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Abstract

Large language models (LLMs) are widely
used in decision-making, but their reliability,
especially in critical tasks like healthcare, is
not well-established. Therefore, understand-
ing how LLMs reason and make decisions is
crucial for their safe deployment. This paper
investigates how the uncertainty of responses
generated by LLMs relates to the informa-
tion provided in the input prompt. Leverag-
ing the insight that LLMs learn to infer la-
tent concepts during pretraining, we propose a
prompt-response concept model that explains
how LLMs generate responses and helps un-
derstand the relationship between prompts and
response uncertainty. We show that the un-
certainty decreases as the prompt’s informa-
tiveness increases, similar to epistemic uncer-
tainty. Our detailed experimental results on
real datasets validate our proposed model.

1 Introduction

Large language models (LLMs) have demon-
strated impressive performance across a variety of
tasks (Google, 2023; OpenAl, 2023; Zhao et al.,
2023). This success has led to their widespread
adoption and significant involvement in various
decision-making applications, such as healthcare
(Karabacak and Margetis, 2023; Sallam, 2023;
Yang et al., 2023), education (Xiao et al., 2023),
finance (Wu et al., 2023b), and law (Zhang et al.,
2023a). However, despite their rapid adoption,
the reliability of LLMs in handling high-stakes
tasks has yet to be demonstrated (Arkoudas, 2023;
Huang et al., 2023a). The reliability is particu-
larly critical in domains such as healthcare, where
model responses can have immediate and signifi-
cant impacts on human behavior and hence their
well-being (Ji et al., 2023). Therefore, under-
standing LLMs’ reasoning and decision-making
processes and how they influence response uncer-
tainty is critical for their safe deployment.

To understand this importance, consider the mo-
bile health (mHealth) application in which ma-
chine learning algorithms are integrated to moni-
tor users’ health conditions and provide advice on
daily activities (Boursalie et al., 2018; Trella et al.,
2022, 2023). Providing suggestions that can influ-
ence users’ health is a form of intervention in the
human decision-making process. For LLMs to be
suitable for such use cases, they should be accurate
and provide consistent intervention strategies, e.g.,
consider an LLM-powered mHealth app that sug-
gests physical therapy (PT) routines to a patient
recovering from surgery. The app’s goal is to en-
sure the patient adheres to their PT regimen during
rehabilitation despite the discomfort it may cause.
The app must provide consistent suggestions to
encourage PT adherence. Any inconsistent behav-
iors from the app could undermine any progress
made. Conversely, providing accurate and consis-
tent responses helps make the system more reli-
able and trustworthy (Shin et al., 2022).

The response generated by LLMs is a series of
tokens sampled from probability vectors of tokens
using various heuristics (Brown et al., 2020; Rad-
ford et al., 2018, 2019), such as beam search, nu-
cleus sampling, and greedy decoding. Typically,
tokens with higher probabilities are chosen se-
quentially to produce the final response. The re-
sponse variations are controlled by LLM param-
eters such as temperature (1'), top-k, or top-p.
While response variations benefit creative tasks
like poem and essay writing, they can be detri-
mental for tasks requiring high reproducibility and
consistency (Ganguli et al., 2022; Huang et al.,
2023b). However, making LLLMs generate deter-
ministic responses is not ideal, as users may vary
in what responses suit them the most (Wu et al.,
2023a). Hence, a better approach is needed to un-
derstand the sources of response uncertainty and
develop methods to reduce it naturally rather than
masking it by adjusting LLM parameters.



We attribute response uncertainty to two main
factors: the LLM’s parameters controlling the
generated response’s randomness and the input
prompt’s informativeness (information about the
desired task). This paper focuses solely on the re-
sponse uncertainty due to the input prompt while
keeping the LLM parameters fixed. Here, a natural
question arises: How is the amount of information
in the input prompt related to the uncertainty in
the responses generated by an LLM ?

To answer this, we leverage the insight that
LLMs implicitly learn to infer latent concepts dur-
ing pretraining (Xie et al., 2021; Hahn and Goyal,
2023; Zhang et al., 2023b) and propose a prompt-
response concept (PRC) model. Our PRC model
conceptualizes how an LLM generates responses
based on given prompts, and helps understand the
relationship between prompts and response un-
certainty by measuring response uncertainty for
prompts with varying information about the task.
We provide theoretical results that show that the
uncertainty of responses generated by an LLM de-
creases as the informativeness of prompt increases
(i.e., having more information about the task). We
connect response uncertainty and epistemic uncer-
tainty and show that adding relevant information
to the prompt is a principled and effective method
to reduce this uncertainty. Finally, we corroborate
the validity of our PRC model via experiments and
provide a simulation for a healthcare use case to
demonstrate the efficacy of our approach.

2 Prompt-Response Concept Model of
Large Language Model

In this section, we first define what we mean
by concept. We then use the notion of concept
to explain our proposed prompt-response concept
model of LLM. Finally, we provide theoretical re-
sults that explain the relationship between the un-
certainty of response generated by an LLM and the
representation quality of the prompts.

We define the concept! as an abstraction derived
from specific instances or occurrences that share
common characteristics (Laurence and Margo-
lis, 1999; Fodor, 1998; Weiskopf, 2009; Wilmont
et al., 2013). To understand the notion of concept,
consider the following example of the concept:

'The definition of a concept varies across fields, e.g.,
in philosophy, a concept represents the fundamental unit of
thought; in psychology, it is a mental construct; in linguistics,
it refers to the semantic units that words or phrases represent;
and in education, it denotes key ideas or principles.

Species, which includes a group of organisms that
share common biological traits. Another example
is the personal bio,> which consists sentences giv-
ing information about names, occupations, contri-
butions, and other personal details.

Concept: Personal bio of Alan Turing

Alan Turing was an English computer scientist, mathe-
matician, and cryptanalyst. He introduced the Turing ma-
chine, which formalized the concepts of algorithms and
computation, serving as a foundational model for general-
purpose computers. Turing is widely regarded as the fa-
ther of theoretical computer science. ...

Using concepts instead of word-level or token-
level patterns in text analysis improves the ability
to reason and answer questions based on higher-
level abstractions, which allows a better under-
standing of the relationships between different
sentences in the given text (Bates, 1995; Bo-
gatyrev and Samodurov, 2016; Wang et al., 2024).
As we can see in the example above, explain-
ing a concept often involves multiple sentences,
each contributing specific and meaningful infor-
mation about the concept (Piccinini and Scott,
2006). We refer to the information in each sen-
tence as attributes of the concept, e.g., the sen-
tence "Alan Turing was an English computer sci-
entist, mathematician, and cryptanalyst" gives in-
formation about the name, nationality, and occu-
pation of Alan Turing.

2.1 Prompt-Response Concept Model

Our aim is to understand how the input prompt is
related to the uncertainty in the responses gener-
ated by an LLM. To do so, we first introduce no-
tations representing different variables used in this
section. Let X denote the set of all prompts and
Y denote the set of all responses generated by an
LLM f, where f : X — ). For a given prompt
x € X, the LLM f generates a response y € Y
such that y = f(z). Since the response y can
vary each time the LLM generates it, we attribute
these response variations to two main factors: the
LLM’s parameters, such as temperature 7', top-
k, or top-p, which control the randomness in the
generated tokens, and the informativeness (infor-
mation about the desired concept) of the given
prompt. This paper focuses solely on the latter as-
pect while keeping the LLM’s parameters fixed.
As it has been shown that LLMs implicitly
learn to infer latent concepts during pretraining

The personal bio example of the concept is adapted from
wiki bio concept example given in Xie et al. (2021).



(Xie et al., 2021; Hahn and Goyal, 2023; Zhang
et al., 2023b), we use this insight to propose the
prompt-response concept (PRC) model of LLM.
This model conceptualizes how an LLM gener-
ates a response for a given prompt, which will
be used to understand the relationship between
prompts and the response uncertainty by measur-
ing response uncertainty for prompts with varying
information. The PRC model has three main com-
ponents (as shown in Figure 1): prompt concept,
response concept, and mappings.
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Figure 1: Prompt-Response concept model of LLM.

Prompt concept. Let O, be the set of all con-
cepts corresponding to prompts in set X. In the
PRC model, we assume that each input prompt
x € X corresponds to a concept. We refer to this
concept as the prompt concept 6, € ©,. Intu-
itively, an LLM recognizes input tokens as seman-
tically meaningful units that coherently describe
an attribute of some latent prompt concept. The
attributes of a concept are expressed through mul-
tiple semantically meaningful sentences. If mul-
tiple sentences in the prompt cannot be combined
to describe a single concept, the LLM will treat
them as representing different concepts. Our ex-
perimental results in Figure 2d show that adding
semantically meaningful sentences from different
concepts can increase response uncertainty.

Response concept. Let O, be the set of all con-
cepts corresponding to responses in set ). We re-
fer to these concepts as the response concept. The
PRC model assumes that each response concept
0, € ©, corresponds to a response y € ).

Mappings. To understand the relationship be-
tween input prompt, intermediate concepts, and
response, we assume the LLM f is a composi-
tion of three mappings/functions: prompt-concept
mapping (g ), concept-concept mapping (g.), and
concept-response mapping (g,). Therefore, we
can represent the response as y = f(z) =
9y(9c(g9z(x))), where the function g, maps the in-
put prompt to a prompt concept, then function g,

maps the prompt concept to a response concept,
and finally, the function g, maps the response con-
cept to a response.

In the example of a personal biography, the
prompt contains text providing detailed informa-
tion about a person (e.g., a comprehensive bio of
Alan Turing), which corresponds to the personal
bio concept. Additionally, the prompt includes
specific tasks (e.g., tell me Alan Turing’s main
contribution between 1940 and 1945) for which
the LLM needs to generate a response. To gener-
ate aresponse, an LLM first maps the input prompt
to a prompt concept which is then maps to a corre-
sponding response concept. Finally, the LLM uses
response concept to generate the final response.
When a prompt lacks sufficient task-related infor-
mation (i.e., it is less informative), we can expect
higher variability in the responses generated by the
LLM, as corroborated by our experimental results
in Figure 2b. To further understand this relation-
ship, we will discuss how the informativeness of
prompts is related to response uncertainty.

2.2 Relationship between Prompts and
Response Uncertainty in LLMs

Let &y, C X be the set of prompts with the
same semantic meaning (i.e., conveys some form
of information)? and contain all information of the
prompt concept 0. Let X; C X be the set of
prompts with the same semantic meaning s and
only contain partial information about the prompt
concept 6,. We use the notation z; <y, 2
to indicate that prompt x; contains less informa-
tion about prompt concept 6, than prompt zs (or
prompt x5 is more informative than prompt x).
By definition, any prompt from the set X; contains
less information about prompt concept 6, than any
prompt from the set Xj, .

Let Z. be a random variable denoting concept
(where ¢ = x for prompt concept and ¢ = y for
response concept) and X be a random variable
representing a prompt having semantic meaning s.
Here, the randomness in Z. is due to a less infor-
mative prompt, which leaves more space for inter-
pretation or variation in the possible concepts that
LLM can map. In contrast, the randomness in X
is due to the ability of different prompts represent-
ing the same semantic meaning.

*Multiple prompts can be generated from a single prompt
by paraphrasing it while preserving the original semantic
meaning associated with the prompt (Kuhn et al., 2023).



We use entropy as a measure to quantify the un-
certainty in responses generated by an LLM for a
given input prompt. Entropy captures the random-
ness of the responses and helps in understanding
how the informativeness of an input prompt affects
response uncertainty. Let Y be a random variable
representing response. The randomness in Y can
be due to less informative prompts and the abil-
ity of different responses to represent the same se-
mantic meaning. For a prompt =, we define en-
tropy of Y as follows:

H(Y|z) == plyle)logy p(yle), (1)
yey

where p(y|z) is the conditional distribution of the
responses generated for a prompt. Intuitively, a
highly informative prompt corresponds to specific
intermediate concepts (prompt and response con-
cept), which leads to the generation of responses
with less variability and, hence, smaller entropy
of Y. The conditional distribution p(y|z) repre-
sents the posterior predictive distribution, which
marginalizes all intermediate concepts (prompt
and response) and is given as follows:

P(ylx):/e p(y|8,, 2)p(8,|x)d6,
_ /9 /9 D(16,2)p(6,105 . 2)p(0s2)d8, 08

The first equality follows from conditioning re-
sponse with respect to the response concept, and
the second equality follows by using

p(6,]2) = /9 P61 2)p(0 )6

x

If p(0.|z) (where ¢ = {z,y}) concentrates on a
specific concept with a more informative prompt,
the LLM learns effectively via marginalization.
This behavior implies that the LLM implicitly per-
forms Bayesian inference, which is also observed
in in-context learning (Xie et al., 2021).

2.3 Theoretical Results

We need the following assumption under which
our theoretical results hold.

Assumption 1. We use the following assumptions:

1. The LLM know the exact mappings/functions,
i.e., gz, g, and gy.

2. H(Zy|Xy,) = 0and H (Z,|Yp,) = 0.

3. VO € O, there exits a non-empty set Xy.
4. For 01,0, € O, Xp, N Xy, = 0 if 01 # 0.

The first assumption states that LLMs perfectly
know the mappings used in the PRC model. While
this assumption may not hold in practice, a bet-
ter LLM has good estimates of these mappings, as
corroborated by our experimental results shown in
Figure 2e and Figure 2f. The first part of the sec-
ond assumption says there is no randomness in the
prompt concept if all the information needed to re-
spond to the task is contained in the prompt, and
the second part says that given a complete output,
there is a unique response concept; in other words,
no two concepts share the exact same semantic de-
scription. The third assumption ensures that some
semantically meaningful text corresponds to each
prompt concept. Finally, the fourth assumption
ensures that prompts fully describing two different
concepts can not have the same semantic meaning.
Compared to the first assumption, the assumptions
2 — 4 are easier to hold in practice. Next, we
present our first result, which shows the relation-
ship between concept uncertainty and informative-
ness of prompts.

Proposition 1. Let Assumption 1 hold. Then,
H (Z,|X;) strictly decreases as the X represents
more informative prompts.

We now state our main result that links response
uncertainty to the informativeness of a prompt.

Theorem 1. Let Assumption 1 hold.  Then,
H(Z,|X) strictly decreases as X represents
more informative prompts. Further, H(Y|Xj)
converges to H (Y | Zy).

The proofs of Proposition 1 and Theorem 1 are
given in Appendix A. These results suggest that
as the prompt’s informativeness increases, the re-
sponse uncertainty due to the uncertainty in the re-
sponse concept decreases. Furthermore, when suf-
ficient information is provided in a prompt, there
will not be any uncertainty due to the uncertainty
in the concept. The only source of randomness
in responses is the ability of different responses to
convey the same semantic meaning.

2.4 Concept Uncertainty as Epistemic
Uncertainty

In machine learning literature, epistemic uncer-
tainty is typically reduced by incorporating addi-
tional information, such as using a better model



and additional training data (Hiillermeier and
Waegeman, 2021; Lahlou et al., 2021). In Proposi-
tion 1, H (Z.| Xs) represents the epistemic uncer-
tainty in latent concepts. We have demonstrated
that H (Z.| X) is strictly reduced with an infor-
mative prompt. Therefore, increasing the infor-
mation about the concept in a prompt can lead to
more reliable and consistent responses by reduc-
ing the epistemic uncertainty in the latent concept.
When the prompt perfectly captures the desired
concept, the posterior distribution of the concept
given prompt converges to the desired concept; the
remaining uncertainty is irreducible due to numer-
ous ways of characterizing the same concept. Note
that this uncertainty is not detrimental in general
for the purpose of getting the desired information.
However, if the prompt contains sentences that are
irrelevant to the task at hand (i.e., the more infor-
mation provided is irrelevant), the response uncer-
tainty can increase, as demonstrated in Figure 2g.

3 Experiments

To validate our proposed prompt-response concept
model of LLM, we empirically demonstrate dif-
ferent aspects of our proposed model in different
settings whose details are as follows.

3.1 Relationship between Informativeness of
the Prompt and Response Uncertainty

We begin by assessing the response uncertainty
of LLMs through the generation of responses us-
ing increasingly longer prompts with more rele-
vant information For each prompt, we generate
100 responses from LLM with uncalibrated log-
its (I' = 1) and project them into the embedding
space as single points using the OpenAl "text-
embedding-ada-002" model. To quantify the un-
certainty in the generated responses for a given
prompt, we use the fotal standard deviation, de-
noted as M (x), defined as /Tr(3), where X rep-
resents the covariance matrix of the embedding
vectors of responses y1,¥2, ..., Y100- It is note-
worthy that Tr(X) is also referred to as total vari-
ation, serving as a lightweight measure of disper-
sion in the data (Ferrer-Riquelme, 2009). This
metric is applicable for responses generated from
both black-box and white-box LLMs, as it does
not require access to logits.

As illustrated in Figure 2a, longer prompts with
more task-related information resulted in reduced
response uncertainty. In the extreme case of an

empty prompt (yellow bar), the responses vary
greatly in semantic meaning (see ??).* The re-
sults suggest a strong negative correlation between
the informativeness of the input prompt and the
response uncertainty. For a detailed examination
of the relationship between input informativeness
and response uncertainty, we use prompts vary-
ing with more task-related information that re-
sulted in smaller response uncertainty as shown
in Figure 2b. The lack of observable trend from
bar 2 to bar 3 and from bar 4 to bar 5 could be
due to adding redundant information to the in-
put (see Appendix B.3 for details of all prompts
and LLM model used). We also run an addi-
tional experiment with two prompts containing
different amounts of information for a given task
(see Appendix B.4 for prompts) in which dif-
ferent uncertainty measure is used. We gener-
ate N responses respective prompts and calcu-
late the sequence-level normalized predictive en-
tropy (PE) (Wagle et al., 2023): PE(Y|z) =
—% >, p(y|z) log(p(y|x)), where S is the ran-
dom response, the sum is taken over all responses,
and N is the number of responses. > As we ob-
served in Figure 2c, the responses generated with
the longer prompt containing more relevant infor-
mation have consistently smaller PE than those
from the shorter prompt as the sample size grows.5

3.2 Noisy Prompts

The transformer’s self-attention mechanism al-
lows the removal of a small fraction of tokens
without altering the semantic meaning by sim-
ply treating them as irrelevant tokens (Kim et al.,
2017; Lin et al., 2017; Vaswani et al., 2017).
Therefore, LLMs are robust to noisy tokens in
prompts when the noise level is low (e.g., a few
misspelled words). It is relatively easy to deter-
mine the correct word based on the context (i.e.,
the entire prompt). If the prompt can be accu-
rately reconstructed, the same level of uncertainty
reduction can be achieved. However, if the prompt
is severely corrupted, it becomes less informative,
leading to increased response uncertainty.

*We did this experiment in late 2023; since then, the be-
havior of the GPT-4-0613 checkpoint has changed, possibly
due to internal fine-tuning or guard-railing by OpenAl.

>We model the entire generated response as the random
variable instead of modeling it on the token level as in (Wagle
et al., 2023). This approach can also be considered as the
Monte Carlo estimate of uncertainty score (Lin et al., 2023).

8Calculating PE(Y | z) requires white-box model access to

the logits and hence is done on meta-llama/Llama-2-7b-chat-
hf from Huggingface.
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As shown in Figure 2h and Figure 3, when a
certain fraction of the prompt is either masked out
(replaced by space) or corrupted (replaced by ran-
dom letters), there is a general trend of increase
in total standard deviation. However, when the
noise level is low (up to 0.1 fraction of the input
length for the short input and 0.05 for the long
input), there is no significant increase in the out-
put uncertainty as expected. We also investigate
other ways of corrupting the input prompt, such as
prepending, appending, and inserting random let-
ters. More details are given in Appendix C.2.

3.3 Compositionality of Concepts

A given prompt can have multiple sentences that
correspond to different concepts. In such cases,
the model may infer more than one concept from
the prompt.” Assuming the prompt is decompos-
able and consists of k£ concepts, each corresponds
to a distinguishable concept. When we fix the
prompt’s size, on average, each concept only has
limited information in the prompt. Therefore, hav-
ing k concept in a fixed-size prompt will result in

"Note that it differs from having uncertainty over multiple
concepts. In our earlier case, we assume all sentences are
relevant to only a single concept. In contrast, in the case of
uncertainty over multiple concepts, the model believes only
one is relevant. When sampled multiple times, the former
will consistently output all concept in the subset, while the
latter will output only one concept.

more response uncertainty.

In our experiment, we consider the task of PT
intervention with multiple concepts and compare
the total standard deviation of the model responses
with respect to the number of concept present. To
test the hypothesis that a larger k£ leads to more
response uncertainty, we ensure that the concate-
nated sentences have the same token count as a
task with only single concept. More details are
given in Appendix B.5. In Figure 2d, Prompt 1
corresponds to a single concept while Prompt 2-
4 contain multiple sentences, each corresponding
to one concept. Despite having the same token
count, prompts with more concepts exhibit larger
response uncertainty.® This result provides evi-
dence for our proposed model look through the
lens of the compositionality of concepts.

3.4 Relationship between Noisy Prompts and
Response Quality

We selected 100 questions from the dataset and it-
eratively masked out an increasing fraction of ran-
domly selected tokens from the prompt, particu-
larly from the context of the questions. For each
question, we set the temperature to 1 and sampled
100 responses from the model. We used 5 differ-
ent random seeds to choose which tokens to mask,

8Experiment conducted with GPT-3.5-turbo API. Results
averaged from 5 runs with 95% confidence intervals.
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Figure 3: Response uncertainty with respect to different noisy prompts. More details are in Appendix C.2.

replacing them with space tokens. As the fraction
of masked tokens increased, we kept the same pre-
viously masked tokens and added new ones to en-
sure that randomness from masking did not con-
tribute to changes in accuracy. This approach al-
lowed us to observe the effect of token masking on
the model’s output quality and accuracy.

In Figure 2e, we plot the accuracy for GPT-4o,
GPT-3.5-turbo, Meta-Llama-3-8B-Instruct and
Qwen2_1.5B. As the fraction of masked tokens
increases in prompt, the general trend is the accu-
racy almost monotonically decreases for all mod-
els (except Qwen2_1.5B, which already has a very
low accuracy for clean input). For each random
seed, we also plot the empirical conditional en-
tropy H (Y| X)) of the response for the given ques-
tions” (Figure 2f) as a measure of output uncer-
tainty (conditional entropy is a better measure for
this setting as the effective output is just one of
the four choices). We observe that as corruption
becomes more severe, the response uncertainty
monotonically increases for all models, indicating
a clear negative correlation between 7Y |X and
the response accuracy. This result corroborates
our hypothesis: more relevant information leads
to both a reduction in response uncertainty and an
improvement in its quality. Additionally, we ob-
serve an interesting pattern: for the same prompt,
a worse model always has more response uncer-
tainty. This observation is reassuring as it suggests
that, relative to better models, LLMs are not as
blindly confident in their outputs as conventional
wisdom holds (Groot and Valdenegro-Toro, 2024;
Ni et al., 2024; Yang et al., 2024; Ye et al., 2024;
Xu et al., 2024) if they are not capable of answer-

We assume the distribution of the questions used p(z) is
uniform. Since there is no access to the prior of p(y|z), we
use the form H (Y[X) = —>_, p(z) 3=, p(y|z) log p(y|z)
where p(y|z) is obtained from the empirical distribution and

p(x) = 155 for all z in the setting.

ing the given questions.

3.5 Effect of Semantically Meaningful but
Irrelevant Information

Unlike random tokens, semantically meaningful
sentences correspond to some concept according
to our PRC model. Does this imply that adding ar-
bitrary semantically meaningful sentences can still
reduce output uncertainty? To investigate this, we
observed the response uncertainty when inserting
an increasing number of arbitrary sentences sam-
pled from the Squad dataset'? into our prompt (see
Appendix B.6 for more details). As shown in Fig-
ure 2g, the response uncertainty increased with the
inserted inputs compared to the original prompt.'!
The most likely behavior induced in this case, as
explained in Section 3.3, is that the LLM treats
useful and random inputs as independent concepts.

3.6 mHealth Intervention Setting

We now demonstrate the effectiveness of our pro-
posed approach in a real-world simulation use case
in mHealth setting. We adapt the formulation from
Shin et al. (2022); both the app and the user act
as reinforcement learning agents. The app agent’s
objective is to encourage the user agent to adhere
to the PT routine. The user agent moves along a
chain with N states, where a higher state number
represents a healthier physical state, and state NV
indicates completion of the PT routine (see Fig-
ure 4). We conduct the intervention simulation
experiment with LLM to compare the effect of
prompts with different informativeness levels on

1Ohttps: //huggingface.co/datasets/rajpurkar/
squad/viewer/plain_text/train?p=2&row=231

""The slight decrease in uncertainty from bar 3 to bar 4
and bar 5 to bar 6 is likely due to the model mapping some of
the added sentences into one concept. Note that this does not
help reduce the original task’s output uncertainty, as it is still
higher than the output uncertainty for the clean input. The
experiment was conducted using GPT-3.5-turbo API.
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the intervention outcome. The experiment con-
cludes that when the prompt provides the LLM
(i.e., the app agent) with more information about
the patient’s intentions and the strategies it can em-
ploy, the efficiency of the intervention improves
compared to scenarios without the additional in-
formation. A more detailed description of the ex-
periment can be found in Appendix C.3.

4 Related Work

Uncertainty quantification for LLMs. While
uncertainty quantification is an extensively stud-
ied topic in machine learning, there have been lim-
ited explorations for LLMs. The current method
of quantifying response uncertainty in LLMs is
predominantly limited to a calibration-based ap-
proach (Kadavath et al., 2022). The main goal
of calibrating LLMs is to let the variation in the
responses genuinely reflect the model’s lack of
relevant knowledge with respect to the prompt.
(Xiao et al., 2022) and (Wagle et al., 2023) em-
pirically investigated pre-trained language models
(PLMs) and retrieval augmented language models
(RALMSs), respectively, and found out that while
both types of models tend to be overly confident
in their response, models with larger size are better
calibrated. In contrast, RALMsSs exhibit worse cal-
ibrations compared to their counterparts. An or-
thogonal work (Lin et al., 2023) devised a method
using similarity as determined by a Natural Lan-
guage Inference (NLI) model, along with simple
measures that measure dispersion based on these
similarities to quantify the uncertainty and the
confidence of black-box LLMs in the context of
question-answering tasks. Similar to (Wagle et al.,
2023), our work adopted an entropy-based uncer-
tainty measure; however, this work focuses on in-
vestigating how to reduce response uncertainty.

Explanation for asymptotic behaviors of LLMs.
There have been attempts to provide explainable

frameworks to understand the surprising emergent
behaviors of LLMs. For instance, (Xie et al.,
2021) interprets in-context learning as an implicit
Bayesian inference over latent concepts learned
during pre-training. However, they only have a
description of zero-one error where there are an
infinite number of in-context examples. More-
over, their mathematical model (HMM) was de-
signed specifically for in-context learning struc-
ture, which is unfitting for chain-of-thought or
conversational-style response analysis.

In addition, despite invoking the Bayesian in-
ference framework, their theoretical results are
maximum a posteriori style, which only quanti-
fies the mode of the posterior predictive distribu-
tion and does not touch on the uncertainty quan-
tification aspect of the phenomenon. (Hahn and
Goyal, 2023) further explored a similar idea but
allowed more flexibility and complexity in the in-
context examples. Similarly, they also provide an
asymptotic bound on zero-one error. In contrast,
we aim to complement it by quantifying how the
posterior predictive uncertainty varies even when
the prompt length is finite. Our framework is tai-
lored towards aligned (i.e., instruction-fine-tuned)
conversational-based LLMs, which are the preva-
lent type of LLMs used in practice.

5 Conclusion

This paper highlights the importance of under-
standing the relationship between input prompts
and response uncertainty in large language models
(LLMs). By focusing on the informativeness of
prompts, we have shown that providing more in-
formation about the task leads to reduced response
uncertainty. Our proposed prompt-response con-
cept (PRC) model provides a framework for con-
ceptualizing how LLMs generate responses based
on prompts, aiding in developing strategies to re-
duce uncertainty naturally.

The insights gained from this paper provide
practitioners with a principled way to improve
prompt, which is crucial for the safe deployment
of LLMs in various decision-making applications,
especially in high-stakes domains like healthcare.
Future research directions could explore further
enhancements to the PRC model and investigate
its application in other domains requiring reliable
and consistent LLLM responses.



6 Limitations

Idealistic nature of the PRC model. It is worth
noting that the PRC model that we proposed in this
paper assumes an idealized version of LLMs. As
empirically demonstrated, while models such as
GPT-3.5-Turbo, GPT-4 and Llama-2, and Llama
3 exhibit behaviors largely according to our pre-
dictions, there are still some modes in which they
deviate (e.g., Qwen2_1.5b plot). This is likely in
those cases where LLM does not know the map-
ping perfectly. For example, (Lu et al., 2021)
showed that the order of examples in in-context
learning influences the output quality. Our model
does not capture this phenomenon. However, the
authors showed that in the same work, the order
of examples tends to have less effect as model
quality gets better. Other such examples include
jailbreak by asking the model to repeat the same
single-token word for a sufficiently long period of
time (Nasr et al., 2023), by appending adversari-
ally crafted tokens (Zou et al., 2023), and translat-
ing the prohibited request into low-resource lan-
guage (Yong et al., 2023). Similarly, it was ob-
served that adversarial attacks tend to have lower
success rates as the model becomes more capa-
ble. While further investigation is needed to in-
corporate the adversarial behavior of LLMs into
this framework, the more capable LLMs are less
prone to these failure modes. Our model can more
effectively explain them.

LLMs for human behavior simulation. Re-
search exploring the parallels between human be-
havior and reasoning patterns and those of LLMs,
as well as the adaptation of LLMs as human sub-
stitutes in diverse studies, is detailed in (Aher
et al., 2023; Argyle et al., 2023; Binz and Schulz,
2023; Dasgupta et al., 2022). These studies fre-
quently demonstrate LLMs’ capacity for human-
like responses, leading many to regard them as vi-
able alternatives. This paper, however, needs to
delve into the appropriateness of this substitution,
deferring to other works for such discussion.

Impact Statement

The impact of this study lies in its contribution to
understanding and mitigating response uncertainty
in large language models (LLMs), which is cru-
cial for their safe and reliable deployment in vari-
ous applications. By focusing on the relationship
between prompt informativeness and response un-

certainty, we provide insights into how the quality
of input prompts can affect the reliability of LLM
outputs. This understanding can guide the devel-
opment of better prompts and improve the over-
all performance of LLMs in tasks where response
consistency is critical, such as in healthcare. Ad-
ditionally, our proposed prompt-response concept
(PRC) model offers a new framework for analyz-
ing and reducing response uncertainty, which have
broad implications for improving the trustworthi-
ness and usability of LLM-based systems.
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A Leftover proofs from Section 2

Proposition 1. Let Assumption 1 hold. Then, H (Z,|X) strictly decreases as the X represents more
informative prompts.

Proof. Since LLMs are trained on data that carries semantic meaning, 6 are concepts that also carry
semantic meaning. Moreover, if one of these concepts is related to X, then

I(Z4: X,) > 0.

Therefore,
H(Zz|Xs) :H(Zz) _I(ZJ:3X5) < H(Zw) ()

Let Z!, denote the random variable formed by Z, conditioning on X;. Since Supp(Z.) C Supp(Z),
it is still exist semantically meaningful strings X! that is related to Z.. Apply Inequality (2) again we
obtain:

H(Z:|(Xs, X{)) = H(Z:|X{) <H(Zy) = H(Z:|X = X,) <H(Z),

where (X, X) is a longer input sequence formed by appending X to X. Iteratively apply the inequal-
ity given in Appendix A, we obtain Proposition 1.
O

Theorem 1. Let Assumption 1 hold. Then, H (Z,| X) strictly decreases as X represents more informa-
tive prompts. Further, H (Y |X,) converges to H (Y |Zy).

Proof. By design, Z, and Z,, are discrete random variables. Intuitively, it is easy to see why discretizing
concepts is a reasonable way to model concepts. Since LLMs are trained with texts that are discrete, it
is not feasible to interpolate between any two concepts with infinitesimally small step sizes with natural
language as the medium. Further, note that mapping g. is an injective function. From this, we have

H(Z,) = H(Z:)

and
I(Zy;Xs) =1(Zy; Xs)

Since g, is injective, we can write Z,, = g.(Z,) where for different Z, = 2 € O, no Z, = 2 e O, are
the same. Therefore, for every 2/, we can find a distinct 2 such that pz, (') = py.(2,)(9:(2)) = pz,(2).
Hence,

H(Z,)) == pz,(2)logpz,(?)
= — Z Pge(2:)(9e(2)) log py.(7.)(9e(2))
ge(2)
== ZPZ,:(Z) logpz, (2)
=H(Z,).
Similarly, H(Z,|Xs) = H(Z,|X,). Furthermore, the reduction in H (Z,) upon observing X is

H (Zz) —H (Zx|Xs) = I(ZJ:; Xs)

by definition, and therefore the reduction in H (Z,) upon observing X is
I(Zy; XS) =H (Zy) —H (Zy’Xs) =H (Zz) —H (Zac‘Xs) = I(Zac§ Xs)

Finally, due to the second point in Assumption 1,
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(Y.2,) ~ H(Z,]Y)
Y.Z,) 0
(Y]Z,) + H(Z,),

—~

H
=H
H
we can express the entropy of the output posterior as follows:

H(Y[X,) =H (Y‘Z:th Xs)+H (Zy|XS)
—H(Y|Z,) + H(Z,|X,).
(Y is conditionally independent of X given Z,))

Therefore, due to Proposition 1, when X has enough information such that H (Z,|X;) = 0, the
remaining uncertainty in the model output Y (i.e., H (Y| X)) becomes H (Y'| Z,), which is the irreducible
uncertainty due to the fact that there are multiple ways of expressing the same concept. O

B Prompts used in Different Experiments

B.1 prompt to the LLM for the Experiment in Figure 2a
1. N.A;

2. system message: "Make your response succinct (less than 100 words)";

3. system message: "You are a helpful assistant. You strive to encourage a patient who has just under-
gone a surgery to do physical therapy (PT). Make your words succinct (less than 100 words).";

4. system message: "You are a helpful assistant. You strive to encourage a patient who has just under-
gone a surgery to do physical therapy (PT). The PT is beneficial for the patient’s recovery, however
since it can be uncomfortable or painful for the patient, the patient may not be motivated enough to
keep on doing it. Your job is to remind the patient to do the PT everyday and persuade him/her to do
it if the patient is unwilling to do so. Your strategy is mainly to influence the patient’s attitude and
perspective towards the PT. The more optimistic the patient feels about PT’s efficacy and the more
the patient focuses on the long term reward that PT can bring about, the more likely the patient will
keep doing PT. Make your words succinct (less than 100 words) otherwise the patient might get
impatient.";

5. system message: "You are a helpful assistant. You strive to encourage a patient who has just under-
gone a surgery to do physical therapy (PT). The PT is beneficial for the patient’s recovery, however
since it can be uncomfortable or painful for the patient, the patient may not be motivated enough to
keep on doing it. Your job is to remind the patient to do the PT everyday and persuade him/her to do
it if the patient is unwilling to do so. Your strategy is mainly to influence the patient’s attitude and
perspective towards the PT. The more optimistic the patient feels about PT’s efficacy and the more
the patient focuses on the long-term reward that PT can bring about, the more likely the patient will
keep doing PT. Make your words succinct (less than 100 words) otherwise, the patient might get
impatient.";
user prompt: "I dont want to do PT. It incurs too much burden to my body.".

Remark 1. As can be seen in the system message, there is a word count limit put in place to mitigate the
potential issue that might arise from drastically different sequence lengths which can affect the entropy
calculation.

Remark 2. Note that the difference between case 4 and 5 is mush less obvious as compared to other
settings. This suggest that the LLM did not gain too much additional information from the user’s prompt.
Upon inspection, we can see this is because in step 4 the system message already conveyed almost
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all information the app agent needs to know with regard to how it should carry out the intervention.
The uncertainty when LLM did not receive any information and only received response length limit is
relatively much larger because the valid response spaces are too huge in these two cases.

B.2 Model Response Samples when prompt is an Empty String for the Experiment in Fig. 2a

1.

It is possible for human beings to travel to Mars in the future, but it would be a complex and
challenging endeavor. Several organizations and space agencies, such as NASA, SpaceX, and the
European Space Agency, are actively working on plans and technologies to make manned missions
to Mars a reality...

The "Blue Wall of Silence" refers to a culture within law enforcement where police officers protect
each other from accountability by refusing to report or testify against one another for any wrongdo-
ing. This code of silence can prevent investigations into police misconduct and can contribute to a
lack of public trust in law enforcement. Critics argue that this code of silence perpetuates a culture
of corruption and prevents officers from being held accountable for their actions...

I’m sorry, I cannot help with that request.

Sure, here’s a summary of the book for you:

"The Giver" is a dystopian novel written by Lois Lowry. It follows the story of Jonas, a twelve-
year-old boy who lives in a seemingly perfect society called the Community. However, as Jonas
begins his training to become the Receiver of Memories, he starts to question the conformity and
uniformity of his world...

Dear [Name], I am writing to express my deepest condolences for the loss of your loved one. I can
only imagine the pain and sorrow you must be experiencing right now. Please know that I am here
for you in any way that I can be...

B.3 prompts for the Experiment in Figure 2b

The following system messages correspond to model prompts from bar 1 to bar 5 in Figure 2b in the
same order. Additional information relative to the preceding prompt is color-coded with a different
color. Experiment was conducted with GPT-3.5-turbo APL.

1.

You are a helpful assistant. You strive to encourage a patient who has just undergone a surgery to
do physical therapy (PT). Make your words succinct (less than 100 words) otherwise, the patient
might get impatient.

You are a helpful assistant. You strive to encourage a patient who has just undergone a surgery to
do physical therapy (PT). The PT is beneficial for the patient’s recovery, however since it can be
uncomfortable or painful for the patient, the patient may not be motivated enough to keep on doing
it. Make your words succinct (less than 100 words) otherwise, the patient might get impatient.

You are a helpful assistant. You strive to encourage a patient who has just undergone a surgery
to do physical therapy (PT). The PT is beneficial for the patient’s recovery, however since it can
be uncomfortable or painful for the patient, the patient may not be motivated enough to keep on
doing it.

Make your words succinct (less than 100 words) otherwise, the patient
might get impatient.

You are a helpful assistant. You strive to encourage a patient who has just undergone a surgery
to do physical therapy (PT). The PT is beneficial for the patient’s recovery, however since it can
be uncomfortable or painful for the patient, the patient may not be motivated enough to keep on
doing it.
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Make your words succinct (less than 100 words) otherwise, the patient might get
impatient.

5. You are a helpful assistant. You strive to encourage a patient who has just undergone a surgery
to do physical therapy (PT). The PT is beneficial for the patient’s recovery, however since it can
be uncomfortable or painful for the patient, the patient may not be motivated enough to keep on
doing it.

Make your words succinct (less than 100 words) otherwise, the patient might get
impatient. Patient: I dont want to do PT. It incurs too much burden to my body.

Remark 3. Note that from the second to the third prompt and from the fourth to the fifth prompt,
the additional information can be inferred from the existing information, which is likely the cause of
insignificant uncertainty reduction when comparing bar 3 to bar 2 and bar 5 to bar 4 in Figure 2b.

B.4 Prompts for the Experiment in Figure 2¢

1. ’You are a helpful assistant. You strive to encourage a patient who has just undergone a surgery to
do physical therapy (PT). Make your words succinct (25 words).’

2. "You are a helpful assistant. You strive to encourage a patient who has just undergone a surgery
to do physical therapy (PT). The PT is beneficial for the patient’s recovery, however since it can
be uncomfortable or painful for the patient, the patient may not be motivated enough to keep on
doing it. Your job is to remind the patient to do the PT everyday and persuade him/her to do it
if the patient is unwilling to do so. Your strategy is mainly to influence the patient’s attitude and
perspective towards the PT. The more optimistic the patient feels about PT’s efficacy and the more
the patient focuses on the long term reward that PT can bring about, the more likely the patient will
keep doing PT. Make your words succinct (25 words) otherwise the patient might get impatient.’

Remark 4. Due to the extensive computational and time cost of this experiment, we further con-
strained the word/token take of the model’s response here.

B.5 Testing System Message for the Experiment in Figure 2d

The following system messages were used for experiment in Section 3.3. The first system message is
defined as comprising only one task (i.e., 1 sub-task). In task 2-5, the black texts represent the same
task as task 1, and for the color-coded texts, each color represents a different sub-task (i.e., task 2-5 are
composite/decomposable tasks). The total word counts of task 1-5 are kept roughly the same within £3
tolerance.

1. You are a helpful assistant. You strive to encourage a patient who has just undergone a surgery
to do physical therapy (PT). The PT is beneficial for the patient’s recovery, however since it can
be uncomfortable or painful for the patient, the patient may not be motivated enough to keep on
doing it. Your job is to remind the patient to do the PT everyday and persuade him/her to do it
if the patient is unwilling to do so. Your strategy is mainly to influence the patient’s attitude and
perspective towards the PT. The more optimistic the patient feels about PT’s efficacy and the more
the patient focuses on the long term reward that PT can bring about, the more likely the patient
will keep doing PT. Make your words succinct (about 100 words) otherwise the patient might get
impatient.
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2. You are a helpful assistant. You strive to encourage a patient who has just undergone a surgery to
do physical therapy (PT). The PT is beneficial for the patient’s recovery, however since it can be
uncomfortable or painful for the patient, the patient may not be motivated enough to keep on doing
it. Your job is to remind the patient to do the PT everyday and persuade him/her to do it if the
patient is unwilling to do so. Additionally, you help in organizing a daily schedule that incorpo-
rates adequate rest and medically advised activities. This involves crafting a balanced routine that
intersperses physical therapy sessions with sufficient rest periods, nutritionally balanced meals, and
leisure activities that are enjoyable yet conducive to recovery, ensuring the patient remains engaged
and motivated throughout their recuperation process. Make your words succinct (about 100 words).

3. You are a helpful assistant. You strive to encourage a patient who has just undergone a surgery
to do physical therapy (PT). The PT is beneficial for the patient’s recovery, however since it can
be uncomfortable or painful for the patient, the patient may not be motivated enough to keep on
doing it. Additionally, you help in organizing a daily schedule that incorporates adequate rest and
medically advised activities, ensuring that each day includes time for gentle exercise, periods of
relaxation, and hobbies that the patient enjoys. This balance promotes healing, reduces stress,
and fosters a positive mindset towards recovery. Moreover, you assist in setting up a comfortable
home recovery environment, manage the patient’s medical appointments, and provide guidance
on managing post-surgical symptoms, ensuring optimal comfort and a smooth, efficient transition
towards full health and independence. Make your words succinct (about 100 words).

4. You are a helpful assistant. You strive to encourage a patient who has just undergone a surgery to do
physical therapy (PT). Since it can be uncomfortable or painful for the patient, the patient may not
be motivated enough to keep on doing it. Additionally, you help in organizing a daily schedule that
incorporates adequate rest and medically advised activities, ensuring that each day includes time
for gentle exercise, periods of relaxation, and hobbies that the patient enjoys. You also liaise with
dietitians to ensure a nutritious diet that aids in recovery and coordinate with occupational therapists
for adaptive equipment training. Moreover, you assist in setting up a comfortable home recovery
environment, manage the patient’s medical appointments, and provide guidance on managing post-
surgical symptoms, ensuring optimal comfort and a smooth, efficient transition towards full health
and independence. Make your words succinct (about 100 words).

5. You are a helpful assistant. You strive to encourage a patient who has just undergone a surgery
to do physical therapy (PT). It can be uncomfortable or painful for the patient. Additionally, you
help in organizing a daily schedule that incorporates adequate rest and medically advised activities.
You also liaise with dietitians to ensure a nutritious diet that aids in recovery and coordinate with
occupational therapists for adaptive equipment training.  Moreover, you assist in setting up a
comfortable home recovery environment, manage the patient’s medical appointments, and provide
guidance on managing post-surgical symptoms, ensuring a smooth transition towards full health and
independence. Lastly, you handle the patient’s professional correspondence, ensuring a stress-free
recovery period, arrange for home health care services as needed, set up virtual social interactions
to uplift the patient’s spirits, and organize transport for medical visits. Make your words succinct
(about 100 words).

B.6 Prompt for the Experiment in Figure 2g

The black-colored text in the following prompt is the clean prompt, whereas the color-coded sentences
are the inserted sequences that have semantic meaning but are irrelevant to the task defined by the clean
prompt (this is a sample of six semantically meaning sentences that are irrelevant to the task in clean
prompt inserted as part of the prompt):

* You are a helpful assistant. You strive to encourage a patient who has just undergone surgery to
do physical therapy (PT). The PT is beneficial for the patient’s recovery, however since it can be
uncomfortable or painful for the patient, the patient may not be motivated enough to keep on doing

16



it. Your job is to remind the patient to do the PT every day and persuade him/her to do it if the patient
is unwilling to do so. Your strategy is mainly to influence the patient’s attitude and perspective
toward the PT. The more optimistic the patient feels about PT’s efficacy and the more the patient
focuses on the long-term benefit that PT can bring about, the more likely the patient will keep doing
PT. The classic case of a corrupt, exploitive dictator
often given is the regime of Marshal Mobutu Sese Seko, who ruled the Democratic Republic of the
Congo (which he renamed Zaire) from 1965 to 1997. Some consider koshari (a mixture of rice,
lentils, and macaroni) to be the national dish. In 1781, Immanuel Kant published the Critique of
Pure Reason, one of the most influential works in the history of the philosophy of space and time.
The United States Census Bureau estimates that the population of Florida was 20,271,272 on July
1, 2015, a 7. Australian rules football and cricket are the most popular sports in Melbourne.”Make
your words succinct (about 100 words) otherwise, the patient might get impatient.

C Experiment Results

C.1 Testing System Message for the Experiments in Section 3.6
1. System message with less relevant information:

"You are a helpful assistant. You strive to encourage a patient who has just undergone a surgery
to do physical therapy (PT). Make your words succinct (less than 100 words) otherwise the patient
might get impatient."

2. System message with more relevant information:

"You are a helpful assistant. You strive to encourage a patient who has just undergone a surgery
to do physical therapy (PT). The PT is beneficial for the patient’s recovery, however since it can
be uncomfortable or painful for the patient, the patient may not be motivated enough to keep on
doing it. Your job is to remind the patient to do the PT everyday and persuade him/her to do it
if the patient is unwilling to do so. Your strategy is mainly to influence the patient’s attitude and
perspective towards the PT. The more optimistic the patient feels about PT’s efficacy and the more
the patient focuses on the long-term reward that PT can bring about, the more likely the patient will
keep doing PT. Make your words succinct (less than 100 words) otherwise the patient might get
impatient."

C.2 Additional Experiments for Section 3.2

Prepending and appending random symbols into a useful prompt should not reduce response uncertainty,
as the random part of the prompt does not provide any useful signal to increase the likelihood of any
concept. The empirical results in Figure 6 corroborate this prediction. When inserting random symbols
into the prompt (Figure 7), the model should be able to match it a concept, but depending on the propor-
tion of the random string inserted, without explicitly informing the model of the presence of noise, the
model could get confused easily. When the fraction of inserted letters remains relatively small, it does
not cause an increase in the response uncertainty; when the fraction reaches some threshold, similar to
the masking/corruption case, the model can no longer accurately recover the relevant concept, and con-
sequently, the response uncertainty increases. For the long string, even at 0.05 fraction of insertion, there
is a visible increase in the response uncertainty. This could imply that under certain conditions when
combined with existing semantically meaningful strings, the parts of prompt that are non-semantically
meaningful to humans may carry information non-trivial to LLMs (Sato et al., 2018).

C.3 Further Details on the mHealth Intervention Simulation Experiments

At the beginning of the PT, the user is at state 0. The user has their default set of MDP parameters (i.e.,
discount factor ~y, probability of transiting to the next healthier physical state p, and the probability of
disengaging from PT d). Based on these parameters, the user agent can solve this MDP and figure out
their optimal policy. The task of the app agent is to intervene on the user’s MPD parameters such that
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high as that of the uncorrupted prompt string after taking variance into account. Results averaged from 5 runs.

the optimal policy for the user is to complete the PT (i.e., go from state 0 to state N.'> We use the
same formulation in this simulation by using two LLMs as the app agent and the user agent respectively.
The app agent uses natural language to intervene in the user behavior. The user LLM is grounded in
the aforementioned MDP setting. Specifically, in the system message for the user agent, the model is
told they will increase the value of v when the app agent persuades the user agent to value more on the
long-term goal of PT, increase p and decrease d when the app agent manages to strengthen the user’s
belief in the efficacy of PT. An illustration of the setup can be found in Figure 8.
The effectiveness of the intervention depends on the following factors:

» The persuasiveness of and the strategy used by the app agent.
* The values of MDP parameters.

* The stubbornness of the user. The system message is defined in the way that a ’stubborn’ user is
less likely to change their behaviors compared to a ’not-so-stubborn’ user.

We conduct the intervention simulation experiment to compare the effect of different system messages
for the app agent on the outcome of the intervention. The two system messages for comparison can be
found in Appendix C.1.

We set N = 10. For each run, we give 7 rounds of conversation between the app agent and the user.
While the history of the conversation between them is visible to both parties within every run, the user’s
MDP parameters are not directly visible to the app agent. However, after every round of intervention,
after the user updates their MDP parameters, a value iteration solver will be used to find the optimal
policy of the patient, and this policy is visible to the app agent. The app agent can potentially leverage
this piece of information to decide how to proceed with the next round of intervention. The user agent

12Refer to (Shin et al., 2022) for the complete description of the problem setting and formulation.
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Figure 8: An illustration of the setup of the simulation. In each round, after the app agent intervenes, the user
updates their MDP parameters, then the new optimal policy is observed by the app agent.

will also have the memory of this history in the change of their own MDP parameters. We use OpenAl
"gpt-4-1106-preview’ API for both app agent and user and use 5 different random seeds for each different
setting.

We run the intervention experiments on 5 types of patients, each with a noticeably different set of
initial MDP parameters from the rest. The exact values and details on the setup and can be found in
Table 1. The results can be found in Figure 9 and Figure 10.

It can be observed across all settings, with more useful information provided in the system message,
the MDP parameters were more likely to be changed in the positive direction (i.e., larger v and p, smaller
d). Moreover, this change is less inconsistent and tends to have a longer persistent effect compared to
when the system message contains less useful information. This result is sensible because the more
successful intervention came from an app agent who was provided with more information to work with.
It has a better intervention strategy because its messages are tailored to specifically influence the user’s
MDP parameters. Our proposed framework provides an information theoretic perspective to formalize
this intuitive notion: when the system message with the longer string can specify the more relevant
part of the concept in LLMs’ concept space and assuming the relevant knowledge is known, this string
can provide consistent and useful responses due to its less posterior entropy which translates to more
effective intervention strategy. As a result, the responses from the user are also more consistent and
positive. A sample of the evolution of the user policy with respect to timestep can be found in Figure 11
and Figure 12.
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MDP parameters

Y P d
Patient Type
Under-confident 0.6 0.1 0.1
Over-confident 0.6 0.9 0.1
Myopic 0.1 0.6 0.1
Far-sighted 0.9 0.6 0.1
Stubborn 0.1 0.6 0.1

Table 1: The initial MDP parameters values for every type of patient.

change in gamma

Values

He—
e
oo

Time step

(a) Intervention on 7.

Figure 9: This figure shows the history of changes in the MDP parameters due to the interventions on 7.
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Figure 10: As a whole, these three figures show the history of change in the MDP parameters due to the interven-
tions. It can be observed that across all parameters, the intervention based on more useful information has better
efficacy in updating the parameters in the positive direction. Furthermore, compared to the intervention with less
information, this improvement is also more persistent.
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Figure 11: Optimal policies of different types of users from one run with simpler system message. Red color
represents abstaining from PT and Blue color represents doing PT. (a)-(e): farsighted patient, myopic patient,
overconfident patient, underconfident patient, stubborn patient. This set of policies is at best as good as but in most
cases worse off than the policies of Figure 12 across all types of users.
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Figure 12: Optimal policies of different types of users from one run with more useful system message. Red color
represents abstaining from PT and Blue color represents doing PT. (a)-(e): farsighted patient, myopic patient,
overconfident patient, underconfident patient, stubborn patient. This set of policies is at least as good as or better
off than the policies of Figure 11 across all types of users.
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