

000 001 002 003 004 005 DARE: DIFFICULTY-AWARE DYNAMIC ROUTING FOR 006 MIXTURE OF EXPERTS 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032

ABSTRACT

033 Sparse Mixture-of-Experts (MoE) architectures have become a foundational approach for efficiently scaling Large Vision-Language Models (LVLMs), as they
034 activate only a subset of parameters for each input. However, the commonly
035 adopted Top-K routing strategy assigns a fixed number of experts to every token, ignoring the natural variation in token complexity. This static allocation often
036 results in suboptimal resource utilization, where simple tokens receive excessive
037 computation and complex tokens are insufficiently processed. While recent
038 dynamic routing methods attempt to address this limitation, they lack principled
039 mechanisms to explicitly guide expert allocation based on token-level difficulty,
040 resulting in suboptimal performance in practice. In this paper, we propose
041 **Difficulty-Aware Dynamic Routing for Mixture of Experts (DARE)**, a novel routing
042 strategy that adapts expert selection according to the complexity of each token.
043 DARE introduces a lightweight predictor that estimates the difficulty of individual
044 tokens based on their log-perplexity as a theoretically grounded proxy, and
045 employs a set of learnable thresholds to dynamically determine the appropriate
046 number of experts to activate. This mechanism enables fine-grained and adaptive
047 allocation of computational resources, allowing the model to devote more capacity
048 to challenging tokens while conserving resources on easier ones. Extensive experiments
049 on standard vision-language benchmarks demonstrate that DARE consistently
050 outperforms both fixed Top-K routing and existing adaptive routing strategies.
051 It achieves superior task performance while simultaneously improving computational
052 efficiency, using 39% fewer experts compared to the Top-K baseline,
053 highlighting the effectiveness and generality of difficulty-aware routing in sparse
054 MoE architectures for large-scale multimodal models.

1 INTRODUCTION

035 Large Vision-Language Models (LVLMs) have achieved remarkable performance across a broad
036 range of multimodal tasks, primarily driven by the continuous increase in model parameters and
037 training data (Liu et al., 2023c; Wang et al., 2024b). While this scaling trend has led to significant
038 advances in model capability, it also brings substantial computational costs, making large models
039 increasingly difficult to train, deploy, and serve in real-world scenarios. Sparse Mixture-of-Experts
040 (MoE) architectures (Shazeer et al., 2017) addresses these scaling challenges by activating only a
041 small subset of specialized experts for each input, thereby substantially increasing model capacity
042 without a corresponding rise in computational burden. Following their successful integration into
043 Transformer-based architectures (Lepikhin et al., 2020), MoE techniques have been widely adopted
044 in large-scale language, vision, and multimodal systems (Li et al., 2022; Dai et al., 2024; Lin et al.,
045 2024; Wu et al., 2024a), demonstrating their scalability and versatility across domains.

046 A Mixture-of-Experts (MoE) layer consists of a set of expert subnetworks and a gating mechanism
047 that assigns each input token to a selected subset of experts. The most widely adopted routing strat-
048 egy, Top-K routing (Shazeer et al., 2017), directs each token to the top K experts with the highest
049 gating scores. While simple and effective, this approach relies on a fixed allocation scheme that
050 assumes uniform token complexity. In reality, the difficulty of tokens can vary considerably due to
051 task-specific requirements (Rogers et al., 2021), lexical characteristics (Schick & Schütze, 2020),
052 and contextual dependencies (Guu et al., 2020). This mismatch between variable token complex-
053 ity and uniform expert allocation leads to systematic inefficiencies: computationally simple tokens

054 consume unnecessary expert capacity while complex tokens receive insufficient processing power.
 055 Beyond wasting computational resources, this imbalance limits the model’s ability to adequately
 056 process challenging inputs, ultimately degrading overall performance.
 057

058 While recent studies have identified the limitations of static expert allocation and developed a range
 059 of dynamic routing strategies by adjusting expert activation through reinforcement learning, heuristic
 060 rules, or the use of dummy experts (Huang et al., 2024; Guo et al., 2024; Jin et al., 2024; Zeng
 061 et al., 2024; Wang et al., 2024c; Yue et al., 2024; Lewis et al., 2021), most existing methods overlook
 062 a critical factor in routing decisions: the role of token-level difficulty. As shown in Figure 1, these
 063 approaches generally lack an explicit and interpretable mechanism for assessing token complexity
 064 and incorporating it into the routing process. This omission prevents models from making informed
 065 distinctions between computationally simple and complex tokens, resulting in continued resource
 066 misallocation despite the dynamic nature of these routing strategies.
 067

068 To address these fundamental limitations, we propose **DARE** (**D**ifficulty-**A**ware **D**ynamic **R**outing
 069 for **M**ixture of **E**xperts), a principled routing mechanism that dynamically adapts expert assignment
 070 based on the difficulty of each input token. DARE introduces a lightweight predictor that estimates
 071 token complexity using log-perplexity—a theoretically grounded proxy corresponding to the cross-
 072 entropy loss that provides stable and interpretable difficulty signals. To determine how many experts
 073 should be activated, DARE employs an adaptive thresholding mechanism with learnable parameters
 074 that maps predicted difficulty scores to optimal expert counts within a predefined range. This design
 075 enables fine-grained, token-specific expert allocation, allowing the model to assign more computa-
 076 tional capacity to harder tokens while minimizing redundancy for easier ones, creating a natural
 077 alignment between computational demand and expert utilization.
 078

079 Our main contributions are summarized as follows:
 080

- 081 • We identify a critical gap in existing dynamic routing strategies for Mixture of Experts,
 082 namely the absence of explicit guidance informed by token difficulty. To address this gap,
 083 we propose **DARE**, a novel routing strategy that dynamically adapts expert capacity based
 084 on a direct and interpretable measure of token complexity.
 085
- 086 • We formally establish log-perplexity as a robust proxy for token difficulty and design a
 087 lightweight prediction module to estimate this difficulty at the token level. Leveraging a
 088 learnable threshold adaptation mechanism, DARE enables fine-grained expert selection by
 089 assigning a variable number of experts per token according to its estimated complexity.
 090
- 091 • Through extensive experiments on standard vision-language benchmarks, we demonstrate
 092 that DARE consistently outperforms both traditional Top-K routing and recent adaptive
 093 routing methods. Our approach not only enhances task performance but also reduces com-
 094 putational cost by allocating resources more efficiently and effectively.
 095

096 2 RELATED WORKS

097 **Large Vision-Language Models.** The success of large language models (LLMs) has spurred
 098 their extension to multimodal domains, leading to the emergence of large vision-language models
 099 (LVLMs). These models typically align visual and textual features via projection layers and benefit
 100 from scaling model size and pretraining data (Li et al., 2023b; Liu et al., 2023c; 2024b). However,
 101 such scaling incurs significant computational costs. To address this challenge, recent studies have in-
 102 troduced sparse Mixture-of-Experts (MoE) architectures into LVLMs through pretraining (Bai et al.,
 103 2025; Bao et al., 2022; Wu et al., 2024b) or efficient upcycling of dense models in multimodal con-
 104 text (Komatsuzaki et al., 2022; Li et al., 2024; 2025b; Lin et al., 2024; Shu et al., 2024; Wu et al.,
 105 2025), aiming to improve efficiency without compromising performance.
 106

107 **Mixture-of-Experts.** Sparse Mixture-of-Experts (MoE) was introduced to large language models
 108 by Gshard (Lepikhin et al., 2020) and refined in subsequent works (Dai et al., 2024; Fedus et al.,
 109 2022; Jiang et al., 2024; Wu et al., 2024b; Wei et al., 2024; Xue et al., 2024). This architecture com-
 110 prises a gating network and a collection of expert subnetworks, typically independent feed-forward
 111 modules. Employing a conditional computation strategy, the gating network selectively routes each
 112 input token to a sparse subset of these experts for processing. The predominant implementation uses
 113 a Top-K routing algorithm (Shazeer et al., 2017; Clark et al., 2022; Fan et al., 2024), wherein the K
 114 experts with the highest gating scores are activated for each token. However, despite its efficiency,
 115

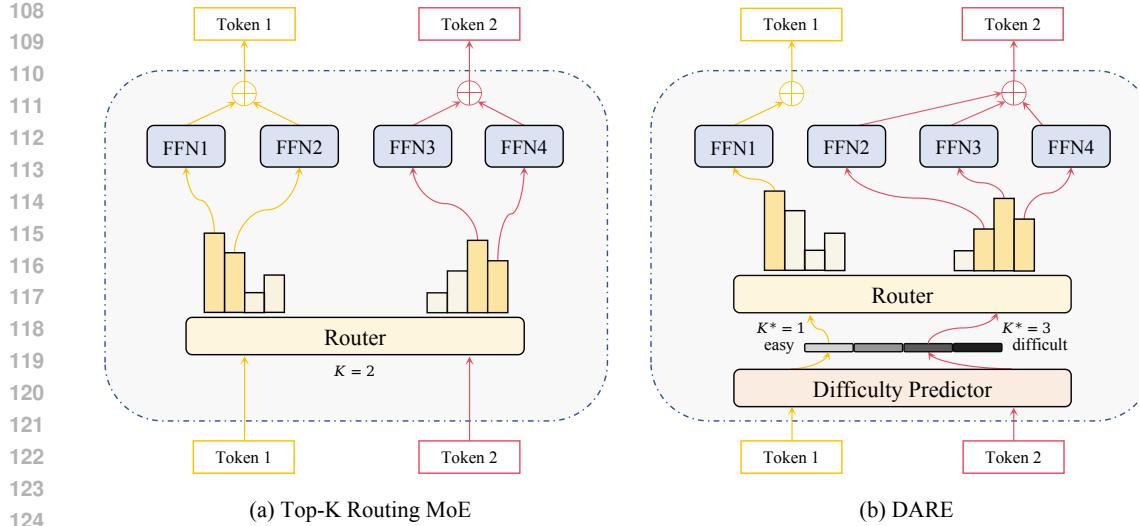


Figure 1: Comparison of Top-K routing and DARE: (a) In Top-K routing, each token is routed to a fixed number of top-scoring experts based on a static configuration. (b) In DARE, a learnable difficulty predictor estimates the difficulty of each token, which is then compared against a set of thresholds to adaptively determine the number of experts to activate.

this static allocation assigns a fixed number of experts to all tokens, failing to account for variations in complexity at the token level. This inherent rigidity can constrain the model’s expressive power, thus motivating research into more adaptive and dynamic routing strategies.

Dynamic Expert Allocation. To overcome the limitations of static expert allocation that ignores token-level complexity, recent studies have proposed various dynamic routing strategies (Huang et al., 2024; Zeng et al., 2024; Jin et al., 2024; Guo et al., 2024; Yue et al., 2024; Wang et al., 2024c). Top-p routing (Huang et al., 2024) adjusts the number of activated experts based on cumulative probability thresholds. AdaMoE (Zeng et al., 2024) and MoE++ (Jin et al., 2024) introduce zero-computation experts to implicitly reduce expert usage for easy tokens. DynMoE (Guo et al., 2024) learns similarity-based thresholds to modulate routing, while Ada-K (Yue et al., 2024) leverages reinforcement learning to predict expert counts. ReMoE (Wang et al., 2024c) replaces Softmax with ReLU gating to activate all positively scored experts. However, these methods still rely on probabilistic sampling, dummy experts, or heuristic rules, lacking an explicit modeling of the relationship between token difficulty and expert allocation. In this work, we take a fundamentally different approach by introducing a learnable difficulty estimator that directly quantifies token-level computation demand, enabling explicit, adaptive, and principle-driven expert routing.

3 METHOD

To establish the empirical foundation for our method, we first conduct an analysis demonstrating a strong inverse relationship between token-level perplexity and prediction accuracy. This validates perplexity as an effective proxy for token difficulty. As illustrated in Figure 1, our method introduces two core modules: (1) a lightweight MLP-based difficulty predictor that estimates negative log-likelihoods from hidden representations with an auxiliary MSE loss; and (2) a threshold-based expert allocation mechanism that determines expert counts based on predicted difficulty levels. To accommodate shifting difficulty distributions during training, we apply an online quantile-based threshold adjustment to ensure balanced expert engagement.

3.1 PERPLEXITY AS A PROXY FOR DIFFICULTY

A foundational requirement for our adaptive allocation strategy is a reliable and quantifiable metric for token-level difficulty. We propose perplexity (ppl) as a direct proxy for this difficulty, as it intrinsically reflects the model’s uncertainty when predicting a token (Brown et al., 2020). Formally, for a

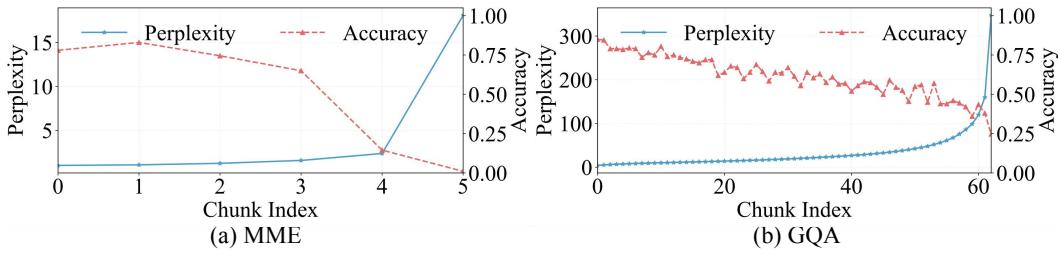


Figure 2: Average prediction accuracy versus token perplexity on MME (Yin et al., 2024) and GQA (Hudson & Manning, 2019), evaluated using MoELLaVA (Qwen2-1.5B). Samples are sorted by ground-truth perplexity and grouped into bins of 200.

token x_t given its preceding context $x_{<t}$ and model parameters Θ , token-level perplexity is defined as the exponentiated negative log-likelihood:

$$\text{ppl}(x_t | x_{<t}) = \exp(-\log p(x_t | x_{<t}; \Theta)) \quad (1)$$

A higher perplexity value signifies the model’s lower confidence and thus implies greater processing difficulty (Chen et al., 2023; Jiang et al., 2023).

To empirically validate this hypothesis that higher perplexity correlates with greater task difficulty, we perform an analysis on the MME (Yin et al., 2024) and GQA (Hudson & Manning, 2019) datasets. For each sample in the evaluation sets, we calculate the model’s prediction correctness and the perplexity of the corresponding ground-truth answer. The samples are then sorted based on their perplexity values and grouped into fixed-size bins of 200. Within each bin, we compute the average accuracy and perplexity to analyze the underlying trends.

As illustrated in Figure 2, the results reveal a strong and consistent negative correlation between average perplexity and prediction accuracy across both datasets. As perplexity increases, the model’s accuracy steadily declines. This empirical evidence clearly confirms that perplexity serves as a robust and interpretable proxy for token difficulty, thereby establishing a reliable foundation for our proposed difficulty-aware routing mechanism.

3.2 TOKEN DIFFICULTY PREDICTION

Building on our empirical findings, we now formalize the definition of token difficulty. For improved numerical stability and more effective supervision, we employ the logarithmic form of the token-level perplexity from Equation 1, which defines the ground-truth difficulty d_t as the negative log-likelihood:

$$d_t = -\log p(x_t | x_{<t}; \Theta) \quad (2)$$

To enable efficient difficulty estimation during inference, we introduce a lightweight difficulty predictor \mathcal{P}_ϕ , implemented as a multi-layer perceptron (MLP) that takes the token’s hidden representation \mathbf{h}_t as input and produces a predicted difficulty value, $\hat{d}_t = \mathcal{P}_\phi(\mathbf{h}_t)$. The predictor is trained jointly with the main model by minimizing the mean squared error (MSE) between the predicted and ground-truth difficulty scores on text tokens over a training batch \mathcal{B} :

$$\mathcal{L}_{\text{diff}} = \mathbb{E}_{t \sim \mathcal{B}} \left[(\hat{d}_t - d_t)^2 \right] \quad (3)$$

Following standard practices in Mixture-of-Experts training, we incorporate an auxiliary load balancing loss, denoted as \mathcal{L}_{lb} , to promote uniform expert utilization and mitigate expert collapse (Shazeer et al., 2017; Lepikhin et al., 2020). This loss encourages the gating mechanism to distribute tokens more evenly across all experts and is defined as:

$$\mathcal{L}_{\text{lb}} = \frac{N}{|\mathcal{B}|} \sum_{i=1}^N f_i \cdot P_i \quad (4)$$

where N denotes the total number of experts, f_i represents the fraction of tokens in the batch routed to expert i , and P_i is the average gating probability assigned to expert i across the batch. By introducing a penalty on imbalanced routing patterns, this objective maintains healthy expert diversity and prevents overspecialization (Qiu et al., 2025; Liu et al., 2024a; Shen et al., 2023).

216 By combining the primary cross-entropy loss (\mathcal{L}_{CE}) (Lin et al., 2024), the proposed difficulty prediction loss ($\mathcal{L}_{\text{diff}}$), and the auxiliary load balancing loss (\mathcal{L}_{lb}), the overall training objective is formally defined as:

$$\mathcal{L} = \mathcal{L}_{\text{CE}} + \alpha \cdot \mathcal{L}_{\text{diff}} + \beta \cdot \mathcal{L}_{\text{lb}} \quad (5)$$

220 where α and β are the weighting hyperparameters. This formulation simultaneously optimizes task 221 performance, difficulty-aware expert routing, and the overall balance of expert utilization.

223 3.3 ONLINE THRESHOLD ADAPTATION FOR EXPERT ALLOCATION

225 Given the predicted difficulty score \hat{d}_t , DARE applies a stratified expert allocation policy to determine 226 the number of experts assigned to each token. For an MoE layer with M experts, we define a 227 set of $M - 1$ monotonically increasing thresholds, denoted as $\mathcal{T} = (\tau_1, \tau_2, \dots, \tau_{M-1})$. The number 228 of experts allocated to token t , denoted by $N_e(t)$, is computed as follows:

$$N_e(t) = 1 + \sum_{j=1}^{M-1} \mathbb{I}(\hat{d}_t \geq \tau_j) \quad (6)$$

232 where $\mathbb{I}(\cdot)$ is the indicator function. This formulation ensures that at least one expert is always 233 selected, while additional experts are progressively activated for tokens with higher predicted 234 difficulty. The token is then routed to the top- $N_e(t)$ experts based on the gating network's scores, 235 allowing the model to dynamically select the most relevant experts for processing.

237 A key challenge in this setting is that the distribution of predicted difficulty scores \hat{d}_t is non- 238 stationary and evolves throughout training. Relying on fixed thresholds would therefore result in 239 a mismatch between intended and actual expert utilization. To address this issue, we propose an on- 240 line threshold adaptation mechanism that dynamically adjusts the thresholds to align observed expert 241 usage with a predefined target distribution $\Pi = (\pi_1, \pi_2, \dots, \pi_M)$, where $\sum_{k=1}^M \pi_k = 1$. This target 242 distribution encodes an inductive bias that reflects the empirical long-tailed nature of token diffi- 243 culty: most tokens are relatively easy and require only limited computation, while a small subset are 244 significantly harder and warrant increased expert capacity (Kandpal et al., 2023). Accordingly, Π can 245 be designed to assign higher probability mass to lower expert counts (e.g., $\pi_1 > \pi_2 > \dots > \pi_M$), 246 thereby promoting efficient and difficulty-aware resource allocation.

247 At each training step i , we begin by computing the empirical cumulative distribution function 248 (CDF), denoted as $F_{\mathcal{B}_i}(\cdot)$, over the predicted token difficulties \hat{d}_t within the current mini-batch \mathcal{B}_i . 249 Based on this CDF, we determine the target value for the j -th threshold by selecting the quantile 250 corresponding to the cumulative probability $\sum_{k=1}^j \pi_k$:

$$\tau_{j,\text{target}}^{(i)} = F_{\mathcal{B}_i}^{-1} \left(\sum_{k=1}^j \pi_k \right), \quad \text{for } j = 1, \dots, M - 1 \quad (7)$$

254 where F^{-1} denotes the inverse CDF (i.e., the quantile function). To ensure more stable optimiza- 255 tion and reduce variance from mini-batch fluctuations, the global thresholds are updated via an 256 exponential moving average (EMA):

$$\tau_{j,\text{global}}^{(i)} = \gamma \cdot \tau_{j,\text{global}}^{(i-1)} + (1 - \gamma) \cdot \tau_{j,\text{target}}^{(i)} \quad (8)$$

260 where $\gamma \in [0, 1]$ is a momentum coefficient controlling the update rate. This online adaptation 261 mechanism enables the thresholds to continuously track the evolving distribution of token difficulty, 262 facilitating consistent, stable, and complexity-aware expert allocation throughout training.

263 4 EXPERIMENTS

266 4.1 EXPERIMENTAL SETUP

268 **Model & Training Setup.** Our method builds upon the LLaVA framework (Liu et al., 2024b; 269 2023c), where 50% of the feed-forward layers are replaced with MoE layers in an alternating layout. 270 We apply DARE only to the MoE layers where visual and textual tokens have already been aligned,

270 Table 1: Performance comparison of different MoE routing strategies on the Qwen2-1.5B (Team,
 271 2024) backbone across multiple vision-language benchmarks. N_A denotes the average number
 272 of activated parameters per inference (in billions), and Avg K indicates the average number of
 273 activated experts per MoE layer. Results for MoE++ are marked with * to indicate the inclusion
 274 of additional lightweight experts, making both the actual number of activated parameters and Avg
 275 K effectively higher than reported. In the table, bold numbers indicate the best performance and
 276 underlined numbers denote the second-best.

Method	N_A	Avg K	MME	MMB	POPE	SQA^T	VQA^T	GQA	VQA^{v2}	MM-Vet
<i>Dense</i>										
LLaVA-1.5 (Vicuna-13B)	13B	-	1531.3	67.7	85.9	71.6	61.3	63.3	80.0	35.4
LLaVA-1.5 (Vicuna-7B)	7B	-	1510.7	64.3	85.9	66.8	58.2	62.0	78.5	30.5
LLaVA-Phi (Phi-2-2.7B)	2.7B	-	1335.1	59.8	85.0	68.4	48.6	-	71.4	28.9
<i>Sparse</i>										
MoELLaVA (Lin et al., 2024)	2.13B	2	1369.2	65.2	86.2	69.9	56.8	61.5	79.6	26.7
MoE++ (Jin et al., 2024)	1.49B*	0.90*	1348.3	64.3	85.5	68.4	55.7	61.3	79.4	26.7
DYNMoE (Guo et al., 2024)	1.55B	1.00	1309.3	63.1	81.9	67.0	49.9	57.7	76.4	25.6
Top-p (Huang et al., 2024)	1.95B	1.69	1378.2	65.6	85.7	69.5	56.2	61.6	79.1	28.8
ReMoE (Wang et al., 2024c)	1.89B	1.59	1347.1	65.5	86.5	69.8	55.2	62.5	79.6	28.5
DARE(ours)	1.68B	1.22	1404.3	66.1	86.0	69.9	57.0	<u>62.0</u>	79.6	28.8

289 to enable dynamic, difficulty-aware expert selection. We adopt the three-stage training procedure
 290 from MoELLaVA (Lin et al., 2024), using LLaVA-1.5-558k (Liu et al., 2024b), SViT (Zhao et al.,
 291 2023), LVIS (Wang et al., 2023), LRV (Liu et al., 2023a), and MIMIC-IT (Li et al., 2025a) for
 292 Stage 1& 2 training. In Stage 3, we fine-tune MoE-LLaVA with DARE on LLaVA-mix-665k (Liu
 293 et al., 2024b). Further configurations are detailed in the Appendix D.

294 **Evaluation & Baselines.** We evaluate our approach on a comprehensive benchmark suite, including
 295 MME (Yin et al., 2024), MMB (Liu et al., 2024c), VQA-v2 (Goyal et al., 2017), GQA (Hudson &
 296 Manning, 2019), TextVQA (Singh et al., 2019), MM-Vet (Yu et al., 2023), ScienceQA (Lu et al.,
 297 2022), and POPE (Li et al., 2023c). To ensure fair comparison, all experiments use the same back-
 298 bone models and training data. Results for the dense baseline and MoE-LLaVA (Lin et al., 2024)
 299 on StableLM are from (Lin et al., 2024), and DYNMoE (Guo et al., 2024) is reproduced using the
 300 official code. Other methods (Top-p (Huang et al., 2024), MoE++(Jin et al., 2024), ReMoE(Wang
 301 et al., 2024c)) on StableLM, and all methods on Qwen2 (Team, 2024)/Qwen3 (Yang et al., 2025),
 302 are reimplemented under a unified framework. Appendix D includes full implementation details and
 303 evaluation metrics, providing all the necessary information to reproduce our experiments and verify
 304 the reported results.

306 4.2 MAIN RESULTS

308 **Comparison with State-of-the-Art MoE Routing Strategies.** Table 3 presents a comparative anal-
 309 ysis of our DARE method against several established MoE routing baselines on the Qwen2-1.5B
 310 backbone. The results reveal a consistent trade-off between model performance and computational
 311 cost across existing strategies. Static routing methods such as Top-2 in MoELLaVA and dynamic
 312 approaches like Top-p and ReMoE achieve strong performance on most benchmarks, but incur sub-
 313 stantial computational overhead by activating between 1.6 and 2 experts per token on average. For
 314 example, ReMoE and Top-p require 1.89B and 1.95B activated parameters, respectively. In con-
 315 trast, efficiency-oriented methods such as MoE++ and DYNMoE reduce the average number of
 316 activated experts to approximately 1.0 or fewer, but often suffer from degraded performance on
 317 key benchmarks including MME and MMBench. DYNMoE, in particular, shows a notable drop in
 318 accuracy, likely due to a simplistic dynamic allocation mechanism that does not fully leverage the
 319 model’s expert capacity. In comparison, DARE achieves a more favorable balance between accuracy
 320 and efficiency. It consistently matches or exceeds the performance of high-cost methods like Top-p
 321 and ReMoE, achieving the best results on MME (1404.3), MMBench (66.1), and MM-Vet (28.8),
 322 while activating only 1.22 experts and 1.68B parameters on average. This corresponds to a reduction
 323 of over 21 percent in activated parameters compared to the standard Top-2 baseline. Notably, our
 324 sparse model rivals much larger dense architectures, outperforming the 2.7B LLaVA-Phi across al-
 325 most all benchmarks with only a fraction of the parameters. These results highlight the effectiveness

of DARE’s difficulty-aware routing strategy in enabling informed expert selection that enhances computational efficiency without sacrificing performance.

Results on Different LLM Backbones. To evaluate the generalization capability and robustness of our proposed routing strategy, we extend our experiments to multiple LLM backbones by integrating our method into both StableLM-1.6B and Qwen3-1.7B. As shown in Table 2, we compare the performance of our approach with the standard Top-K routing baseline for each model. The results demonstrate that the effectiveness of our method is not limited to a specific architecture. Across both model families, our difficulty-aware routing strategy consistently outperforms the baseline, yielding notable improvements on all evaluated benchmarks. Importantly, these gains are achieved with high computational efficiency. The average number of activated experts (1.94 for StableLM-1.6B and 1.26 for Qwen3-1.7B) remains lower than that of the conventional Top-2 routing, indicating that the performance improvement stems from more informed expert selection rather than increased computation. This consistent superiority across diverse model backbones highlights the strong generalization capability and adaptability of our method, establishing it as a broadly applicable and computationally efficient routing enhancement for MoE-based language models.

Table 3: Performance comparison on the Qwen2-0.5B backbone with an expanded expert configuration (16 experts in total). This setting evaluates the scalability of different MoE routing strategies. DARE maintains superior performance while activating fewer experts on average, demonstrating efficient utilization of increased expert capacity.

Method	Avg K	MME	MMB	POPE	SQA ^T	VQA ^T	GQA	VQA ^{v2}	MM-Vet
MoELLaVA (Lin et al., 2024)	2	1198.7	53.9	86.8	59.4	45.8	57.8	75.1	25.0
DARE(ours)	1.56	1267.6	56.4	86.3	61.5	47.8	59.3	76.0	26.4

Generalization to Expanded Expert Capacity. To further assess the scalability of our DARE routing strategy, we conduct experiments with an expanded expert configuration, using a smaller Qwen2-0.5B backbone but increasing the total number of experts to sixteen. This setup examines the model’s ability to effectively exploit a larger and more granular expert pool under limited parameter budgets, a key challenge for scalable MoE systems. As shown in Table 3, DARE demonstrates strong adaptability in this more demanding setting. Compared to the baseline MoELLaVA, which activates 2 experts per layer, DARE achieves higher accuracy across nearly all benchmarks while reducing the average number of activated experts to 1.56. It yields notable improvements on multimodal reasoning tasks such as MME (+68.9) and MMBench (+2.5), along with consistent gains on SQA^T, VQA^T, and GQA, all without increasing computational cost. These results highlight DARE’s ability to efficiently manage expanded expert diversity and leverage finer-grained specialization through adaptive difficulty-aware routing. Overall, DARE scales favorably with larger expert pools, maintaining both accuracy and efficiency, and confirming its robustness as a general routing principle that remains effective as model capacity and expert granularity continue to increase.

4.3 ABLATION STUDY

Impact of the Difficulty Proxy. We perform an ablation study to examine the effect of different difficulty proxies on routing behavior. We evaluate two baseline difficulty proxies, including a random signal and a gating-entropy-based measure that captures the routing network’s internal uncertainty, and compare them against our log-perplexity-based proxy. As shown in Table 4, both alternatives underperform our log-perplexity-based proxy across all benchmarks. The gating entropy signal yields marginal or even degraded results compared to random routing, suggesting that internal gating uncertainty alone is insufficient to capture token-level complexity. In contrast, our log-perplexity proxy provides a semantically grounded measure of difficulty, enabling more informed expert activation and leading to consistent gains on VQA^T, MMBench, MME, and SQA.

378 These findings highlight that the benefits of DARE stem not merely from dynamic expert allocation,
 379 but from a principled estimation of token difficulty that guides routing decisions toward more
 380 efficient and effective computation.

382 Table 4: **Ablation on the difficulty proxy.** We
 383 compare our perplexity-based proxy against ran-
 384 dom signal and gating entropy based signal,
 385 showing its effect on guiding expert allocation.

Difficulty Proxy	VQA ^T	MMB	MME	SQA ^I
Random	56.3	65.3	1380.2	69.2
Gating Entropy	55.5	65.1	1352.6	69.2
Log ppl (Ours)	57.0	66.1	1404.1	69.9

386 Table 5: Ablation on the threshold adap-
 387 tation mechanism. We compare online adapta-
 388 tion against batch thresholds, highlighting the benefit
 389 of dynamic adjustment.

Thres Strategy	VQA ^T	MMB	MME	MM-Vet
Batch	55.5	65.6	1381.0	27.1
Online(Ours)	57.0	66.1	1404.1	28.8

390
 391 **Impact of Online Threshold Adaptation.** To evaluate the effectiveness of our threshold adap-
 392 tation strategy, we compare the proposed online thresholding mechanism with a batch-level threshold
 393 baseline. As shown in Table 5, the online strategy consistently outperforms the batch alternative
 394 across all benchmarks, with notable gains in MME (+23.1) and MM-Vet (+1.7). These results in-
 395 dicate that dynamically adjusting thresholds over time not only leads to more stable and adaptive
 396 expert allocation but also better aligns computation with input complexity, thereby improving both
 397 efficiency and overall performance in multimodal tasks.

398 **Impact of Predefined Target Distribution.**

399 Table 6 examines the effect of the predefined
 400 target distribution Π , which governs the pro-
 401 portion of tokens routed to different numbers
 402 of activated experts. We evaluate three vari-
 403 ants: a uniform distribution, an inverse distri-
 404 bution that favors activating more experts, and
 405 our proposed long-tailed distribution. The uni-
 406 form and inverse strategies yield inconsistent or
 407 degraded performance, indicating that naively
 408 flattening the routing probabilities or biasing
 409 toward heavier computation fails to align ex-
 410 pert usage with token difficulty. In contrast, our
 411 long-tailed distribution achieves the best results

412 across all benchmarks, suggesting that allocating most tokens to a small, efficient subset of experts
 413 while reserving larger ensembles for the most challenging inputs provides a more computa-
 414 tion-aware and semantically aligned routing prior. This highlights the importance of designing principled
 415 target distributions when shaping expert activation patterns in sparse MoE architectures.

416 4.4 VISUALIZATION AND ANALYSIS

417 **Analysis of Expert Allocation Patterns.** We visualize the average number of activated experts per
 418 MoE layer on DARE(Qwen3-1.7B) across eight benchmarks in Figure 3 to examine how DARE
 419 allocates computational resources in a task- and layer-adaptive manner. The results reveal that ex-
 420 pert activation varies significantly across both tasks and layers. More complex reasoning tasks such
 421 as ScienceQA and TextVQA elicit higher average top-k values, while perception-focused tasks like
 422 MME and POPE require fewer active experts. Moreover, expert usage trends higher in the deeper
 423 layers, which aligns with the hierarchical processing in Transformers where these later stages are
 424 responsible for more complex semantic and abstract reasoning (Geva et al., 2020), thus benefiting
 425 from greater specialized capacity. This dynamic allocation reflects DARE’s ability to recognize con-
 426 textual difficulty and modulate expert selection accordingly. Notably, the overall number of active
 427 experts remains well below the fixed Top-2 baseline, demonstrating that DARE achieves efficient
 428 computation without sacrificing performance. These findings highlight the model’s capacity to bal-
 429 ance flexibility and efficiency through fine-grained, difficulty-aware routing.

430 **Analysis of Expert Load Balance.** To evaluate the routing behavior of different dynamic MoE
 431 strategies, we visualize the expert activation frequencies for ReMoE, Top-P, and our proposed DARE
 432 in Figure 4. All three methods incorporate a standard load-balancing loss (Lepikhin et al., 2020) to



Figure 3: Average top-k activated experts of DARE on vision-language benchmarks. We report the average top-k expert activations per MoE layer using Qwen3-1.7B as the language model backbone, highlighting how the routing mechanism adapts to different input complexities across layers.

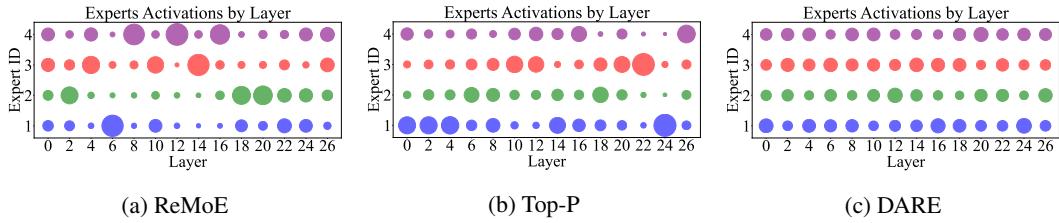


Figure 4: Expert activations by layer for three MoE configurations: (a) ReMoE, (b) Top-P, and (c) DARE. The x-axis represents the layer number, and the y-axis corresponds to the expert ID. The size of each circle reflects the activation strength of the corresponding expert at each layer.

encourage uniform expert utilization. The visualizations reveal a significant expert load imbalance in both ReMoE and Top-P, where a chronic over-reliance on a few hot experts indicates a tendency toward expert collapse (Wang et al., 2024a). This skewed utilization undermines the intended capacity expansion of MoE architectures and can degrade training stability and model generalization. In sharp contrast, DARE demonstrates a remarkably uniform distribution of expert activations, suggesting it successfully mitigates expert collapse. By replacing a static selection policy with a dynamic, difficulty aware allocation strategy, DARE prevents the model from defaulting to a small set of dominant experts, thereby promoting a more balanced and diverse utilization of the entire expert pool. This balanced routing is crucial for maintaining the scalability and efficiency of MoE models, ultimately enabling a more effective use of model capacity and leading to improved performance.

Analysis of Modality-Generalist Expert Behavior. To examine how experts process inputs from different modalities, we analyze the routing distributions for text and image tokens separately on the Qwen2-1.5B backbone, as shown in Figure 5. The results indicate that the expert activation patterns for text and image tokens are highly similar across all layers. This suggests that the model does not induce strong modality-specific specialization among experts. Instead, each expert exhibits the capacity to handle both textual and visual information, functioning as a modality-generalist. Such behavior is beneficial for multimodal tasks, as it supports more flexible and unified information processing. By promoting a shared expert pool rather than

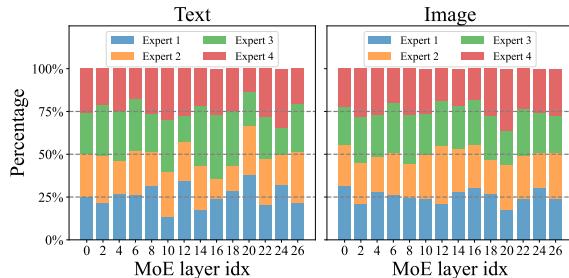


Figure 5: Distribution of modalities across different experts. Interrupted lines mean a perfectly balanced distribution of tokens.

486 segregated modality-specific pathways, DARE facilitates deeper cross-modal interaction and
 487 enables more effective reasoning over jointly represented visual and textual inputs.
 488

489 **Analysis of Inference efficiency.** We evaluate
 490 the inference efficiency of the pro-
 491 posed DARE against the MoE-LLaVA
 492 baseline, which adopts a standard top-2
 493 gating mechanism. The detailed results are
 494 provided in Table 7. In terms of memory
 495 consumption, DARE requires 7.09 GB,
 496 essentially matching MoE-LLaVA’s 7.10
 497 GB, demonstrating that the introduced dif-
 498 ficulty predictor adds negligible memory
 499 overhead. More importantly, DARE delivers clear computational advantages: it reduces inference
 500 FLOPs per token by 41.5 % (from 89.28 GFLOPs to 52.25 GFLOPs), which directly translates into
 501 a 27 % increase in throughput (75 vs. 59 tokens/s) and a 13 % reduction in wall-clock time per sam-
 502 ple (5.4 s vs. 6.2 s). These results confirm that DARE substantially accelerates MoE inference while
 503 maintaining the same memory footprint, underscoring its effectiveness and practical utility. Addi-
 504 tional detailed results of efficiency comparisons across various backbones are provided in Table 9.
 505

5 CONCLUSION

506 In this work, we present DARE, a novel routing strategy for Mixture-of-Experts models that ex-
 507 plicitly incorporates token-level difficulty into expert allocation. By introducing a lightweight dif-
 508 ficulty predictor and a threshold-based mechanism for dynamic expert selection, DARE enables
 509 fine-grained routing that better aligns computational resources with the intrinsic complexity of in-
 510 put tokens. Empirical results on vision-language tasks validate our approach, showing that DARE
 511 outperforms both static and existing dynamic routing baselines in performance and efficiency. Our
 512 findings underscore the importance of token difficulty modeling in expert selection, paving the way
 513 for more interpretable, resource-efficient, and scalable MoE architectures. Future work includes
 514 exploring alternative difficulty estimations and extend DARE to large-scale pre-training to further
 515 evaluate its scalability and effectiveness in language modeling tasks.
 516

517 REFERENCES

518 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
 519 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
 520 2025.

521 Hangbo Bao, Wenhui Wang, Li Dong, Qiang Liu, Owais Khan Mohammed, Kriti Aggarwal, Subho-
 522 jit Som, Songhao Piao, and Furu Wei. Vlmo: Unified vision-language pre-training with mixture-
 523 of-modality-experts. *Advances in neural information processing systems*, 35:32897–32912, 2022.

524 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
 525 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
 526 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

527 Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai, Zhijian Liu, Song Han, and Jiaya Jia. Longlora:
 528 Efficient fine-tuning of long-context large language models. *arXiv preprint arXiv:2309.12307*,
 529 2023.

530 Aidan Clark, Diego de Las Casas, Aurelia Guy, Arthur Mensch, Michela Paganini, Jordan Hoff-
 531 mann, Bogdan Damoc, Blake Hechtman, Trevor Cai, Sebastian Borgeaud, et al. Unified scaling
 532 laws for routed language models. In *International conference on machine learning*, pp. 4057–
 533 4086. PMLR, 2022.

534 Damai Dai, Chengqi Deng, Chenggang Zhao, RX Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding
 535 Zeng, Xingkai Yu, Yu Wu, et al. Deepseekmoe: Towards ultimate expert specialization in mixture-
 536 of-experts language models. *arXiv preprint arXiv:2401.06066*, 2024.

540 Dongyang Fan, Bettina Messmer, and Martin Jaggi. Towards an empirical understanding of moe
 541 design choices. *arXiv preprint arXiv:2402.13089*, 2024.

542

543 William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
 544 models with simple and efficient sparsity. *Journal of Machine Learning Research*, 23(120):1–39,
 545 2022.

546 Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are
 547 key-value memories. *arXiv preprint arXiv:2012.14913*, 2020.

548

549 Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making the v in vqa
 550 matter: Elevating the role of image understanding in visual question answering. In *Proceedings
 551 of the IEEE conference on computer vision and pattern recognition*, pp. 6904–6913, 2017.

552 Yongxin Guo, Zhenglin Cheng, Xiaoying Tang, Zhaopeng Tu, and Tao Lin. Dynamic mix-
 553 ture of experts: An auto-tuning approach for efficient transformer models. *arXiv preprint
 554 arXiv:2405.14297*, 2024.

555

556 Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Mingwei Chang. Retrieval augmented
 557 language model pre-training. In *International conference on machine learning*, pp. 3929–3938.
 558 PMLR, 2020.

559 Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). *arXiv preprint
 560 arXiv:1606.08415*, 2016.

561

562 Quzhe Huang, Zhenwei An, Nan Zhuang, Mingxu Tao, Chen Zhang, Yang Jin, Kun Xu, Liwei Chen,
 563 Songfang Huang, and Yansong Feng. Harder tasks need more experts: Dynamic routing in moe
 564 models. *arXiv preprint arXiv:2403.07652*, 2024.

565 Drew A Hudson and Christopher D Manning. Gqa: A new dataset for real-world visual reasoning
 566 and compositional question answering. In *Proceedings of the IEEE/CVF conference on computer
 567 vision and pattern recognition*, pp. 6700–6709, 2019.

568

569 Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris Bam-
 570 ford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
 571 Mixtral of experts. *arXiv preprint arXiv:2401.04088*, 2024.

572 Huiqiang Jiang, Qianhui Wu, Xufang Luo, Dongsheng Li, Chin-Yew Lin, Yuqing Yang, and Lili
 573 Qiu. Longllmngua: Accelerating and enhancing llms in long context scenarios via prompt com-
 574 pression. *arXiv preprint arXiv:2310.06839*, 2023.

575

576 Peng Jin, Bo Zhu, Li Yuan, and Shuicheng Yan. Moe++: Accelerating mixture-of-experts methods
 577 with zero-computation experts. *arXiv preprint arXiv:2410.07348*, 2024.

578

579 Nikhil Kandpal, Haikang Deng, Adam Roberts, Eric Wallace, and Colin Raffel. Large language
 580 models struggle to learn long-tail knowledge. In *International conference on machine learning*,
 581 pp. 15696–15707. PMLR, 2023.

582

583 Aran Komatsuzaki, Joan Puigcerver, James Lee-Thorp, Carlos Riquelme Ruiz, Basil Mustafa,
 584 Joshua Ainslie, Yi Tay, Mostafa Dehghani, and Neil Houlsby. Sparse upcycling: Training mixture-
 585 of-experts from dense checkpoints. *arXiv preprint arXiv:2212.05055*, 2022.

586

587 Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
 588 Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional
 589 computation and automatic sharding. *arXiv preprint arXiv:2006.16668*, 2020.

590

591 Mike Lewis, Shruti Bhosale, Tim Dettmers, Naman Goyal, and Luke Zettlemoyer. Base layers:
 592 Simplifying training of large, sparse models. In *International Conference on Machine Learning*,
 593 pp. 6265–6274. PMLR, 2021.

594

595 Bo Li, Yifei Shen, Jingkang Yang, Yezhen Wang, Jiawei Ren, Tong Che, Jun Zhang, and Ziwei Liu.
 596 Sparse mixture-of-experts are domain generalizable learners. *arXiv preprint arXiv:2206.04046*,
 597 2022.

594 Bo Li, Yuanhan Zhang, Liangyu Chen, Jinghao Wang, Fanyi Pu, Jingkang Yang, Chunyuan
 595 Li, and Ziwei Liu. Mimic-it: Multi-modal in-context instruction tuning. *arXiv preprint*
 596 *arXiv:2306.05425*, 2023a.

597 Bo Li, Yuanhan Zhang, Liangyu Chen, Jinghao Wang, Fanyi Pu, Joshua Adrian Cahyono, Jingkang
 598 Yang, Chunyuan Li, and Ziwei Liu. Otter: A multi-modal model with in-context instruction
 599 tuning. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2025a.

600 601 Jiachen Li, Xinyao Wang, Sijie Zhu, Chia-Wen Kuo, Lu Xu, Fan Chen, Jitesh Jain, Humphrey Shi,
 602 and Longyin Wen. Cumo: Scaling multimodal llm with co-upcycled mixture-of-experts. *Ad-*
 603 *vances in Neural Information Processing Systems*, 37:131224–131246, 2024.

604 605 Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image pre-
 606 training with frozen image encoders and large language models. In *International conference on*
 607 *machine learning*, pp. 19730–19742. PMLR, 2023b.

608 609 Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating
 610 object hallucination in large vision-language models. *arXiv preprint arXiv:2305.10355*, 2023c.

611 612 Yunxin Li, Shenyuan Jiang, Baotian Hu, Longyue Wang, Wanqi Zhong, Wenhan Luo, Lin Ma, and
 613 Min Zhang. Uni-moe: Scaling unified multimodal llms with mixture of experts. *IEEE Transac-*
 614 *tions on Pattern Analysis and Machine Intelligence*, 2025b.

615 616 Bin Lin, Zhenyu Tang, Yang Ye, Jiaxi Cui, Bin Zhu, Peng Jin, Jinfa Huang, Junwu Zhang, Yatian
 617 Pang, Munan Ning, et al. Moe-llava: Mixture of experts for large vision-language models. *arXiv*
 618 *preprint arXiv:2401.15947*, 2024.

619 620 Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi Dengr, Chong
 621 Ruan, Damai Dai, Daya Guo, et al. Deepseek-v2: A strong, economical, and efficient mixture-of-
 622 experts language model. *arXiv preprint arXiv:2405.04434*, 2024a.

623 624 Fuxiao Liu, Kevin Lin, Linjie Li, Jianfeng Wang, Yaser Yacoob, and Lijuan Wang. Aligning large
 625 multi-modal model with robust instruction tuning. *CoRR*, 2023a.

626 627 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
 628 tuning. *arXiv preprint arXiv:2310.03744*, 2023b.

629 630 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances*
 631 *in neural information processing systems*, 36:34892–34916, 2023c.

632 633 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
 634 tuning. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
 635 pp. 26296–26306, 2024b.

636 637 Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan, Jiaqi
 638 Wang, Conghui He, Ziwei Liu, et al. Mmbench: Is your multi-modal model an all-around player?
 639 In *European conference on computer vision*, pp. 216–233. Springer, 2024c.

640 641 Pan Lu, Swaroop Mishra, Tanglin Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord,
 642 Peter Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought chains for
 643 science question answering. *Advances in Neural Information Processing Systems*, 35:2507–2521,
 644 2022.

645 646 Zihan Qiu, Zeyu Huang, Bo Zheng, Kaiyue Wen, Zekun Wang, Rui Men, Ivan Titov, Dayiheng Liu,
 647 Jingren Zhou, and Junyang Lin. Demons in the detail: On implementing load balancing loss for
 648 training specialized mixture-of-expert models. *arXiv preprint arXiv:2501.11873*, 2025.

649 650 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 651 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 652 models from natural language supervision. In *International conference on machine learning*, pp.
 653 8748–8763. PmLR, 2021.

654 655 Anna Rogers, Olga Kovaleva, and Anna Rumshisky. A primer in bertology: What we know about
 656 how bert works. *Transactions of the association for computational linguistics*, 8:842–866, 2021.

648 Timo Schick and Hinrich Schütze. Exploiting cloze questions for few shot text classification and
 649 natural language inference. *arXiv preprint arXiv:2001.07676*, 2020.

650

651 Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
 652 and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
 653 *arXiv preprint arXiv:1701.06538*, 2017.

654

655 Yikang Shen, Zheyu Zhang, Tianyou Cao, Shawn Tan, Zhenfang Chen, and Chuang Gan. Module-
 656 former: Modularity emerges from mixture-of-experts. *arXiv preprint arXiv:2306.04640*, 2023.

657

658 Fangxun Shu, Yue Liao, Le Zhuo, Chenning Xu, Lei Zhang, Guanghao Zhang, Haonan Shi, Long
 659 Chen, Tao Zhong, Wanggui He, et al. Llava-mod: Making llava tiny via moe knowledge distilla-
 660 tion. *arXiv preprint arXiv:2408.15881*, 2024.

661

662 Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh,
 663 and Marcus Rohrbach. Towards vqa models that can read. In *Proceedings of the IEEE/CVF
 conference on computer vision and pattern recognition*, pp. 8317–8326, 2019.

664

665 Qwen Team. Qwen2 technical report. *arXiv preprint arXiv:2407.10671*, 2, 2024.

666

667 Junke Wang, Lingchen Meng, Zejia Weng, Bo He, Zuxuan Wu, and Yu-Gang Jiang. To see is to
 668 believe: Prompting gpt-4v for better visual instruction tuning. *arXiv preprint arXiv:2311.07574*,
 669 2023.

670

671 Lean Wang, Huazuo Gao, Chenggang Zhao, Xu Sun, and Damai Dai. Auxiliary-loss-free load
 672 balancing strategy for mixture-of-experts. *arXiv preprint arXiv:2408.15664*, 2024a.

673

674 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 675 Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the
 676 world at any resolution. *arXiv preprint arXiv:2409.12191*, 2024b.

677

678 Ziteng Wang, Jun Zhu, and Jianfei Chen. Remoe: Fully differentiable mixture-of-experts with relu
 679 routing. *arXiv preprint arXiv:2412.14711*, 2024c.

680

681 Tianwen Wei, Bo Zhu, Liang Zhao, Cheng Cheng, Biye Li, Weiwei Lü, Peng Cheng, Jianhao Zhang,
 682 Xiaoyu Zhang, Liang Zeng, et al. Skywork-moe: A deep dive into training techniques for mixture-
 683 of-experts language models. *arXiv preprint arXiv:2406.06563*, 2024.

684

685 Chenwei Wu, Zitao Shuai, Zhengxu Tang, Luning Wang, and Liyue Shen. Dynamic modeling of
 686 patients, modalities and tasks via multi-modal multi-task mixture of experts. In *The Thirteenth
 International Conference on Learning Representations*, 2025.

687

688 Jialin Wu, Xia Hu, Yaqing Wang, Bo Pang, and Radu Soricut. Omni-smola: Boosting generalist
 689 multimodal models with soft mixture of low-rank experts. In *Proceedings of the IEEE/CVF
 Conference on Computer Vision and Pattern Recognition*, pp. 14205–14215, 2024a.

690

691 Zhiyu Wu, Xiaokang Chen, Zizheng Pan, Xingchao Liu, Wen Liu, Damai Dai, Huazuo Gao, Yiyang
 692 Ma, Chengyue Wu, Bingxuan Wang, et al. Deepseek-vl2: Mixture-of-experts vision-language
 693 models for advanced multimodal understanding. *arXiv preprint arXiv:2412.10302*, 2024b.

694

695 Fuzhao Xue, Zian Zheng, Yao Fu, Jinjie Ni, Zangwei Zheng, Wangchunshu Zhou, and Yang
 696 You. Openmoe: An early effort on open mixture-of-experts language models. *arXiv preprint
 arXiv:2402.01739*, 2024.

697

698 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
 699 Chang Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint
 arXiv:2505.09388*, 2025.

700

701 Shukang Yin, Chaoyou Fu, Sirui Zhao, Ke Li, Xing Sun, Tong Xu, and Enhong Chen. A survey on
 702 multimodal large language models. *National Science Review*, 11(12):nwae403, 2024.

703

704 Weihao Yu, Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin Lin, Zicheng Liu, Xinchao Wang,
 705 and Lijuan Wang. Mm-vet: Evaluating large multimodal models for integrated capabilities. *arXiv
 preprint arXiv:2308.02490*, 2023.

702 Tongtian Yue, Longteng Guo, Jie Cheng, Xuange Gao, Hua Huang, and Jing Liu. Ada-k routing:
703 Boosting the efficiency of moe-based llms. In *The Thirteenth International Conference on Learn-*
704 *ing Representations*, 2024.

705
706 Zihao Zeng, Yibo Miao, Hongcheng Gao, Hao Zhang, and Zhijie Deng. Adamoe: Token-
707 adaptive routing with null experts for mixture-of-experts language models. *arXiv preprint*
708 *arXiv:2406.13233*, 2024.

709 Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
710 image pre-training. In *Proceedings of the IEEE/CVF international conference on computer vision*,
711 pp. 11975–11986, 2023.

712 Bo Zhao, Boya Wu, Muyang He, and Tiejun Huang. Svit: Scaling up visual instruction tuning. *arXiv*
713 *preprint arXiv:2307.04087*, 2023.

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 APPENDIX
757758 A ETHICS STATEMENT
759760 Our study does not involve human or animal subjects, personal or sensitive data, or any procedures
761 that could raise privacy, security, or legal concerns. All datasets used are publicly available and
762 widely adopted in the research community. We have carefully checked to avoid introducing discrim-
763 ination, bias, or other harmful effects in our methodology and applications.
764765 B USE OF LARGE LANGUAGE MODELS
766768 Large language models (e.g., ChatGPT) were used exclusively to polish the manuscript, including
769 grammar correction, clarity improvements, and overall readability. Their role was limited to lan-
770 guage editing; they did not participate in the conception of the research, experimental design, data
771 analysis, or interpretation of results. All suggested edits were reviewed and incorporated at the dis-
772 cretion of the authors.
773774

- **Grammar and mechanics:** correcting grammar, punctuation, and typographical errors.
- **Clarity and concision:** rewriting sentences to improve clarity, enhancing paragraph flow, and
775 reducing redundancy.
- **Captions and abstracts:** refining figure and table captions and polishing the abstract for clarity
776 and readability.
- **Formatting suggestions:** minor LaTeX and presentation adjustments to improve overall read-
777 ability and layout.

778783 C REPRODUCIBILITY
784785 We provide all implementation details necessary to reproduce our results. The main paper describes
786 the model architecture, training objectives, and evaluation protocols in detail, while the Appendix D
787 presents complete hyperparameter settings and other experimental configurations to facilitate faith-
788 ful replication.
789790 D EXPERIMENTS SETTING
791792 D.1 IMPLEMENTATION DETAILS
793794 Our method is built upon the LLaVA framework (Liu et al., 2024b; 2023c), wherein 50% of the
795 feed-forward layers are replaced by Mixture-of-Experts (MoE) layers in an alternating configuration.
796 We apply DARE exclusively to the MoE layers where visual and textual tokens have already been
797 aligned, thereby enabling dynamic, difficulty-aware expert selection. For different backbone models,
798 the specific layers where DARE is applied are as follows: layers 2 to 26 for Qwen2 (Team, 2024);
799 layers 10 to 22 for StableLM; and all MoE layers for Qwen3 (Yang et al., 2025).
800801 The hyperparameters for DARE are set as follows: $\alpha = 1$ and $\beta = 0.01$. For the token difficulty
802 distribution Π , we adopt model-specific priors: for Qwen2-1.5B, $\pi_1 = 0.6$, $\pi_2 = 0.3$, $\pi_3 = 0.09$,
803 and $\pi_4 = 0.01$; for StableLM-1.6B, $\pi_1 = 0.4$, $\pi_2 = 0.3$, $\pi_3 = 0.2$, and $\pi_4 = 0.1$; and for Qwen3-
804 1.7B, $\pi_1 = 0.5$, $\pi_2 = 0.3$, $\pi_3 = 0.15$, and $\pi_4 = 0.05$. We set $\tau_{1,\text{global}}^{(0)} = 0$, $\tau_{2,\text{global}}^{(0)} = 1$, $\tau_{3,\text{global}}^{(0)} = 2$.
805806 For visual encoding, we adopt CLIP-336 (Radford et al., 2021) to maintain consistency with the
807 strongest baseline MoE-LLaVA (Lin et al., 2024) in the 2B parameter regime. For Qwen2-1.5B
808 and Qwen3-1.7B, we employ SigLIP-so-384 (Zhai et al., 2023) as the vision encoder to further
809 exploit the benefits of our approach. The visual encoder is connected to the language model via a
lightweight projector consisting of two linear layers separated by a GELU activation (Hendrycks &
Gimpel, 2016). All other training configurations are shown in Table 8.
810

810
 811 **Difficulty Predictor.** The difficulty predictor is a lightweight feed-forward network that maps each
 812 token’s hidden representation to a non-negative difficulty score. Given hidden states $h \in \mathbb{R}^{B \times L \times H}$,
 813 the input is first normalized by an RMSNorm layer. The normalized vector is then projected from
 814 dimension H to a hidden dimension d (we choose $d = 256$) through a fully connected layer, fol-
 815 lowed by a SiLU activation and a dropout layer with rate 0.1 to mitigate overfitting. A second linear
 816 layer reduces the hidden dimension to 1, and a final Softplus activation guarantees a positive output.
 817

$$\hat{d} = \text{Softplus}(W_2 \text{ Dropout}[\text{SiLU}(W_1 \text{ RMSNorm}(h))]), \quad (9)$$

818 Here, $W_1 \in \mathbb{R}^{d \times H}$ and $W_2 \in \mathbb{R}^{1 \times d}$. The resulting $\hat{d} \in \mathbb{R}^{B \times L}$ provides a non-negative difficulty
 819 score for each token.
 820

821 Table 8: Detailed training hyper-parameters and configuration.
 822

824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863	Config	Models		
		824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863	824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863	824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
Expert Numbers		4		
Deepspeed		Zero2		
Data		LLaVA-Finetuning		
Image resolution		336 × 336	384 × 384	384 × 384
Image encoder		CLIP-Large/336	SigLIP-so-384	SigLIP-so-384
Image projector		Linear layers with GeLU		
Epoch		1		
Learning rate of backbone		2e-5		
Learning rate of difficulty predictor		1e-4		
Learning rate schedule		Cosine		
Weight decay		0.0		
Batch size per GPU	2	2		1
Precision		bf16		

841 D.2 TRAINING PROTOCOL

842 Our training strategy follows a three-stage pipeline inspired by MoE-LLaVA, with each stage tai-
 843 lored to progressively enhance multi-modal capabilities:
 844

845 D.2.1 STAGE I: VISION-LANGUAGE ALIGNMENT.

846 This stage aims to adapt visual features into the language model’s embedding space to establish
 847 multi-modal understanding. We utilize the LLaVA 1.5-558k (Liu et al., 2023b) dataset to train a
 848 projection layer that maps CLIP and SigLIP features into the token space of the LLM. Here, image
 849 patches are treated as pseudo-text tokens. During this stage, all parameters are frozen except for the
 850 projection layer, and the model retains a fully dense architecture.
 851

852 D.2.2 STAGE II: DENSE MODEL BOOTSTRAPPING.

853 We further train the dense model using a curated hybrid dataset composed of SViT (Zhao et al.,
 854 2023), LVIS (Wang et al., 2023), LRV (Liu et al., 2023a), and MIMIC-IT (LA split only) (Li et al.,
 855 2023a). This phase emphasizes learning from complex, instruction-based tasks involving image rea-
 856 soning and textual comprehension. The vision encoder remains frozen to preserve the integrity of
 857 visual representations, while the language model and projection layers are fine-tuned.
 858

859 D.2.3 STAGE III: SPARSE EXPERT TRAINING.

860 In the final stage, we convert the dense model into the proposed DARE architecture by replacing
 861 selected FFNs with MoE layers. Each expert is initialized by duplicating the corresponding dense
 862 FFN weights. The entire model is then fine-tuned using the LLaVA-mix-665k dataset (Liu et al.,
 863

864 2023b), following the same procedure as MoE-LLaVA, to effectively train the sparse expert routing
 865 mechanism.
 866

867 **D.3 EVALUATION & BASELINE**
 868

869 **D.3.1 EVALUATION.**
 870

871 Our evaluation framework spans multiple benchmarks to assess comprehensive multimodal capa-
 872 bilities. We employ MME (Yin et al., 2024) and MMB (Liu et al., 2024c), which contain diverse
 873 sub-tasks for measuring visual understanding and reasoning proficiency. To thoroughly evaluate
 874 question-answering performance across different domains, we utilize several specialized VQA
 875 datasets: VQA-v2 (Goyal et al., 2017) and GQA (Hudson & Manning, 2019) for testing everyday
 876 visual comprehension and relationship inference; TextVQA (Singh et al., 2019) for assessing the
 877 model’s ability to interpret textual elements embedded within images; and ScienceQA (Lu et al.,
 878 2022) for evaluating scientific knowledge integration. (Li et al., 2023c) for evaluating object
 879 hallucination.

880 Additionally, to quantify the evenness of token-expert allocation in MoE models, we introduce the
 881 average k values (Avg K) metric which measures the dispersion of expert utilization relative to mean
 882 workload. For a batch of input sequences, we compute the average count of experts that each token
 883 activates. we track how many experts are allocate to each token, resulting in a allocation vector
 884 $t = [t_1, t_2, \dots, t_N]$, where t_i represents the number of experts allocated to token i and N is the total
 885 number of tokens. The average k values is then calculated as:

$$886 \text{Avg K} = \text{mean}(t) \quad (10)$$

887 **D.3.2 BASELINES.**
 888

889 In this section, we provide the reproduction details for our selected baselines. All reproduced method
 890 use Qwen2 1.5B as backbone and SigLIP-so-384 as vision encoder. All reproduced method follow
 891 the training pipeline detailed in Section: Training Protocol.

892 **Top-p (Huang et al., 2024):** We reproduce the Top-p routing strategy based on the original descrip-
 893 tion. Although it was originally proposed for language models with 16 experts, our setup uses only
 894 4 experts. Directly applying the original settings in this smaller-expert regime leads to a collapse in
 895 expert selection, where no experts are activated. To address this, we set the dynamic loss coefficient
 896 to 3×10^{-7} and adjust the top-p threshold to 0.9999, ensuring that a sufficient number of experts
 897 are selected throughout training.

898 **DynMoE (Guo et al., 2024):** We reproduce DynMoE based on the official codebase provided by
 899 the authors. All configurations and training protocols remain unchanged. The only modification we
 900 make is implementing the necessary code to enable compatibility with the Qwen2 model.

902 **MoE++ (Jin et al., 2024):** We follow the original implementation of MoE++ without any modifica-
 903 tions. The model uses one Zero Expert, one Copy Expert, and two Constant Experts, consistent with
 904 the configuration described in the original paper.

905 **ReMoE (Wang et al., 2024c):** We reproduce ReMoE based on the original configuration and
 906 official codebase. However, directly applying the original settings in our experimental setup leads
 907 to a collapse in expert selection, where no experts are activated. To address this issue, we follow the
 908 authors’ implementation and set the `top_k` parameter to 500, which stabilizes the expert routing
 909 during training.

910 **E LIMITATIONS AND FUTURE WORK**
 911

912 **E.1 LIMITATIONS**
 913

915 **Dependence on a Predefined Target Distribution Π .** A primary limitation of DARE lies in the
 916 reliance of its online threshold adaptation mechanism on a predefined target expert distribution, Π .
 917 In our current implementation, Π is treated as a discrete, model-specific hyperparameter that must
 918 be manually tuned. Although this setting works well in our experiments, it introduces additional

918 effort and potential sensitivity to the chosen value. The lack of a continuous, learnable function for
 919 Π may require extra tuning when adapting DARE to new architectures or tasks.
 920

921 **Scalability to Large-Scale Pre-training.** Another limitation concerns scalability. Due to compu-
 922 tational constraints, we evaluated DARE primarily in fine-tuning scenarios with models up to 1.7B
 923 parameters. We have not yet explored its behavior when integrated into large-scale pre-training from
 924 scratch. Consequently, its training stability, convergence dynamics, and ultimate impact on model
 925 capabilities in such pre-training settings remain unverified.
 926

926 E.2 FUTURE WORK 927

928 To address these issues, we plan three complementary research directions. First, to reduce the need
 929 for manual tuning of Π , we will explore methods to automatically learn or adapt this distribution.
 930 Possible approaches include modeling Π with continuous parametric forms to capture the long-
 931 tailed nature of token difficulty, or designing an adaptive mechanism that adjusts Π based on training
 932 signals such as loss trends or gradient statistics. Such techniques would enhance DARE’s autonomy
 933 and generalization across tasks and architectures.
 934

935 Second, we will extend DARE to large-scale pre-training. As resources permit, we aim to integrate
 936 DARE into the pre-training of substantially larger MoE models to systematically evaluate its scal-
 937 ability, stability, and efficiency in realistic deployment scenarios.
 938

939 Finally, we plan to explore alternative difficulty proxies. While log-perplexity proved effective in this
 940 study, a single metric may not fully capture token-level difficulty. Future work will investigate hybrid
 941 proxies that incorporate measures of model uncertainty or token-level gradient norms, enabling a
 942 more comprehensive and robust difficulty estimation.
 943

942 F ADDITIONAL EXPERIMENTAL AND VISUALIZATION RESULTS 943

944 F.1 EFFICIENCY EVALUATION 945

946 As shown in Table 9, we evaluate the efficiency of DARE on three different backbones. The re-
 947 sults indicate that DARE maintains a memory footprint comparable to the MoE-LLaVA baseline,
 948 introducing negligible computational overhead. In contrast, it consistently delivers higher through-
 949 put and lower latency across all backbones by markedly reducing FLOPs and MACs, underscoring
 950 its superior inference efficiency.
 951

952 Table 9: Efficiency comparison of DARE versus MoE-LLaVA on three backbones. MoE-LLaVA
 953 results are obtained with DeepSpeed’s top-2 gating. Symbols \downarrow and \uparrow indicate that lower or higher
 954 values are better, respectively. Reported numbers are the mean of five independent runs.
 955

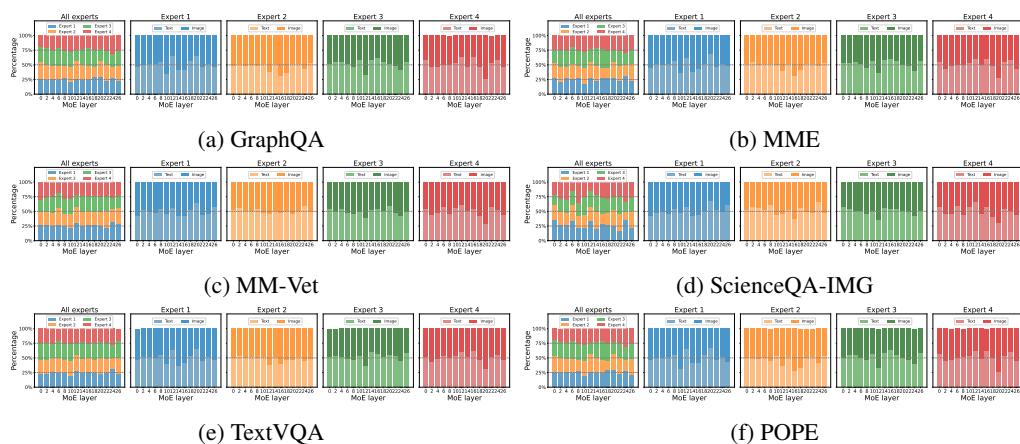
956 Backbone	957 Model	958 Memory \downarrow (GB)	959 Inference FLOPs \downarrow (GFLOPs/token)	960 Inference MACs \downarrow (GMACs/token)	961 Throughput \uparrow (token / second)	962 Wall-clock Time \downarrow (second / sample)
957 Qwen2-1.5B	958 MoE-LLaVA	959 7.10	960 89.28	961 44.64	962 59	963 6.2
	DARE(Ours)	7.09	52.25	26.12	75	5.4
957 Stablelm-1.6B	958 MoE-LLaVA	959 6.46	960 53.20	961 26.59	962 82	963 2.8
	DARE(Ours)	6.48	42.96	21.48	97 97	2.5
957 Qwen3-1.7B	958 MoE-LLaVA	959 7.16	960 71.36	961 35.68	962 70	963 6.8
	DARE(Ours)	7.15	52.26	26.13	88	6.2

963 F.2 ROUTING DISTRIBUTIONS 964

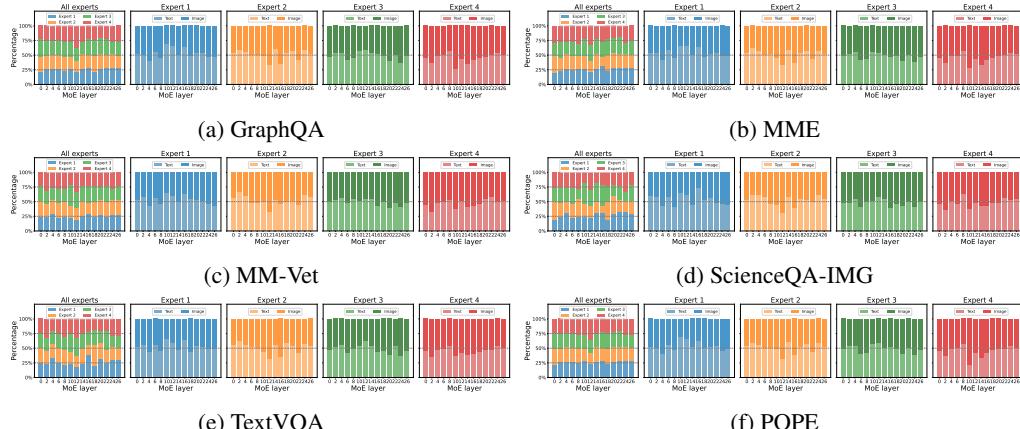
965 In this section, we present the routing distributions of our proposed method DARE, applied to three
 966 backbone models: Qwen2-1.5B, Qwen3-1.7B, and StableLM-1.6B. The evaluation is conducted
 967 across six benchmarks: MME (Yin et al., 2024), GQA (Hudson & Manning, 2019), TextVQA (Singh
 968 et al., 2019), MM-Vet (Yu et al., 2023), ScienceQA (Lu et al., 2022), and POPE (Li et al., 2023c).
 969 As illustrated in Figure 6,7,9 and 10, both Qwen2 and Qwen3 exhibit remarkably consistent and
 970 well-balanced expert utilization across layers, indicating that DARE effectively enforces strong load
 971 balancing. Moreover, this equilibrium is preserved across both image and text modalities, suggesting
 972

972 that DARE induces modality-agnostic routing behavior without relying on explicit modality-aware
 973 components.
 974

975 As shown in Figure 8 and 11, the routing distribution on StableLM-1.6B also demonstrates over-
 976 all balance in expert load. However, a closer inspection reveals modality-dependent specialization:
 977 Experts 1 and 2 are predominantly selected for image inputs, while Experts 3 and 4 show a clear
 978 preference for textual inputs. Interestingly, this emergent specialization occurs despite using a shared
 979 and unified routing mechanism, and may reflect inductive biases intrinsic to the StableLM architec-
 980 ture or its pretraining data. Importantly, this form of specialization does not compromise global
 981 load balance or lead to expert collapse, but instead represents a structured divergence that remains
 982 within the bounds of efficient expert allocation. These findings highlight DARE’s robustness across
 983 diverse model architectures, as well as its capacity to adaptively elicit either generalized or modality-
 984 sensitive expert behaviors depending on the underlying backbone.
 985



999 Figure 6: Distribution of expert loadings and preferences on DARE (Qwen2-1.5B). Expert utilization
 1000 remains well balanced across modalities and layers, indicating stable and uniform routing.
 1001



1017 Figure 7: Distribution of expert loadings and preferences on DARE (Qwen3-1.7B). Expert utilization
 1018 remains well balanced across modalities and layers, indicating stable and uniform routing.
 1019

1021 F.3 EXPERT SIMILARITY MATRIX ACROSS LAYERS

1023 As shown in Figure 12, 13 and 14, to examine the diversity of experts, we compute a layer-wise expert
 1024 similarity matrix for DARE across multiple model architectures, including Qwen2-1.5B, Qwen3-
 1025 1.7B, and StableLM-1.6B. For each layer, we record the cosine similarity between every pair of
 experts at test time. Across all three models, the inter-expert cosine similarities remain consistently

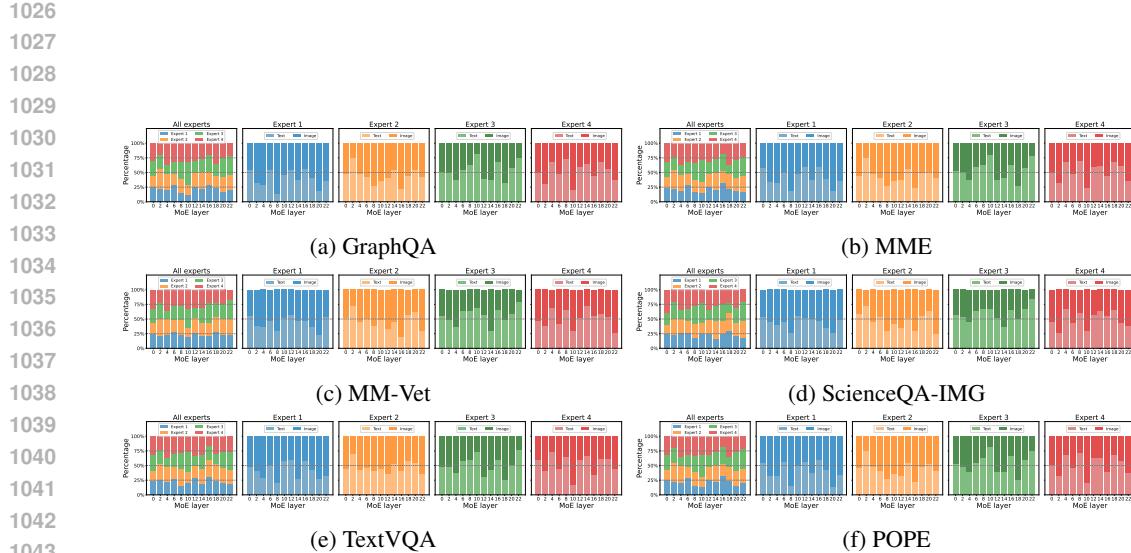


Figure 8: Distribution of expert loadings and preferences on DARE(Stablelm-1.6B). Expert utilization remains well balanced across modalities and layers, indicating stable and uniform routing.

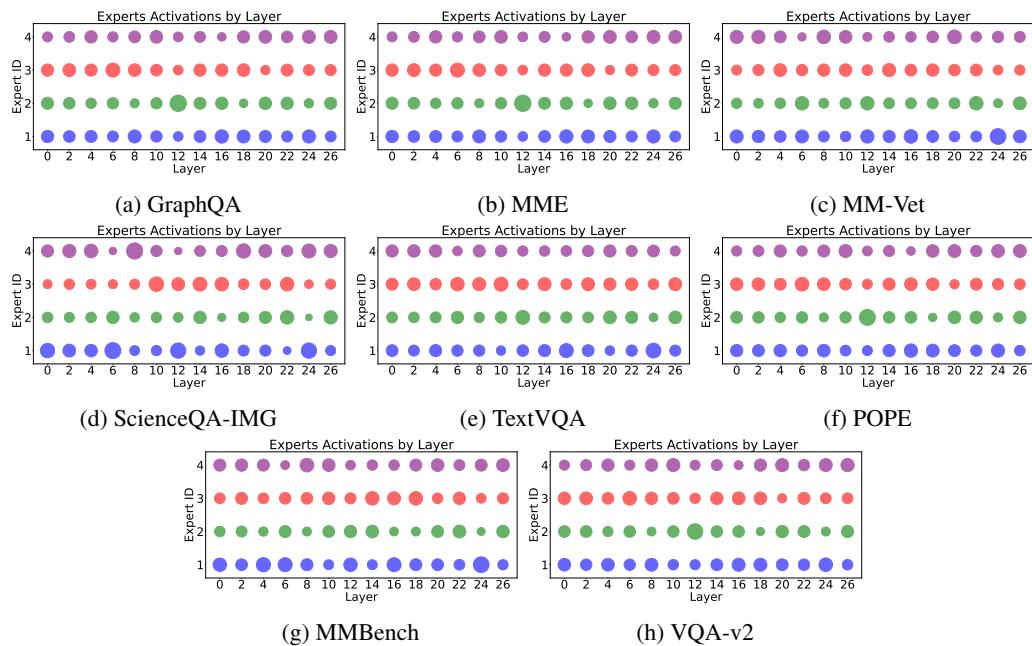
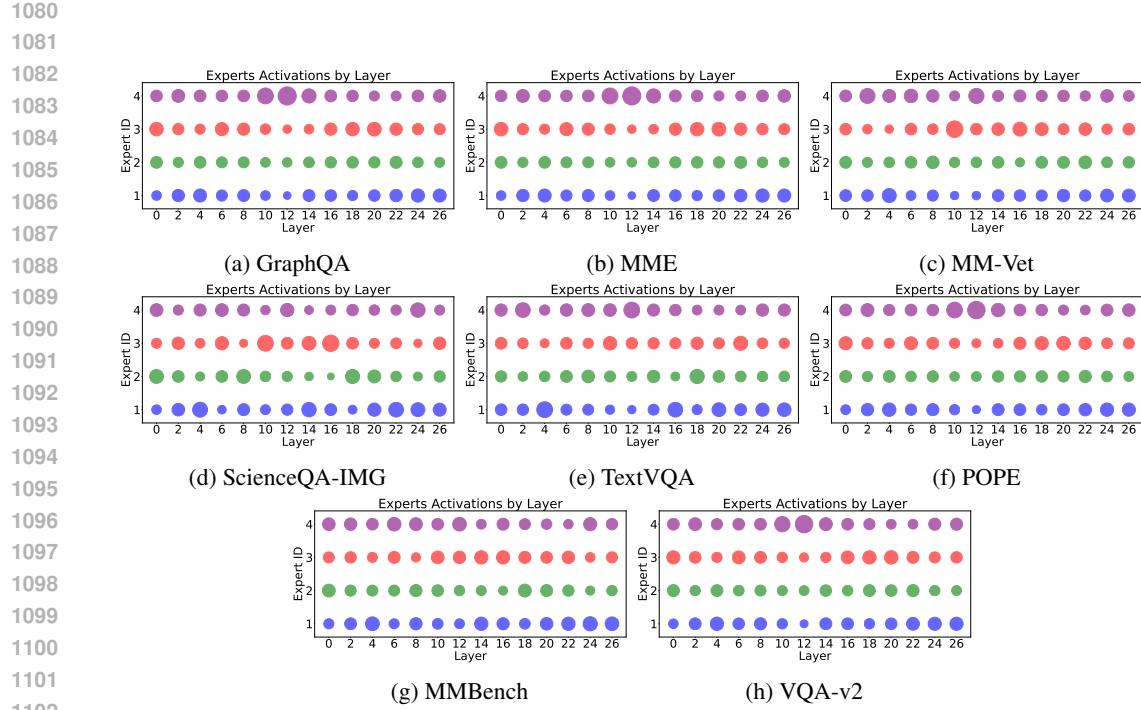
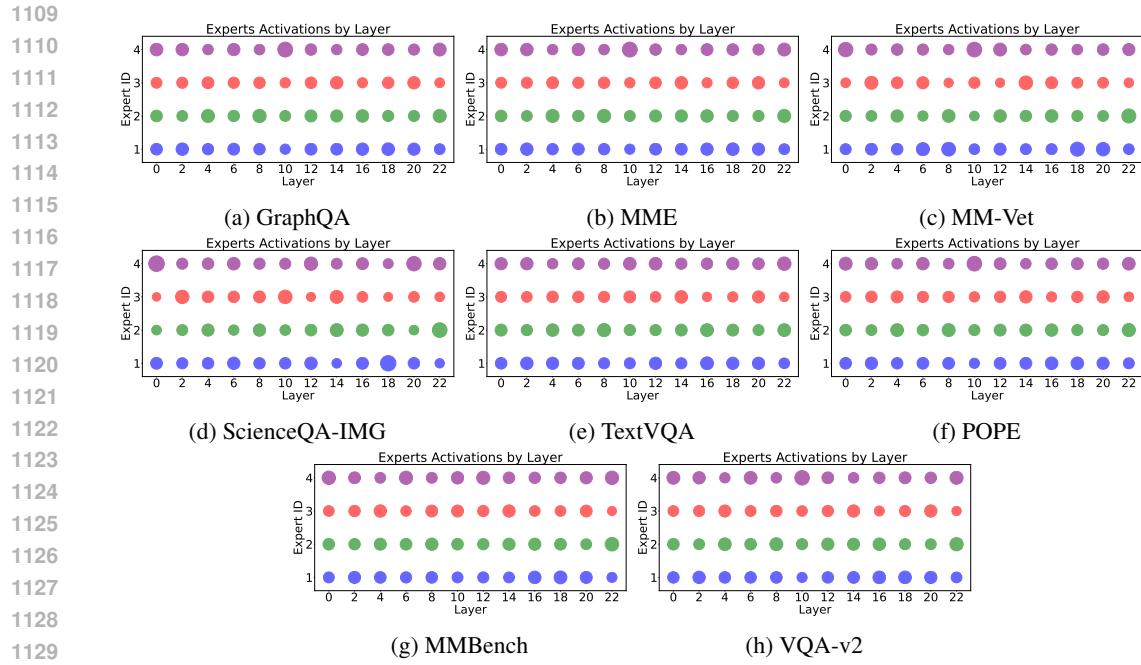


Figure 9: Layer-wise expert activations on DARE (Qwen2-1.5B). Bubble sizes are nearly uniform across layers, indicating balanced expert utilization.



1103 Figure 10: Layer-wise expert activations on DARE (Qwen3-1.7B). Bubble sizes are nearly uniform
1104 across layers, indicating balanced expert utilization.



1130 Figure 11: Layer-wise expert activations on DARE(Stablelm-1.6B). Bubble sizes are nearly uniform
1131 across layers, indicating balanced expert utilization.

close to zero, indicating that the experts learn highly distinct and complementary representations rather than collapsing to redundant behaviors. This observation confirms that the routing mechanism encourages specialization and maintains diversity of expertise throughout the network.

	Layer 0				Layer 2				Layer 4				Layer 6				Layer 8							
	Expert 1	Expert 2	Expert 3	Expert 4	Expert 1	Expert 2	Expert 3	Expert 4	Expert 1	Expert 2	Expert 3	Expert 4	Expert 1	Expert 2	Expert 3	Expert 4	Expert 1	Expert 2	Expert 3	Expert 4				
Expert 1	1.000	-0.018	0.020	0.047	Expert 1	1.000	0.013	0.022	-0.017	Expert 1	1.000	0.058	0.030	0.009	Expert 1	1.000	-0.020	-0.001	0.030	Expert 1	1.000	0.020	0.004	0.027
Expert 2	-0.018	1.000	0.053	-0.006	Expert 2	0.013	1.000	-0.003	-0.011	Expert 2	0.058	1.000	0.065	0.009	Expert 2	-0.020	1.000	-0.003	-0.004	Expert 2	-0.020	1.000	0.038	-0.045
Expert 3	0.020	0.051	1.000	0.005	Expert 3	0.022	-0.003	1.000	-0.031	Expert 3	0.030	0.065	1.000	0.013	Expert 3	-0.001	-0.003	1.000	0.028	Expert 3	0.004	0.038	1.000	0.012
Expert 4	-0.047	-0.006	0.005	1.000	Expert 4	-0.017	-0.011	-0.031	1.000	Expert 4	0.009	0.009	0.013	1.000	Expert 4	-0.030	-0.004	0.028	1.000	Expert 4	0.027	-0.045	0.012	1.000
	Expert 1	Expert 2	Expert 3	Expert 4		Expert 1	Expert 2	Expert 3	Expert 4		Expert 1	Expert 2	Expert 3	Expert 4		Expert 1	Expert 2	Expert 3	Expert 4		Expert 1	Expert 2	Expert 3	Expert 4
	Layer 10				Layer 12				Layer 14				Layer 16				Layer 18							
Expert 1	1.000	0.003	0.004	0.008	Expert 1	1.000	-0.008	0.017	0.022	Expert 1	1.000	-0.005	-0.010	0.015	Expert 1	1.000	-0.014	-0.009	0.026	Expert 1	1.000	-0.020	0.037	0.045
Expert 2	-0.003	1.000	0.019	-0.030	Expert 2	-0.008	1.000	-0.007	-0.025	Expert 2	-0.005	1.000	0.006	-0.016	Expert 2	-0.014	1.000	0.039	-0.024	Expert 2	-0.020	1.000	-0.007	0.024
Expert 3	0.004	0.015	1.000	0.065	Expert 3	0.017	-0.007	1.000	0.020	Expert 3	-0.010	0.006	1.000	0.008	Expert 3	-0.009	0.039	1.000	0.021	Expert 3	0.037	-0.007	1.000	0.057
Expert 4	-0.008	-0.030	0.065	1.000	Expert 4	0.022	-0.025	0.020	1.000	Expert 4	0.015	-0.016	0.008	1.000	Expert 4	0.026	-0.024	0.021	1.000	Expert 4	0.045	0.024	0.057	1.000
	Expert 1	Expert 2	Expert 3	Expert 4		Expert 1	Expert 2	Expert 3	Expert 4		Expert 1	Expert 2	Expert 3	Expert 4		Expert 1	Expert 2	Expert 3	Expert 4		Expert 1	Expert 2	Expert 3	Expert 4
	Layer 20				Layer 22				Layer 24				Layer 26											
Expert 1	1.000	0.050	0.026	0.042	Expert 1	1.000	0.073	0.008	0.014	Expert 1	1.000	-0.019	0.058	0.050	Expert 1	1.000	0.073	-0.023	0.050					
Expert 2	0.050	1.000	-0.015	0.037	Expert 2	0.073	1.000	-0.017	0.036	Expert 2	-0.019	1.000	0.062	0.025	Expert 2	0.073	1.000	0.074	-0.002					
Expert 3	0.026	-0.015	1.000	0.031	Expert 3	-0.008	-0.017	1.000	-0.005	Expert 3	0.058	0.062	1.000	0.007	Expert 3	-0.023	0.074	1.000	0.043					
Expert 4	0.042	0.037	0.031	1.000	Expert 4	0.014	0.036	-0.005	1.000	Expert 4	0.050	0.025	0.007	1.000	Expert 4	0.050	-0.002	0.043	1.000					
	Expert 1	Expert 2	Expert 3	Expert 4		Expert 1	Expert 2	Expert 3	Expert 4		Expert 1	Expert 2	Expert 3	Expert 4		Expert 1	Expert 2	Expert 3	Expert 4		Expert 1	Expert 2	Expert 3	Expert 4

Figure 12: Layer-wise expert similarity matrix on DARE(Qwen2-1.5B). Cosine similarities between experts are measured at test time for each layer. Across all layers, inter-expert similarities remain near zero, indicating that the experts learn largely distinct representations

	Layer 0				Layer 2				Layer 4				Layer 6				Layer 8							
	Expert 1	Expert 2	Expert 3	Expert 4	Expert 1	Expert 2	Expert 3	Expert 4	Expert 1	Expert 2	Expert 3	Expert 4	Expert 1	Expert 2	Expert 3	Expert 4	Expert 1	Expert 2	Expert 3	Expert 4				
Expert 1	1.000	0.022	-0.001	-0.001	Expert 1	1.000	0.015	0.033	0.008	Expert 1	1.000	-0.010	-0.033	-0.020	Expert 1	1.000	-0.031	0.003	0.004	Expert 1	1.000	-0.036	0.008	-0.001
Expert 2	-0.022	1.000	0.008	0.035	Expert 2	0.015	1.000	0.006	-0.001	Expert 2	-0.010	1.000	-0.020	-0.048	Expert 2	-0.031	1.000	0.006	0.024	Expert 2	-0.036	1.000	-0.008	-0.010
Expert 3	0.001	0.008	1.000	0.057	Expert 3	0.033	0.006	1.000	0.007	Expert 3	-0.033	-0.020	1.000	0.012	Expert 3	0.003	0.006	1.000	0.029	Expert 3	0.008	-0.008	1.000	-0.014
Expert 4	-0.001	0.035	0.057	1.000	Expert 4	-0.008	-0.001	0.007	1.000	Expert 4	-0.020	-0.048	0.012	1.000	Expert 4	0.004	0.024	0.029	1.000	Expert 4	-0.001	-0.010	-0.014	1.000
	Expert 1	Expert 2	Expert 3	Expert 4		Expert 1	Expert 2	Expert 3	Expert 4		Expert 1	Expert 2	Expert 3	Expert 4		Expert 1	Expert 2	Expert 3	Expert 4		Expert 1	Expert 2	Expert 3	Expert 4
	Layer 10				Layer 12				Layer 14				Layer 16				Layer 18							
Expert 1	1.000	0.015	0.009	0.005	Expert 1	1.000	0.024	0.006	-0.011	Expert 1	1.000	-0.034	-0.042	-0.007	Expert 1	1.000	-0.121	-0.077	-0.069	Expert 1	1.000	-0.004	-0.012	-0.011
Expert 2	0.015	1.000	-0.031	0.018	Expert 2	0.024	1.000	-0.003	-0.035	Expert 2	-0.034	1.000	0.039	0.002	Expert 2	-0.121	1.000	0.037	-0.003	Expert 2	-0.004	1.000	-0.066	-0.032
Expert 3	-0.009	-0.031	1.000	-0.029	Expert 3	0.006	-0.003	1.000	0.007	Expert 3	-0.042	0.039	1.000	-0.063	Expert 3	-0.077	0.037	1.000	0.020	Expert 3	-0.012	-0.066	1.000	0.004
Expert 4	0.005	0.018	-0.029	1.000	Expert 4	-0.011	-0.035	-0.007	1.000	Expert 4	-0.007	0.002	-0.063	1.000	Expert 4	-0.069	-0.003	0.020	1.000	Expert 4	-0.011	-0.032	0.004	1.000
	Expert 1	Expert 2	Expert 3	Expert 4		Expert 1	Expert 2	Expert 3	Expert 4		Expert 1	Expert 2	Expert 3	Expert 4		Expert 1	Expert 2	Expert 3	Expert 4		Expert 1	Expert 2	Expert 3	Expert 4
	Layer 20				Layer 22				Layer 24				Layer 26											
Expert 1	1.000	-0.006	-0.029	-0.010	Expert 1	1.000	0.030	0.028	0.016	Expert 1	1.000	-0.017	0.033	-0.002	Expert 1	1.000	-0.023	-0.011	0.019					
Expert 2	-0.006	1.000	0.007	0.024	Expert 2	0.030	1.000	-0.001	0.035	Expert 2	-0.017	1.000	-0.002	-0.000	Expert 2	-0.023	1.000	0.000	0.024					
Expert 3	-0.029	0.007	1.000	-0.007	Expert 3	0.028	-0.001	1.000	0.007	Expert 3	0.033	-0.002	1.000	-0.004	Expert 3	-0.011	0.000	1.000	0.007					
Expert 4	-0.010	0.024	-0.007	1.000	Expert 4	0.016	0.035	0.007	1.000	Expert 4	-0.002	-0.000	-0.004	1.000	Expert 4	0.019	0.024	0.007	1.000					
	Expert 1	Expert 2	Expert 3	Expert 4		Expert 1	Expert 2	Expert 3	Expert 4		Expert 1	Expert 2	Expert 3	Expert 4		Expert 1	Expert 2	Expert 3	Expert 4		Expert 1	Expert 2	Expert 3	Expert 4

Figure 13: Layer-wise expert similarity matrix on DARE(Qwen3-1.7B). Cosine similarities between experts are measured at test time for each layer. Across all layers, inter-expert similarities remain near zero, indicating that the experts learn largely distinct representations

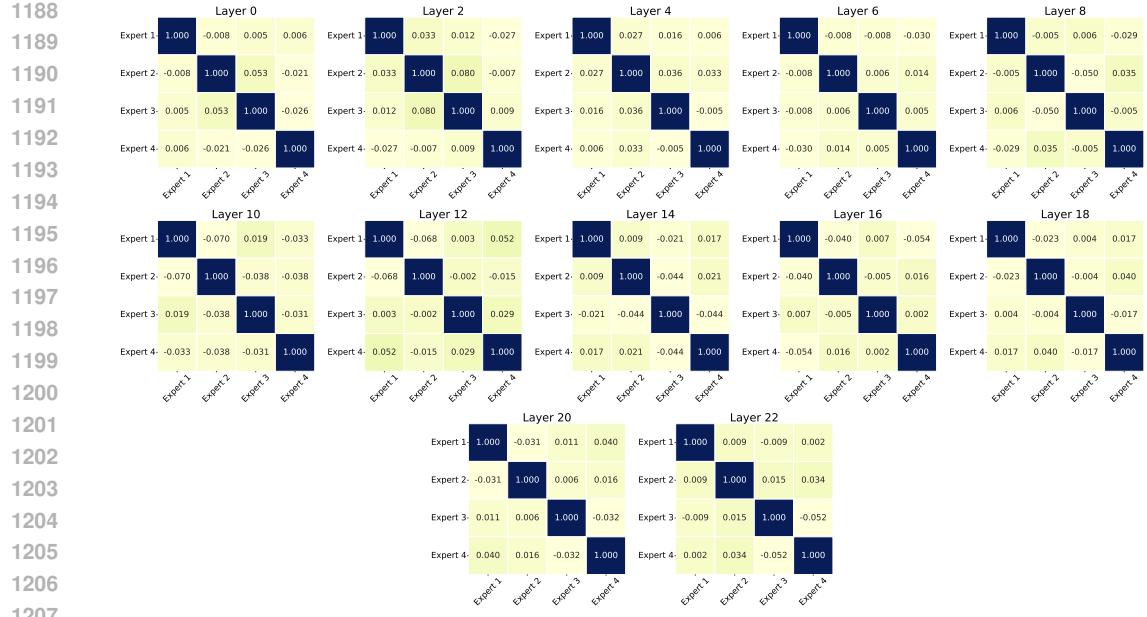


Figure 14: Layer-wise expert similarity matrix on DARE(StableLM-1.6B). Cosine similarities between experts are measured at test time for each layer. Across all layers, inter-expert similarities remain near zero, indicating that the experts learn largely distinct representations.

F.4 CASE STUDY

To further illustrate the effectiveness of our approach, we present several representative case studies in Table 10. These examples highlight the superior routing behavior and improved task performance enabled by DARE.

1242

1243

1244

1245 Table 10: Exhibition Board of DARE(Qwen2-1.5B). DARE demonstrates the ability to detect and
1246 answer challenging questions when prompted to verify them.

1247

1248

1249

User: Where is the flower in the image?**DARE:** The flower is located on the table in the image.**User:** What is the name of the man in the image?**DARE:** The man in the image is Donald Trump, the 45th President of the United States.**User:** Do you know who drew this paintings?**DARE:** Yes, the painting of the woman with long hair and a big smile is by the famous artist Leonardo da Vinci.**User:** What is the building in the image?**DARE:** The building in the image is a pyramid, which is a large, flat structure built on a desert plain.**User:** What is the fruit in the image?**DARE:** The fruit in the image is an apple.

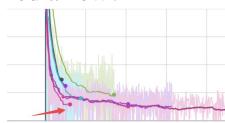
1291

1292

1293

1294

1295

User: What is unusual about this image?**DARE:** The unusual aspect of this image is that a man is ironing clothes using an ironing board while standing in the back of a taxi cab. This is not a typical scene, as one would expect to see someone ironing clothes in a more common indoor setting, such as a home or a laundry room. The man's decision to iron clothes in the back of a taxi cab adds an element of surprise and humor to the scene.**User:** Describe the image and where's the red arrow?**DARE:** The image is a graph showing a line of data, with a red arrow pointing to the left. The arrow is located at the bottom of the graph, indicating a direction or a change in the data.**User:** Can you give a short introduction to this movie?**DARE:** The movie is called "The Godfather," and it is a classic crime drama film directed by Francis Ford Coppola. The film is set in the 1940s and 1950s and features a powerful cast, including Al Pacino, Robert De Niro, and Joe Pesci. The movie tells the story of the Corleone family, led by patriarch Vito Corleone, as they navigate the world of organized crime and deal with various challenges and conflicts. The film is known for its intense action, compelling characters, and memorable performances, making it a classic and influential piece of cinema.