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Abstract
We work towards a unifying paradigm for accelerating policy optimization meth-
ods in reinforcement learning (RL) through predictive and adaptive directions of
(functional) policy ascent. Leveraging the connection between policy iteration and
policy gradient methods, we view policy optimization algorithms as iteratively
solving a sequence of surrogate objectives, local lower bounds on the original
objective. We define optimism as predictive modelling of the future behavior of a
policy, and hindsight adaptation as taking immediate and anticipatory corrective
actions to mitigate accumulating errors from overshooting predictions or delayed
responses to change. We use this shared lens to jointly express other well-known
algorithms, including model-based policy improvement based on forward search,
and optimistic meta-learning algorithms. We show connections with Anderson
acceleration, Nesterov’s accelerated gradient, extra-gradient methods, and linear
extrapolation in the update rule. We analyze properties of the formulation, de-
sign an optimistic policy gradient algorithm, adaptive via meta-gradient learning,
and empirically highlight several design choices pertaining to acceleration, in an
illustrative task.

1 Introduction
Policy gradient (PG) methods [Williams, 1992, Sutton et al., 1999] are one of the most effective
reinforcement learning (RL) algorithms [Espeholt et al., 2018, Schulman et al., 2015, 2017, Abdol-
maleki et al., 2018, Hessel et al., 2021, Zahavy et al., 2020, Flennerhag et al., 2021]. These methods
search for the optimal policy in a parametrized class of policies by using gradient ascent to maximize
the cumulative expected reward that a policy collects when interacting with an environment. While
effective, this objective poses challenges to the analysis and understanding of PG-based optimization
algorithms due to its non-concavity in the policy parametrization [Agarwal et al., 2019, Mei et al.,
2020b,a, 2021b].

Nevertheless, PG methods globally converge sub-linearly for smoothly parametrized softmax policy
classes. This analysis relies on local linearization of the objective function in parameter space and
uses small step sizes and gradient domination to control the errors introduced from the linearization
[Agarwal et al., 2019, Mei et al., 2020b, 2021b, 2023]. In contrast, policy iteration (PI) linearizes
the objective w.r.t. (with respect to) the functional representation of the policy [Agarwal et al., 2019,
Bhandari and Russo, 2019, 2021], and converges linearly when the surrogate objective obtained from
the linearization is known and can be solved in closed form.

Relying on the illuminating connections between PI and several instances of PG algorithms (including
(inexact) natural policy gradients (NPG) and mirror ascent (MA)), recent works [Bhandari and Russo,
2021, Cen et al., 2022, Mei et al., 2021a, Yuan et al., 2023, Alfano and Rebeschini, 2023, Chen and
Theja Maguluri, 2022] extended the above results and showed linear convergence of PG algorithms
with large step sizes (adaptive or geometrically increasing). Other works showed that PG methods can
achieve linear rates via entropy regularization. These guarantees cover some (approximately) closed
policy classes, e.g., tabular, or log-linear—cf. Table 1 in Appendix A. More generally, in practice,
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each iteration of these PI-like algorithms is solved approximately, using a few gradient ascent update
steps, in the space of policy parameters, which lacks guarantees due to non-concavity induced by
non-linear transformations in the deep neural networks used to represent the policy [Agarwal et al.,
2019, Abdolmaleki et al., 2018, Tomar et al., 2020, Vaswani et al., 2021].

This recent understanding about the convergence properties of policy gradient methods in RL leaves
room to consider more advanced techniques. In this work, we focus on acceleration via optimism—a
term we borrow from online convex optimization [Zinkevich, 2003], and is unrelated to the exploration
strategy of optimism in the face of uncertainty. In this context, optimism refers to predicting future
gradient directions in order to accelerate convergence (for instance, as done in Nesterov’s accelerated
gradients (NAG) [Nesterov, 1983, Wang and Abernethy, 2018, Wang et al., 2021], extra-gradient
(EG) methods [Korpelevich, 1976], mirror-prox [Nemirovski, 2004, Juditsky et al., 2011], optimistic
MD [Rakhlin and Sridharan, 2013a, Joulani et al., 2020], AO-FTRL [Rakhlin and Sridharan, 2014,
Mohri and Yang, 2015], etc.).

In RL, optimistic policy iteration (OPI) [Bertsekas and Tsitsiklis, 1996, Bertsekas, 2011, Tsitsiklis,
2002] considers policy updates performed based on incomplete evaluation, with a value function
estimate that gradually tracks the solution of the most recent policy evaluation problem. Non-
optimistic methods, on the other hand, regard the value estimation problem as a series of isolated
prediction problems and solve them by Monte Carlo or temporal difference (TD) estimation. By
doing so, they ignore the potentially predictable nature of the prediction problems, and their solutions,
along a policy’s optimization path.

In previous work, optimism has been studied in policy optimization to mitigate oscillations [Wagner,
2014, 2013, Moskovitz et al., 2023] as well as for accelerated optimization [Cheng et al., 2018, Hao
et al., 2020], resulting in sub-linear, yet unbiased convergence, cf. Table 1 in Appendix A.

In this paper, we introduce a general policy optimization framework that allows us to describe
seemingly disparate algorithms as making specific choices in how they represent, or adapt optimistic
gradient predictions. Central to our exposition is the idea of prognostic learning, i.e. making
predictions or projections of the future behavior, performance, or state of a system, based on existing
historical data (interpolation), or extending those predictions into uncharted territory by predicting
beyond data (extrapolation).

In particular, we show that two classes of well-known algorithms—meta-learning algorithms and
model-based planning algorithms—can be viewed as optimistic variants of vanilla policy optimization,
and provide a theoretical argument for their empirical success. For example, STACX [Zahavy et al.,
2020] represents an optimistic variant of Impala [Espeholt et al., 2018] and achieves a doubling
of Impala’s performance on the Atari-57 suite; similarly, adding further optimistic steps in BMG
[Flennerhag et al., 2021] yields another doubling of the performance relative to that of STACX. In
model-based RL, algorithms with extra steps of planning, e.g., the AlphaZero family of algorithms
[Silver et al., 2016a, 2017], with perfect simulators, also enjoy huge success in challenging domains,
e.g. chess, Go, and MuZero [Schrittwieser et al., 2019], with an adaptive model, achieves superhuman
performance in challenging and visually complex domains.

Contributions & motivation After some background in Sec. 2, we define a simple template
for accelerating policy optimization algorithms in Sec. 3. This formulation involves using proximal
policy improvement methods with optimistic auto-regressive update rules, learned in hindsight, to
be predictive of the post-update policy performance. We show this simple acceleration template
based on optimism & adaptivity is a generalization of the update rule of proximal policy optimization
algorithms, where the inductive bias is fixed, and does not change with past experience. We use the
introduced generalization to show that a learned update rule that can form other inductive biases, that
can accelerate convergence.

We use the introduced formulation to highlight the commonalities among several algorithms, ex-
pressed in this formalism in Sec. 3, including model-based policy optimization algorithms relying
on run-time forward search (e.g. Silver et al. [2016a, 2017], Schrittwieser et al. [2019], Hessel
et al. [2021]), and a general algorithm for optimistic policy gradients via meta-gradient optimization
(common across the algorithmic implementations of Zahavy et al. [2020], Flennerhag et al. [2021]).
Using acceleration for (functional) policy gradients is under-explored. This unifying template can be
used to design other accelerated policy optimization algorithms, or guide the investigation into other
collective properties of these methods.
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Leveraging theoretical insights from Sec. 3, in Sec. 3.2, we introduce an optimistic policy gradient
algorithm that is adaptive via meta-gradient learning. In Sec. 3.2.1, we use an illustrative task to
test several theoretical predictions empirically. First, we tease apart the role of optimism in forward
search algorithms. Second, we analyze the properties of the optimistic algorithm we introduced in
Sec. 3.2.

2 Preliminaries & notation
Notation Throughout the manuscript, we use .

= to distinguish a definition from standard equiv-
alence, the shorthand notation ∇xf(xt)

.
= ∇xf(x)|x=xt , ⟨·, ·⟩ denotes a dot product between the

arguments. The notation ⌈·⌋ indicates that gradients are not backpropagated through the targets.

2.1 Markov Decision Processes
We consider a standard reinforcement learning (RL) setting described by means of a discrete-time
infinite-horizon discounted Markov decision process (MDP) [Puterman, 1994] M .

= {S,A, r, P, γ, ρ},
with state space S and action space A, discount factor γ ∈ [0, 1), with initial states sampled under the
initial distribution ρ, assumed to be exploratory ρ(s) > 0,∀s ∈ S.

The agent follows an online learning protocol: at timestep t ≥ 0, the agent is in state St ∈ S, takes
action At ∈ A, given a policy πt(·|st)—the distribution over actions for each state π : S→ ∆A, with
∆A—the action simplex—the space of probability distributions defined on A. It then receives a reward
Rt ∼ r(St, At), sampled from the reward function r : S×A→ [0, Rmax], and transitions to a next
state St+1 ∼ P (·|St, At), sampled under the transition probabilities or dynamics P . Let dπ(s) be a
measure over states, representing the discounted visitation distribution (or discounted fraction of time
the system spends in a state s) dπ(s) = (1− γ)

∑∞
t=0 γ

t Pr(St = s|S0 ∼ ρ,Ak ∼ π(·|Sk),∀k ≤ t),
with Pr(St = s|S0 . . . ) the probability of transitioning to a state at timestep t given policy π.

The RL problem consists in finding a policy π maximizing the discounted return

J(π)
.
= ES∼ρ[Vπ(S)] = (1− γ)Eπ,ρ

[∑
t≥0 γ

tRt+1

]
(the policy performance objective) (1)

where Vπ ∈ R|S| is the value function, and Qπ ∈ R|S|×|A| the action-value function of a pol-
icy π ∈ Π = {π ∈ R|S|×|A|

+ |
∑

a∈A π(s, a) = 1,∀s ∈ S}, s.t. (such that) Qπ(s, a)
.
=

Eπ [
∑∞

t=0 γ
tRt|S0 = s,A0 = a], and Vπ(s)

.
= Eπ [Q(s,A)]. Let Tπ : R|S| → R|S| be

the Bellman evaluation operator, and T : R|S| → R|S| the Bellman optimality operator,
s.t. (TπV )(s)

.
= r(s, π(s)) + γ

∑
s′∈S P (s′|s, π(s))V (s′), and (T V )(s)

.
= maxa∈A r(s, a) +

γ
∑

s′∈S P (s′|s, a)V (s′) = maxπ∈Π(TπV )(s), with Q-function (abbr. Q-fn) analogs.

2.2 Policy Optimization Algorithms
The classic policy iteration (PI) algorithm repeats consecutive stages of (i) one-step greedy policy
improvement w.r.t. a value function estimate πt+1 ∈ G(Vπt

)
.
= {π : TπVπt

= T Vπt
}, with

G the greedy set of Vπt
, followed by (ii) evaluation of the value function w.r.t. the greedy policy

Vπt+1
= limm→∞ T m

πt+1
Vπt

. Approximations of either steps lead to approximate PI (API) [Scherrer
et al., 2015]. Relaxing the greedification leads to soft PI [Kakade and Langford, 2002] πt+1

.
=

(1− α)πt + απ+
t+1, with π+

t+1
.
= argmaxπ∈Π⟨Qπt , π⟩, for α ∈ (0, 1], a (possibly time-dependent)

step size. Optimistic PI (OPI) [Bertsekas and Tsitsiklis, 1996] relaxes the evaluation step instead
to Qt+1

.
= Qt − λ[Qt − T Qt]. Others [Smirnova and Dohmatob, 2020, Asadi et al., 2021] have

extended these results to deep RL and or alleviated assumptions.

More commonly used in practice are policy gradient algorithms. These methods search over
policies using surrogate objectives ℓt(π) that are local linearizations of the performance ℓt(π)

.
=

J(πt) + ⟨π,∇πJ(πt)⟩ − 1/2c∥π − πt∥2Ω, rely on the true gradient ascent direction of the previous
policy in the sequence ∇πJ(πt), and lower bound the policy performance [Agarwal et al., 2019, Li
et al., 2021, Vaswani et al., 2021] when J(π) is 1

αΩ-relatively convex w.r.t. the policy π. As α→∞
(the regularization term tends to zero), πt+1 = argmaxπ∈Π ℓt(π) converges to the solution of ℓt,
which is exactly the policy iteration update. For intermediate values of α, the projected gradient
ascent update decouples across states and takes the following form for a direct policy parametrization:
πt+1

.
= PΠ(πt + αQπt

).

Generally, the methods employed in practice extend the policy search to parameterized policy classes
with softmax transforms ΠΘ

.
=
{
πθ

∣∣πθ(s, a) = exp zθ(s,a)/
∑

a exp zθ(s,a)∀s ∈ S, a ∈ A, θ ∈ Θ ⊂
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Rm
}

, with zθ
.
= f(θ), and f a differentiable function, either tabular zθ(s, a)

.
= θs,a, log-linear

zθ(s, a)
.
= ϕ(s, a)⊤θ, with ϕ a feature representation, or neural parametrizations (zθ-a neural

network) [Agarwal et al., 2019]. These methods search over the parameter vector θ of a policy
πθ ∈ ΠΘ. Actor-critic methods approximate the gradient direction with a parametrized critic
Qwt

≈ Qπt
, with parameters w ∈ W ⊂ Rm, yielding θt+1

.
= argmaxθ∈Θ ℓ(πθ, Qwt

), with
the surrogate objective ℓ(πθ, Qwt)

.
= ⟨πθ, d

⊤
πθt

Qwt⟩ − 1/αKL[dπθt
](πθ, πθt), where we denoted

KL[d](π, µ)
.
=
∑

s d(s)
∑

a π(a|s)(log π(a|s) − logµ(a|s)) the weighted KL-divergence. The
projected gradient ascent version of this update just uses the projection associated with the softmax
transform πt+1

.
= KL(π, exp zt+1/2/

∑
A exp zt+1/2) with zt+1/2 = zt + αQπt

a target-based update.

Acceleration When the effective horizon γ is large, close to 1 the number of iteration before
convergence of policy or value iteration, scales on the order O (1/1−γ). Each iteration is expensive in
the number of samples. One direction to accelerate is designing algorithms convergent in a smaller
number of iterations, resulting in significant empirical speedups. Anderson acceleration Anderson
[1965] is an iterative algorithm that combines information from previous iterations to update the
current guess, and allows speeding up the computation of fixed points. Anderson Acceleration has
been described for value iteration in Geist and Scherrer [2018], extensions to Momentum Value
Iteration and Nesterov’s Accelerated gradient in Goyal and Grand-Clement [2021], and to action-
value (Q) functions in Vieillard et al. [2019]. In the following, we present a policy optimization
algorithm with a similar interpretation.

Model-based policy optimization (MBPO) MBPO algorithms based on forward search rely on
approximate online versions of multi-step greedy improvement implemented via Monte Carlo Tree
Search (MCTS) [Browne et al., 2012]. These algorithms replace the one-step greedy policy in the
improvement stage of PI with a multi-step greedy policy Cf. Grill et al. [2020], relaxing the hard
greedification, and adding approximations over parametric policy classes, forward search algorithms
at scale, can be written as the solution to a regularized optimal control problem, by replacing the
gradient estimate in the regularized policy improvement objectives ℓ(π) of actor-critic algorithms
with Q-values Qηt

resulting from approximate lookahead search θt+1
.
= argmaxθ∈Θ⟨π,Qηt

⟩dπt
−

1/αKL[dπt ]
(π, πt), where Qηt

.
= rnηt

(s, a) + γ
∑

s′ P
n
ηt
(s′|s, a)

∑
a′ π(a′|s′)Qwt

(s′, a′) results
from using an approximate model-based multi-step operator, obtained via simulators, η = ∅ [Silver
et al., 2016a, 2017], or models, with η ∈ Rm the target parameters [Schrittwieser et al., 2019],

Meta-gradient policy optimization (MGPO) In MGPO [Xu et al., 2018, Zahavy et al., 2020,
Flennerhag et al., 2021] the policy improvement step uses a parametrized recursive algorithm
πθt+1

= φ(ηt, πθt) with η ∈ Rn the algorithm’s (meta-)parameters. For computational tractability,
we generally apply inductive biases to limit the functional class of algorithms the meta-learner
searches over, e.g., to gradient ascent (GA) parameter updates θt+1 = θt+gηt . The meta-parameters η
can represent, e.g., inializations [Finn et al., 2017], losses [Sung et al., 2017, Wang et al., 2019, Kirsch
et al., 2019, Houthooft et al., 2018, Chebotar et al., 2019, Xu et al., 2020], internal dynamics [Duan
et al., 2016], exploration strategies [Gupta et al., 2018, Flennerhag et al., 2021], hyperparameters
[Veeriah et al., 2019, Xu et al., 2018, Zahavy et al., 2020], and intrinsic rewards [Zheng et al.,
2018]. The meta-learner’s objective is to adapt the parametrized optimization algorithm based on
the learner’s post-update performance J(πθt+1

)—unknown in RL, and replaced with a surrogate
objective ℓ(πθt+1

). Zahavy et al. [2020] uses a linear model, whereas Flennerhag et al. [2021] a
quasi-Newton method [Nocedal and Wright, 2006, Martens, 2014] by means of a trust region with a
hard cut-off after h parameter updates.

3 Acceleration in Policy Optimization
We introduce a simple template for accelerated policy optimization algorithms, and analyze its
properties for finite state and action MDPs, tabular parametrization, direct and softmax policy classes.
Thereafter, we describe an algorithmic variation suitable for practical and scalable policy gradient
algorithms, adaptive via meta-gradient learning.

3.1 A general template for accelerated policy optimization
Consider finite state and action MDPs, and a tabular policy parametrization. The following policy
classes will cause policy gradient updates to decouple across states since Π ≡ ∆A × . . .∆A —the
|S|-fold product of the probability simplex: (i) the direct policy representation using a policy class
consisting of all stochastic policies π ∈ Π = {π ∈ R|S|×|A|

+

∣∣∑
a∈A π(s, a) = 1,∀s ∈ S}, and (ii)
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the softmax policy representation π ∈ ΠΘ
.
=
{
π
∣∣π(s, a) = exp z(s,a)/

∑
a exp z(s,a),∀s ∈ S, a ∈ A

}
,

with z a dual target, the logits of a policy before normalizing them to probability distributions. We
denote the logarithm function, the inverse for the exponential function used by the softmax transform
with z = (∇Ω)−1(π), and conversely we have π = ∇Ω(z). For the direct parametrization, we have
z = π, and ∇Ω(z) the identity mapping.

Let {πt}t≥0, be a policy sequence, and {zt}t≥0, zt : S × A → R,∀t ≥ 0, the unconstrained
targets z = (∇Ω)−1(π). A new policy is obtained by projecting ∇Ω(z) onto the constraint set
induced by the probability simplex, using a projection operator π .

= PΠ∇Ω(z). Let {gt}t≥0 be
(functional) policy gradients, g .

= ∇πJ(π), and ĝt ≈ gt approximations. Let {ut}t≥0 be a sequence
of (functional) policy updates, described momentarily.

Base algorithm Iterative methods decompose the original multi-iteration objective in Eq. 1 into
single-iteration surrogate objectives {ℓt(π)}t≥0, which correspond to finding a maximal policy
improvement policy πt+1 for a single iteration πt+1 = argmaxπ∈Π ℓt(π) and following πt thereafter.
We consider first-order surrogate objectives

πt+1
.
=argmax

π∈Π
ℓt(π, ut) ℓt(π, u)

.
=⟨π, u⟩−1/α∥π−πt∥2Ω (local surrogate objective) (2)

with α a step size, and ∥·∥Ω the policy distance measured in the norm induced by the policy transform
∇Ω (L1 for the direct policy parametrization on the simplex, and KL-divergence KL(·, ·) for the
softmax, cf. Agarwal et al. [2019]). At optimality, we obtain projected gradient ascent in the dual
target space

πt+1
.
= P∆|A|

(
∇Ω(zt+1/2)

)
zt+1/2 = zt + αut (policy improvement) (3)

with zt
.
= (∇Ω)−1(πt), and PΠ the projection operator for the associated norm: L1 norm for the

direct policy parametrization, or the KL for the softmax policy transform, cf. Agarwal et al. [2019].
It is known that for the softmax parametrization the closed form update results in the natural policy
gradient/mirror ascent/proximal update, and can be written in closed form as πt+1 ∝ πt exp(αut).

Algorithm 1 Accelerated policy gradients

for t = 1, 2 . . . T do
▷policy evaluation: estimate ĝt ≈ gt
▷acceleration: update ut with momentum
Eq. 4, optimism+lookahead Eq. 5, or extra-
gradients Eq. 6
▷policy improvement: update πt+1 with Eq. 3

end for

Acceleration If the update rule ut returns just
an estimation of the standard gradient ĝt ≈ gt, s.t.
ut

.
= ĝt, then the algorithm reduces to the inex-

act NPG/mirror ascent/proximal update πt+1
.
=

P∆|A|(∇Ω)−1 (zt + αĝt). The inductive bias is
fixed and does not change with past experience,
and so acceleration is not possible. If the update
rule is auto-regressive, the inductive bias formed
is similar to the canonical momentum algorithm—
Polyak’s Heavy-Ball method [Polyak, 1964],
ut

.
=µut−1+βĝt =⇒ zt+1/2=zt+µ(zt−zt−1/2)+αβĝt (momentum/Polyak’s Heavy-Ball) (4)

with β and µ step-size, and momentum decay. Because Heavy Ball carries momentum from past
updates, it can encode a model of the learning dynamics that leads to faster convergence.

Optimism A typical form of optimism is to predict the next gradient in the sequence ĝt+1 ≈ gt+1,
while simultaneously subtracting the previous prediction ĝt, thereby computing at each iteration
ut = βĝt+1 + µ[ut−1 − βĝt], and updating πt+1 = PΠ(∇Ω)−1(zt + αut). The policy updates are
extrapolations based on predictions of next surrogate objective in the sequence

ut
.
=βĝt+1+µ[ut−1−βĝt] =⇒ zt+1/2=zt+µ(zt − zt−1/2)+αβĝt+1−αβĝt (optimism) (5)

If the gradient predictions {ĝt+1}t≥0 are accurate ĝt+1 = gt+1, the optimistic update rule can
accelerate. Using ut−1 = gt we obtain the predictor-corrector approach. But in RL, agents generally
do not have gt, so the distance to the true gradient ∥gt − ut−1∥∗ will depend on how good the
prediction ĝt was at the previous iteration ∥gt − ĝt∥∗, with ∥ · ∥∗ the dual norm. Since we have
not computed πt+1 at time t, and we do not have the prediction ĝt+1, existing methods perform the
following techniques.

Lookahead Model-based policy optimization methods look ahead, one-step or multiple steps
(n ≥ 1), using a model or simulator (r̂, P̂ ), to compute ĝt+1− ĝt. Using an empirical distribution over
states and actions this results in regressing Q-fn residuals Qt+1−Qt, and setting Qt+1

.
= T Qt, means

using the Q-learning residuals Ut = µUt−1+β[r̂nt (s, a)+γ
∑

s′ P̂
n
t (s

′|s, a)
∑

a′ maxa′ Qt(s
′, a′)−

µQt(s
′, a′).
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Extra-gradients Optimistic meta-learning algorithms are essentially extra-gradient algorithms,
since they use the previous prediction ut−1 (or momentum) as a proxy to compute a half-step
proposal πt+1/2 = PΠ(∇Ω)−1(zt + αut−1), compute ĝt+1/2

.
= ∇πJ(πt+1/2) (with a model-based

procedure for sample efficiency) and retrospectively obtain the optimistic update and a new target
policy πt+1 = PΠ(∇Ω)−1(zt + αut)

ut
.
=βĝt+1/2+µ[ut−1−βĝt] =⇒ zt+1/2=zt+µ(zt − zt−1/2)+αβĝt+1/2 (extra-gradients) (6)

Practical implementations however do not compute the target policy retrospectively, but rather use
the half-step proposal at the next iteration. Alg. 1 summarizes the procedure.

3.2 Towards a practical Accelerated Policy Gradient algorithm
More commonly used in practice are neural, or log-linear parametrizations for actors, and equivalent
parametrizations of gradient-critics (e.g., Espeholt et al. [2018], Schulman et al. [2015, 2017],
Abdolmaleki et al. [2018], Tomar et al. [2020], Zahavy et al. [2020], Flennerhag et al. [2021], Hessel
et al. [2021]).

Consider a parameterized softmax policy class ΠΘ
.
=
{
πθ|πθ(s, a)

.
= exp zθ(s,a)/

∑
a exp zθ(s,a),∀s∈

S, a ∈A, θ ∈Θ⊂ Rm
}

, with πθ ∈ΠΘ, and zθ a differentiable logit function. Let uη represent a
parametric class of policy updates, with parameters η ∈ Rm′

, which we discuss momentarily.

Base algorithm We recast the policy search in Eq. 2 over policy parameters θ

θt+1
.
= argmax

θ∈Θ
ℓt(πθ, uηt) ℓt(πθ, uη)

.
= ⟨πθ, uη⟩ − 1/αKL[dπθt

](πθ, πθt) (7)

Using function composition, we write the policy improvement step using a parametrized recursive
algorithm πθt+1 = φ(ηt, πθt) with η the algorithm’s (meta-)parameters. We assume the φ(η, ·)
is differentiable and smooth w.r.t. η. If Eq. 7 can be solved in closed form, an alternative is to
compute the non-parametric closed-form solution πt+1 ∝ πθt expαuηt

and (approximately) solve
the projection θt+1

.
= argminθ∈Θ KL(πθ, πt+1). For both approaches, we may use h ≥ 1 gradient

steps on Eq. (7)

θk+1
t = θkt + ξyt+1 yt+1

.
= ∇θℓt(πθk

t
, uηt

) ∀k ∈ [0..h), θ0t
.
= θt θt+1

.
= θht (8)

with ξ a parameter step size. By function compositionality, we have ∇θℓ(π, g) = ∇θπ
⊤
θ ∇πℓ(π, g).

This part of the gradient ∇θπθ(s, a) = πθ(s, a)∇θ log πθ(s, a) is generally not estimated, available
to RL agents, and computed by backpropagation. Depending on how the other component∇πℓ(π, g)
is defined, in particular uηt

, we may obtain different algorithms. Generally, this quantity is expensive
to estimate accurately in the number of samples for RL algorithms.

Algorithm 2 Accelerated Policy Gradients
————–[a practical algorithm]————–

input: (θ0, η0), predictions {Qt}t≥0

for each iteration t = 1, 2 . . . do
Sample from πθt & store in buffer µ
# policy improvement
Update θt+1 with Eq. 9
# acceleration
Compute πt+2 with Qt+1 in Eq. 7&µ
Update ηt+1 using with Eq. 11&µ

end for

In order to admit an efficient implementation of the
parametrized surrogate objective in Eq. 7, we only con-
sider separable surrogate parametrizations over the state
space. We resort to sampling experience under the em-
pirical distribution d̂ and the previous policy πθt , rather
than using the stationary distribution, and we replace
the expectation over states and actions in the gradient
with an empirical average over rollouts or mini-batches
µ

.
= {(S0, A0), (S1, A1) . . . }. Leveraging this composi-

tional structure, the algorithms we consider use weighted
policy updates uη(s, a) = d̂(s)Uη(s, a)

ℓt(πθ, Uη)
.
= Eµ[πθ(A|S)/πθt (A|S)Uη(S,A)− 1/αKL(πθ(·|S), πθt |(·|S)] (9)

Example 1 (A non-optimistic algorithm) Under this definition, the standard actor-critic algorithm
uses Uη

.
= Qη and updates η with semi-gradient temporal-difference (TD) algorithms, by taking

h ≥ 1 steps of gradient descent on the following proxy objective for the value error ηt+1
.
=

argminη∈Rm′ ft(η,Qt+1), where

ft(η,Qt+1)
.
=Eµ[1/2

(
⌈Qt+1⌋(S,A)−Qη(S,A)

)2
]+1/2ζ∥η−ηt∥22 (10)

with ζ a step size. The targets Qt+1 are typically bootstrapped from Qηt
.
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Acceleration We replace the standard policy update with an optimistic decision-aware update

ft(η,Qt+1)
.
=βℓt+1(πt+2, Qt+1)+µ[ℓt(φ(η, πθt), Uηt−1

)−βℓt(πθt+1
, Qt)]

where we used the notation πθt+1

.
= φ(ηt, πθt) which denotes the policy improvement step

uses a parametrized recursive algorithm with parameters η as indicated in the update rule
Uη. φ(η, πθt). The algorithm we use computes πθt+1

= PΠΘ
πt+1, from optimal policies

πt+1
.
= argmaxπ ℓt(π, Uηt−1) ∝ πθt exp(αUηt−1), and πt+2

.
= argmaxπ ℓt+1(π,Qt+1) ∝

πθt+1 exp(αQt+1) cf. Eq.8.

With ℓt(φ(η, πθt), Uηt−1
) = KL(φ(η, πθt), πθt+1

), ℓt+1(πt+2, Qt+1) − ℓt(πθt+1
, βQt) =

KL(πθt+1
, πt+2), and ℓt(φ(η, πθt), βQt+1 + [Uη − βQt]) = KL(πθt , πt+2), the left-hand side

of the generalized Pythagorean theorem restates the objective above for φ(η, πθt) = φ(ηt, πθt)

KL(πθt , πθt+1
)+KL(πθt+1

, πt+2) = KL(πθt , πt+2) +⟨∇π KL(π, πt+2)|π=πθt+1
, πθt − πθt+1

⟩

By cosine law, if ⟨∇π KL(π, πt+2)|π=πθt+1
, πθt − φ(η, πθt)⟩ ≥ 0 we can move η, and indirectly,

φ(η, πθt) in the opposite direction of πθt to decrease KL(φ(η, πθt), πt+2) retrospectively. We now
want to find η which minimizes ⟨∇π KL(πθt+1 , πt+2), φ(η, πθt)⟩. We use a first-order method, to
optimize the linearization of this objective

ft(η,Qt+1)
.
=⟨η,∇ηφ(ηt, πθt)

⊤∇π KL(πθt+1
, πt+2)⟩+1/2ζ∥η−ηt∥22 (11)

where πt+2 depends on Qt+1. Alg. 2 summarizes the procedure.

Next, we empirically study: (i) the effect of grounded meta-optimization targets Qt+1 based on true op-
timistic predictions Qt+1

.
= Qπθt+1

, and (ii) using self-supervised, inaccurate predictions—obtained
with a separate estimator: Qt+1

.
= Qwt+1

, with w separately learned parameters. Bootstrapping the
meta-optimizer on itself Qt+1

.
= Uηt quickly diverges without proper grounding. We leave to future

work the exploration of other ways of adding partial feedback to ground the bootstrap targets, e.g.
using stochastic truncated bootstrap targets T̂nUηt .

3.2.1 Illustrative empirical analysis
In this section, we investigate acceleration using optimism for online policy optimization, in an
illustrative task. We mentioned one option for computing optimistic predictions {Qt}t≥0 is using
a model or simulator. Consequently, in Sec. 3.2.2, we begin with a brief study on the effect of
the lookahead horizon on the optimistic step, in order to understand the acceleration properties of
multi-step forward search algorithms, and distinguish between two notions of optimism. Thereafter, in
Sec. 3.2.3, we consider the accelerated policy gradient algorithm we designed in Sec. 3.2 (summarized
in Alg. 2), and investigate emerging properties for several choices of policy targets πt+2 obtained
with optimistic predictions {Qt+1}t≥0.

Experimental setup In both experiments, we use the discrete navigation
task from [Sutton and Barto, 2018], illustrated aside (details in Appendix C).

3.2.2 Optimism with multi-step forward search
For this illustration, we use exact simulators. The only source of inaccuracy in the gradient prediction
is the depth truncation from using a fixed lookahead horizon h. We use this experiment to show the
difference between: (i) optimism within the local policy evaluation problem (Qt+1

.
= T h

πt
Qt), and

(ii) optimism within the global maximization problem (Qt+1
.
= T hQt).

Algorithms We consider an online AC algorithm, with forward planning up to horizon h for
computing the search Q-values Qt+1

.
= T h

πb
Qwt

, bootstrapping at the leaves on Qwt
, trained

with using Eq. 10, and πb, a tree-search policy. We optimize the policy πθ online, using h = 1
gradient steps on Eq 9: θt+1 = θt + β∇θ log πθt(A|S)At+1(S,A), with actions sampled online and
At+1

.
= Qt+1 − Vt+1 the h-step advantage, where Vt+1(S)

.
= Eπθt

(·|S)[Qt+1(S,A)].

Relationship between acceleration and optimistic lookahead horizon We use a multi-step
operator in the optimistic step, which executes a Q-fn lookahead expansion up to horizon h,
and tree back-up. For the tree policy πb, we distinguish between: (i) extra policy evaluation
steps with the previous policy, Qt+1

.
= T h

πt
Qwt

(Fig 2(a)), and (ii) extra greedification steps,
Qt+1

.
= T hQwt

(Fig 2(b)). The policy & Q-fn learners are trained online with θt+1 = θt + ξyt,
s.t. Ed̂,πt

[yt]
.
= Ed̂,πt

[At+1(S,A)∇θ log πθt(A|S))], with At+1 = Qt+1 − Vt+1, where Vt+1(S)
.
=

7



(a) Optimistic evaluation (b) Optimistic improvement (c) Difference between (a) and (b)

Figure 1: Optimism with extra steps of forward search with a simulator. x-axis: lookahead horizon h;
y-axis: total cumulative regret

∑
k≤t J(π

∗)−J(πk). Lookahead targets r+γQt+1 are used for: (a) Optimistic
evaluation Qt+1

.
= T h

πt
Qwt . Increasing the optimistic lookahead horizon h helps, and a horizon h = 0 is

worst. Colored curves denote the step size ζ used to learn the parameter vector w of Qw with online TD(0). The
step size controls the quality of the gradient via the accuracy of the search Q-values Qt+1 (more details in the
main text). Shades denote confidence intervals over 10 runs. (b) Optimistic improvement Qt+1

.
= T hQwt .

Intermediate values of the optimistic lookahead horizon h trade off accumulating errors for shorter horizons. (c)
Comparison between the two notions of optimism local—evaluation within the current prediction problem,
and global—improvement within the optimization problem, for two step sizes.

Eπt(·|S)[Qt+1(S,A)]. The advantage function At+1 uses search Q-values Qt+1, and critic parameters
w trained with Eq. 10 from targets based on the search Q-values r(S,A) + γQt+1(S,A).

Results & observations Fig. 1(c) shows the difference between optimistic improvement—the
gradient prediction has foresight of future policies on the optimization landscape, and optimistic
evaluation—the gradient prediction is a refinement of the previous gradient prediction toward the
optimal solution to the local policy improvement sub-problem. As Fig. 1(a) depicts, more lookahead
steps with optimistic evaluation, can significantly improve inaccurate gradients, where accuracy is
quantified by the choice of ζ , the Q-fn step size for w. Thus, for πb

.
= πt, increasing h→∞, takes the

optimistic step with the exact (functional) policy gradient of the previous policy, Qt+1 = T h
πb
Qwt =

T h
πt
Qwt

h→∞−→ Qπt
. As Fig. 1(b) shows, the optimal horizon value for optimistic improvement is

another, one that trades off the computational advantage of extra depth of search, if this leads to
accumulating errors, as a result of depth truncation, and bootstrapping on inaccurate values at the
leaves, further magnified by greedification.

3.2.3 Accelerated policy optimization with optimistic policy gradients
We now empirically analyze some of the properties of the practical meta-gradient based adaptive
optimistic policy gradient algorithm we designed in Sec. 3.2 (Alg. 2).

(i) Acceleration with optimistic policy gradients We first remove any confounding factors arising
from tracking inaccurate target policies πt+2 in Eq.11, and resort to using the true gradients of the post-
update performance of πθt+1

, Qt+1
.
=Qπθt+1

, but distinguish between two kinds of lookahead steps:
(a) parametric, or (b) geometric. This difference is indicative of the farsightedness of the optimistic
prediction. In particular, this distinction is based on the policy class of the target, whether it be a (a)
parametric policy target πθt+2 , obtained using h steps on Eq. 8, with yt+1

.
= ∇θℓt(πθk

t+1
, Qt+1)∀k ≥

h, or a (b) non-parametric policy target, πt+2 ∝ πθt+1
expαQt+1. The results shown are for h = 1,

and α = 1.

Results & observations When the meta-optimization uses an adaptive optimizer (Adam [Kingma
and Ba, 2015]), Fig 2(a) shows there is acceleration when using targets πt+2 one step ahead of the
learner parametric, or geometric. The large gap in performance between the two optimistic updates
owes to the fact that target policies that are one geometric step ahead correspond to steepest directions
of ascent, and consequently, may be further ahead of the policy learner in the space of parameters,
leading to acceleration. Additional results illustrating sensitivity curves to hyperaparameters are
added in Appendix C. When the meta-optimization uses SGD, the performance of the meta-learner
algorithms is slower, lagging behind the PG baseline, but the ordering over the optimistic variants
is maintained (Fig 5(a) in Appendix C), which indicates that the correlation between acceleration
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(a) Expert targets (b) Target predictions (c) Hyperparameter sensitivity

Figure 2: Accelerated policy optimization with optimistic policy gradients (a) x-axis: number of steps,
y-axis: regret J(π∗) − J(πt). Different colored curves denote: standard PG, optimistic policy gradients
(OPG) - with parametric target policies, and non-parametric target policies, trained with meta-gradient learning
from optimistic predictions using the true post-update gradients. (b) x-axis: number of episodes, y-axis:
regret. Optimistic policy gradients (OPG) are meta-learned from inaccurate optimistic predictions using Q-fn
estimations. (c) Hyper-parameter sensitivity curves. x-axis: meta-learning rate for η, y-axis: total cumulative
regret

∑
k≤t J(π

∗)−J(πk). The plot shows optimistic policy gradients meta-learned from inaccurate optimistic
predictions. Different tones depict different accuracies of the optimistic prediction, indirectly quantified via the
optimistic Q-fn’s step size. Straight lines show a baseline standard AC. Shades denote confidence intervals over
10 runs.

and how far ahead the targets are on the optimization landscape is independent of the choice of
meta-optimizer.

(ii) How target accuracy impacts acceleration Next, we relax the setup from the previous exper-
iment, and use inaccurate predictions Qt+1 ≈ Qπθt+1

, instead of the true post-update gradients.

In particular, we resort to online sampling under the empirical on-policy distribution d̂, and use a
standard Q-fn estimats to track the action-value of the most recent policy Qwt+1

≈ Qπθt+1
using

Eq. 10, with TD(0): wt+1 = wt − ζ[r(S,A) + γQwt
(S,A)−Qwt

(S,A)]∇wQwt
(S,A), with step

size ζ. With respect to the policy class of the targets, we experiment with the same two choices (a)
parametric πθt+2, or (b) non-parametric πt+2 . Targets are ahead of the optimistic learner, in (a)
parameter steps, for the former, and geometric steps for the latter.

Results & observations Even when the target predictions are inaccurate, Fig.2(b) shows that
optimistic policy ascent directions distilled from lookahead targets that use these predictions can
still be useful (meta-optimization uses Adam, although promising results are in Appendix C also
for meta-optimization with SGD). Non-parametric targets, ahead in the optimization, show similar
potential as when using true optimistic predictions. Fig 2(c) illustrates the total cumulative regret
(y-axis) stays consistent across different levels of accuracy of the optimistic predictions used by
the targets, which is quantified via the Q-fn step sizes (ζ), and indicated by different tones for each
algorithm. As expected, we observe parametric targets to be less robust to step size choices, compared
to non-parametric ones, analogous the distinct effect of non-covariant gradients vs natural gradients.

4 Concluding remarks
We presented a simple, principled template for accelerating policy optimization algorithms, and
connected seemingly distinct classes of algorithms: model-based policy optimization algorithms, and
optimistic meta-learning. We drew connections to well-known universal algorithms from convex
optimization, and investigated some of the properties of acceleration in policy optimization. We used
this interpretation to design an optimistic PG algorithm based on meta-gradient learning, highlighting
its features empirically.

Related work We defer an extensive discussion on related work to the appendix. The closest in
spirit to this operator-view formulation is the predictor-corrector paradigm, used also by Cheng et al.
[2018]. The most similar optimistic algorithm for policy optimization is AAPI [Hao et al., 2020].
Both analyze optimism from a smooth optimization perspective, whereas we focus the analysis on
Bellman-operators and PI-like algorithms, optimistic update rules, thus allowing the unification.
We extend the empirical analysis of Flennerhag et al. [2021], who only focused on meta-learning
hyperparameters of the policy gradient, and used optimistic update rule in parameter space, which is
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less principled and lacks guarantees. Other meta-gradient algorithms [Sung et al., 2017, Wang et al.,
2019, Chebotar et al., 2019, Xu et al., 2020] take to more empirical investigations. We focused on
understanding the core principles common across methods, valuable in designing new algorithms in
this space, optimistic in spirit.

Future work We left many questions unanswered, theoretical properties, and conditions on guaran-
teed accelerated convergence. The scope of our experiments stops before function approximation,
or bootstrapping the meta-optimization on itself. Conceptually, the idea of optimizing for future
performance has applicability in lifelong learning, and adaptivity in non-stationary environments
[Flennerhag et al., 2021, Luketina et al., 2022, Chandak et al., 2020].

Acknowledgements
The first author gratefully acknowledges support from FRQNT—Fonds de recherche du Québec,
Nature et technologies, and IVADO.
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Appendix

A Convergence rates for policy gradient algorithms

Alg Opt Π/ΠΘ Q Notes O(T) Reference

PI ✗ Π - convex Π linear Ye [2011]
API ✗ Π R|S|×|A| convex Π linear Scherrer [2016]
SoftPI ✗ Π - convex Π linear Bhandari and Russo [2021]

GA ✗ ΠΘ - log barrier reg. O(1/
√
T ) Agarwal et al. [2019]

GA ✗ ΠΘ - - O(1/T ) Mei et al. [2020b]
GA ✗ ΠΘ - entropy reg linear Mei et al. [2020b]
PGA ✗ ΠΘ - - O(1/

√
T ) Bhandari and Russo [2019]

PGA ✓ ΠΘ R|S|×|A| adaptive step size O(1/
√
T ) Cheng et al. [2018]

PGA ✗ ΠΘ R|S|×|A| (non/)convex Π O(1/
√
T ) Agarwal et al. [2019]

PGA ✗ ΠΘ R|S|×|A| O(1/
√
T ) Shani et al. [2019]

PGA ✗ ΠΘ R|S|×|A| entropy reg. O(1/T ) Shani et al. [2019]
PGA ✗ ΠΘ R|S|×|A| adaptive step size linear Khodadadian et al. [2021]
PGA ✗ ΠΘ - adaptive step size linear Bhandari and Russo [2019]
PGA ✗ ΠΘ R|S|×|A| adaptive step size linear Xiao [2022]
PGA ✗ ΠΘ R|S|×|A| entropy reg. linear Cen et al. [2022]
PGA ✗ ΠΘ - entropy reg. linear Bhandari and Russo [2021]
PGA ✗ ΠΘ R|S|×|A| strong reg. linear Lan [2022]

PGA ✗ ΠΦ⊤Θ Φ⊤η O(1/T ) Agarwal et al. [2019]
PGA ✗ ΠΦ⊤Θ Φ⊤η adaptive step size O(1/T 2/3) Abbasi-Yadkori et al. [2019]
PGA ✓ ΠΦ⊤Θ Φ⊤η adaptive step size O(1/T 3/4) Hao et al. [2020]
PGA ✓ ΠΦ⊤Θ Φ⊤η adaptive step size O(1/

√
T ) Lazic et al. [2021]

PGA ✗ ΠΦ⊤Θ Φ⊤η geom incr. step size linear Chen and Theja Maguluri [2022]
PGA ✗ ΠΦ⊤Θ Φ⊤η geom incr. step size linear Alfano and Rebeschini [2023]
PGA ✗ ΠΦ⊤Θ Φ⊤η geom incr. step size linear Yuan et al. [2023]

Table 1: Summary of previous work on rates of convergence for policy gradient algorithms (Columns)
Alg—algorithm used, Opt—whether it uses optimism, Π/ΠΘ—policy class, Q—the space of the gradient-
critic prediction used (if not using the true gradient-critic/Q-fn of the policy performance objective, Qπ , in
which case it is marked with −), O(T)—iteration complexity (finite sample analysis of convergence), as a
function of number of iterations T, Notes—other assumptions, limitations, observations. (Algorithm) the
following abbreviations are used: PI—policy iteration, API—approximate policy iteration, SoftPI—soft policy
iteration, GA—gradient ascent, PGA—projected gradient ascent (including (inexact) natural gradient ascent,
(inexact) mirror ascent, (inexact) dual-averaging, (inexact) primal-dual views). (Policy class) the following
abbreviations are used: Π—tabular with direct/natural policy parametrization, ΠΘ—tabular with softmax
policy parametrization, ΠΦ⊤Θ—log-linear policy parametrization, i.e. the softmax transform is applied on
a linear parametrization, Φ⊤Θ, with Φ—the feature representation, and with corresponding linear gradient
approximation over the policy’s features Q = Φ⊤η, with η—parameter vector η.
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B Related work
B.1 Optimism in policy optimization
Problem formulation The RL problem consists in finding a policy π maximizing the discounted
return—the policy performance objective: J(π) ≡ ES∼ρ[Vπ(S)] = (1 − γ)Eπ,ρ

[∑
t≥0 γ

tRt

]
,

where Vπ ∈ R|S| is the value function, and Qπ ∈ R|S|×|A| the action-value function of a policy π ∈
Π = {π ∈ R|S|×|A|

+ |
∑

a∈A π(s, a) = 1,∀s ∈ S}, s.t. Qπ(s, a) ≡ Eπ [
∑∞

t=0 γ
tRt|S0 = s,A0 = a],

and Vπ(s) ≡ Eπ [Q(s,A)].

B.1.1 Policy iteration
Policy iteration The classic policy iteration algorithm repeats consecutive stages of (i) one-step
greedy policy improvement w.r.t. a value function estimate

πt+1 ∈ G(Vπt
) = {π : TπVπt

= T Vπt
} ⇐⇒ πt+1 = argmax

π∈Π
⟨∇J(πt), π⟩ = ⟨Qt, π⟩dπt

(12)

with G the greedy set of Vπt , followed by (ii) evaluation of the value function w.r.t. the greedy policy

Vπt+1
= lim

h→∞
T h
πt+1

Vπt
or Qπt+1

= lim
h→∞

T h
πt+1

Qπt
(13)

Approximate policy iteration Approximations of either steps lead to approximate PI (API) [Scher-
rer et al., 2015], in which we replace the two steps above with

πt+1 ∈ G(Vπt) = {π : TπVπt ≥ T Vπt − ϵt+1} (14)

with ϵt+1 a greedification and/or value approximation error.

Soft policy iteration Relaxing the greedification leads to soft policy iteration, or conservative
policy iteration [Kakade and Langford, 2002], called Frank-Wolfe by Bhandari and Russo [2021].
The minimization problem decouples across states to optimize a linear objective over the probability
simplex

πt+1 = (1− α)πt + απ+
t+1 with π+

t+1 = argmax
π∈Π
⟨Qπt , π⟩dπt

(15)

for α ∈ [0, 1], a (possibly time-dependent) step size, and ⟨·, ·⟩d a state weighting that places weight
d(s) on any state-action pair (s, a).

Optimistic policy iteration (OPI) [Bertsekas and Tsitsiklis, 1996] relaxes the evaluation step
instead to

Qt+1 = (1− λ)Qt + λQ+
t+1, with Q+

t+1 = T h
πt+1

Qt,∀h ≥ 0 (16)

with λ ∈ [0, 1]. Other partial evaluations are possible, such as a geometric interpolation with λ̃

(possibly different than λ) of multi-step partial evaluations: Q+
t+1 ≡ T λ̃

πt
Qt = (1−λ̃)

∑∞
h=0 λ̃

hT h+1
πt+1

,
with λ̃ ∈ [0, 1].

B.1.2 Policy gradients
Projected Gradient Descent Starting with some policy π ∈ Π, an iteration of projected gradient
ascent with step size α updates to the solution of the regularized problem

πt+1 = argmax
π
⟨∇J(πt), π⟩+

1

α

∑
s∈S

dπt(s)
∑
a∈A

(π(a|s)− πt(a|s))2 (17)

= argmax
π
⟨Qπt , π⟩dπ +

1

α
∥π − πt∥22,dπt

(18)

which is a first-order Taylor expansion of J w.r.t. the policy’s functional representation π (see
Bhandari and Russo [2021, 2019])

J(π′) = J(π) + ⟨∇J(π), π′ − π⟩+O(∥π′ − π∥2) (19)

= J(π) + ⟨Qπ, π
′ − π⟩dπ +O(∥π′ − π∥2) (20)

With per state decoupling, for specific values of α this yields a per state projection on the decoupled
probability simplex

πt+1 = PΠ
[dπt ]

πt+2 = argmax
π∈Π
∥π − πt+2∥22,dπt

with πt+2 = πt + αQπt
(21)

with ∥ · ∥22,dπt
the weighted L2-norm.
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Mirror descent (MD) Mirror descent adapts to the geometry of the probability simplex by using
a non-Euclidean regularizer. The specific regularizer used in RL is the entropy function H(π) ≡
π log π, such that the resulting mirror map is the log function. The regularizer decouples across
the state space and captures the curvature induced by the constraint of policies lying on the policy
simplex via the softmax policy transform.

Starting with some policy πt ∈ ΠΘ, an iteration of mirror descent with step size α updates to the
solution of a regularized problem

πt+1 = argmax
π∈Π
⟨∇J(πt), π⟩+

1

α

∑
s∈S

dπt
(s)KL(π(s), πt(s)) (22)

= argmax
π∈Π
⟨Qπt , π⟩dπt

+
1

α
KL[dπt ]

(π, πt) (23)

which is known to be the exponentiated gradient ascent update πt+1 =
πt expαQπt∑

a π(a|·) expαQπt (·,a)
(ob-

tained using the Lagrange approach, see Bubeck [2015]).
Using state decoupling, for specific values of α we may also write MD as a projection using the

corresponding Bregman divergence for the mirror map∇πH(π) (cf. Bubeck [2015])

πt+1 = PΠ,H
[dπt ]

πt+2 = argmax
π∈Π

KL[dπ ](π, πt+2) with (24)

log πt+2 = log πt + αQπt − log
∑
a

π(a|·) expαQπt(·, a) (25)

Policy parametrization For parametric policy classes the search written over policies, translates
into similar versions of the linear objective, except over policy parameters. Since the class of softmax
policies can approximate stochastic policies to arbitrary precision, this is nearly (we can only come
infinitesimally close to an optimal policy) the same as optimizing over the class Π.

Natural policy gradients (NPG) The natural policy gradient (NPG) of Kakade [2001] applied
to the softmax parameterization is actually an instance of mirror descent for the entropy-based
regularizer H .

Natural policy gradient is usually described as steepest descent in a variable metric defined by the
Fisher information matrix induced by the current policy [Kakade, 2001, Agarwal et al., 2019]

θt+1 = θt + αFρ(θt)
†∇θtJ(πθt) (26)

Fρ(θt) = ES∼dπθt
,A∼πθt

[
∇θt log πθt∇θt log π

⊤
θt

]
(27)

and is equivalent to mirror descent under some conditions [Raskutti and Mukherjee, 2014]. Cf.
Bhandari and Russo [2021], Li et al. [2021], the aforementioned base MD and NPG updates are
closely related to the practical instantiations in TRPO [Schulman et al., 2015], PPO [Schulman
et al., 2017], MPO [Abdolmaleki et al., 2018], MDPO [Tomar et al., 2020]. All these algorithic
instantiations use approximations for the gradient direction.

B.1.3 Actor-critic methods
Generally, in RL, an agent only has access to partial evaluations of the gradient ∇πJ(π), and
commonly these involve some sort of internal representation of the action-value function Qt ≈ Qπt

.

Natural actor-critic. MD with an estimated critic. Consider a parameterized softmax policy class
πθ ∈ ΠΘ, with parameter vector θ, and Qη ∈ Fη , with parameter vector η, s.t. For the softmax policy
class, this will be log πθ, for ΠΘ =

{
πθ

∣∣πθ(s, a) =
exp fθ(s,a)∑

a′∈A exp fθ(s,a′)∀s ∈ S, a ∈ A, θ ∈ Rm
}

, with

fθ a differentiable function, either tabular fθ(s, a) = θs,a, log-linear fθ(s, a) = ϕ(s, a)⊤θ, with ϕ a
feature representation, or neural (fθ-a neural network) parametrizations [Agarwal et al., 2019].

Written as a proximal policy improvement operator, at iteration t, starting with some policy
πt ≡ πθt . the next policy is the solution to the regularized optimization problem

πθt+1 = arg max
πθ∈ΠΘ

⟨Qηt , πθ⟩dπt
− 1

α
KL[dπt ]

(πθ, πt) (optimistic improvement & projection)

(28)

with α a (possibly time-dependent) step size.
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Using the connection between the NPG update rule with the notion of compatible function
approximation [Sutton et al., 1999], as formalized in [Kakade, 2001], we may try to approximate the
functional gradient using η

Fρ(θ)
†∇θJ(πθ) =

η

1− γ
(29)

where η are parameters of an advantage function Aη—which is the solution to the projection of Aπθ

on the dual gradient space of π, the space spanned by the particular feature representation that uses
ϕt ≡ ∇θ log πθt as (centered) features

ηt = argmin
η

ES∼dπθt
,A∼πθt

[(η⊤ϕt(S,A)−Aπθt
(S,A))2] (30)

Similarly there is an equivalent version for Q-NPG considering possibly (un-centered) features (ϕs,a,
for fθ(s, a) = ϕ⊤

s,aθ) and projecting

ηt = argmin
η

ES∼dπθt
,A∼πθt

[(η⊤ϕt(S,A)−Qπθt
(S,A))2] (31)

For both of them we can now replace the NPG parameter update with
θt+1 = θt + αηt (32)

B.1.4 Forward search
Multi-step policy iteration The single-step based policy improvement used in the aforementioned
algorithms, e.g., policy iteration, approximate PI, actor-critic methods, and its practical algorithmic
implementations, is not necessarily the optimal choice. It has been empirically demonstrated in RL
algorithms based on Monte-Carlo Tree Search (MCTS)[Browne et al., 2012] (e.g., Schrittwieser et al.
[2019], Schmidhuber [1987]) or Model Predictive Control (MPC), that multiple-step greedy policies
can perform conspicuously better. Generalizations of the single-step greedy policy improvement
include (i) h-step greedy policies, and (ii) κ–greedy policies. The former output the first optimal
action out of a sequence of actions, solving a non-stationary h-horizon control problem:

π(s) ∈ argmax
π0

max
π1,...πh−1

Eπ0,...πh−1

[
h−1∑
t=0

γtr(St, πt(St)) + γhV (Sh)|S0 = s

]
(33)

equivalently described in operator notation as π ∈ G(T h−1V ) ≡ {π|TπTh−1V ≥ T hV }. A κ-
greedy policy interpolates over all geometrically κ-weighted h-greedy policies π ∈ G(T κV ) ≡
{π|T κ

π V ≥ T κV, T κ
π ≡ (1− κ)

∑∞
h=0 κ

hT h+1
π }.

Multi-step soft policy iteration Efroni et al. [2018] shows that when using soft updates with h > 1

πt+1 = (1− α)πt + απ+
t+1, π

+
t+1 ∈ G(T h−1V ) ≡ {π|TπTh−1V ≥ T hV } (34)

policy improvement is guaranteed only for α = 1, and when using

πt+1 = (1− α)πt + απ+
t+1, π

+
t+1 ∈ G(T κV ) ≡ {π|T κ

π V ≥ T κV, T κ
π ≡ (1− κ)

∞∑
h=0

κhT h+1
π }

(35)
policy improvement is guaranteed only for α ∈ [κ, 1]. This result appears in Efroni et al. [2018], and
a more general version in Konda and Borkar [1999].

Tree search Notable examples of practical algorithms with empirical success that perform multi-
step greedy policy improvement are AlphaGo and Alpha-Go-Zero [Silver et al., 2016a, 2017, 2016b],
MuZero [Schrittwieser et al., 2019]. There, an approximate online version of multiple-step greedy
improvement is implemented via Monte Carlo Tree Search (MCTS) [Browne et al., 2012]. In
particular, Grill et al. [2020] shows that the tree search procedure implemented by AlphaZero is an
approximation of the regularized optimization problem

πθt+1 = arg max
πθ∈ΠΘ

⟨Qh
t , π⟩dπt

− 1

αt
KL[dπt ]

(πθ, πt) (optimistic improvement & projection)

(36)

with Qh
t —the search Q-values, i.e., those estimated by the search algorithm that approximates T hQwt

with stochastic sampling of trajectories in a tree up to a horizon h, and bootstrapping on a Q-fn
estimator at the leaves. For a full description of the algorithm, refer to Silver et al. [2017]. The step
size αt captures the exploration strategy, and decreases the regularization based on the number of
simulations.
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B.1.5 Meta-learning
Optimistic meta-gradients Meta-gradient algorithms further relax the optimistic policy im-
provement step to a parametric update rule πθt+1

≡ φπθt
(ηt), e.g., θt+1 = θt + gηt

, when limited to
a functional class of parametric GA update rules gη ∈ Fη . These algorithms implement adaptivity in
a practical way, they project policy targets πt+2 ahead of πθt+1

gηt+1
= arg min

gη∈Fη

KL[dπt+1
](πθt+1

, πt+2) (hindsight adaptation & projection) (37)

The targets can be parametric πt+2 ≡ πθt+2
, initialized from θ

(0)
t+1 = θt+1, and evolving for h step

further ahead of θt+1, s.t. θ(k+1)
t+1 = θkt+1 + gkt ,∀k ≤ h, with gkt representing predictions used by the

bootstrapped targets–Alternatively, targets may be non-parameteric, e.g., πt+2 ∝ πθt+1 exp(Qt+1 −
Qt), e.g., if Q+

t = Tπt+1Qηt then πt+2 ∝ πθt+1 exp(Tπt+1Qηt − Qηt) = πθt+1—capturing the
advantage of using the hypothesis πθt+1 .

B.1.6 Optimism in online convex optimization
One way to design and analyze iterative optimization methods is through online linear optimization
(OLO) algorithms.

Online learning Policy optimization through the lens of online learning [Hazan, 2017] means
treating the policy optimization algorithm as the learner in online learning and each intermediate
policy that it produces as an online decision. The following steps recast the iterative process of
policy optimization into a standard online learning setup: (i) at iteration t the learner plays a decision
πt ∈ Π, (ii) the environment responds with feedback on the decision πt, and the process repeats.
The iteration t might be different than the timestep of the environment. Generally, it is assumed that
the learner receives an unbiased stochastic approximation as a response, whereas that is not always
the case for RL agents, using bootstrapping in their policy gradient estimation with a learned value
function.

For an agent it is important to minimize the regret after T iterations

RegT ≡
T−1∑
t=0

(J(π∗)− J(πt)) (38)

The goal of optimistic online learning algorithms [Rakhlin and Sridharan, 2013a,b, 2014] is obtain
better performance, and thus guaranteed lower regret, when playing against “easy” (i.e., predictable)
sequences of online learning problems, where past information can be leveraged to improve on the
decision at each iteration.

Predictability An important property of the above online learning problems is that they are not
completely adversarial. In RL, the policy’s true performance objective cannot be truly adversarial, as
the same dynamics and cost functions are used across different iterations. In an idealized case where
the true dynamics and cost functions are exactly known, using the policy returned from a model-based
RL algorithm would incur zero regret, since only the interactions with the real MDP environment,
not the model, are considered in the regret minimization problem formulation. The main idea is to
use (imperfect) predictive models, such as off-policy gradients and simulated gradients, to improve
policy learning.

B.1.7 Online learning algorithms
We now summarize two generalizations of the well-known core algorithms of online optimization
for predictable sequences, cf. Joulani et al. [2020]: (i) a couple variants of optimistic mirror descent
[Chiang et al., 2012, Rakhlin and Sridharan, 2013a,b, Chiang et al., 2012], including extragradient
descent (Korpelevich [1976], and mirror-prox [Nemirovski, 2004, Juditsky et al., 2011], and (ii)
adaptive optimistic follow-the-regularized-leader (AO-FTRL) [Rakhlin and Sridharan, 2013a, 2014,
Mohri and Yang, 2016].

Optimistic mirror descent (OMD). Extragradient methods Starting with some previous iterate
xt ∈ X , an OMD [Joulani et al., 2020] learner x uses a prediction g̃t+1 ∈ X ∗ (X ∗—dual space of
X ) to minimize the regret on its convex loss function f : X → R against an optimal comparator
x∗ ∈ X with

xt+1 = argmin
x∈X
⟨gt + g̃t+1 − g̃t, x⟩+BΩ(x, xt) (39)
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with g̃t+1 ≈ ∇f(xt+1) optimistic gradient prediction, and gt ≡ ∇f(xt) true gradient feedback, BΩ

a Bregman divergence with mirror map Ω.
Extragradient methods consider two-step update rules for the same objective using an intermediary

sequence x̃

x̃t+1 = argmin
x∈X
⟨g̃t+1, x⟩+BΩ(x, xt) (40)

xt+1 = argmin
π∈Π
⟨g+t+1, x⟩+BΩ(x, xt) (41)

with g̃t+1 ≈ ∇f(xt+1) a gradient prediction, and g+t+1 ≡ ∇f(x̃t+1) the true gradient direction, but
for the intermediary optimistic iterate x̃t+1.

Adaptive optimistic follow-the-regularized-leader (AO-FTRL) A learner using AO-FTRL up-
dates x using

xt+1 = argmin
x∈X
⟨g0:t + g̃t+1, x⟩+ ω1:t−1(x) (42)

where g0:t =
∑t

j=0 gj are true gradients, g̃t+1 is the optimistic part of the update, a prediction of
the gradient before it is received, and ω0:t(x) =

∑t
j=0 ωj(x) represent the “proximal” part of this

adaptive regularization (cf. Joulani et al. [2020]), counterparts of the Bregman divergence we have
for MD updates that regularizes iterates to maintain proximity.

B.1.8 Policy optimization with online learning algorithms
Cheng et al. [2018] follows the extragradient approach for policy optimization

πt+2 = argmax
π∈Π
⟨Qt, π⟩+KL(π, πt) (43)

πt+1 = argmax
π∈Π
⟨Qπt

, π⟩ −KL(π, πt) (44)

but changes the second sequence to start from the intermediary sequence and add just a correction

πt+2 = argmax
π∈Π
⟨Qt, π⟩ −KL(π, πt) (45)

πt+1 = argmax
π∈Π
⟨Qπt

−Qt, π⟩ −KL(π, πt+2) (46)

This approach uses πt+2 as the optimistic prediction, and πt+1 as the hindsight corrected prediction—
a policy optimal in hindsight w.r.t. the average of all previous Q-functions rather than just the
most recent one. But it needs an additional model for the value functions Qt, and another learning
algorithm to adapt Qt to the Qt+1. Additionally, an agent does not generally have access to Qπt

, but
only partial evaluations.

Hao et al. [2020] also designs an adaptive optimistic algorithm based on AO-FTRL, which updates

πt+1 = argmax
π∈Π

〈(∑t
j=0 Qj + Q̂t+1

)
, π
〉
− αtω(π) (47)

with ω—a regularizer, and with Qj ≈ Qπj
,∀j ≤ t predictions for the true gradients, and Q̂t+1 ≈

Qπt+1
is also a prediction for the gradient of the next policy, which uses the previous predictions

Qπj
,∀j ≤ t to compute it. The authors also propose an adaptive method for learning αt that uses

gradient errors of Qj ,∀j ≤ t. Averaging value functions has also been explored by Vieillard et al.
[2020b] and Vieillard et al. [2020a].
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C Empirical analysis details

Table 2: Notation

t iterations/timesteps
T number of iterations
n rollout length
µ buffer
M meta-buffer
w standard critic (Q-fn Qw) parameters
η meta parameters of meta-learner (gη or Qη)
ν step size for meta-learner’s parameters η (Q-fn Qη)
ζ step size for standard critic’s parameters w (Q-fn Qw)
ξ step size for the policy learner’s parameters θ (πθ)
h lookahead horizon
Qt+h search Q-values up to lookahead horizon h (tree depth)

C.1 Algorithms

Algorithm 3 Policy gradient

1: Init: params θ0, buffer µ = [()]
2: for t ∈ 0..T iterations do
3: Every n steps using a rollout µ← (St, At, Rt, St+1 . . . St+n) ∼ πθt
4: Update policy learner πθt+1 cf. Eq.48
5: end for

Policy gradients Algorithm 3 describes a standard PG algorithm (cf. [Williams, 1992]) with an
expert oracle critic Qπθ

, for the policy evaluation of πθ. The standard policy gradient update is

θt+1 = θt + ξ
1

n

t+n∑
i=t

∇θt log πθt(Ai|Si)
(
Qπθt

(Si, Ai)− Eπθt
[Qπθt

(Si, ·)]
)

(48)

Algorithm 4 Actor-critic

1: Init: params (θ0, w0), buffer µ = [()]
2: for t ∈ 0..T iterations do
3: Every n steps using a rollout µ← (St, At, Rt, St+1 . . . St+n) ∼ πθt
4: Update critic Qwt+1 cf. Eq.50 and policy learner πθt+1 cf. Eq.49
5: end for

Actor-critic Algorithm 4 describes a standard AC algorithm (cf. [Sutton et al., 1999]) with an
estimated critic Qw, for the policy evaluation of πθ. The policy updates

θt+1 = θt + ξ
1

n

t+n∑
i=t

∇θt log πθt(Ai|Si)
(
Qwt

(Si, Ai)− Eπθt
[Qwt

(Si, ·)]
)

(49)

and the critic’s update using TD(0) learning, writes

wt+1 = wt − ζ
1

n

t+n∑
i=t

(Ri + γEπt
[Qwt

(Si+1, ·)]−Qwt
(Si, Ai))∇wt

Qwt
(Si, Ai) (50)
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Algorithm 5 Policy gradients with forward search

1: Init: params (θ0, w0), buffer µ = [()]
2: for t ∈ 0..T iterations do
3: Every n steps using a rollout µ← (St, At, Rt, St+1 . . . St+n) ∼ πθt
4: Generate search Q-values Qt+h up to lookahead horizon h with
5: (i) Qt+h = T h

πt
Qwt

6: (ii) Qt+h = T hQwt

7: Update critic Qwt+1 cf. Eq.52 and policy learner πθt+1 cf. Eq.51, using Qt+h

8: end for

Forward search with a model Algorithm 5 describes an AC algorithm with h-step lookahead
search in the gradient critic

θt+1 = θt + ξ
1

n

n∑
i=0

∇θt log πθt(Ai|Si) (Qt+h(Si, Ai)− Eπt [Qt+h(Si, ·)]) (51)

where Qt+h is either (i) Qt+h = T hQwt or (ii) Qt+h = T hQwt , depending on the experimental
setup, and the critic is updated toward the search Q-values

wt+1 = wt − ζ
1

n

n∑
i=0

∇wt
Qwt

(Si, Ai) (Ri + γEπt
[Qt+h(Si+1, ·)]−Qwt

(Si, Ai)) (52)

Algorithm 6 Optimistic policy gradients with policy targets computed from expert hints

1: Init: params (θ0, η0), buffer µ = [()], meta-bufferM = [µ, ..]
2: for t ∈ 0..T iterations do
3: Every n steps using a rollout µt ← (St, At, Rt, St+1 . . . St+n) ∼ πθt
4: Predict uηt−1

= φ(ηt−1, Qπθt+1
)

5: Update learner with using optimistic prediction uηt−1
using Eq. 53

6: Every h steps using experience stored in the meta-bufferM← (µt, . . . µt+h)
7: Compute policy targets πθt+2

cf. Eq. 54 or πt+2 cf. Eq. 55
8: Update meta-learner uηt

cf. Eq. 56
9: end for

Optimistic policy gradients with expert targets (hints) Algorithm 6 describes a meta-gradient
based algorithm for learning optimistic policy gradients by supervised learning from policy targets
computed with complete hints (Qπ). The meta-update used updates

θt+1 = θt + ξuηt−1
(53)

where uηt
= 1

n

∑n
i=0∇θt log πθt(Ai|Si)

(
(Uηt

(Si, Ai)− Eπθt
[(Uηt

(Si, Ai)]
)

The policy targets
are (i) parametric policies obtained at iteration t by starting from the parameters θt+1 (θ̃0t+1 = θt+1)
and executing h parameter updates with data from successive batches of rollouts µt+1:t+h sampled
from the meta-bufferM

θj+1
t+2 = θjt+2 + ξĝjt+2 (54)

with ĝjt+2 = 1
n

∑n
i=0∇θt log πθj

t
(Ai|Si)

(
(Qπt+1

(Si, Ai)− Eπθt
[(Qπt+1

(Si, Ai)]
)
. After h steps

the resulting target parameters θt+2 ≡ θht+2, and yield the target policy πθt+2 .
The other choice we experiment with is to use a target constructed with (ii) geometric updates for

one (or more) steps ahead, similarly to tree-search policy improvement procedures. The targets are
initialized with π0

t+1 = πθt+1
and execute one (or more) steps of policy improvement

πj+1
t+2 ∝ πj

t+2 expαQπt+1
(55)

yielding the non-parametric policy target πt+2 ≡ πj+1
t+2 . Setting α→∞ in Eq.55, if the predictions

are given, or can be computed with the help of the simulator model, we obtain an update similar to
the multi-step greedy operator T h used in forward search.
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The next parameter vector ηt for the gradient uη is distilled via meta-gradient learning by
projecting the expert policy target πt+2 (or πθt+2 ) using the data samples from µt, . . . µt+h fromM
and the surrogate objective

ηt+1 = ηt − ν
1

h

t+h∑
j=t

∇ηt
KL(πθt+1

(Sj), πt+2(Sj)) (56)

Algorithm 7 Optimistic policy gradients with target predictions

1: Init: params (θ0, w0, η0), buffer µ = [()], meta-bufferM = [µ, ..]
2: for t ∈ 0..T iterations do
3: Every n steps using a rollout µt ← (St, At, Rt, St+1 . . . St+n) ∼ πθt
4: Predict uηt

5: Update learner with optimistic prediction uηt using Eq. 53
6: Update Qwt+1 cf. Eq.50
7: Every h steps using experience stored in the meta-bufferM← (µt, . . . µt+h)
8: Compute policy targets πθt+2

cf. Eq. ?? or πt+2 cf. Eq. ??
9: Update meta-learner uηt+1

cf. Eq. 56
10: end for

Optimistic policy gradients with target predictions Algorithm 7 describes a meta-gradient based
algorithm for learning optimistic policy gradients, by self-supervision from target predictions (learned
estimators). The targets we use are (i) parametric, computed at iteration t, similarly to the previous
paragraph (Eq. 54, except we now replace the hint that was using complete evaluations, with a
partial evaluation. We also experiment with the (ii) non-parametric target that takes geometric steps,
similarly to tree-search policy improvement procedure, where the hint from Eq.55, uses complete
evaluations.

C.2 Experimental setup

Figure 3: Maze Navigation:
illustration of the MDP used
in the empirical studies

Environment details All empirical studies are performed on the same
discrete navigation task from Sutton and Barto [2018], illustrated in
Fig. 3. "G" marks the position of the goal and the end of an episode.
"S" denotes the starting state to which the agent is reset at the end of the
episode. The state space size is 48, γ = 0.99. There are 4 actions that
can transition the agent to each one of the adjacent states. Reward is 1 at
the goal, and zero everywhere else. Episodes terminate and restart from
the initial state upon reaching the goal.

Protocol All empirical studies report the regret of policy performance every step, and at every
episode J(π∗)− J(πt), for a maximum number of 500 episodes. Hyperparameter sensitivity plots
show the cumulative regret per total number of steps of experience cumulated in 500 episodes,∑

t J(π
∗) − J(πt). This quantity captures the sample efficiency in terms of number of steps of

interaction required.

Algorithmic implementation details Meta-gradient based algorithms keep parametric representa-
tions of the gradient fields via a parametric advantage Aη(s, a) = Uη(s, a)− Eπ[Uη(s,A)], ∀s, a,
s.t. a learned gradient update consists of a parametric gradient step on the loss

θt+1 = θt +∇L(θ;µt)
∣∣∣
θ=θt

(57)

L(θ;µt) =
1

n

t+n∑
i=t

log πθ(Ai|Si)

(
Uη(Si, Ai)−

∑
a

πθt(Ai|Si)Uη(Si, Ai)

)
(58)

Policies use the standard softmax transform πθ = exp fθ(s,a)∑
b exp fθ(s,b)

, with fθ, the policy logits. In the
experiments illustrated we use a tabular, one-hot representation of the state space as features, so fθ is
essentially θ. The same holds for the critic’s parameter vector Qw, and the meta-learner’s parameter
vector Qη .

The experiments were written using JAX, Haiku, and Optax [Bradbury et al., 2018, Babuschkin
et al., 2020, Hennigan et al., 2020].
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Experimental details for the forward search experiment We used forward search with the
environment true dynamics model up to horizon h, backing-up the current value estimate Qwt at
the leaves. We distinguish between two settings: (i) using the previous policy πt for bootstrapping
in the tree-search back-up procedure, i.e. obtaining Qh

t = T h
πt
Qwt

at the root of the tree; or (ii)
using the greedification inside the tree to obtain Qh

t = T hQwt at the root. Table 3 specifies the
hyperparameters used for both of the aforementioned experimental settings. Results shown in the
main text are averaged over 10 seeds and show the standard error over runs.

Table 3: Hyperparameters for optimism via forward search on the Maze Gridworld in Fig. 3

Hyperparameter
ξ (policy step size) 0.5
ζ (Q-fn step size) {0.01, 0.1, 0.5, 0.9}
h (lookahead horizon) {0, 1, 2, 4, 8, 16}
n (rollout length) 2
policy/Q-fn optimiser SGD

Experimental details for the meta-gradient experiments with expert target/hints For this
experiment we used Algorithm 6 described in Sec. C.1, and the hyperaparameters in Table 4.

Table 4: Hyperparameters for optimism via meta-gradient learning with expert targets/hints on the Maze
Gridworld in Fig. 3

Hyperparameter
ξ (policy step size) 0.1

(training plots Fig.2-d)
{0.1, 0.5}
(sensitivity plots Fig.2-c)

ζ (Q-fn step size) -
h (lookahead horizon) 1
α (step size π) 1
n (rollout length) 2
policy optimiser SGD
meta-learner optimiser Adam

Experimental details for the meta-gradient experiments with target predictions/bootstrapping
For this experiment we used Algorithm 7 described in Sec. C.1, and the hyperaparameters in Table 5.

Table 5: Hyperparameters for optimism via meta-gradient learning with target predictions/bootstrapping on the
Maze Gridworld in Fig. 3

Hyperparameter
ξ (policy step size) 0.5
ζ (Q-fn step size) 0.1

(training plots Fig.2-e)
{0.1, 0.5}
(sensitivity plots Fig.2-f)

h (lookahead horizon) 1
n (rollout length) 2
policy optimiser SGD
meta-learner optimiser Adam
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(a) expert targets, Adam, perf/episode (b) expert targets, Adam, perf/step

Figure 4: Meta-learner uses Adam. Policy optimization with adaptive optimistic policy gradients. x-axis - (a) no
of episodes, (b) no of steps. y-axis - regret J(π∗)− J(πt). Learning curves denote: the baseline - standard PG
algorithm, adaptive optimistic policy gradient learning algorithms - with parametric target policies , functional
non-parametric target policies, trained with meta-gradients from expert targets. Shades (wherever noticeable)
denote standard error over different runs.

(a) Hyperparam. sensitivity / expert tar-
gets / Adam / total regret

(b) Hyperparam. sensitivity / expert
targets / Adam / final regret

Figure 5: Meta-learner uses Adam. Hyper-parameter sensitivity curves for the meta-learning rate ν - x-axis,
y-axis - total cummulative regret (a):

∑
i≤t J(π

∗)− J(πi), final regret (b): J(π∗)− J(πT ); Learning curves
show adaptive optimistic policy gradient learning algorithms - with parametric target policies , functional non-
parametric target policies, trained with meta-gradients from expert targets. Different tones show the evolution of
the meta-hyperparameter ν to those used in the inner learned optimization algorithm, i.e. the policy step size.
Different straight lines denote the baseline—standard PG. Shades denote standard error over different runs.

C.3 Additional results & observations
Fig 4 shows learning curves, and Fig 5 hyperparameter sensitivity, for experiments with expert targets,
when using Adam for the meta-optimization. Fig 6 (learning curves), and Fig 7 (hyperparameter
sensitivity) illustrate results for when the meta-optimization uses SGD. The next set of figures show
experiments with target predictions—for Adam Fig 8 (learning curves) and Fig 9 (hyperparameter
sensitivity), and for SGD Fig 10 (learning curves) and Fig 11 (hyperparameter sensitivity).
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(a) expert targets, SGD, perf/episode (b) expert targets, SGD, perf/step

Figure 6: Meta-learner uses SGD. Policy optimization with adaptive optimistic policy gradients. x-axis - (a)
no of episodes, (b) no of steps. y-axis - regret J(π∗)− J(πt). Learning curves denote: the baseline - standard
PG algorithm, optimistic policy gradient learning algorithms - with parametric target policies , functional
non-parametric target policies, trained with meta-gradients from expert targets. Shades (wherever noticeable)
denote standard error over different runs.

(a) expert targets, SGD, total regret (b) expert targets, SGD, final regret

Figure 7: Meta-learner uses SGD. Hyper-parameter sensitivity curves for the meta-learning rate ν - x-axis.
y-axis - total cumulative regret (a):

∑
i≤t J(π

∗)− J(πi), final regret (b): J(π∗)− J(πT ). Learning curves
show adaptive optimistic policy gradient learning algorithms - with parametric target policies, functional non-
parametric target policies, trained with meta-gradients from expert targets. Different tones show the evolution of
the meta-hyperparameter ν to those used in the inner learned optimization algorithm, i.e. the policy step size.
Different straight lines denote the baseline—standard PG. Shades denote standard error over different runs.

(a) target pred, Adam, perf/episode (b) target pred, Adam, perf/step

Figure 8: Meta-learner uses Adam. Policy optimization with adaptive optimistic policy gradients. x-axis - (a)
no of episodes, (b) no of steps. y-axis - regret J(π∗)− J(πt). Learning curves denote: the baseline - standard
AC algorithm, optimistic policy gradient learning algorithms - with parametric target policies , functional
non-parametric target policies, trained with meta-gradients from target predictions. Shades (wherever noticeable)
denote standard error over different runs.
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(a) target pred, Adam, total regret (b) target pred, Adam, final regret

Figure 9: Meta-learner uses Adam. Hyper-parameter sensitivity curves for the meta-learning rate ν - x-axis.
y-axis - total cummulative regret (a):

∑
i≤t J(π

∗)− J(πi), final regret (b): J(π∗)− J(πT ). Learning curves
show optimistic policy gradient learning algorithms - with parametric target policies , functional non-parametric
target policies, trained with meta-gradients from target predictions. Different tones show the evolution of the
meta-hyperparameter ν to those used in the inner learned optimization algorithm, i.e. Q-fn step size. Different
straight lines denote the baseline—standard AC. Shades denote standard error over different runs.

(a) target pred, SGD, perf/episode (b) target pred, SGD, perf/step

Figure 10: Meta-learner uses SGD. Policy optimization with optimistic policy gradients. x-axis - (a) no of
episodes, (b) no of steps. y-axis - regret J(π∗) − J(πt). Learning curves denote: the baseline - standard
AC algorithm, optimistic policy gradient learning algorithms - with parametric target policies, functional non-
parametric target policies, trained with meta-gradients from target predictions. Shades (wherever noticeable)
denote standard error over different runs.

(a) target pred, SGD, total regret (b) target pred, SGD, final regret

Figure 11: Meta-learner uses SGD. Hyper-parameter sensitivity curves for the meta-learning rate ν - x-axis;
y-axis - total cummulative regret (a):

∑
i≤t J(π

∗)− J(πi), final regret (b): J(π∗)− J(πT ). Learning curves
show optimistic policy gradient learning algorithms - with parametric target policies , functional non-parametric
target policies, trained with meta-gradients from target predictions. Different tones show the evolution of the
meta-hyperparameter ν to those used in the inner learned optimization algorithm, i.e. Q-fn step size. Different
straight lines denote the baseline—standard AC. Shades denote standard error over different runs.
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