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ABSTRACT
Recently, the strong text understanding and generation abilities of
Large Language Models (LLMs) have given rise to many tools for as-
sisting paper reading or even writing. However, the weak diagram
analysis abilities of LLMs or Multimodal LLMs greatly limit their ap-
plication scenarios, especially for scientific academic paper writing.
In this work, towards a more versatile copilot for academic paper
writing, we mainly focus on strengthening the multi-modal dia-
gram analysis ability of Multimodal LLMs. By parsing Latex source
files of academic papers, we carefully build a multi-modal diagram
understanding dataset M-Paper. By aligning diagrams in the paper
with related paragraphs, we construct professional diagram analy-
sis samples for training and evaluation. M-Paper is the first dataset
to support joint comprehension of multiple scientific diagrams, in-
cluding figures and tables in the format of images or Latex codes.
Besides, to better align the copilot with the user’s intention, we
introduce the ‘outline’ as the control signal, which could be directly
given by the user or revised based on auto-generated ones. Com-
prehensive experiments with a state-of-the-art Multimodal LLM
demonstrate that training on our dataset shows stronger scientific
diagram understanding performance, including diagram captioning,
diagram analysis, and outline recommendation. The dataset, code,
and model will be publicly available.
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Multimoal Large Language Model, Scientific Diagram Analysis
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1 INTRODUCTION
The strong text creation ability of the Large LanguageModel (LLM) [7,
39, 40, 43] inspires the development of paper-writing copilot re-
cently, such as jenni1. However, existing LLMs or Multimodal LLMs
are still not fully competent to assist academic paper writing due
to their weak scientific diagram analysis abilities.
1https://jenni.ai/
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[𝑪𝒐𝒏𝒕𝒆𝒙𝒕]: Search-augmented instruction learning can help the model better utilize the 
valuable information …On the other hand, applying search augmentation to SAIL-7B 
significantly improves model performance on both experiments (84% to 90% and 98% to 
103%). 

Figure 4: Top-10 verbs and associated nouns 
generated by selective large language models

Table 1: Top-10 verbs generated by LLaMA-based 
models that do not overlap with GPT-4 and ChatGPT.

Recommend some key pints to discuss next about Figure 4 and Table 1

How about:
1. The word preference of different models
2. SAIL-7B generates more verbs.

We first show the word preference of different models on the 80 
unseen instructions. The results are shown in Figure 4 . We 
compare the distributions of top-10 verbs generated by GPT4 , 
GPT-3.5-Turbo (ChatGPT), Vicuna-7B-v1.1 , and SAIL-7B 
models. With search augmentation, SAIL-7B generates 
significantly more verbs that do not overlap with GPT's 
generations, as shown in Table 1 . Only two top-10 verbs 
generated by Vicuna are not covered by GPT-4 and ChatGPT, 
while six out of ten verbs generated by SAIL-7b are not high-
frequency verbs by the GPT models. This indicates that the 
grounding search results can shift the generation preference of 
the language models.

Write a analysis about Figure 4 and Table 1 following the outline:
1. Compare the word preference of different models on unseen instructions.
2. search augmentation helps generates more verbs not overlap with GPT.
3. The influence of grounding search results. 

Figure 1: An illustration of paper-writing copilot for scien-
tific diagram analysis with multiple diagrams, context, and
user-revised outlines as inputs.

As shown in Fig. 1, to assist the user in writing academic analysis
about scientific diagrams, the copilot should be equippedwithmajor
three abilities. First and most basically, the model should be able
to understand multiple diagrams of various types (figures, tables,
etc.) and in different formats (image or latex). Second, to ensure the
coherence of thesis writing, the diagram analysis should remain con-
sistent with the preceding texts and therefore ask to model to corre-
late multimodal context and diagram information. Third, for better
aligning the user’s intention, the copilot should be controllable and
interactable with the user. Recently, there have been many Multi-
modal Large Language Models (MLLMs) [2, 5, 10, 23, 24, 44, 51, 54]
proposed by connecting a vision encoder with a Large Language
Model as the language decoder. These MLLMs are good at chat-
ting about a general image but poor at understanding diagrams.
Some work [13, 14, 16, 25, 30, 48, 49] tried to develop MLLMs for
Multimodal Document Understanding, covering tables, charts, web-
pages,.etc. However, these models mainly focus on strengthening
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Table 1: Comparison of M-Paper and existing Chart Understanding datasets. ‘D’ refers to ‘Diagram’.

Dataset Diagram Task
Type Data Image Avg.Num Name Input Output (Avg.Token)

FigureQA [19] Chart Synthetic Synthetic 1 VQA D + Question Answer (2)
DVQA [18] Chart Synthetic Synthetic 1 VQA D + Question Answer (2)
PlotQA [31] Chart Real-world Synthetic 1 VQA D + Question Answer (6)
ChartQA [27] Chart Real-world Real-world 1 VQA D + Question Answer (5)
SciGraphQA [21] Scientific Chart arXiv arXiv 1 VQA D + Question Answer (76)

Chart-to-Text [20] Chart Real-world Real-world 1 Captioning D Caption (69)
VisText [38] Chart Real-world Synthetic 1 Captioning D Caption (63)
SciCap [15] Scientific Chart arXiv arXiv 1 Captioning D Caption (20)
SciCap+ [47] Scientific Chart arXiv arXiv 1 Captioning D+Mentioned Paragraph+OCR Caption (31)

M-Paper Scientific Figure&Table arXiv arXiv 1.3
Captioning D+Preceding Texts Caption (58)
Outlining D+Preceding Texts Outline (36)
Analysis D+Preceding Texts+Outline Analysis (135)

the vision comprehension of a single diagram and can’t generate
detailed scientific analysis.

In this work, to develop scientific diagram analysis skills for
the paper-writing copilot, we first build a comprehensive dataset
M-Paper to support the learning of the three critical abilities men-
tioned above. By parsing Latex source files of academic papers, we
carefully extract diagrams in both image and latex formats and
align them with their captions and paragraph analysis. To simulate
two main scenarios of scientific diagram understanding, we design
two main tasks, namelyMultimodal Diagram Captioning and
Multimodal Diagram Analysis, which aim to generate concise
captions and detailed analysis for multiple diagrams, respectively.
Besides diagrams, we also provide preceding texts of the thesis,
namely [𝐶𝑜𝑛𝑡𝑒𝑥𝑡], as inputs to teach the model how to utilize back-
ground knowledge and maintain fluency with previous content.
Furthermore, to better align users’ writing intentions, we design
[𝑂𝑢𝑡𝑙𝑖𝑛𝑒] as control signals, which are comprised of concise key
points to be covered in the analysis. We utilize the ChatGPT to
construct [𝑂𝑢𝑡𝑙𝑖𝑛𝑒] based on ground-truth paragraph analysis and
feed it as another input forMultimodal Diagram Analysis. For more
user-friendly interaction, automatically recommending [𝑂𝑢𝑡𝑙𝑖𝑛𝑒]
by the copilot could inspire users or reduce interaction costs. Thus,
we set up another Outline Recommendation task to make the
copilot more versatile and user-friendly. For accurately evaluating
the diagram analysis quality, besides classical captioning metrics
(e.g. CIDEr [42]) based on n-gram matching, we carefully designed
a CIDErgpt score to measure both n-gram and semantic similarity
with the help of ChatGPT.

We benchmark multiple state-of-the-art MLLMs on our dataset,
validating the challenge of our three tasks. Based on theDocOwl [48],
we perform instruction-tuning on a combination of training data
from three tasks and propose a strong generalist as the baseline,
named PaperOwl. Comprehensive experiments validate the effec-
tiveness of introducing [𝐶𝑜𝑛𝑡𝑒𝑥𝑡] and [𝑂𝑢𝑡𝑙𝑖𝑛𝑒] as inputs. We fur-
ther perform ablation studies about vision encoding to provide
insights about model improvement, such as increasing the image
resolution and enhancing the ability to correlate multiple diagrams.

In summary, our contributions are three-fold:

• We build the first high-quality scientific diagram analysis
dataset M-Paper to support the learning of correlating mul-
tiple diagrams, keeping consistency with the preceding con-
tent, and being interactable with users.

• Simulating Real-world paper-writing scenarios, we carefully
design three multimodal tasks and propose a GPT-based met-
ric, CIDErgpt, to measure the analysis quality by considering
both detailed n-gram and overall semantic similarity.

• We carefully tune a generalist based on an existing MLLM
and perform comprehensive experiments to validate the ef-
fectiveness of multimodal inputs and training strategies.

2 RELATEDWORK
Text-only PaperUnderstanding [1, 3, 4, 26, 34, 35] focuses on text
and citation graph comprehension in academic papers. Such mod-
els are competent for a number of text-only thesis comprehension
tasks, including information extraction, text classification, paper
summarization, or citation recommendation. Benefiting from the
strong text understanding ability of Large Language Models (LLMs),
many LLM-based tools have been developed as paper-reading as-
sistants, such as ChatDoc2, ChatPDF3 and Zhiwen4. However, they
are still not capable of assisting paper writing due to a lack of
multimodal abilities to understand vision information and gener-
ate comprehensive diagram analyses, which are indispensable in
scientific papers.
Multimodal Document Understanding aims to develop multi-
modal comprehension abilities for images with rich text informa-
tion, including charts [20, 27, 38, 46], tables [9, 33], documents [29,
36, 37, 52] and infographic images [28], etc. Task formats of these
work range from Information Extraction [36, 37], Question An-
swering [27–29], Natural Language Inference [9] to Image Caption-
ing [15, 20, 38, 47]. Datasets about Chart Understanding [15, 18–
21, 27, 31, 38, 47] are most relevant with our dataset M-Paper. Major
differences with these works are shown in Table 1. Compared with

2https://www.chatdoc.com/
3https://www.chatpdf.com/
4https://tongyi.aliyun.com/zhiwen
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PapersWithCode

Search-augmented instruction learning can help the model better utilize the

Paper Collection Paper Parse Task Definition

Figure Image Extraction
Table Latex Extraction
Table Image Rendering

[𝐷𝑖𝑎𝑔𝑟𝑎𝑚𝑠]

Diagram and Paragraph
Alignment

[𝐶𝑎𝑝𝑡𝑖𝑜𝑛]

[𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠]

[𝐶𝑜𝑛𝑡𝑒𝑥𝑡]

Outline Construction [𝑂𝑢𝑡𝑙𝑖𝑛𝑒]

\begin{table}[]
\begin{tabular}{@{}lll@{}} \textbf{Models} & 
Vicuna-7B-v1.1 & SAIL-7B \\
……
\label{tab:spe-verbs} 
\end{table}

Latex

Figure 4: Top-10 verbs… Table 1: Top-10 verbs generated ...

We first show the word preference of different models on the 80 unseen instructions. The 
results are shown in Figure 4 …., and SAIL-7B models. With search augmentation, SAIL-7B 
generates significantly more verbs that do not overlap with GPT's generations, as shown in 
Table 1 . …can shift the generation preference of the language models.

Search-augmented instruction learning can help the model better utilize the valuable 
information …… These results inform our findings:

1.The word preference of different models on unseen instructions is compared,
2. SAIL-7B generates significantly more verbs that do not overlap with GPT’s 
generations

Multimodal Diagram Captioning
Input: 𝐶𝑜𝑛𝑡𝑒𝑥𝑡 + [𝐷𝑖𝑎𝑔𝑟𝑎𝑚𝑠]

Output: [𝐶𝑎𝑝𝑡𝑖𝑜𝑛]

Multimodal Diagram Analysis
Input: 𝐶𝑜𝑛𝑡𝑒𝑥𝑡 + 𝐷𝑖𝑎𝑔𝑟𝑎𝑚𝑠 + [𝑂𝑢𝑡𝑙𝑖𝑛𝑒]

Output: [𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠]

Outline Recommendation
Input: 𝐶𝑜𝑛𝑡𝑒𝑥𝑡 + 𝐷𝑖𝑎𝑔𝑟𝑎𝑚𝑠

Output: [𝑂𝑢𝑡𝑙𝑖𝑛𝑒]

Figure 2: The pipeline of M-Paper construction and definition of our three tasks.

existing datasets, whether VQA or Chart Captioning, our Multi-
modal Diagram Analysis task provides much longer texts as targets,
which enable models to learn more comprehensive analysis about
diagrams. The most similar work to ours is the SciCap+ [47], which
aims to generate captions of scientific charts and provides the chart,
OCR results, and the first paragraph mentioning the chart as inputs.
There are three major differences between our Diagram Analysis
task and SciCap+. First, the understanding object in our task can be
multiple diagrams, even a combination of charts and tables, while
SciCap+ just inputs one chart. Second, the output of our Diagram
Analysis task is a detailed paragraph analysis (average of 135 to-
kens) rather than a concise caption (average of 31 tokens). Finally,
SciCap+ focuses on providing more accurate captions for scientific
charts with the help of the body of the paper and OCR informa-
tion. Our work aims to build a paper-writing copilot and therefore
provides preceding texts as context to keep writing coherence and
outlines as control signals to follow users’ intentions.
Multimodal Large Language Models Recently, some works [5,
12–14, 16, 25, 45, 48, 49, 53] have proposed Multimodal Large Lan-
guage Models with visually-situated text understanding ability.
For example, UReader [49] performs instruction tuning on an en-
sembled dataset covering various types of images and designs a
Shape-adaptive Cropping Module to process high-resolution doc-
ument images. However, these MLMMs are still far from acting
as a paper-writing copilot for scientific diagram analysis due to
main two shortages. First, they can only generate a short answer
or description and lack comprehensive diagram analysis abilities.
Second, they are all trained to understand a single image, and thus
can’t correlate context and multiple figures or tables for accurate
multimodal analysis. To empower MLMMs with such abilities, we
carefully build a scientific diagram analysis dataset M-Paper based
on academic papers. Fineunted on this dataset, our PaperOwl shows
stronger multimodal diagram analysis abilities and moves a step
closer to paper-writing copilot.

3 M-PAPER
Towards developing a paper-writing copilot, this work first builds a
datasetM-Paper to empowermodels with abilities ofmultimodal sci-
entific diagram captioning and analysis. The construction pipeline
and task definition of M-Paper are shown in Fig. 2.

3.1 Paper Collection
The arXiv5 is an open-access repository of electronic preprints
and postprints, consisting of scientific papers in computer science,
mathematics, physics, etc. Due to the field gap, diagrams, writing,
and analysis styles are quite different across these fields. In this
work, we chose ‘Computer Science’ as the study object. Due to
that not all papers are reviewed by peers before posting, the paper
quality in arXiv varies a lot and low-quality papers may hurt the
model’s logical analysis abilities. Considering PapersWithCode6
is a community-driven platform for learning about state-of-the-
art research papers on machine learning, the quality of papers
listed in PapersWithCode is relatively more reliable. Therefore,
with the PapersWithCode API7, we collect 48k arXiv ids, ranging
from 2012 to 2023, covering 15 categories and then download their
corresponding Latex source files following official instructions8.

3.2 Paper Parsing
PDF and Latex are two kinds of commonly used file formats in
paper-related research. In this work, we choose to parse Latex
source files for two main reasons. Firstly, by comparing the content
in the ‘\ref{.}’ tag and ‘\label{.}’ tag in Latex files, it’s easy to
accurately correlate diagrams with paragraph analysis in the body
of papers. Secondly, the Latex syntax is a more natural and general
format for LLM to understand or generate diverse texts, including
plain text and mathematical expression, etc. Taking into account
these two points, Latex-style text understanding and generation is
more suitable for a paper-writing copilot. Following S2ORC [26],
we first parse Latex source files into XML format and then extract
diagrams and correlate them with captions and paragraphs.
Text Cleaning. Towards paper-writing copilot, this work focuses
on improving the model’s multimodal diagram analysis abilities
and pays little attention to other writing abilities, such as equation
generation or citation recommendation. It’s virtually impossible to
infer both formulas and paper references from diagrams or preced-
ing texts. Therefore, we further clean paragraph texts by filtering
such unnecessary information. Concretely, we first replace all ci-
tation tags ‘\cite{.}’ with a special token ‘<cite>’ to remove

5https://arxiv.org/
6https://paperswithcode.com/sota
7https://paperswithcode-client.readthedocs.io/
8https://info.arxiv.org/help/api/basics.html
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citation reference. To avoid generating too-long equations, para-
graphs containing equations with > 40 chars are dropped.
Table Image Rendering. Both figures and tables are widely used
in scientific academic papers. By parsing the Latext source file, it’s
easy to align figure reference with figures in image format (e.g.,
‘jpg’) by the ‘\includegraphics’ tag. But for tables, there are only
Latex codes and no image-format files provided. Towards wider
application scenarios, a diagram analysis copilot is necessary to
understand tables in both latex and image formats. To support
the learning of such abilities, we further collect table images as
inputs. Directly extracting table bounding boxes from PDF-format
papers with pdf-parsing tools (e.g., GROBID9) and then cropping
table image is a naive way. However, due to the diverse layout
in scientific papers, table coordinates given by such tools are not
accurate enough. In this work, we collect accurate table images
by following three steps. Firstly, we revise the Latex source file
to ensure that each table will occupy a separate page after PDF
compiling. This operation could greatly reduce the difficulty of table
recognition. Then, for each PDF page containing a table, we utilize
the classical Edge Detection algorithm Canny [8] to recognize the
table bounding box. Finally, the table image is cropped from the
PDF page according to the table coordinates. It’s worth noting that,
to also support the table captioning task and avoid leaking caption
information in the cropped table image, the content within the
‘\caption{.}’ tag is removed before PDF compiling.
Outline Construction. During paper writing, for an identical
figure or table, even different co-authors can give analysis from
different perspectives. Therefore, although a paper-writing copi-
lot can give a comprehensive analysis of a diagram, its analysis
can still go against the author’s wishes or be inconsistent with the
preceding texts. To better cater to users’ intentions, we propose to
use the ‘outline’ as the intermediate control signal during diagram
analysis. Besides directly generating the paragraph analysis, the
copilot should also be able to analyze the diagram more accurately
following provided key points, namely ‘outline’. During paper writ-
ing, the outline could given by users or generated by the copilot
and revised by users.

For developing such a versatile and controllable copilot, it’s nec-
essary to construct appropriate training data for outline generation
and analysis generation with outlines. To construct such training
samples, in this work, we utilize the GPT-3.510 to generate corre-
sponding outlines for each paragraph by in-context learning. More
details can be found in the supplementary material.

3.3 Task Definition
After processing Latex source files as mentioned above, we carefully
organize these data to support the training and test of multiple
tasks designed for the paper-writing copilot, including Multimodal
Diagram Captioning, Multimodal Diagram Analysis, and Outline
Recommendation.
Multimodal Diagram Captioning. Different from conventional
Image Captioning which aims to describe the attributes and rela-
tion between objects, Diagram Captioning requires the model to
accurately summarize the content in the figure or table, including

9https://github.com/kermitt2/grobid
10https://openai.com/blog/chatgpt

GT: Table 5 shows that the translation of in-domain natural inputs 
improve significantly after applying TST BT. We also found that TST 
BT still improve translation of out-of-domain natural inputs.

Prediction 𝐶𝐼𝐷𝐸𝑟 𝐹1!"# 𝐶𝐼𝐷𝐸𝑟!"#

A: We found that TST BT significantly 
improves the translation of in-domain 
natural inputs.

13.52 0.66 8.92

B: We further perform experiments to 
test the generalizability of TST BT. Table 
5 shows experimental results

14.11 0.00 0.00

Figure 3: A case of the comparsion of CIDEr and CIDErgpt.

some concrete mathematical symbols and proper nouns. Besides,
due to partial diagrams being a combination of sub-diagrams, it
also asks the model to correlate multiple images. Further, the table
during paper-writing can be an image or Latex code, which requires
the model to understand different formats of input.

By parsing the Latex source file, it’s easy to get diagram captions
by extracting content from the ‘\caption{.}’ tag. For generat-
ing captioning more consistent with the paper content and better-
mentioning prop nouns, we also provide preceding text as the
textual input, denoted as [𝐶𝑜𝑛𝑡𝑒𝑥𝑡]. To keep the completeness of
semantics, the preceding text is comprised of multiple un-truncated
paragraphs before the first reference of the diagram, with max 512
tokens. Thus, the input of Multimodal Diagram Captioning is a
triplet of ⟨[𝐶𝑜𝑛𝑡𝑒𝑥𝑡], [𝐷𝑖𝑎𝑔𝑟𝑎𝑚𝑠], [𝐼𝑛𝑠𝑡]⟩, where [𝐷𝑖𝑎𝑔𝑟𝑎𝑚𝑠] can
be diagram images or Latex code of a table, [𝐼𝑛𝑠𝑡] is the instruction.

Following classical image captioning tasks, we utilize BELU [32],
METEOR [6], ROUGE-L [22], and CIDEr [41] as evaluation metrics.
The CIDEr is valued most because it puts higher weight on rarer
tokens (e.g., proper nouns), which are more informative.
Multimodal Diagram Analysis.Much more difficult than writ-
ing a caption, Diagram Analysis requires the model to generate a
paragraph analysis according to multiple diagrams, even a com-
bination of figures and tables. Besides, diagram analysis is more
open-ended than captioning. Different people can analyze a dia-
gram from quite different perspectives. As a paper-writing copilot
to improve writing efficiency, the diagram analysis should follow
users’ intentions as well as possible. Therefore, besides providing
the preceding text like the Multimodal Diagram Captioning task to
imply the author’s intention, we further design the ‘outline’ as the
explicit control signal, which instructs key points to discuss with
diagrams. Overall, the input of Multimodal Diagram Analysis is a
quartet of ⟨[𝐶𝑜𝑛𝑡𝑒𝑥𝑡], [𝑂𝑢𝑡𝑙𝑖𝑛𝑒], [𝐷𝑖𝑎𝑔𝑟𝑎𝑚𝑠], [𝐼𝑛𝑠𝑡]⟩.

Captioning metrics are not quite suitable for paragraph analysis
because they mainly measure the n-gram similarity and neglect
overall semantic matching. To better evaluate the analysis quality,
we design a metric to measure the semantic similarity based on
GPT 3.5, namely 𝐹1𝑔𝑝𝑡 . Concretely, given the predicted analysis and
the ground-truth one, we first prompt the GPT to extract their key
points in the list format, respectively. Then, we prompt GPT to judge
whether each pair of predicted key points and ground-truth key
points matched or not. Finally, we calculate the semantic precision,
recall, and F1 score (𝐹1𝑔𝑝𝑡 ) based on GPT’s judgment. Detailed

2024-04-13 05:26. Page 4 of 1–10.
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Table 2: Statistics of M-Paper.

Task Train Val Test

Diagram paper 46,649 479 455
Captioning sample 343,546 1,131 1,133

Diagram paper 40,567 412 449
Analysis sample 267,476 1,087 1,195

Outline paper 2,548 543 577
Recommendation sample 78,041 3,425 3,442

prompts for these two steps can be found in the supplementary
material. The 𝐹1𝑔𝑝𝑡 is good at measuring semantic similarity but
hard to assess the fine-grained quality of detailed descriptions,
which is rather what CIDEr is good at. For paragraph analysis,
accurately describing key points is more important and we are
more tolerant of the form of expression. Considering 𝐹1𝑔𝑝𝑡 reflects
the percentage of mentioning key points and CIDEr measures the n-
gram similarity of the whole paragraph. we therefore multiply the
CIDEr with 𝐹1𝑔𝑝𝑡 as the final evaluation metric CIDErgpt, where
𝐹1𝑔𝑝𝑡 plays a critical role. As shown in Fig. 3, prediction A gets
a lower CIDEr score because it mentions fewer n-grams within
ground truth. However, it describes semantics more accurately and
therefore gets a higher CIDErgpt score.
OutlineRecommendation.Towards a user-friendly paper-writing
copilot, the ‘outline’ can be given directly by users or generated
by the copilot and then revised by the user. So recommending
outlines accurately is also an important ability for inspiring users
or improving writing efficiency. To develop such ability, we also
design an Outline Recommendation task, where the input can be
⟨[𝐶𝑜𝑛𝑡𝑒𝑥𝑡], [𝐼𝑛𝑠𝑡]⟩ or ⟨[𝐶𝑜𝑛𝑡𝑒𝑥𝑡], [𝐷𝑖𝑎𝑔𝑟𝑎𝑚𝑠], [𝐼𝑛𝑠𝑡]⟩ and the tar-
get is [𝑂𝑢𝑡𝑙𝑖𝑛𝑒]. Captioning metrics are used to evaluate this task.

Diverse instructions for these three tasks can be found in the
supplementary material.

3.4 Statistic
Paper Category. M-Paper contains 48,688 papers from more than
15 categories, covering almost all popular research directions in
‘Deep Learning’, especially Computer Vision (CV) and Natural lan-
guage Processing (NLP). The detailed category distribution can be
found in the supplementary material.
Dataset Splits. Table 2 shows the split statistic of Multimodal
Diagram Captioning, Multimodal Diagram Analysis and Outline
Recommendation. For each task, there is no paper overlap across
the training, validation and test splits. Both Multimodal Diagram
Captioning and Multimodal Diagram Analysis cover more than
40k papers and provide sufficient training samples. As for Outline
Recommendation, considering that ‘outlines’ are just intermediate
control signals used to interact with users, we don’t expect perfect
quality of generated outlines. Thus only partial papers are processed
to support the training and test of this task.
Diagram. As shown in Fig. 4, the distribution of diagram counts
varies across different tasks. ForMultimodal DiagramAnalysis, there
are more than 25% samples with multiple diagrams as inputs, much
more than Multimodal Diagram Captioning. This indicates that

Figure 4: The distribution (%) of diagram count across 3 tasks.

(a) Train (b) Test

Figure 5: The distribution of diagram types on the training
and test set of Multimodal Diagram Analysis.

Table 3: Token statistic of different textual components.

Context Outline Table Latex Caption Analysis

Mean 410 36 177 58 135
Max 512 126 256 256 256

correlating multiple diagrams is a major challenge for Multimodal
Diagram Analysis. Besides, Fig. 5 shows the distribution of diagram
types in Multimodal Diagram Analysis task. Our dataset is not
limited to a single diagram type but a fusion of figures and tables
in the form of images or latex codes. Especially, to better evaluate
analysis ability on different diagram types, we slightly balance the
diagram type distribution in the test set.
Token Length. Table 3 presents the token length statistic of differ-
ent textual components in our tasks. The average token length of
the caption is much smaller than the paragraph analysis, indicating
the Multimodal Diagram Analysis task requires a more comprehen-
sive diagram understanding. Besides, the length of the ‘outline’ is
far from the ‘analysis’, showing that the input ‘outline’ will not leak
too much information about the target analysis but just point out
some key points to discuss.

2024-04-13 05:26. Page 5 of 1–10.
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LLM Decoder
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[Context]

We first show the word preference of different models on 
the 80 unseen instructions. The results are shown in 
Figure 4 …. SAIL-7B generates significantly more 
verbs that do not overlap with GPT's generations, as 
shown in Table 1 … This indicates that the grounding 
search results can shift the generation preference of the 
language models.

Scientific Diagram Analysis

Vision Abstractor

[Outline] [Instruct]

Cropping Module

🔥

LoRA🔥

Diagrams
Table	Latex

\begin{table}[]
\begin{tabular}{@{}lll@{}} 
\textbf{Models} & Vicuna-
7B-v1.1 & SAIL-7B \\ 
\midrule
\textbf{Novel} & Include & 
Calculate \\
……
\label{tab:spe-verbs} 
\end{table}

Image

Figure 6: The overall architecture of PaperOwl.

4 MPLUG-PAPEROWL
ExistingMultimodal Large LanguageModels (MLLMs) [5, 24, 50, 54]
follow a three-module framework, consisting of a vision encoder, a
vision-to-text connector, and a Large Language Model as the lan-
guage decoder. Models with such a framework are easy to adapt
to our multimodal tasks by constructing image-text interleaved se-
quences. In this work, we choose one of the state-of-the-art MLLMs:
mPLUG-DocOwl [48] as the base model to perform instruction-
tuning on our M-Paper.

4.1 Model Architecture
The overall architecture of PaperOwl is shown in Fig. 6.
Cropping Module. Following UReader [49], to better recognize
texts in the image, we utilize a parameter-free Cropping Module to
cut a 448x448 image to 4 sub-images of 224x224 resolution and then
feed each sub-image to the following Vision Encoder independently.
Vision Encoder. The ViT-L/14 [11] is utilized as the Vision Encoder,
comprised of 24 transformer layers with 16 attention heads and
the dimension of hidden states set to 1024. For each image 𝐼 in
the [𝐷𝑖𝑎𝑔𝑟𝑎𝑚𝑠], it’s represented as a sequence of visual features
𝑉 = {𝑣1, ..., 𝑣𝑛} after the Vision Encoder.
Vision Abstractor. The Vision Abstractor is used to aggregate
valuable vision semantics and align visual features to the language
decoder. It consists of 6 transformer layers with 8 attention heads
and the dimension of hidden states is set as 1024. With 64 learnable
tokens 𝑄 = {𝑞1, ..𝑞𝑘 } as the query, the concatenated sequence [𝑉 :
𝑄] as the key and value, the visual features are finally condensed
to 𝑉 = {𝑣1, ..., 𝑣𝑘 } after cross attention.

Language Decoder. The architecture of Language Decoder is the
same as LLaMA-7B [40]. To adapt to vision-and-language tasks and
alleviate catastrophic forgetting, LoRA [17] is utilized in the LLM
with the rank set as 8.

4.2 Model Training
Data. To develop a versatile paper-writing copilot for scientific
diagram understanding, we aim to perform instruction-tuning to
enhance an existing MLLM to be a generalist capable of Multimodal
Diagram Captioning, Multimodal Diagram Analysis, and Outline
Recommendation. Therefore, the training data is a combination of
three tasks. Besides, for Multimodal Diagram Analysis, to avoid the
model heavily relying on ‘outline’ to guess paragraph analysis, sam-
ples removing outlines from inputs are also added to the training
data to strengthen vision understanding ability. Finally, the total
number of instruction-tuning samples is 702,247.
Details. Following most MLLMs [24, 50, 54], the Vision Encoder
in the PaperOwl is frozen during instruction-tuning to avoid hurt-
ing the strong vision representation ability learned from large-
scale vision-and-language pretraining. The Vision Abstractor is
fine-tuned to better learn how to filter useful visual diagram infor-
mation for generating analysis. The raw parameters of LLaMA-7B
are frozen, and only the LoRA in the Language Decoder is updated
to learn the analysis logic of academic papers. Our model is trained
for 10 epochs with the learning rate set as 1𝑒 − 4 and the batch size
as 256, costing 64 A100 days.

5 EXPERIMENTS
5.1 Comparison with SOTA MLLMs.
We first compare the zero-shot performance of existing MLLMs on
our three tasks. As shown in Table 4, mPLUG-Owl [50] achieves
the worst performance, showing the importance of high resolution
for our tasks. After increasing image resolution, mPLUG-Owl2 [51]
and LLaVA 1.5 [23] outperform the other 3 models trained with mul-
timodal document understanding samples on Multimodal Diagram
Analysis task. Besides, UReader [49], a model fine-tuned only on
document benchmarks, achieves the worst analysis performance.
This validates that existing multimodal document understanding
data is far from energizing the comprehensive diagram analysis
ability of MLLMs and may cause overfitting on question answer-
ing or information extraction benchmarks. However, Owl2, LLaVA
1.5, and Qwen-VL all optimize the whole LLM during instruction-
tuningwhile UReader andDocOwl only tune the LoRA. Considering
performance on three tasks and training costs, we finally chose
DocOwl as our basic model. After fine-tuning with a combination
of three tasks, PaperOwl achieves much better performance across
three tasks, validating the effectiveness of M-Paper for developing
a scientific diagram analysis copilot.

5.2 Ablation Study
For comprehensively analyzing critical elements for developing
a scientific diagram analysis copilot, we perform sufficient com-
parison experiments to validate the effectiveness of [𝐶𝑜𝑛𝑡𝑒𝑥𝑡] and
[𝑂𝑢𝑡𝑙𝑖𝑛𝑒], and present the influence of vision encoding strategies.
Context Influence. For Multimodal Diagram Captioning and Mul-
timodal Diagram Analysis tasks, we provide [𝐶𝑜𝑛𝑡𝑒𝑥𝑡] as auxiliary

2024-04-13 05:26. Page 6 of 1–10.
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Table 4: The performance comparison with state-of-the-art Multimodal Large Language Models on three tasks. B4, R, M,
C and Cgpt represents BLEU4, ROUGE-L, METEOR, CIDEr and CIDErgpt, respectively. ‘underline’ means the best zero-shot
performance. ‘Img’ refers to the image resolution during training and inference. ‘Doc’ and ‘Text’ refer to using multimodal
document and text-only instruction tuning data during training or not.

Model Setting Diagram Captioning Outline Recommendation Diagram Analysis
Img Text Doc B4 R M C B4 R M C B4 R M C 𝐹1𝑔𝑝𝑡 Cgpt

mPLUG-Owl [50] 224 ✓ × 0.36 8.60 5.30 0.74 0.62 9.12 8.55 0.32 2.48 15.12 14.67 0.53 0.21 0.15
mPLUG-Owl2 [51] 448 ✓ × 1.62 10.33 5.30 5.63 1.30 11.99 10.48 2.71 6.92 19.65 14.96 11.85 0.25 3.89
LLaVA 1.5 [23] 336 ✓ × 0.97 10.71 6.78 2.74 1.32 11.79 10.46 0.79 6.11 18.83 12.43 13.70 0.20 4.64
Qwen-VL [5] 448 ✓ ✓ 1.84 7.64 6.61 2.31 1.32 7.29 8.52 0.53 6.72 10.26 10.74 3.68 0.27 1.39
UReader [49] 448 × ✓ 0.56 9.84 3.34 5.95 0.25 8.17 2.88 4.59 1.22 10.59 4.33 1.02 0.05 0.05
DocOwl [48] 448 ✓ ✓ 0.87 10.40 3.64 8.08 0.45 9.20 5.98 2.51 1.90 14.33 10.28 4.78 0.19 1.23

PaperOwl 2.37 18.31 7.19 25.50 2.16 17.96 7.33 30.65 14.74 29.91 17.38 22.98 0.40 11.62

Table 5: The ablation study about whether utilizing [𝐶𝑜𝑛𝑡𝑒𝑥𝑡]
during training and testing.

Context Captioning Analysis
Train Test R M C R M C Cgpt

r1 × × 15.43 5.45 14.67 16.56 8.71 4.45 1.47
r2 × ✓ 16.62 6.82 17.72 14.44 7.66 2.87 0.94
r3 ✓ ✓ 17.08 6.76 21.36 19.25 10.97 7.02 1.81

inputs to implicitly represent users’ next writing intention and pro-
vide some background information of proper nouns. We first utilize
Owl [50] as the basic model to study whether using [𝐶𝑜𝑛𝑡𝑒𝑥𝑡]
during training and testing. All models are just trained on cap-
tioning and analysis tasks and remove [𝑂𝑢𝑡𝑙𝑖𝑛𝑒] from inputs. As
shown in Table 5, for the model trained without [𝐶𝑜𝑛𝑡𝑒𝑥𝑡], pro-
viding [𝐶𝑜𝑛𝑡𝑒𝑥𝑡] during inference could improve the captioning
performance (r2 vs r1), showing [𝐶𝑜𝑛𝑡𝑒𝑥𝑡] is critical for Diagram
Captioning. However, adding [𝐶𝑜𝑛𝑡𝑒𝑥𝑡] only in testing hurts the
analysis performance, indicating the model is hard to balance the
comprehension of preceding texts and multiple diagrams for para-
graph analysis generation. After adding [𝐶𝑜𝑛𝑡𝑒𝑥𝑡] in training, the
model achieves better performance on both two tasks (r3 vs r2),
showing that for better scientific diagram comprehension, it’s nec-
essary to incorporate [𝐶𝑜𝑛𝑡𝑒𝑥𝑡] during both training and inference.
Outline Influence. To better align the diagram analysis from a
paper-writing copilot with users’ intention, we propose to introduce
[𝑂𝑢𝑡𝑙𝑖𝑛𝑒] as explicit control signals. For validating the effectiveness
of [𝑂𝑢𝑡𝑙𝑖𝑛𝑒], we further compare variants of Owl about whether
utilizing [𝑂𝑢𝑡𝑙𝑖𝑛𝑒] during training and testing. As presented in
Table 6, for models trained with [𝑂𝑢𝑡𝑙𝑖𝑛𝑒] as inputs or not, adding
[𝑂𝑢𝑡𝑙𝑖𝑛𝑒] during inference could both improve the performance (r2
vs r1, r5 vs r3), showing ‘Outlines’ is an effective control signal for
guiding diagram analysis. Besides, even adding pseudo [𝑂𝑢𝑡𝑙𝑖𝑛𝑒]
generated by the model itself as inputs, the analysis quality could
also be improved (r4 vs r3). This indicates that ‘recommending
[𝑂𝑢𝑡𝑙𝑖𝑛𝑒] first and then generating diagram analysis’ may be a
better two-step framework, where the user could also control the
copilot by slightly revising the recommended [𝑂𝑢𝑡𝑙𝑖𝑛𝑒]. Finally,
trained with [𝑂𝑢𝑡𝑙𝑖𝑛𝑒] makes a significant improvement (r5 vs r2),

Table 6: The abltion study about the influence of [𝑂𝑢𝑡𝑙𝑖𝑛𝑒]
for Multimodal Diagram Analysis performance.

Outline Usage B4 R M CTrain Test 𝐹1𝑔𝑝𝑡 Cgpt

r1 × × 6.28 19.25 10.97 7.02 0.18 1.81
r2 × gpt 7.23 19.86 11.24 8.99 0.22 3.10

r3 gpt × 6.42 19.47 11.15 7.90 0.17 2.13
r4 gpt auto 5.98 19.58 11.23 9.10 0.19 2.59
r5 gpt gpt 15.27 30.36 17.49 21.85 0.41 11.23

validating the necessity of learning how to correlate [𝐶𝑜𝑛𝑡𝑒𝑥𝑡],
[𝑂𝑢𝑡𝑙𝑖𝑛𝑒], and [𝐷𝑖𝑎𝑔𝑟𝑎𝑚𝑠] for scientific diagram analysis.
Vision Encoding Strategies. For vision-and-language tasks, the
visual features play a big role in the final performance. In this
section, we compare the influence of different vision-representing
strategies, including image resolution, whether to fine-tune the
Vision Abstractor, and whether to crop the image. As shown in
Table 7, during instruction-tuning, freezing the Vision Abstractor
greatly hurt the diagram analysis performance (r1 vs r2), validating
that fine-tuning the Vision Abstractor is important for adapting an
existing MLLM for professional diagram understanding. Besides,
at the condition of freezing the Vision Encoder, directly increasing
the image resolution and expanding patch position embeddings
by bicubic interpolation doesn’t bring significant improvement
(r3 vs r2), showing that only finetuning the Vsion Abstractor is
not enough to adapt to higher-resolution images. When equipped
with a parameter-free Cropping Module as UReader [49] to cut
the 448x448 image to 4 sub-images of 224x224 resolutions, the
model achieves significantly better performance on the diagram
captioning task (r4 vs r2), showing that when the Vision Encoder is
frozen, cropping images is a better solution for leveraging higher-
resolution images. But, compared with the diagram captioning task,
the cropping module still brings a weak improvement to the anal-
ysis task. This is mainly because the cropping module results in
too many visual tokens (max 1024 tokens from 16 sub-images) and
therefore greatly increases the difficulty of multimodal understand-
ing for the language decoder. This shows that how to better encode
high-resolution images and balance multimodal inputs is a major
challenge for the Multimodal Diagram Analysis task.
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[𝑪𝒐𝒏𝒕𝒆𝒙𝒕]:  For the proposed SC-GNN model (Fig. 8 ), the Bland-Altman plot shows a mean difference of 0.40 and limits of agreement of [-
0.79, 1.60]……This implies that the baseline models have difficulty accurately predicting ground motion intensities for shallow earthquakes.

[𝑶𝒖𝒕𝒍𝒊𝒏𝒆]: The TISER-GCN model has less accurate predictions and higher variability than the SC-GNN model.

[𝑰𝒏𝒔𝒕𝒓𝒖𝒄𝒕𝒊𝒐𝒏]: Drawing from the preceding multimodal content and adhering to the outlined, write a thorough and coherent paragraph analysis.

Multimodal Diagram Analysis with GPT-extracted Outline

              
 PaperOwl                : The TISER-GCN model (Fig. 8 ) shows a mean difference of 0.60 and limits of agreement of [-1.10, 2.10]. This indicates 
that the TISER-GCN model predictions are, on average, less accurate than the SC-GNN model predictions. The wide range of the limits of 
agreement suggests that the model's performance is inconsistent across the range of earthquake intensities.  

figure 8: proposed SC-GNN Model

[𝑫𝒊𝒂𝒈𝒓𝒂𝒎𝒔]

GT: In contrast, the baseline TISER-GCN model (Fig. 8 ) presents a mean difference of 0.67 and limits of agreement of [-1.09, 2.43]. The 
increased mean difference compared to the SC-GNN model suggests that the TISER-GCN model predictions are less accurate. Additionally, 
the wider limits of agreement indicate a higher level of variability in the model's performance

[𝑰𝒏𝒔𝒕𝒓𝒖𝒄𝒕𝒊𝒐𝒏]: Drawing from the preceding multimodal content, write a thorough and coherent paragraph analysis.

Multimodal Diagram Analysis without Outline

              
 PaperOwl                : The proposed SC-GNN model (Fig. 8 ) shows a mean difference of 0.40 and limits of agreement of [-0.79, 1.60]. This 
indicates that the SC-GNN model predictions are, on average, in good agreement with the true observed intensities. The narrow range of the 
limits of agreement suggests that the model's performance is consistent across the range of earthquake intensities.

Figure 7: Qualitative results of PaperOwl for Multimodal Diagram Analysis with outline or not. Wrong descriptions are marked
as red. Descriptions that conform to diagrams but are inconsistent with the ground truth are marked as blue.

Table 7: The ablation study about the training strategy for
Multimodal Diagram Captioning and Analysis performance.
‘VA’ means whether to fine-tune the Vision Abstractor. ‘Crop’
means whether to use the Croping Module.

Setting Captioning Analysis
Img VA Crop M C M C 𝐹1𝑔𝑝𝑡 Cgpt

r1 224 × × 5.94 23.73 16.70 18.73 0.29 8.78
r2 224 ✓ × 6.89 22.18 17.49 21.85 0.41 11.23
r3 448 ✓ × 6.83 21.86 17.45 22.94 0.40 11.46
r4 448 ✓ ✓ 7.19 25.50 17.38 22.98 0.40 11.62

5.3 Qualitative Results
Fig. 7 presents qualitative results of Multimodal Diagram Analysis
with outline or not. With preceding texts as the input and a simple
[𝑂𝑢𝑡𝑙𝑖𝑛𝑒] as the control signal, PaperOwl generates a paragraph
analysis following the [𝑂𝑢𝑡𝑙𝑖𝑛𝑒] and describes more details about
diagrams. However, PaperOwl still makes some mistakes about
the concrete numbers in the figure, showing the challenge of ac-
curately understanding details among multiple scientific diagrams.
Without the [𝑂𝑢𝑡𝑙𝑖𝑛𝑒], PaperOwl could generate analysis related

to diagrams but different from the author’s intention, showing the
necessity of utilizing [𝑂𝑢𝑡𝑙𝑖𝑛𝑒] as the control signal. More qualita-
tive results of Multimodal Diagram Captioning can be found in the
supplementary material.

6 CONCLUSION
Torwards a multimodal paper-writing copilot, we focus on enhanc-
ing the scientific diagram analysis ability of Multimodal LLMs. We
first carefully build a multimodal dataset M-Paper based on high-
quality Latex files of papers by aligning diagrams with captions
and paragraph analysis. Simulating real scenarios of paper writing,
we design Multimodal Diagam Captioning, Multimodal Diagram
Analysis, and Outline Recommendation tasks. To better evaluate
the analysis quality, we propose a GPT-based metric to measure
both detailed n-gram matching and overall semantic similarity. We
benchmark multiple state-of-the-art MLLMs and propose a strong
baseline, PaperOwl, by performing instruction tuning on ensembled
training data. Comprehensive experiments validate the effective-
ness of incorporating preceding texts and outlines as inputs. Finally,
our ablation study provides insights into model improvement, such
as increasing image resolution to see more details and better balanc-
ing the multimodal information of context, outline, and diagrams.

2024-04-13 05:26. Page 8 of 1–10.
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