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ABSTRACT

Large language models (LLMs) deliver high performance but remain prohibitively
expensive to deploy in resource-constrained environments. Post-training quanti-
zation (PTQ) is widely used to reduce memory and compute, while it often de-
grades sharply in the ultra-low-bit regime. Although recent PTQ methods incor-
porate weight sensitivity for further improvement, the sensitivity analysis is often
conducted at the element-, row-, or vector-wise level within the original weight
matrix, which can limit robustness at very low bitwidths. We instead operate at
the subspace level by deriving an activation-aware low-rank factorization of each
weight matrix (for a given layer/block). The key idea is to represent each weight
matrix by a small set of activation-aware components that retain most output en-
ergy, and to solely quantize these factors, enabling higher precision per stored
parameter under the same budget and improving accuracy in the low-bit regime.
We thus propose LoRDQ, an activation-aware low-rank decomposition and quan-
tization scheme that provides a closed-form factorization minimizing layer-output
reconstruction, and incorporates two complementary techniques to mitigate the
loss from quantizing low-rank factors, including a block-wise greedy decomposi-
tion and an intra-block compensation step. Simulations demonstrate that LoRDQ
can achieve ∼ 10× lower perplexity in comparison with existing methods such
as GPTQ and AWQ. Moreover, leveraging our analytical results, we provide a
theoretical explanation for these gains by connecting them to the spectrum of the
output Gram matrix WXX⊤W⊤, clarifying when low-rank structure preserves
critical model behavior.

1 INTRODUCTION

Large-scale neural networks such as large language models (LLMs) have achieved state-of-the-
art performance across a wide range of applications (Roumeliotis and Tselikas, 2023). However,
their massive parameter sizes and computational demands pose major challenges for deployment
in resource-constrained environments, such as on-device inference or real-time applications. Post-
training model compression has emerged as a key technique for alleviating these challenges, reduc-
ing both memory footprint and compute requirements without retraining.

Among various compression techniques, post-training quantization (PTQ) and low-rank approxima-
tion stand out as practical and effective solutions. PTQ reduces storage and compute by representing
model parameters using low-bitwidth integers, while low-rank decomposition reduces parameter di-
mensionality by exploiting the inherent redundancy in weight matrices (Frantar et al., 2023; Xiao
et al., 2023; Kim et al., 2023; Leconte et al., 2024). Despite significant progress in these areas,
existing approaches often face limitations when used in isolation: PTQ schemes using uniform or
heuristic bitwidths provide a coarse treatment of weight sensitivity, which can limit robustness when
the budget is highly constrained (e.g., 2-bit). Low-rank decomposition, on the other hand, is often
used in parameter-efficient fine-tuning (PEFT) or as adapters for compensating compression errors
(Wang et al., 2024) , but the low-rank matrices themselves are typically left uncompressed. In fact,
an efficient low-rank decomposition can extract the components with the highest energy, and these
components can then be intelligently quantized, aligning with the goal of applying precision where
it matters most.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

To address these limitations, we propose a two-step framework for post-training model compression
that combines the strengths of low-rank decomposition and quantization in a goal-oriented manner.
First, we formulate the low-rank approximation problem as minimizing a task-aligned loss function
based on the Frobenius norm of the output error and derive a closed-form solution using a Cholesky-
based projection of the input covariance matrix. Compared to existing works (Liu et al., 2024),
which requires spectral decomposition of the covariance for eigenspace projection, our approach
leverages the triangular structure of the Cholesky factor, making it computationally more efficient
and readily invertible. Furthermore, we prove that the derived decomposition is not only optimal for
this specific projection but also achieves the same optimality for a broader class of problems where
the input data matrix can be manipulated (e.g., through whitening), eliminating the need for explicit
data transformations in practice.

Secondly, to compress the low-rank matrices derived from the decomposition, we propose two com-
plementary schemes aimed at reducing performance degradation, particularly under low bitwidth
constraints. The first is a block-wise greedy decomposition strategy, in which the target low-rank
space is partitioned into multiple blocks and extracted in stages rather than in a single step. This
staged procedure enables each block to be computed with explicit consideration of the quantization
errors introduced in previously compressed blocks, thereby progressively refining the approximation
and improving overall reconstruction fidelity. The second is an intra-block quantization compensa-
tion technique, which mitigates error accumulation within each block. As the basis vectors within
a block are quantized sequentially, the quantization of one basis inevitably introduces residual er-
rors that affect subsequent components. Our method compensates for these distortions by adjusting
the coefficients associated with the remaining unquantized bases, thereby redistributing part of the
quantization error across the block and reducing its impact on the final approximation. Together,
these two schemes constitute a scalable and robust framework for compressing low-rank factors.

The main contributions of this work are threefold. First, we formulate an activation-aware low-
rank decomposition that minimizes layer output error and derive a closed-form solution for any
valid square-root factorization of the Gram matrix of layer inputs, proving that it achieves the same
optimum as broader output-preserving formulations without requiring data matrix manipulation such
as whitening. Second, we propose an integrated quantization scheme that combines a block-wise
greedy decomposition with an intra-block quantization compensation strategy, enabling efficient
compression of low-rank factors to mitigate quantization-induced performance degradation under
aggressive bitwidth constraints. Finally, we demonstrate the strong empirical performance of our
method on LLaMA-2, LLaMA-3, and OPT models, achieving superior compression–accuracy trade-
offs in the ultra-low 2-bit quantization regime. We provide a spectral interpretation of these gains
by connecting our approach to the spectrum of the Gram matrix of layer outputs, offering deeper
insights into how the proposed decomposition preserves critical model behavior.

2 RELATED WORKS

2.1 POST-TRAINING QUANTIZATION

Post-training quantization (PTQ) converts pre-trained full-precision models into low-precision for-
mats without requiring additional training, making it a practical and widely adopted approach for
deploying large language models. In this work, we focus on weight-only PTQ, which avoids quan-
tizing activations and thus simplifies deployment while maintaining low inference overhead. Repre-
sentative methods such as GPTQ (Frantar et al., 2023) and SqueezeLLM (Kim et al., 2023) improve
quantization accuracy using advanced rounding or blockwise optimization techniques. However,
these PTQ approaches still rely on fixed or uniform bitwidth allocations, which fail to account for
the heterogeneous sensitivity of weights to quantization noise, leading to notable degradation under
aggressive bitwidth constraints. Transformation-based methods, such as QuIP (Chee et al., 2023),
OmniQuant (Shao et al., 2024), and QuIP# (Tseng et al., 2024), tackle this issue by reshaping the
weight or input space before quantization, significantly improving accuracy. Yet, these approaches
introduce additional computational and storage overhead, particularly due to the need for large trans-
formation matrices. An alternative is sensitivity-based quantization, as seen in methods such as
AWQ (Lin et al., 2024), OWQ (Lee et al., 2024), SpQR (Dettmers et al., 2024), and BAQ (Zhang
et al., 2025), which adaptively allocate precision based on activation statistics, Hessian-weighted
losses, or layer-wise objective function minimization while adding less computational and storage
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Figure 1: Overview of LoRDQ. Given a weight matrix W and calibration activations X , we extract
W block-by-block by solving minP (k),Q(k) ∥(R−P (k)Q(k))X∥2F , quantizing each block with intra-
block compensation, updating R←R− P̂ (k)Q̂(k), and summing Ŵ =

∑K
k=1 P̂

(k)Q̂(k).

overhead. As an extreme compression regime, weight binarization (e.g., BiLLM(Huang et al., 2024),
PB-LLM(Shang et al., 2023)) achieves sub–2-bit precision by optimizing scaling factors. In practice,
the required indices for codebook/group information (often ≈ 1 extra bit per weight) diminish the
effective compression and make deployment harder. Building on these insights, our work develops a
structured low-rank factorization framework for precision-aware compression: instead of transform-
ing the entire weight space, we identify the most informative components through activation-aware
low-rank decomposition and efficiently compress them under strict bitwidth constraints.

2.2 LOW-RANK DECOMPOSITION AND ADAPTATION

Low-rank techniques are widely used for efficient adaptation: LoRA (Hu et al., 2022),
QLoRA (Dettmers et al., 2023), QA-LoRA (Xu et al., 2023), and variants inject trainable low-
rank adapters and require end-to-end finetuning, which makes them unsuitable for post-training
deployment. A complementary direction uses low-rank adapters, aiming to compensate for errors
introduced by quantization or pruning. Examples include EoRA (Liu et al., 2024), ASVD (Yuan
et al., 2023), SVD-LLM (Wang et al., 2024), and ResSVD (Bai et al., 2025). While effective in
reducing reconstruction error, these methods typically do not compress the low-rank factors them-
selves. When large ranks are used (often exceeding 20% of the original dimension), the low-rank
factors are stored at full precision, resulting in nontrivial overhead that limits their efficiency un-
der tight memory budgets. In contrast, our work considers both the low-rank decomposition and
quantization, extracting the most informative components through a Cholesky-based factorization
and compressing them under strict bitwidth constraints, thereby closing the gap between theoretical
compression and practical efficiency.

3 ACTIVATION-AWARE LOW-RANK DECOMPOSITION

Model compression for large-scale neural networks often begins with minimizing the layer-wise
output discrepancy between the original and compressed weights. Specifically, given a weight matrix
W ∈ RM×N (with M output dimensions and N input dimensions) and an input activation matrix
X ∈ RN×K where K denotes the number of calibration samples., the layer-wise compression
objective can be formulated as:

min
Ŵ
∥(W − Ŵ )X∥2F . (1)

This formulation, widely adopted in post-training quantization methods such as GPTQ, directly
captures the mismatch in layer outputs due to weight modifications. However, solving it exactly is

3
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computationally prohibitive. Practical scalar-quantization approaches approximate it by sequentially
quantizing entries and compensating with the temporarily unquantized weights. Recent variants fur-
ther reweight precision using curvature or activation statistics (Hessian-aware, outlier-aware, etc.),
thereby modeling heterogeneity in weight sensitivity within the original basis.

To exploit quantization resources more efficiently, a promising alternative is to model weight sensi-
tivity at the subspace level, namely, approximate W using a low-rank representation. This allows the
model to retain the most informative subspace with fewer parameters, and then apply quantization
to these compact components. We therefore propose a two-step framework, first find a low-rank
representation of W to preserve most significant information, and then compress these low-rank
factors efficiently (will be presented in the next section).

In this section, we focus on the first step, an activation-aware low-rank decomposition that represents
W as P ∈ RM×r and Q ∈ Rr×N by minimizing the layer-wise output error:

min
P∈RM×r,Q∈Rr×N

∥(W − PQ)X∥2F . (2)

This decomposition explicitly accounts for the input activation, ensuring that the retained subspace
aligns with the directions most critical for maintaining layer outputs.

To enable closed-form derivation of optimal P and Q, we assume that the matrix XX⊤ ∈ RN×N

is full-rank, a condition typically satisfied when the calibration or inference data exhibits sufficient
variability. In practice, a small damping term ϵI is often added to XX⊤ to ensure invertibility. Under
this assumption, the following proposition provides the optimal solution to the activation-aware low-
rank decomposition problem.

Proposition 1. Let XX⊤ = Y Y ⊤ for some invertible Y ∈ RN×N . Define WY := WY ∈ RM×N ,
and let the rank-r truncated SVD of WY be

WY = UrΣrV
⊤
r , (3)

where Ur ∈ RM×r, Σr ∈ Rr×r, and Vr ∈ RN×r. Then

P ∗ = UrΣr, Q∗ = V ⊤
r Y −1 (4)

is an optimal solution to problem equation 2. Moreover, for any valid choice of Y such that XX⊤ =
Y Y ⊤, the corresponding pair (P ∗, Q∗) constructed as above achieves the same minimal objective
value.

In contrast with classical LoRA (Hu et al., 2022) which requires end-to-end finetuning, Proposition
1 indicates that the optimal low rank factors to minimize the output error can be derived and ex-
plicitly expressed. It also establishes that any valid square-root factorization Y of XX⊤ leads to an
optimal low-rank approximation for problem equation 2. This is because if Y1 and Y2 are two such
factorizations, then Y2 = Y1S for some orthogonal matrix S, and the change of basis does not affect
the singular values or the achieved Frobenius norm of the optimal low-rank reconstruction. Thus,
the solution class is invariant under orthogonal transformations of Y .

This general formulation unifies several existing approaches. For instance, the EoRA (Liu et al.,
2024) method corresponds to a particular choice of Y , taking Y = UΛ1/2 from the eigendecom-
position XX⊤ = UΛU⊤. While this is a valid square-root factorization, it requires a full spectral
decomposition of XX⊤, which incurs O(N3) computational complexity and involves dense matrix
operations that can be costly for large models.

In contrast, we adopt the Cholesky decomposition XX⊤ = LL⊤ in this paper, where L is lower-
triangular, for constructing Y . This reduces the factorization cost from O(N3) for an SVD of XX⊤

to O(N3/3) and offers a significant computational advantage for high-dimensional activations. Ad-
ditionally, the triangular structure of L enables efficient inversion of Y via forward and backward
substitution, further improving scalability for large-scale post-training compression tasks. These
properties make the Cholesky-based construction particularly attractive in practice.

While Proposition 1 provides the optimal factors P ∗ and Q∗ for equation 2, a natural question
arises: how does this formulation relate to the broader class of low-rank approximations that directly
minimize the output error? In particular, one can consider the unconstrained problem

min
A∈RM×r,B∈Rr×K

∥WX −AB∥2F , (5)
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which corresponds to the truncated SVD of WX . Unlike equation 2, this formulation does not
impose any structure on B (e.g., B = QX) and therefore represents the most general low-rank
reconstruction of the layer output.

As highlighted in prior works such as SVD-LLM (Wang et al., 2024), the optimal solution to equa-
tion 5 can be achieved when manipulations on the activation matrix X are allowed (e.g., whitening
transformations). This raises a critical question for our setting: without touching or transforming
X , does solving equation 2 lead to a worse approximation than equation 5? If so, what is the per-
formance gap? Corollary 1 addresses this question, showing that our solution achieves the same
optimal reconstruction of WX as equation 5, thereby eliminating the need for explicit manipulation
of X while retaining computational efficiency.

Corollary 1. Let P ∗, Q∗ be defined as in Proposition 1 using any factorization XX⊤ = Y Y ⊤. Then
(P ∗, Q∗) is also an optimal solution of the broader optimization problem:

min
A∈RM×r, B∈Rr×K

∥WX −AB∥2F , (6)

and yields the same reconstruction as the rank-r truncated SVD of WX:

P ∗Q∗X = PXQX , (7)

where PXQX denotes the rank-r truncated SVD of WX .

Corollary 1 shows that our solution matches the truncated SVD of WX , achieving the same opti-
mal reconstruction without explicit manipulation of X . This eliminates the computational overhead
of activation-space transformations (e.g., whitening) used in SVD-based methods, making our ap-
proach more practical for large-scale post-training compression.

4 COMPRESSION OF LOW-RANK FACTORS

The decomposition in Section 3 provides optimal low-rank factors P ∗ ∈ RM×r and Q∗ ∈ Rr×N

that preserve the layer outputs, but these matrices are still stored in full precision by default. Without
further compression, the overall parameter footprint remains dominated by P and Q, limiting the
practical savings from the decomposition.

Most existing post-training quantization (PTQ) methods directly quantize full-rank weights, often
ignoring the low-dimensional subspaces that capture most of the weight energy. Conversely, SVD-
based compression approaches extract these subspaces but store them in full precision, introducing
non-trivial overhead that undermines their compression gains. Thus, a key challenge is how to quan-
tize low-rank factors effectively under low bitwidths without degrading the approximation quality.

To address this, we propose two complementary techniques: Block-wise greedy low-rank decomposi-
tion, which partitions the target subspace into multiple smaller blocks and extracts them sequentially,
explicitly accounting for quantization errors at each step; Intra-block quantization compensation,
which adjusts unquantized components within a block to absorb quantization errors introduced by
previously quantized components. A schematic overview of these techniques is provided in Fig. 1.

4.1 BLOCK-WISE GREEDY LOW-RANK APPROXIMATION

A straightforward way to obtain a rank-r approximation of W is to perform a single-step truncated
SVD, retaining the top-r singular components. While conceptually simple, this approach has a crit-
ical limitation for compression: all r components are extracted jointly under the assumption of full
precision, but in practice they are quantized. Once the most significant components are compressed,
the induced quantization noise alters the effective residual subspace. Because single-step SVD does
not account for this distortion, the subsequent components are no longer optimal for the quantized
representation, leading to suboptimal reconstruction quality.

To overcome these issues, we adopt a block-wise greedy decomposition strategy that partitions the
target rank r into K smaller blocks of size rb and extracts them sequentially. Unlike residual-SVD
approaches designed only for truncation error correction (Bai et al., 2025), our method explicitly
accounts for quantization-induced distortion at each stage: once a block is quantized, its contribu-
tion and associated errors are embedded into the residual, allowing subsequent blocks to adaptively
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compensate. This multi-block framework effectively mitigates error accumulation and improves re-
construction fidelity under aggressive bitwidth constraints.

To facilitate a stable and activation-aware decomposition, we first incorporate the matrix XX⊤ into
the factorization. Let Y ∈ RN×N be the Cholesky factor of XX⊤ such that XX⊤ = Y Y ⊤, and
define the projected weight matrix WY := WY ∈ RM×N . Rather than computing the full rank-r
truncated SVD of WY at once, we partition the target rank r into K disjoint blocks of equal size rb
(r = Krb) and extract them sequentially.

For block k, we define the residual matrix as

R
(k)
Y := WY −

k−1∑
j=1

P̂
(j)
Y Q̂

(j)
Y , (8)

with initialization R
(1)
Y = WY , where P̂

(j)
Y ∈ RM×rb and Q̂

(j)
Y ∈ Rrb×N are the quantized factors

from previous blocks.

The detailed procedure to compute the low rank matrices P̂ (k) and Q̂(k) for all k ∈ {1, . . . ,K} can
be found in Appendix C.1. After processing all K blocks, the final compressed approximation of W
is

W ≈
K∑

k=1

P̂ (k)Q̂(k). (9)

4.2 INTRA-BLOCK QUANTIZATION COMPENSATION

Even with block-wise decomposition, quantizing multiple components within a block may lead to
accumulated errors. When the early components in a block are quantized, their distortion perturbs
the effective subspace seen by the remaining unquantized components, degrading the overall recon-
struction quality.

To address this, we introduce an intra-block quantization compensation strategy that explicitly cor-
rects for these distortions. The key idea is to adjust the coefficients of the unquantized components
within the same block in response to the quantization errors of earlier components. This is related to
classical subspace projection methods (Golub and Van Loan, 2013; Saad, 2003), where updates are
projected onto the subspace spanned by remaining basis vectors. By redistributing the quantization-
induced error into the subspace of unquantized directions, we ensure that subsequent components
adapt to the modified residual, reducing error accumulation and improving overall reconstruction
fidelity. The technical details can be found in supplemental materials. We provide the quantization
algorithm including block-wise structure and intra-block compensation in Algorithm 1.

This two-stage compression scheme offers both theoretical alignment with the optimal low-rank
structure and practical robustness under quantization. The block-wise design improves error isola-
tion and quantization efficiency, while intra-block compensation allows for precise error absorption.
Together, they support high-accuracy approximation under low bitwidth constraints.

5 EXPERIMENTS

In this section, we comprehensively evaluate the proposed LoRDQ framework on various large lan-
guage models, including LLaMA-2 (Touvron et al., 2023), LLaMA-3 (Dubey et al., 2024), and OPT
families (Zhang et al., 2022), across multiple benchmarks. We aim to highlight both the strengths
and limitations of LoRDQ, as well as provide deeper insights into its behavior through ablation
studies.

Our experimental setup closely follows the post-training quantization pipeline used in prior works
such as GPTQ, AWQ. All experiments were conducted on a single NVIDIA A100 GPU with 80GB
memory. We use HuggingFace implementations of the evaluated models. For calibration, we ran-
domly sampled 128 segments of 2048 tokens each from the C4 dataset (Raffel et al., 2020). We
focus on weight-only quantization, as this component dominates storage and transmission cost in
large models. We report perplexity on WikiText2 (Merity et al., 2016), PTB (Marcus et al., 1994),
and C4, as well as zero-shot accuracy on StoryCloze (Mostafazadeh et al., 2016), PIQA (Tata and
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Algorithm 1 Block-Wise Quantization with Compensation

Require: Weight matrix W , Cholesky factor Y , total rank r, block count K, quantizer
Quantize()

Ensure: Quantized low-rank factors P̂ , Q̂
1: Compute WY = WY , set rb ← r/K, RY ←WY

2: for block k = 1 to K do
3: [U,Σ, V ]← Top-rb SVD of RY

4: P (k) = UΣ, Q(k) = V ⊤Y −1

5: for i = 1 to rb do
6: p̂i = Quantize(pi), q̂i = Quantize(qi)
7: δb = Y ⊤(q̂i − qi)
8: for j = i+ 1 to rb do
9: α = (Y ⊤qj)

⊤δb
10: pj ← pj − α · p̂i
11: end for
12: Store p̂i, q̂i
13: end for
14: Update residual: RY ← RY − P̂ (k)Q̂(k)Y
15: end for
16: return Concatenated P̂ , Q̂

Table 1: Comparison of LoRDQ and GPTQ on various Llama2, Llama3, and OPT models and
datasets with 2-bit quantization. Perplexity (↓) and accuracy (↑) metrics are reported.

Perplexity (↓) Accuracy (↑)
Method Model C4 WikiText2 PTB StoryCloze PIQA ARC-E ARC-C BoolQ

LoRDQ Llama2-7B 119.71 198.04 1.1e3 50.29 53.54 28.24 20.07 45.60
GPTQ Llama2-7B 2.2e3 1.1e4 - 50.03 52.18 25.26 23.08 43.06
AWQ Llama2-7B 2.2e5 1.7e5 - - 52.39 24.75 - -
LoRDQ Llama2-13B 48.07 72.71 529.87 53.13 55.66 30.43 23.41 38.29
GPTQ Llama2-13B 293.79 1.0e3 4.4e3 49.97 51.14 28.25 23.41 39.36
AWQ Llama2-13B 1.2e5 9.5e4 - - 53.26 23.04 - -
LoRDQ Llama3-8B 300.43 1.0e4 2.1e4 50.35 53.32 27.48 20.07 58.29
GPTQ Llama3-8B 2.7e5 1.0e6 1.6e6 48.16 51.03 26.67 20.07 46.12
AWQ Llama3-8B 8.1e5 8.2e5 9.0e5 - 55.2 25.2 21.3 -
LoRDQ OPT-13b 28.27 41.92 38.01 65.31 65.56 48.42 26.76 38.10
GPTQ OPT-13b 135.48 372.68 344.44 - 66.05 42.47 - -

Patel, 2003), ARC-Easy (Boratko et al., 2018), ARC-C (Boratko et al., 2018), and BoolQ (Clark
et al., 2019). For fair comparison across all methods, we do not use group-wise scaling factors but
instead adopt a single scaling factor for the entire row vector of each weight matrix.

To ensure a fair comparison with existing PTQ approaches, we match the average bits per weight
(bpp) across methods using the stored quantized factors only. Baselines (e.g., GPTQ, AWQ) quantize
the full matrix at a uniform or binary bitwidth; in contrast, LoRDQ stores only low-rank factors at
higher precision. Concretely, for W ∈ RM×N represented as W ≈ PQ with P ∈ RM×r and
Q ∈ Rr×N , the resulting average bits/weight is bpp =

bP Mr+bQ rN
MN . Unless otherwise stated, we

use bP = bQ = 4 and choose r per layer so that the model-level bpp matches a 2-bit/3-bit baseline
when the numerator and denominator are summed over all layers. Under this setting on LLaMA-2-
7B, we retain 31.6% of basis components on average across projection/MLP matrices, yielding an
overall bpp of ≈ 2.00 based on the stored factors P,Q alone.
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5.1 EFFICIENCY OF THE PROPOSED LOW-RANK DECOMPOSITION

We evaluate how accurately the decomposition preserves layer outputs as a function of rank. For a
given rank r, we report the average relative output error across layers,

RelErr(r) =
∥(W − Ŵr)X∥2F
∥WX∥2F

,

and illustrate two representative layers by comparing two decompositions: (i) our activation-aware
low-rank factors (LoRDQ), (ii) the classical SVD of W (activation-agnostic). This comparison iso-
lates the benefit of incorporating layer input activation. As shown in Figure 2, the activation-aware
decomposition (LoRDQ) reduces error sharply with rank. For instance, the relative output error de-
creases to 50% with ∼0.5% relative rank, and reduce sharply from roughly 50%→25% by ∼10%
relative rank, indicating that it captures the dominant output-energy directions early. In side-by-
side comparisons, LoRDQ consistently reach 10% less output errors below the classical SVD of W
(activation-agnostic) at the same rank, demonstrating the efficiency of our method in extracting key
components.
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Figure 2: Efficiency of proposed decomposition vs. classical SVD

5.2 PERFORMANCE COMPARISON

Table 1 reports the performance of LoRDQ against strong baselines, including GPTQ and AWQ,
under the 2-bit weight-only quantization regime. More results with OPT models can be found in
Appendix D.1. Across all models and benchmarks, LoRDQ consistently outperforms GPTQ and
AWQ, demonstrating the effectiveness of the proposed low-rank decomposition combined with
block-wise greedy quantization and intra-block compensation. To interpret these observed gains,
it has been checked by extensive simulations that the spectrum of output Gram matrix WXX⊤W⊤

is highly relevant to the efficiency of LoRDQ: concentrated spectra (few dominant components) in
WXX⊤W⊤ imply higher compressibility and favor LoRDQ’s precision allocation, whereas flatter
spectra limit gains (see Appendix D.2 for more details).

When the average number of bits increase to 3, LoRDQ can underperform GPTQ/AWQ because
it compresses two factors (P,Q), introducing extra quantization noise compared to single-matrix
methods when the bit budget is not tight (see Appendix D.3 for details). To verify the efficiency of
our approach in 3-bit regime, we also consider another practical scenario inspired by transformation-
based quantization schemes, where Q is treated as a quantization-free transformation matrix stored
in full precision. This configuration is relevant in cases where Q serves as a learned transformation
that can be precomputed without incurring significant storage overhead. By eliminating quantiza-
tion noise in Q, the entire bit budget can be allocated to compressing P , thereby maximizing the
representational capacity of the quantized factors. Table 2 shows the performance of LoRDQ un-
der this quantization-free Q configuration, alongside state-of-the-art transformation-based methods
such as QuIP and OmniQuant. In this setting, LoRDQ achieves comparable or slightly better results
than these approaches, demonstrating its competitiveness when applied as a transformation-based
quantization framework.
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Table 2: Comparison of LoRDQ and transformation-based methods on various models and datasets
with 3-bit quantization. The transformation matrix Q is assumed to be quantization-free, thus we
put all resources into quantizing P .

Perplexity (↓) Accuracy (↑)
Method Model C4 WikiText2 PTB SC PIQA ARC-E ARC-C BoolQ

LoRDQ Llama2-7B 7.71 6.15 27.81 75.63 76.77 72.77 38.13 37.43
QuIP Llama2-7B 20.44 18.66 - - 65.45 56.57 25.68 -
OmniQ Llama2-7B 8.62 6.62 - - 74.65 71.00 38.14 -
LoRDQ Llama2-13B 7.26 5.65 35.57 77.55 78.02 73.95 39.13 38.50
QuIP Llama2-13B 7.16 5.61 - - 77.31 75.38 42.66 -
OmniQ Llama2-13B 7.39 5.58 - - 77.97 76.60 43.34 -
LoRDQ Llama3-8B 7.85 6.52 10.73 76.64 78.24 75.29 41.47 36.51
QuIP Llama3-8B 11.70 8.48 - - 75.79 72.01 39.68 -
OmniQ Llama3-8B 20.36 14.70 - - 68.12 59.68 28.16 -

Table 3: Comparison of SVD and SVD+Compensation methods with different block counts under
2-bit quantization. Perplexity (↓) and accuracy (↑) metrics are reported.

Perplexity (↓) Accuracy (↑)

Block
count Method C4 WikiText2 PTB StoryCloze PIQA ARC-E ARC-C BoolQ

1 Block-wise decomposition 5240.53 6221.77 8458.17 47.84 53.48 27.89 20.07 37.83
Block-wise + Intra-block 9887.89 14610.08 18631.13 47.78 53.70 28.42 21.40 39.72

2 Block-wise decomposition 85.57 143.68 748.19 52.27 54.03 32.28 22.07 37.83
Block-wise + Intra-block 48.07 72.71 529.87 53.13 55.66 30.43 23.41 38.29

3 Block-wise decomposition 46.53 77.87 447.09 53.93 55.60 32.46 23.75 39.42
Block-wise + Intra-block 45.08 74.19 410.50 54.78 56.31 32.98 22.41 37.89

4 Block-wise decomposition 45.40 77.47 442.44 55.05 56.47 35.79 23.75 38.10
Block-wise + Intra-block 47.24 79.19 456.78 55.42 57.02 33.33 25.08 38.20

5.3 ABLATION STUDY

We analyze the effects of the proposed block-wise decomposition and intra-block compensation (Ta-
ble 3). Increasing the number of blocks significantly improves performance, as it allows the residual
structure to be progressively refined, leading to lower perplexity and higher accuracy across tasks. In
contrast, the intra-block compensation mechanism provides only marginal gains, with its influence
being less substantial compared to the impact of block-based decomposition. These results highlight
that block-wise decomposition is the primary driver of performance improvements in LoRDQ, while
compensation plays a secondary role in improving the reconstruction quality under aggressive quan-
tization. To better understand the trade-off between compressing P and Q, we vary their bitwidths
(NP , NQ) under a fixed overall budget to conduct another ablation study in Appendix E.

6 CONCLUSION

We introduced LoRDQ, an activation-aware low-rank decomposition and quantization framework
for post-training compression of large language models. By deriving a closed-form activation-aware
low-rank decomposition and integrating block-wise greedy decomposition with intra-block quanti-
zation compensation, LoRDQ achieves strong compression–accuracy trade-offs, particularly under
ultra-low bitwidth constraints. Extensive experiments on LLaMA-2, LLaMA-3, and OPT models
demonstrate that LoRDQ delivers substantial improvements over state-of-the-art PTQ methods in
ultra low-bit regimes, while remaining competitive with transformation-based schemes in higher-bit
settings by ignoring the overhead of transformation. Our analysis connects the observed gains to
the spectral properties of the Gram matrix of layer outputs, providing a theoretical interpretation
of why low-rank structures enable efficient quantization. These insights motivate a potential hybrid
integration with existing quantization: deploy LoRDQ on layers with concentrated spectra to lift
performance, and defer to standard schemes on flat-spectrum layers to avoid degradation. These
results highlight LoRDQ as an effective and interpretable framework for scaling large models to
resource-constrained environments.
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APPENDIX

A PROOF OF PROPOSITION 1

Consider the optimization problem

min
P∈RM×r, Q∈Rr×N

∥(W − PQ)X∥2F , (10)

where r < min(M,N) specifies the target rank of the approximation. Expanding the Frobenius
norm in trace form gives

∥(W − PQ)X∥2F = Tr
(
(W − PQ)XX⊤(W − PQ)⊤

)
. (11)

Let XX⊤ = Y Y ⊤ be any square-root factorization of the input covariance with Y ∈ RN×N

invertible. Substituting this into the objective yields

∥(W − PQ)X∥2F = ∥(W − PQ)Y ∥2F . (12)

Defining WY := WY ∈ RM×N and QY := QY ∈ Rr×N , the problem becomes

min
P∈RM×r, QY ∈Rr×N

∥WY − PQY ∥2F , (13)

which is a standard low-rank approximation problem for WY .

By the Eckart–Young–Mirsky theorem, the minimizer of this problem is given by the rank-r trun-
cated SVD of WY :

WY ≈ UrΣrV
⊤
r , (14)

where Ur ∈ RM×r, Σr ∈ Rr×r, and Vr ∈ RN×r are the top-r singular vectors and singular values
of WY . Thus, the optimal factors are

P ∗ = UrΣr, Q∗
Y = V ⊤

r . (15)

Recovering Q from QY = QY gives

Q∗ = V ⊤
r Y −1. (16)

Finally, note that any other valid square-root factorization of XX⊤ only changes Vr by an orthogo-
nal rotation, which leaves the Frobenius norm of the approximation invariant. Therefore, (P ∗, Q∗)
also solves the original problem with X , achieving its global minimum.

B PROOF OF COROLLARY 1

Consider the broader low-rank approximation problem

min
A∈RM×r, B∈Rr×K

∥WX −AB∥2F . (17)

By the Eckart–Young–Mirsky theorem, its optimal solution is the rank-r truncated SVD of WX ,
which we denote as WX ≈ PXQX . Thus, the minimizers of this problem are A∗ = PX and
B∗ = QX , where PX ∈ RM×r and QX ∈ Rr×K are the top-r singular factors of WX .

From Proposition 1, for any square-root factorization XX⊤ = Y Y ⊤, the optimal solution to

min
P∈RM×r,Q∈Rr×N

∥(W − PQ)X∥2F (18)

is given by P ∗ = UrΣr and Q∗ = V ⊤
r Y −1, where UrΣrV

⊤
r is the truncated SVD of WY := WY .

To connect these two problems, define X ′ := Y −1X . Then WX = (WY )X ′ = WY X
′. Note that

X ′X ′⊤ = Y −1XX⊤Y −T = Y −1Y Y ⊤Y −T = I, (19)

so X ′ has orthonormal rows. This orthonormality implies that post-multiplying WY by X ′ does not
change the dominant left singular subspace: the rank-r truncated SVD of WY followed by multipli-
cation with X ′ yields exactly the rank-r truncated SVD of WX . Therefore,

P ∗Q∗X = UrΣrV
⊤
r Y −1X = PXQX . (20)

This shows that the pair (P ∗, Q∗) from Proposition 1 produces the same rank-r reconstruction of
WX as directly solving the broader problem, thereby achieving the minimum.

12
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C DETAILS OF COMPRESSION TECHNIQUES

C.1 BLOCK-WISE DECOMPOSITION

To produce these quantized factors, we use a scalar uniform quantizer Quantize(·) with b-bit preci-
sion. For a vector z ∈ Rd, its quantized version is defined as

ẑ = Quantize(z) = clip
(
round

(z − α

∆

)
, 0, 2b − 1

)
∆+ α, (21)

where ∆ = β−α

2b−1
is the quantization step size, and α, β are the per-vector minimum and maximum values (or

learned bounds).

After obtaining the residual, we compute the rank-rb SVD of the residual:

R̃
(k)
Y = UkΣkV

⊤
k , (22)

where Uk ∈ RM×rb , Σk ∈ Rrb×rb , and Vk ∈ RN×rb . The unquantized block factors in the projected space
are

P
(k)
Y := UkΣk, Q

(k)
Y := V ⊤

k . (23)

These are mapped back to the original parameter space:

P (k) := P
(k)
Y , Q(k) := Q

(k)
Y Y −1, (24)

and then quantized:
P̂ (k) = Quantize(P (k)), Q̂(k) = Quantize(Q(k)). (25)

After processing all K blocks, the final compressed approximation of W is

W ≈
K∑

k=1

P̂ (k)Q̂(k). (26)

C.2 INTRA-BLOCK COMPENSATION

Formally, for block k, the rank-rb approximation of R(k)
Y is

R̃
(k)
Y =

rb∑
i=1

p
(k)
i (q

(k)
i )⊤Y,

where p
(k)
i is the i-th column of P (k) and q

(k)
i the i-th row of Q(k). Define the orthogonalized right factors:

b
(k)
i := Y ⊤q

(k)
i .

The block can then be written as

R̃
(k)
Y =

rb∑
i=1

p
(k)
i (b

(k)
i )⊤.

Quantize each component sequentially:

p̂
(k)
i = Quantize(p

(k)
i ), q̂

(k)
i = Quantize(q

(k)
i ),

and define the error in the orthogonal basis:

δb
(k)
i := b̂

(k)
i − b

(k)
i , b̂

(k)
i := Y ⊤q̂

(k)
i .

Project this error onto the subspace spanned by the unquantized components:

α
(k)
ij := (b

(k)
j )⊤δb

(k)
i , ∀i < j ≤ rb,

and update subsequent left factors:
p
(k)
j ← p

(k)
j − α

(k)
ij p̂

(k)
i .

This redistribution of quantization-induced distortion reduces intra-block error accumulation, significantly im-
proving reconstruction fidelity under low-bitwidth constraints.
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Table 4: Comparison of LoRDQ, GPTQ and AWQ on various OPT models and datasets with 2-bit
quantization. Perplexity (↓) and accuracy (↑) metrics are reported.

Perplexity (↓) Accuracy (↑)
Method Model C4 WikiText2 PTB SC PIQA ARC-E ARC-C BoolQ

LoRDQ OPT-125M 335.18 840.40 864.13 51.52 54.08 28.62 19.06 39.24
GPTQ OPT-125M 2161.69 4444.83 3072.12 48.58 54.41 27.89 20.74 39.08
LoRDQ OPT-350M 538.87 1.7e3 1.3e3 50.72 53.81 28.20 21.40 37.83
GPTQ OPT-350M 5548.46 15608.65 10147.67 48.58 52.88 29.65 22.74 38.07
LoRDQ OPT-1.3B 232.86 447.84 541.70 50.03 54.73 30.47 19.73 42.94
GPTQ OPT-1.3B 3373.44 8171.65 5745.94 48.53 53.26 27.54 21.40 46.73
AWQ OPT-1.3B 6.4e3 9.5e3 5.9e3 - 51.63 24.83 20.05 37.82
LoRDQ OPT-2.7B 123.01 234.27 244.73 53.93 55.17 34.05 19.73 41.71
GPTQ OPT-2.7B 3898.29 9346.39 5904.72 47.57 53.37 28.07 18.73 38.53
AWQ OPT-2.7B 1.2e4 2.3e4 9.0e3 - 53.15 25.04 21.67 40.09
LoRDQ OPT-6.7B 61.97 90.99 116.16 57.46 59.25 38.93 21.40 39.27
GPTQ OPT-6.7B 489.35 3270.47 2605.91 51.15 54.73 32.98 21.40 38.87

>0.99 >0.95 >0.9 >0.85
Kept Energy Threshold

0.0

0.2

0.4

0.6

0.8

Pr
op

or
tio

n 
of

 L
ay

er
s

Proportion of Layers with Kept Energy Exceeding Specified Thresholds

GPTQ
ALDQ

(a) Retained energy ratio: LoRDQ vs. GPTQ
(LLaMA2-13B).

0 1000 2000 3000 4000 5000
Index

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

m
ul

at
ed

 n
or

m
al

ize
d 

Ei
ge

nv
al

ue
s

(layer 1, self_attn.k_proj)

(layer 6, self_attn.v_proj)

(layer 4, mlp.down_proj)

Accumulated normalized Eigenvalue

Large gain
Average gain
Small gain

(b) Spectral profile: cumulative energy vs. compo-
nents.

Figure 3: Spectral comparisons for LLaMA2-13B. Layers with more concentrated spectra (higher
energy in top components) tend to yield larger LoRDQ gains over GPTQ.

D ADDITIONAL EXPERIMENTS

D.1 2-BIT PERFORMANCE COMPARISON WITH OPT MODELS

Table 4 reports the 2-bit quantization performance of LoRDQ compared to GPTQ and AWQ across OPT mod-
els of various sizes. LoRDQ consistently achieves substantially lower perplexity and higher or comparable
accuracy across all benchmarks. This demonstrates the effeciency of our mehtod in different kind of models
with different size.

D.2 EXPLANATIONS OF THE OBSERVED GAINS

To better interpret these gains, we quantify how much of the layer output is preserved by different quantization
schemes. Specifically, we define the retained energy ratio of a method i ∈ {LoRDQ,GPTQ} as

γ(i) =
(
1− ∥(W − Ŵ (i))X∥2F

∥WX∥2F

)
× 100%, (27)

which measures the fraction of the output energy retained after quantization. A higher γ(i) indicates a more
efficient compression, leading to lower reconstruction loss in the layer outputs. Figure 2 compares this retained
energy ratio for LoRDQ and GPTQ on the LLaMA2-13B model, showing that LoRDQ consistently achieves
higher values across layers, reflecting its ability to preserve more of the informative structure of the weight
matrices. This observation aligns with the superior perplexity and accuracy results in Table 1.

To further investigate why LoRDQ achieves these gains, we analyze the spectrum of WXX⊤W⊤, which di-
rectly determines the retained output energy. As shown in Figure 3, layers with concentrated spectra (where a
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few dominant components capture most of the energy) are more suited for low-rank decomposition, whereas
flatter spectra indicate limited compressibility. This analysis reveals that LoRDQ performs better in in lay-
ers with concentrated spectra by effectively allocating precision to the dominant components, explaining its
advantage over GPTQ in preserving key information under the same bit budget.

D.3 SOME RESULTS AT 3-BIT REGIME

Table 5: Comparison of LoRDQ and GPTQ on various Llama2, Llama3, and OPT models and
datasets with 3-bit quantization. The second half, the transformation matrix Q is assumed to be
quantization-free, thus we put all resources into quantizing P . Perplexity (↓) and accuracy (↑) met-
rics are reported.

Perplexity (↓) Accuracy (↑)

Method Model C4 WikiText2 PTB SC PIQA ARC-E ARC-C BoolQ

LoRDQ Llama2-7B 48.44 72.76 443.93 54.52 57.78 33.84 25.08 41.22
GPTQ Llama2-7B 10.39 9.50 7.3e3 71.51 70.78 60.18 31.44 38.26
AWQ Llama2-7B 23.85 24.00 - - 65.02 52.78 - -
LoRDQ Llama2-13B 19.75 22.91 241.94 62.96 64.31 47.94 25.42 38.04
GPTQ Llama2-13B 8.24 6.78 49.92 74.88 73.83 68.07 36.12 41.13
AWQ Llama2-13B 13.07 10.45 - - 70.13 66.79 - -
LoRDQ Llama3-8B 52.66 210.80 323.15 52.00 55.55 30.35 21.40 37.92
GPTQ Llama3-8B 29.87 81.82 70.88 53.50 58.92 36.49 22.07 38.65
AWQ Llama3-8B 16.80 12.80 24.00 - 71.90 66.70 35.10 -

As shown in Table 5, LoRDQ performs worse than GPTQ and AWQ in the 3-bit quantization setting, mark-
ing a clear contrast with its relative advantage in the ultra-low 2-bit regime. This performance gap arises from
LoRDQ’s design: unlike conventional methods that quantize a single full-rank weight matrix, LoRDQ com-
presses two low-rank factors, P and Q. While this approach offers substantial benefits under very low bit bud-
gets, it also introduces additional quantization noise, which can offset these gains when the available bitwidth
is relatively high (e.g., 3 bits). In such cases, the double-matrix compression limits overall performance.

E ABLATION STUDY OF BITS ALLOCATION

To better understand the trade-off between compressing P and Q, we vary their bitwidths (NP , NQ) under a
fixed overall budget (Table 6). The results show that the (4, 4) configuration provides the best overall trade-
off, achieving strong performance across tasks. Allocating fewer bits per factor (e.g., (3, 3) or (3, 4)) allows a
higher retained rank but results in substantially lower quality, whereas higher precision with lower rank (e.g.,
(5, 5)) preserves quality but at the cost of rank diversity. These results illustrate the balance between retained
rank and per-factor precision, with (4, 4) offering the most favorable compromise in this setting.

Table 6: Effect of different (NP , NQ) settings on LLaMA-2-13B with low-rank SVD decomposition
under a fixed average 2-bit-per-weight budget. The column “Retained rank (r/N )” indicates the
proportion of singular components preserved relative to the full rank N . This setup ensures that the
total number of bits used for compressing the network remains constant, balancing between retaining
fewer components at higher precision or more components at lower precision.

(N P , N Q) Retained rank (r/N ) wikitext ptb c4 StoryCloze PIQA ARC ARC-C BoolQ
(5,5) 25.3% 882.23 2471.30 543.37 50.72 51.85 27.89 21.07 37.83
(4,4) 31.6% 72.71 529.87 48.07 53.13 55.66 30.43 23.41 38.29
(3,4) 36.7% 1117.26 3071.91 866.69 49.76 52.94 27.61 19.73 37.83
(4,3) 35.4% 389.36 1768.70 239.82 51.31 53.21 27.90 19.73 37.83
(3,3) 42.2% 9274.93 7959.67 7174.23 48.32 52.29 27.54 20.40 37.83
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