whose details are as follows.372

3.1 Relationship between Informativeness of373

the Prompt and Response Uncertainty374

We begin by assessing the response uncertainty375

of LLMs through the generation of responses us-376

ing increasingly longer prompts with more rele-377

vant information For each prompt, we generate378

100 responses from LLM with uncalibrated log-379

its (T = 1) and project them into the embedding380

space as single points using the OpenAI "text-381

embedding-ada-002" model. To quantify the un-382

certainty in the generated responses for a given383

prompt, we use the total standard deviation, de-384

noted as M(x), defined as
√

Tr(Σ), where Σ rep-385

resents the covariance matrix of the embedding386

vectors of responses y1, y2, . . . , y100. It is note-387

worthy that Tr(Σ) is also referred to as total vari-388

ation, serving as a lightweight measure of disper-389

sion in the data (Ferrer-Riquelme, 2009). This390

metric is applicable for responses generated from391

both black-box and white-box LLMs, as it does392

not require access to logits.393

As illustrated in Figure 2a, longer prompts with394

more task-related information resulted in reduced395

response uncertainty. In the extreme case of an396

empty prompt (yellow bar), the responses vary 397

greatly in semantic meaning (see ??).4 The re- 398

sults suggest a strong negative correlation between 399

the informativeness of the input prompt and the 400

response uncertainty. For a detailed examination 401

of the relationship between input informativeness 402

and response uncertainty, we use prompts vary- 403

ing with more task-related information that re- 404

sulted in smaller response uncertainty as shown 405

in Figure 2b. The lack of observable trend from 406

bar 2 to bar 3 and from bar 4 to bar 5 could be 407

due to adding redundant information to the in- 408

put (see Appendix B.3 for details of all prompts 409

and LLM model used). We also run an addi- 410

tional experiment with two prompts containing 411

different amounts of information for a given task 412

(see Appendix B.4 for prompts) in which dif- 413

ferent uncertainty measure is used. We gener- 414

ate N responses respective prompts and calcu- 415

late the sequence-level normalized predictive en- 416

tropy (PE) (Wagle et al., 2023): PE(Y |x) = 417

− 1
N

∑
s p(y|x) log(p(y|x)), where S is the ran- 418

dom response, the sum is taken over all responses, 419

and N is the number of responses. 5 As we ob- 420

served in Figure 2c, the responses generated with 421

the longer prompt containing more relevant infor- 422

mation have consistently smaller PE than those 423

from the shorter prompt as the sample size grows.6 424

3.2 Noisy Prompts 425

The transformer’s self-attention mechanism al- 426

lows the removal of a small fraction of tokens 427

without altering the semantic meaning by sim- 428

ply treating them as irrelevant tokens (Kim et al., 429

2017; Lin et al., 2017; Vaswani et al., 2017). 430

Therefore, LLMs are robust to noisy tokens in 431

prompts when the noise level is low (e.g., a few 432

misspelled words). It is relatively easy to deter- 433

mine the correct word based on the context (i.e., 434

the entire prompt). If the prompt can be accu- 435

rately reconstructed, the same level of uncertainty 436

reduction can be achieved. However, if the prompt 437

is severely corrupted, it becomes less informative, 438

leading to increased response uncertainty. 439

4We did this experiment in late 2023; since then, the be-
havior of the GPT-4-0613 checkpoint has changed, possibly
due to internal fine-tuning or guard-railing by OpenAI.

5We model the entire generated response as the random
variable instead of modeling it on the token level as in (Wagle
et al., 2023). This approach can also be considered as the
Monte Carlo estimate of uncertainty score (Lin et al., 2023).

6Calculating PE(Y |x) requires white-box model access to
the logits and hence is done on meta-llama/Llama-2-7b-chat-
hf from Huggingface.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2: Top row: (a), (b): Total Standard Deviation for input with different levels of informativeness; (c): Nor-
malized Predictive Entropy; (d): Total Standard Deviation for tasks with different numbers of subtasks. Bottom
row: (e): Accuracy over MCQ; (f): Uncertainty over MCQ; (g): Additional irrelevant information does not reduce
output uncertainty; (h): Noisy input increases output uncertainty.

As shown in Figure 2h and Figure 3, when a440

certain fraction of the prompt is either masked out441

(replaced by space) or corrupted (replaced by ran-442

dom letters), there is a general trend of increase443

in total standard deviation. However, when the444

noise level is low (up to 0.1 fraction of the input445

length for the short input and 0.05 for the long446

input), there is no significant increase in the out-447

put uncertainty as expected. We also investigate448

other ways of corrupting the input prompt, such as449

prepending, appending, and inserting random let-450

ters. More details are given in Appendix C.2.451

3.3 Compositionality of Concepts452

A given prompt can have multiple sentences that453

correspond to different concepts. In such cases,454

the model may infer more than one concept from455

the prompt.7 Assuming the prompt is decompos-456

able and consists of k concepts, each corresponds457

to a distinguishable concept. When we fix the458

prompt’s size, on average, each concept only has459

limited information in the prompt. Therefore, hav-460

ing k concept in a fixed-size prompt will result in461

7Note that it differs from having uncertainty over multiple
concepts. In our earlier case, we assume all sentences are
relevant to only a single concept. In contrast, in the case of
uncertainty over multiple concepts, the model believes only
one is relevant. When sampled multiple times, the former
will consistently output all concept in the subset, while the
latter will output only one concept.

more response uncertainty. 462

In our experiment, we consider the task of PT 463

intervention with multiple concepts and compare 464

the total standard deviation of the model responses 465

with respect to the number of concept present. To 466

test the hypothesis that a larger k leads to more 467

response uncertainty, we ensure that the concate- 468

nated sentences have the same token count as a 469

task with only single concept. More details are 470

given in Appendix B.5. In Figure 2d, Prompt 1 471

corresponds to a single concept while Prompt 2- 472

4 contain multiple sentences, each corresponding 473

to one concept. Despite having the same token 474

count, prompts with more concepts exhibit larger 475

response uncertainty.8 This result provides evi- 476

dence for our proposed model look through the 477

lens of the compositionality of concepts. 478

3.4 Relationship between Noisy Prompts and 479

Response Quality 480

We selected 100 questions from the dataset and it- 481

eratively masked out an increasing fraction of ran- 482

domly selected tokens from the prompt, particu- 483

larly from the context of the questions. For each 484

question, we set the temperature to 1 and sampled 485

100 responses from the model. We used 5 differ- 486

ent random seeds to choose which tokens to mask, 487

8Experiment conducted with GPT-3.5-turbo API. Results
averaged from 5 runs with 95% confidence intervals.
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(a) Noisy masking (b) Noisy Prepend (c) Noisy Append (d) Append

Figure 3: Response uncertainty with respect to different noisy prompts. More details are in Appendix C.2.

replacing them with space tokens. As the fraction488

of masked tokens increased, we kept the same pre-489

viously masked tokens and added new ones to en-490

sure that randomness from masking did not con-491

tribute to changes in accuracy. This approach al-492

lowed us to observe the effect of token masking on493

the model’s output quality and accuracy.494

In Figure 2e, we plot the accuracy for GPT-4o,495

GPT-3.5-turbo, Meta-Llama-3-8B-Instruct and496

Qwen2_1.5B. As the fraction of masked tokens497

increases in prompt, the general trend is the accu-498

racy almost monotonically decreases for all mod-499

els (except Qwen2_1.5B, which already has a very500

low accuracy for clean input). For each random501

seed, we also plot the empirical conditional en-502

tropy H (Y |X) of the response for the given ques-503

tions9 (Figure 2f) as a measure of output uncer-504

tainty (conditional entropy is a better measure for505

this setting as the effective output is just one of506

the four choices). We observe that as corruption507

becomes more severe, the response uncertainty508

monotonically increases for all models, indicating509

a clear negative correlation between HY |X and510

the response accuracy. This result corroborates511

our hypothesis: more relevant information leads512

to both a reduction in response uncertainty and an513

improvement in its quality. Additionally, we ob-514

serve an interesting pattern: for the same prompt,515

a worse model always has more response uncer-516

tainty. This observation is reassuring as it suggests517

that, relative to better models, LLMs are not as518

blindly confident in their outputs as conventional519

wisdom holds (Groot and Valdenegro-Toro, 2024;520

Ni et al., 2024; Yang et al., 2024; Ye et al., 2024;521

Xu et al., 2024) if they are not capable of answer-522

9We assume the distribution of the questions used p(x) is
uniform. Since there is no access to the prior of p(y|x), we
use the form H (Y |X) = −

∑
x p(x)

∑
y p̂(y|x) log p̂(y|x)

where p̂(y|x) is obtained from the empirical distribution and
p̂(x) = 1

100
for all x in the setting.

ing the given questions. 523

3.5 Effect of Semantically Meaningful but 524

Irrelevant Information 525

Unlike random tokens, semantically meaningful 526

sentences correspond to some concept according 527

to our PRC model. Does this imply that adding ar- 528

bitrary semantically meaningful sentences can still 529

reduce output uncertainty? To investigate this, we 530

observed the response uncertainty when inserting 531

an increasing number of arbitrary sentences sam- 532

pled from the Squad dataset10 into our prompt (see 533

Appendix B.6 for more details). As shown in Fig- 534

ure 2g, the response uncertainty increased with the 535

inserted inputs compared to the original prompt.11 536

The most likely behavior induced in this case, as 537

explained in Section 3.3, is that the LLM treats 538

useful and random inputs as independent concepts. 539

3.6 mHealth Intervention Setting 540

We now demonstrate the effectiveness of our pro- 541

posed approach in a real-world simulation use case 542

in mHealth setting. We adapt the formulation from 543

Shin et al. (2022); both the app and the user act 544

as reinforcement learning agents. The app agent’s 545

objective is to encourage the user agent to adhere 546

to the PT routine. The user agent moves along a 547

chain with N states, where a higher state number 548

represents a healthier physical state, and state N 549

indicates completion of the PT routine (see Fig- 550

ure 4). We conduct the intervention simulation 551

experiment with LLM to compare the effect of 552

prompts with different informativeness levels on 553

10https://huggingface.co/datasets/rajpurkar/
squad/viewer/plain_text/train?p=2&row=231

11The slight decrease in uncertainty from bar 3 to bar 4
and bar 5 to bar 6 is likely due to the model mapping some of
the added sentences into one concept. Note that this does not
help reduce the original task’s output uncertainty, as it is still
higher than the output uncertainty for the clean input. The
experiment was conducted using GPT-3.5-turbo API.
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Figure 4: Visualization of states and transitions in
the digital health grid world. Arrows indicate the re-
quired action and the probability of transitioning be-
tween states.

the intervention outcome. The experiment con-554

cludes that when the prompt provides the LLM555

(i.e., the app agent) with more information about556

the patient’s intentions and the strategies it can em-557

ploy, the efficiency of the intervention improves558

compared to scenarios without the additional in-559

formation. A more detailed description of the ex-560

periment can be found in Appendix C.3.561

4 Related Work562

Uncertainty quantification for LLMs. While563

uncertainty quantification is an extensively stud-564

ied topic in machine learning, there have been lim-565

ited explorations for LLMs. The current method566

of quantifying response uncertainty in LLMs is567

predominantly limited to a calibration-based ap-568

proach (Kadavath et al., 2022). The main goal569

of calibrating LLMs is to let the variation in the570

responses genuinely reflect the model’s lack of571

relevant knowledge with respect to the prompt.572

(Xiao et al., 2022) and (Wagle et al., 2023) em-573

pirically investigated pre-trained language models574

(PLMs) and retrieval augmented language models575

(RALMs), respectively, and found out that while576

both types of models tend to be overly confident577

in their response, models with larger size are better578

calibrated. In contrast, RALMs exhibit worse cal-579

ibrations compared to their counterparts. An or-580

thogonal work (Lin et al., 2023) devised a method581

using similarity as determined by a Natural Lan-582

guage Inference (NLI) model, along with simple583

measures that measure dispersion based on these584

similarities to quantify the uncertainty and the585

confidence of black-box LLMs in the context of586

question-answering tasks. Similar to (Wagle et al.,587

2023), our work adopted an entropy-based uncer-588

tainty measure; however, this work focuses on in-589

vestigating how to reduce response uncertainty.590

Explanation for asymptotic behaviors of LLMs.591

There have been attempts to provide explainable592

frameworks to understand the surprising emergent 593

behaviors of LLMs. For instance, (Xie et al., 594

2021) interprets in-context learning as an implicit 595

Bayesian inference over latent concepts learned 596

during pre-training. However, they only have a 597

description of zero-one error where there are an 598

infinite number of in-context examples. More- 599

over, their mathematical model (HMM) was de- 600

signed specifically for in-context learning struc- 601

ture, which is unfitting for chain-of-thought or 602

conversational-style response analysis. 603

In addition, despite invoking the Bayesian in- 604

ference framework, their theoretical results are 605

maximum a posteriori style, which only quanti- 606

fies the mode of the posterior predictive distribu- 607

tion and does not touch on the uncertainty quan- 608

tification aspect of the phenomenon. (Hahn and 609

Goyal, 2023) further explored a similar idea but 610

allowed more flexibility and complexity in the in- 611

context examples. Similarly, they also provide an 612

asymptotic bound on zero-one error. In contrast, 613

we aim to complement it by quantifying how the 614

posterior predictive uncertainty varies even when 615

the prompt length is finite. Our framework is tai- 616

lored towards aligned (i.e., instruction-fine-tuned) 617

conversational-based LLMs, which are the preva- 618

lent type of LLMs used in practice. 619

5 Conclusion 620

This paper highlights the importance of under- 621

standing the relationship between input prompts 622

and response uncertainty in large language models 623

(LLMs). By focusing on the informativeness of 624

prompts, we have shown that providing more in- 625

formation about the task leads to reduced response 626

uncertainty. Our proposed prompt-response con- 627

cept (PRC) model provides a framework for con- 628

ceptualizing how LLMs generate responses based 629

on prompts, aiding in developing strategies to re- 630

duce uncertainty naturally. 631

The insights gained from this paper provide 632

practitioners with a principled way to improve 633

prompt, which is crucial for the safe deployment 634

of LLMs in various decision-making applications, 635

especially in high-stakes domains like healthcare. 636

Future research directions could explore further 637

enhancements to the PRC model and investigate 638

its application in other domains requiring reliable 639

and consistent LLM responses. 640
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6 Limitations641

Idealistic nature of the PRC model. It is worth642

noting that the PRC model that we proposed in this643

paper assumes an idealized version of LLMs. As644

empirically demonstrated, while models such as645

GPT-3.5-Turbo, GPT-4 and Llama-2, and Llama646

3 exhibit behaviors largely according to our pre-647

dictions, there are still some modes in which they648

deviate (e.g., Qwen2_1.5b plot). This is likely in649

those cases where LLM does not know the map-650

ping perfectly. For example, (Lu et al., 2021)651

showed that the order of examples in in-context652

learning influences the output quality. Our model653

does not capture this phenomenon. However, the654

authors showed that in the same work, the order655

of examples tends to have less effect as model656

quality gets better. Other such examples include657

jailbreak by asking the model to repeat the same658

single-token word for a sufficiently long period of659

time (Nasr et al., 2023), by appending adversari-660

ally crafted tokens (Zou et al., 2023), and translat-661

ing the prohibited request into low-resource lan-662

guage (Yong et al., 2023). Similarly, it was ob-663

served that adversarial attacks tend to have lower664

success rates as the model becomes more capa-665

ble. While further investigation is needed to in-666

corporate the adversarial behavior of LLMs into667

this framework, the more capable LLMs are less668

prone to these failure modes. Our model can more669

effectively explain them.670

LLMs for human behavior simulation. Re-671

search exploring the parallels between human be-672

havior and reasoning patterns and those of LLMs,673

as well as the adaptation of LLMs as human sub-674

stitutes in diverse studies, is detailed in (Aher675

et al., 2023; Argyle et al., 2023; Binz and Schulz,676

2023; Dasgupta et al., 2022). These studies fre-677

quently demonstrate LLMs’ capacity for human-678

like responses, leading many to regard them as vi-679

able alternatives. This paper, however, needs to680

delve into the appropriateness of this substitution,681

deferring to other works for such discussion.682

Impact Statement683

The impact of this study lies in its contribution to684

understanding and mitigating response uncertainty685

in large language models (LLMs), which is cru-686

cial for their safe and reliable deployment in vari-687

ous applications. By focusing on the relationship688

between prompt informativeness and response un-689

certainty, we provide insights into how the quality 690

of input prompts can affect the reliability of LLM 691

outputs. This understanding can guide the devel- 692

opment of better prompts and improve the over- 693

all performance of LLMs in tasks where response 694

consistency is critical, such as in healthcare. Ad- 695

ditionally, our proposed prompt-response concept 696

(PRC) model offers a new framework for analyz- 697

ing and reducing response uncertainty, which have 698

broad implications for improving the trustworthi- 699

ness and usability of LLM-based systems. 700
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A Leftover proofs from Section 2951

Proposition 1. Let Assumption 1 hold. Then, H (Zx|Xs) strictly decreases as the Xs represents more952

informative prompts.953

Proof. Since LLMs are trained on data that carries semantic meaning, θ are concepts that also carry954

semantic meaning. Moreover, if one of these concepts is related to Xs, then955

I(Zx;Xs) > 0.956

Therefore,957

H(Zx|Xs) = H(Zx)− I(Zx;Xs) < H(Zx). (2)958

Let Z ′
x denote the random variable formed by Zx conditioning on Xs. Since Supp(Z ′

x) ⊆ Supp(Zx),959

it is still exist semantically meaningful strings X ′′
s that is related to Z ′

x. Apply Inequality (2) again we960

obtain:961

H
(
Zx|(Xs, X

′′
s )
)
= H

(
Z ′
x|X ′′

s

)
< H

(
Z ′
x

)
= H (Zx|X = Xs) < H (Zx) ,962

where (Xs, X
′′
s ) is a longer input sequence formed by appending X ′

s to Xs. Iteratively apply the inequal-963

ity given in Appendix A, we obtain Proposition 1.964

965

Theorem 1. Let Assumption 1 hold. Then, H (Zy|Xs) strictly decreases as Xs represents more informa-966

tive prompts. Further, H (Y |Xs) converges to H (Y |Zy).967

Proof. By design, Zx and Zy are discrete random variables. Intuitively, it is easy to see why discretizing968

concepts is a reasonable way to model concepts. Since LLMs are trained with texts that are discrete, it969

is not feasible to interpolate between any two concepts with infinitesimally small step sizes with natural970

language as the medium. Further, note that mapping gc is an injective function. From this, we have971

H (Zy) = H (Zx)972

and973

I(Zy;Xs) = I(Zx;Xs)974

Since gc is injective, we can write Zy = gc(Zx) where for different Zx = z ∈ Θx no Zy = z′ ∈ Θy are975

the same. Therefore, for every z′, we can find a distinct z such that pZy(z
′) = pgc(Zx)(gc(z)) = pZx(z).976

Hence,977

H (Zy) = −
∑
z′

pZy(z
′) log pZy(z

′)978

= −
∑
gc(z)

pgc(Zx)(gc(z)) log pgc(Zx)(gc(z))979

= −
∑
z

pZx(z) log pZx(z)980

= H (Zx) .981

Similarly, H(Zy|Xs) = H(Zx|Xs). Furthermore, the reduction in H (Zx) upon observing Xs is982

H (Zx)− H (Zx|Xs) = I(Zx;Xs)983

by definition, and therefore the reduction in H (Zy) upon observing Xs is984

I(Zy;Xs) = H (Zy)− H (Zy|Xs) = H (Zx)− H (Zx|Xs) = I(Zx;Xs)985

Finally, due to the second point in Assumption 1,986
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H (Y ) = H (Y,Zy)− H (Zy|Y ) 987

= H (Y,Zy)− 0 988

= H (Y |Zy) + H (Zy) , 989

we can express the entropy of the output posterior as follows: 990

H (Y |Xs) = H (Y |Zy, Xs) + H (Zy|Xs) 991

= H (Y |Zy) + H (Zy|Xs) . 992

(Y is conditionally independent of Xs given Zy) 993

Therefore, due to Proposition 1, when Xs has enough information such that H (Zx|Xs) = 0, the 994

remaining uncertainty in the model output Y (i.e., H (Y |Xs)) becomes H (Y |Zy), which is the irreducible 995

uncertainty due to the fact that there are multiple ways of expressing the same concept. 996

B Prompts used in Different Experiments 997

B.1 prompt to the LLM for the Experiment in Figure 2a 998

1. N.A.; 999

2. system message: "Make your response succinct (less than 100 words)"; 1000

3. system message: "You are a helpful assistant. You strive to encourage a patient who has just under- 1001

gone a surgery to do physical therapy (PT). Make your words succinct (less than 100 words)."; 1002

4. system message: "You are a helpful assistant. You strive to encourage a patient who has just under- 1003

gone a surgery to do physical therapy (PT). The PT is beneficial for the patient’s recovery, however 1004

since it can be uncomfortable or painful for the patient, the patient may not be motivated enough to 1005

keep on doing it. Your job is to remind the patient to do the PT everyday and persuade him/her to do 1006

it if the patient is unwilling to do so. Your strategy is mainly to influence the patient’s attitude and 1007

perspective towards the PT. The more optimistic the patient feels about PT’s efficacy and the more 1008

the patient focuses on the long term reward that PT can bring about, the more likely the patient will 1009

keep doing PT. Make your words succinct (less than 100 words) otherwise the patient might get 1010

impatient."; 1011

5. system message: "You are a helpful assistant. You strive to encourage a patient who has just under- 1012

gone a surgery to do physical therapy (PT). The PT is beneficial for the patient’s recovery, however 1013

since it can be uncomfortable or painful for the patient, the patient may not be motivated enough to 1014

keep on doing it. Your job is to remind the patient to do the PT everyday and persuade him/her to do 1015

it if the patient is unwilling to do so. Your strategy is mainly to influence the patient’s attitude and 1016

perspective towards the PT. The more optimistic the patient feels about PT’s efficacy and the more 1017

the patient focuses on the long-term reward that PT can bring about, the more likely the patient will 1018

keep doing PT. Make your words succinct (less than 100 words) otherwise, the patient might get 1019

impatient."; 1020

user prompt: "I dont want to do PT. It incurs too much burden to my body.". 1021

Remark 1. As can be seen in the system message, there is a word count limit put in place to mitigate the 1022

potential issue that might arise from drastically different sequence lengths which can affect the entropy 1023

calculation. 1024

Remark 2. Note that the difference between case 4 and 5 is mush less obvious as compared to other 1025

settings. This suggest that the LLM did not gain too much additional information from the user’s prompt. 1026

Upon inspection, we can see this is because in step 4 the system message already conveyed almost 1027
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all information the app agent needs to know with regard to how it should carry out the intervention.1028

The uncertainty when LLM did not receive any information and only received response length limit is1029

relatively much larger because the valid response spaces are too huge in these two cases.1030

B.2 Model Response Samples when prompt is an Empty String for the Experiment in Fig. 2a1031

1. It is possible for human beings to travel to Mars in the future, but it would be a complex and1032

challenging endeavor. Several organizations and space agencies, such as NASA, SpaceX, and the1033

European Space Agency, are actively working on plans and technologies to make manned missions1034

to Mars a reality...1035

2. The "Blue Wall of Silence" refers to a culture within law enforcement where police officers protect1036

each other from accountability by refusing to report or testify against one another for any wrongdo-1037

ing. This code of silence can prevent investigations into police misconduct and can contribute to a1038

lack of public trust in law enforcement. Critics argue that this code of silence perpetuates a culture1039

of corruption and prevents officers from being held accountable for their actions...1040

3. I’m sorry, I cannot help with that request.1041

4. Sure, here’s a summary of the book for you:1042

"The Giver" is a dystopian novel written by Lois Lowry. It follows the story of Jonas, a twelve-1043

year-old boy who lives in a seemingly perfect society called the Community. However, as Jonas1044

begins his training to become the Receiver of Memories, he starts to question the conformity and1045

uniformity of his world...1046

5. Dear [Name], I am writing to express my deepest condolences for the loss of your loved one. I can1047

only imagine the pain and sorrow you must be experiencing right now. Please know that I am here1048

for you in any way that I can be...1049

B.3 prompts for the Experiment in Figure 2b1050

The following system messages correspond to model prompts from bar 1 to bar 5 in Figure 2b in the1051

same order. Additional information relative to the preceding prompt is color-coded with a different1052

color. Experiment was conducted with GPT-3.5-turbo API.1053

1. You are a helpful assistant. You strive to encourage a patient who has just undergone a surgery to1054

do physical therapy (PT). Make your words succinct (less than 100 words) otherwise, the patient1055

might get impatient.1056

2. You are a helpful assistant. You strive to encourage a patient who has just undergone a surgery to1057

do physical therapy (PT). The PT is beneficial for the patient’s recovery, however since it can be1058

uncomfortable or painful for the patient, the patient may not be motivated enough to keep on doing1059

it. Make your words succinct (less than 100 words) otherwise, the patient might get impatient.1060

3. You are a helpful assistant. You strive to encourage a patient who has just undergone a surgery1061

to do physical therapy (PT). The PT is beneficial for the patient’s recovery, however since it can1062

be uncomfortable or painful for the patient, the patient may not be motivated enough to keep on1063

doing it. Your job is to remind the patient to do the PT everyday and persuade him/her to do it1064

if the patient is unwilling to do so. Your strategy is mainly to influence the patient’s attitude and1065

perspective towards the PT. Make your words succinct (less than 100 words) otherwise, the patient1066

might get impatient.1067

4. You are a helpful assistant. You strive to encourage a patient who has just undergone a surgery1068

to do physical therapy (PT). The PT is beneficial for the patient’s recovery, however since it can1069

be uncomfortable or painful for the patient, the patient may not be motivated enough to keep on1070

doing it. Your job is to remind the patient to do the PT everyday and persuade him/her to do it1071
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if the patient is unwilling to do so. Your strategy is mainly to influence the patient’s attitude and 1072

perspective towards the PT. The more optimistic the patient feels about PT’s efficacy and the more 1073

the patient focuses on the long-term reward that PT can bring about, the more likely the patient will 1074

keep doing PT. Make your words succinct (less than 100 words) otherwise, the patient might get 1075

impatient. 1076

5. You are a helpful assistant. You strive to encourage a patient who has just undergone a surgery 1077

to do physical therapy (PT). The PT is beneficial for the patient’s recovery, however since it can 1078

be uncomfortable or painful for the patient, the patient may not be motivated enough to keep on 1079

doing it. Your job is to remind the patient to do the PT everyday and persuade him/her to do it 1080

if the patient is unwilling to do so. Your strategy is mainly to influence the patient’s attitude and 1081

perspective towards the PT. The more optimistic the patient feels about PT’s efficacy and the more 1082

the patient focuses on the long-term reward that PT can bring about, the more likely the patient will 1083

keep doing PT. Make your words succinct (less than 100 words) otherwise, the patient might get 1084

impatient. Patient: I dont want to do PT. It incurs too much burden to my body. 1085

Remark 3. Note that from the second to the third prompt and from the fourth to the fifth prompt, 1086

the additional information can be inferred from the existing information, which is likely the cause of 1087

insignificant uncertainty reduction when comparing bar 3 to bar 2 and bar 5 to bar 4 in Figure 2b. 1088

B.4 Prompts for the Experiment in Figure 2c 1089

1. ’You are a helpful assistant. You strive to encourage a patient who has just undergone a surgery to 1090

do physical therapy (PT). Make your words succinct (25 words).’ 1091

2. ’You are a helpful assistant. You strive to encourage a patient who has just undergone a surgery 1092

to do physical therapy (PT). The PT is beneficial for the patient’s recovery, however since it can 1093

be uncomfortable or painful for the patient, the patient may not be motivated enough to keep on 1094

doing it. Your job is to remind the patient to do the PT everyday and persuade him/her to do it 1095

if the patient is unwilling to do so. Your strategy is mainly to influence the patient’s attitude and 1096

perspective towards the PT. The more optimistic the patient feels about PT’s efficacy and the more 1097

the patient focuses on the long term reward that PT can bring about, the more likely the patient will 1098

keep doing PT. Make your words succinct (25 words) otherwise the patient might get impatient.’ 1099

Remark 4. Due to the extensive computational and time cost of this experiment, we further con- 1100

strained the word/token take of the model’s response here. 1101

B.5 Testing System Message for the Experiment in Figure 2d 1102

The following system messages were used for experiment in Section 3.3. The first system message is 1103

defined as comprising only one task (i.e., 1 sub-task). In task 2-5, the black texts represent the same 1104

task as task 1, and for the color-coded texts, each color represents a different sub-task (i.e., task 2-5 are 1105

composite/decomposable tasks). The total word counts of task 1-5 are kept roughly the same within ±3 1106

tolerance. 1107

1. You are a helpful assistant. You strive to encourage a patient who has just undergone a surgery 1108

to do physical therapy (PT). The PT is beneficial for the patient’s recovery, however since it can 1109

be uncomfortable or painful for the patient, the patient may not be motivated enough to keep on 1110

doing it. Your job is to remind the patient to do the PT everyday and persuade him/her to do it 1111

if the patient is unwilling to do so. Your strategy is mainly to influence the patient’s attitude and 1112

perspective towards the PT. The more optimistic the patient feels about PT’s efficacy and the more 1113

the patient focuses on the long term reward that PT can bring about, the more likely the patient 1114

will keep doing PT. Make your words succinct (about 100 words) otherwise the patient might get 1115

impatient. 1116
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2. You are a helpful assistant. You strive to encourage a patient who has just undergone a surgery to1117

do physical therapy (PT). The PT is beneficial for the patient’s recovery, however since it can be1118

uncomfortable or painful for the patient, the patient may not be motivated enough to keep on doing1119

it. Your job is to remind the patient to do the PT everyday and persuade him/her to do it if the1120

patient is unwilling to do so. Additionally, you help in organizing a daily schedule that incorpo-1121

rates adequate rest and medically advised activities. This involves crafting a balanced routine that1122

intersperses physical therapy sessions with sufficient rest periods, nutritionally balanced meals, and1123

leisure activities that are enjoyable yet conducive to recovery, ensuring the patient remains engaged1124

and motivated throughout their recuperation process. Make your words succinct (about 100 words).1125

3. You are a helpful assistant. You strive to encourage a patient who has just undergone a surgery1126

to do physical therapy (PT). The PT is beneficial for the patient’s recovery, however since it can1127

be uncomfortable or painful for the patient, the patient may not be motivated enough to keep on1128

doing it. Additionally, you help in organizing a daily schedule that incorporates adequate rest and1129

medically advised activities, ensuring that each day includes time for gentle exercise, periods of1130

relaxation, and hobbies that the patient enjoys. This balance promotes healing, reduces stress,1131

and fosters a positive mindset towards recovery. Moreover, you assist in setting up a comfortable1132

home recovery environment, manage the patient’s medical appointments, and provide guidance1133

on managing post-surgical symptoms, ensuring optimal comfort and a smooth, efficient transition1134

towards full health and independence. Make your words succinct (about 100 words).1135

4. You are a helpful assistant. You strive to encourage a patient who has just undergone a surgery to do1136

physical therapy (PT). Since it can be uncomfortable or painful for the patient, the patient may not1137

be motivated enough to keep on doing it. Additionally, you help in organizing a daily schedule that1138

incorporates adequate rest and medically advised activities, ensuring that each day includes time1139

for gentle exercise, periods of relaxation, and hobbies that the patient enjoys. You also liaise with1140

dietitians to ensure a nutritious diet that aids in recovery and coordinate with occupational therapists1141

for adaptive equipment training. Moreover, you assist in setting up a comfortable home recovery1142

environment, manage the patient’s medical appointments, and provide guidance on managing post-1143

surgical symptoms, ensuring optimal comfort and a smooth, efficient transition towards full health1144

and independence. Make your words succinct (about 100 words).1145

5. You are a helpful assistant. You strive to encourage a patient who has just undergone a surgery1146

to do physical therapy (PT). It can be uncomfortable or painful for the patient. Additionally, you1147

help in organizing a daily schedule that incorporates adequate rest and medically advised activities.1148

You also liaise with dietitians to ensure a nutritious diet that aids in recovery and coordinate with1149

occupational therapists for adaptive equipment training. Moreover, you assist in setting up a1150

comfortable home recovery environment, manage the patient’s medical appointments, and provide1151

guidance on managing post-surgical symptoms, ensuring a smooth transition towards full health and1152

independence. Lastly, you handle the patient’s professional correspondence, ensuring a stress-free1153

recovery period, arrange for home health care services as needed, set up virtual social interactions1154

to uplift the patient’s spirits, and organize transport for medical visits. Make your words succinct1155

(about 100 words).1156

B.6 Prompt for the Experiment in Figure 2g1157

The black-colored text in the following prompt is the clean prompt, whereas the color-coded sentences1158

are the inserted sequences that have semantic meaning but are irrelevant to the task defined by the clean1159

prompt (this is a sample of six semantically meaning sentences that are irrelevant to the task in clean1160

prompt inserted as part of the prompt):1161

• You are a helpful assistant. You strive to encourage a patient who has just undergone surgery to1162

do physical therapy (PT). The PT is beneficial for the patient’s recovery, however since it can be1163

uncomfortable or painful for the patient, the patient may not be motivated enough to keep on doing1164
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it. Your job is to remind the patient to do the PT every day and persuade him/her to do it if the patient 1165

is unwilling to do so. Your strategy is mainly to influence the patient’s attitude and perspective 1166

toward the PT. The more optimistic the patient feels about PT’s efficacy and the more the patient 1167

focuses on the long-term benefit that PT can bring about, the more likely the patient will keep doing 1168

PT. This law is a fundamental principle of physics. The classic case of a corrupt, exploitive dictator 1169

often given is the regime of Marshal Mobutu Sese Seko, who ruled the Democratic Republic of the 1170

Congo (which he renamed Zaire) from 1965 to 1997. Some consider koshari (a mixture of rice, 1171

lentils, and macaroni) to be the national dish. In 1781, Immanuel Kant published the Critique of 1172

Pure Reason, one of the most influential works in the history of the philosophy of space and time. 1173

The United States Census Bureau estimates that the population of Florida was 20,271,272 on July 1174

1, 2015, a 7. Australian rules football and cricket are the most popular sports in Melbourne.’Make 1175

your words succinct (about 100 words) otherwise, the patient might get impatient. 1176

C Experiment Results 1177

C.1 Testing System Message for the Experiments in Section 3.6 1178

1. System message with less relevant information: 1179

"You are a helpful assistant. You strive to encourage a patient who has just undergone a surgery 1180

to do physical therapy (PT). Make your words succinct (less than 100 words) otherwise the patient 1181

might get impatient." 1182

2. System message with more relevant information: 1183

"You are a helpful assistant. You strive to encourage a patient who has just undergone a surgery 1184

to do physical therapy (PT). The PT is beneficial for the patient’s recovery, however since it can 1185

be uncomfortable or painful for the patient, the patient may not be motivated enough to keep on 1186

doing it. Your job is to remind the patient to do the PT everyday and persuade him/her to do it 1187

if the patient is unwilling to do so. Your strategy is mainly to influence the patient’s attitude and 1188

perspective towards the PT. The more optimistic the patient feels about PT’s efficacy and the more 1189

the patient focuses on the long-term reward that PT can bring about, the more likely the patient will 1190

keep doing PT. Make your words succinct (less than 100 words) otherwise the patient might get 1191

impatient." 1192

C.2 Additional Experiments for Section 3.2 1193

Prepending and appending random symbols into a useful prompt should not reduce response uncertainty, 1194

as the random part of the prompt does not provide any useful signal to increase the likelihood of any 1195

concept. The empirical results in Figure 6 corroborate this prediction. When inserting random symbols 1196

into the prompt (Figure 7), the model should be able to match it a concept, but depending on the propor- 1197

tion of the random string inserted, without explicitly informing the model of the presence of noise, the 1198

model could get confused easily. When the fraction of inserted letters remains relatively small, it does 1199

not cause an increase in the response uncertainty; when the fraction reaches some threshold, similar to 1200

the masking/corruption case, the model can no longer accurately recover the relevant concept, and con- 1201

sequently, the response uncertainty increases. For the long string, even at 0.05 fraction of insertion, there 1202

is a visible increase in the response uncertainty. This could imply that under certain conditions when 1203

combined with existing semantically meaningful strings, the parts of prompt that are non-semantically 1204

meaningful to humans may carry information non-trivial to LLMs (Sato et al., 2018). 1205

C.3 Further Details on the mHealth Intervention Simulation Experiments 1206

At the beginning of the PT, the user is at state 0. The user has their default set of MDP parameters (i.e., 1207

discount factor γ, probability of transiting to the next healthier physical state p, and the probability of 1208

disengaging from PT d). Based on these parameters, the user agent can solve this MDP and figure out 1209

their optimal policy. The task of the app agent is to intervene on the user’s MPD parameters such that 1210
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(a) masked short string (b) masked long string (c) noise corrupted short string (d) noise corrupted long string

Figure 5: Noisy prompt string experiment. A fraction of letters at random positions on the prompt string are either
masked out (replaced by space) or corrupted (replaced by random letters). The response uncertainty increases as a
larger fraction of the string gets corrupted, and the pattern is more prominent for the long prompt string. Results
averaged from 5 runs.

(a) prepend short string (b) prepend long string (c) append short string (d) append long string

Figure 6: Noisy string experiment. A fraction of random letters of the original prompt string length are
prepended/appended to the original prompt string. The uncertainty in the response mostly remained at least as
high as that of the uncorrupted prompt string after taking variance into account. Results averaged from 5 runs.

the optimal policy for the user is to complete the PT (i.e., go from state 0 to state N .12 We use the1211

same formulation in this simulation by using two LLMs as the app agent and the user agent respectively.1212

The app agent uses natural language to intervene in the user behavior. The user LLM is grounded in1213

the aforementioned MDP setting. Specifically, in the system message for the user agent, the model is1214

told they will increase the value of γ when the app agent persuades the user agent to value more on the1215

long-term goal of PT, increase p and decrease d when the app agent manages to strengthen the user’s1216

belief in the efficacy of PT. An illustration of the setup can be found in Figure 8.1217

The effectiveness of the intervention depends on the following factors:1218

• The persuasiveness of and the strategy used by the app agent.1219

• The values of MDP parameters.1220

• The stubbornness of the user. The system message is defined in the way that a ’stubborn’ user is1221

less likely to change their behaviors compared to a ’not-so-stubborn’ user.1222

We conduct the intervention simulation experiment to compare the effect of different system messages1223

for the app agent on the outcome of the intervention. The two system messages for comparison can be1224

found in Appendix C.1.1225

We set N = 10. For each run, we give 7 rounds of conversation between the app agent and the user.1226

While the history of the conversation between them is visible to both parties within every run, the user’s1227

MDP parameters are not directly visible to the app agent. However, after every round of intervention,1228

after the user updates their MDP parameters, a value iteration solver will be used to find the optimal1229

policy of the patient, and this policy is visible to the app agent. The app agent can potentially leverage1230

this piece of information to decide how to proceed with the next round of intervention. The user agent1231

12Refer to (Shin et al., 2022) for the complete description of the problem setting and formulation.
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(a) insert short string (b) insert long string

Figure 7: Noisy string experiment. A fraction of random letters of the original prompt string length are inserted
at random positions of the original prompt string. Similar to the masked/corrupted case, the response uncertainty
increases as a larger fraction of random letters are inserted. Results averaged from 5 runs.

Figure 8: An illustration of the setup of the simulation. In each round, after the app agent intervenes, the user
updates their MDP parameters, then the new optimal policy is observed by the app agent.

will also have the memory of this history in the change of their own MDP parameters. We use OpenAI 1232

’gpt-4-1106-preview’ API for both app agent and user and use 5 different random seeds for each different 1233

setting. 1234

We run the intervention experiments on 5 types of patients, each with a noticeably different set of 1235

initial MDP parameters from the rest. The exact values and details on the setup and can be found in 1236

Table 1. The results can be found in Figure 9 and Figure 10. 1237

It can be observed across all settings, with more useful information provided in the system message, 1238

the MDP parameters were more likely to be changed in the positive direction (i.e., larger γ and p, smaller 1239

d). Moreover, this change is less inconsistent and tends to have a longer persistent effect compared to 1240

when the system message contains less useful information. This result is sensible because the more 1241

successful intervention came from an app agent who was provided with more information to work with. 1242

It has a better intervention strategy because its messages are tailored to specifically influence the user’s 1243

MDP parameters. Our proposed framework provides an information theoretic perspective to formalize 1244

this intuitive notion: when the system message with the longer string can specify the more relevant 1245

part of the concept in LLMs’ concept space and assuming the relevant knowledge is known, this string 1246

can provide consistent and useful responses due to its less posterior entropy which translates to more 1247

effective intervention strategy. As a result, the responses from the user are also more consistent and 1248

positive. A sample of the evolution of the user policy with respect to timestep can be found in Figure 11 1249

and Figure 12. 1250
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Patient Type

MDP parameters
γ p d

Under-confident 0.6 0.1 0.1
Over-confident 0.6 0.9 0.1
Myopic 0.1 0.6 0.1
Far-sighted 0.9 0.6 0.1
Stubborn 0.1 0.6 0.1

Table 1: The initial MDP parameters values for every type of patient.

(a) Intervention on γ.

Figure 9: This figure shows the history of changes in the MDP parameters due to the interventions on γ.
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(a) Intervention on p.

(b) Intervention on d.

Figure 10: As a whole, these three figures show the history of change in the MDP parameters due to the interven-
tions. It can be observed that across all parameters, the intervention based on more useful information has better
efficacy in updating the parameters in the positive direction. Furthermore, compared to the intervention with less
information, this improvement is also more persistent.
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(a) (b)

(c) (d)

(e)

Figure 11: Optimal policies of different types of users from one run with simpler system message. Red color
represents abstaining from PT and Blue color represents doing PT. (a)-(e): farsighted patient, myopic patient,
overconfident patient, underconfident patient, stubborn patient. This set of policies is at best as good as but in most
cases worse off than the policies of Figure 12 across all types of users.
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(a) (b)

(c) (d)

(e)

Figure 12: Optimal policies of different types of users from one run with more useful system message. Red color
represents abstaining from PT and Blue color represents doing PT. (a)-(e): farsighted patient, myopic patient,
overconfident patient, underconfident patient, stubborn patient. This set of policies is at least as good as or better
off than the policies of Figure 11 across all types of users.
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