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Abstract

Large Language Models require substantial computational resources for inference,
posing deployment challenges. While dynamic pruning offers superior efficiency
over static methods through adaptive circuit selection, it exacerbates alignment
degradation by retaining only input-dependent safety-critical circuit preservation
across diverse inputs. As a result, addressing these heightened alignment vulnera-
bilities remains critical. We introduce Alignment-Aware Probe Pruning (AAPP), a
dynamic structured pruning method that adaptively preserves alignment-relevant
circuits during inference, building upon Probe Pruning. Experiments on LLaMA
2-7B, Qwen2.5-14B-Instruct, and Gemma-3-12B-IT show AAPP improves refusal
rates by 50% at matched compute, enabling efficient yet safety-preserving LLM
deployment.

Introduction
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Figure 1: Refusal rates of LLaMA-2-7B, Qwen-2.5-14B, and Gemma-3-12B models on the WildJail-
break dataset [Jiang et al., 2024] under pruning ratio r = 0.3. We compare our Alignment-Aware
Probe Pruning (AAPP) against two baselines: Probe Pruning (PP) [Le et al., 2025] and random
pruning. Across all three models, AAPP consistently achieves higher refusal rates, demonstrating
that preserving alignment-critical circuits upon the detection of adversarial prompts improves safety
behavior under pruning.

LLMs deliver impressive capabilities yet impose high computational costs, with inference costs
scaling directly with model size [Kaplan et al., 2020]. Pruning offers a promising route to reduce
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these costs [Han et al., 2016], using different techniques, including static structured pruning [Ma
et al., 2023] as well as dynamic probe-guided pruning (PP) [Le et al., 2025] which improves the
accuracy-efficiency frontier by pruning columns of the learnable linear transformation that maps
intermediate hidden state to the output hidden state, referred to as an input channel. However, these
methods risk pruning alignment-critical structures, potentially weakening safety guardrails and
degrading behaviors such as refusal of harmful instructions. Recent analyses [Wei et al., 2024] show
that removing as little as 3% of parameters is enough to compromise safety. This brittleness motivates
the development of Alignment-Aware Probe Pruning (AAPP)—a method that explicitly preserves
alignment-critical circuits.

AAPP uses the average activation value for each input channel. By comparing these scores obtained
from benign and harmful prompts to the scores obtained from our probe pass, our method detects
adversarial inputs and enforces hard exclusions on alignment-critical structures. This structured
pruning approach yields an improved efficiency-alignment frontier: AAPP outperforms PP, having
refusal rates up to 50% greater for the same computational budget. These findings suggest constraint-
satisfying pruning as a practical route to efficient yet safe LLMs. Our key contributions are as
follows:

• We develop a pruning framework that preserves interpretable circuits

• We evaluate our framework on refusal rate, toxicity, accuracy, and computational cost
(FLOPs)

Related Work

Structured Pruning

Structured pruning is a key approach for reducing the computational cost of LLMs. LLM-Pruner
[Ma et al., 2023] removes entire attention heads and MLP neurons via gradient-based importance,
while Wanda [Sun et al., 2024] prunes weights with small magnitude and activation values post-hoc,
achieving high sparsity without retraining. Probe Pruning [Le et al., 2025] extends this line by
using probed hidden states to guide batch-wise pruning, improving the accuracy-efficiency frontier.
However, these methods risk pruning the preservation of alignment-critical structures.

Alignment Preservation

Several methods aim to preserve alignment by constraining intervening on the causal elements[Liu
et al., 2023, Geiger et al., 2025] of the models responsible alignment during model modification.
Safe LoRA [Hsu et al., 2024] and SaLoRA [Li et al., 2025] constrain LoRA updates to remain
within safety-aligned subspaces, while LoRI [Zhang et al., 2025] and LoTA [Panda et al., 2024]
apply structural sparsity to reduce catastrophic forgetting. These works show that constraining
fine-tuning helps preserve desirable behaviors in LLMs. NLSR [Yi et al., 2025] restores safety by
transplanting safety-critical neurons from an aligned reference model. These approaches show that
explicit parameter constraints and neuron transplantation can maintain refusal, honesty, and toxicity
safeguards even under structural changes. Layer-level analyses further support targeted preservation:
Shi et al. [Shi et al., 2024] showing that alignment changes concentrate in late-stage layers and that
compression can focus on non-critical regions.

Methods

As shown in Figure 2, Alignment-Aware Probe Pruning consists of five stages, namely probe genera-
tion; probing, recording activations; comparison to our historical activation scores; history-informed
pruning; and inference.

Activations and Scoring

For each target with C input channels, we create 3 tensors: general, benign, and harmful using sets of
prompts: (1) general prompts to maintain linguistic functionality from C4 dataset [Raffel et al., 2020];
(2) benign prompts from wild adversarial dataset; and (3) harmful prompts from wild adversarial
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Figure 2: Alignment-Aware Probe Pruning (PP) is executed in five stages: (1) From the layer-
normalized hidden states, pick tokens based on residual-importance and build a small probe. (2) Run
the probe a few layers ahead to produce probing states (3a) A KL Gate compares them to historical
states from safe and harmful prompts and fires when closer to harmful, ensuring the preservation of
alignment-critical structures. If the gate does not fire, the probe states are just fused with the general
historical states (4) Using the integrated states to calculate the pruning metric [Le et al., 2025], prune
low-score channels. (5) Perform full inference on the remaining weights.

dataset. ([Jiang et al., 2024]). Each set of scores stores the squared ℓ2 norm of channel activations
compressed across the batch and sequence dimensions. We refer to this value as the “channel’s
energy”.

For structured pruning, we adopt the PPsp importance metric from Probe Pruning [Le et al., 2025],
which computes per-channel pruning scores using the ℓ2 norms of each input channel’s activa-
tions. Here, W final denotes the learnable linear transformation between hidden states, and X int the
intermediate hidden state. A lower PPsp score, Ik, indicates less important channels.

Ik =
∥∥∥{ |W final

i,k |2 · ∥X int
:,:,k∥22

}Cout

i=0

∥∥∥
2
, (1)

Finally, we blend live scores with stored activation scores obtained from the set of general prompts.

Risk-aware gate and channel selection

We keep k = ⌈(1− r)C⌉ channels, reserving kalign = ⌊align_frac · C⌋ channels for safety. Probing
states; and historical states from benign and harmful prompts are normalized into distributions: ‘p’;
and ‘qsafe, and qjail’, respectively, using Equation 2.

KLharm =
∑
c

pc log
pc

qcjail
, KLsafe =

∑
c

pc log
pc

qcsafe
. (2)

If KLharm −KLsafe ≥ τmargin, we preserve the top kalign channels by histjail as we wish to protect
channels most active under harmful prompts because they include refusal circuitry. We then fill the
remainder by descending score. Otherwise, we retain the top k channels by score. Using these scores,
binary masks are generated for pruning and then materialized to obtain real compute reductions.

Experimentation and Results

We evaluate on HuggingFace implementations of Llama-2-7B-chat, Qwen2.5-14B-Instruct, and
Gemma-3-12B-IT, using prompts from the WildJailbreak dataset ([Jiang et al., 2024]) which were not
used for the generation of historical states. Workloads contain prompts of avg. length 300 tokens with
120 tokens generated. Unless stated otherwise, we fix hyperparameters to align frac = 0.3, refresh
window = 20, and batch size = 20 for prompts.

We estimate inference FLOPs calculated using 2 FLOPs/MAC ([Hoffmann et al., 2022]) taking
into account the number of layers, attention heads, hidden size, intermediate size, and vocabulary
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size for the given model. We prune only in the input channels of attention oproj and MLP downproj,
excluding the first 6 and last 3 layers. Outputs are post-hoc labeled for refusal and toxicity. Metrics
include throughput compute (FLOPs/token), refusal rate (trained classifier), classification accuracy
and toxicity (Perspective API [Lees et al., 2022]).

Across the two methods (AAPP and PP), We first consider the model’s ability to classify harmful
and unharmful prompts and act accordingly. This is investigated across various compute budgets and
prune ratios. Following this, we assess the safety of the model’s responses for AAPP and PP using
toxicity as the measure.

Refusal Rates at Fixed Prune Ratio

Figure 1 presents refusal rates at prune ratio r = 0.3. Across all three models, AAPP achieves higher
refusal rates (implicit and explicit) than both Randomly Pruned and Probe Pruning (PP) baselines,
preserving alignment behavior. On Llama-2-7B-chat, AAPP attains a refusal rate (0.57) 50% and
78% greater than PP (0.38) and Random Pruning (0.32), respectively. Similar improvements hold for
Llama-2-7B-chat (37% and 61%) and Gemma-3-12B-IT (13% and 48%), confirming the robustness
of our approach across architectures.
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(a) Llama-2-7B-chat. AAPP maintains substantially
higher refusal rates at comparable compute budgets,
achieving safer behavior with fewer FLOPs compared
to standard PP.
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(b) Qwen2.5-14B-Instruct. AAPP preserves refusal
performance as compute decreases, improving the
refusal-compute trade-off relative to PP across the
efficiency spectrum.

Figure 3: Refusal rate vs compute (GFLOPs/token) across models. AAPP consistently achieves higher
refusal rates at lower compute costs than standard PP, demonstrating improved alignment–efficiency
trade-offs.

Extending the investigation, we vary compute budgets to look into the alignment-efficiency frontiers
created using either method. Figure 3a and 3b illustrates alignment (refusal rate) as a function of
computational efficiency (GFLOPs/token) for the Llama-2-7B-chat and Qwen2.5-14B-Instruct mod-
els, respectively, under Probe Pruning (PP) and Alignment-aware PP. Given the same computational
budget, our method achieves a higher refusal rate, shifting the efficiency-alignment frontier upward.
For example, on Llama-2-7B-chat (3a), to achieve a target refusal rate of 0.5, our method requires
only 10.3 GFLOPs/token, compared to a higher cost with PP. Qwen2.5-14B-Instruct exhibits the
same pattern, demonstrating that AAPP maintains safety more efficiently across various compute
levels. These results show that AAPP improves the alignment-efficiency trade-off, achieving safer
behavior while reducing inference cost, and generalizing across diverse model families.
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Model Prune Ratio Method F1 (↑) Accuracy (↑) FAR (↓)

0 PP 1.000 1.000 0.000
AAPP 1.000 1.000 0.000

Llama-2-7B-chat 0.15 PP 0.725 0.702 0.290
AAPP 0.834 0.808 0.201

0.3 PP 0.645 0.624 0.313
AAPP 0.760 0.741 0.254

0 PP 1.000 1.000 0.000
AAPP 1.000 1.000 0.000

Qwen2.5-14B-Instruct 0.15 PP 0.876 0.891 0.058
AAPP 0.880 0.916 0.05

0.3 PP 0.730 0.820 0.169
AAPP 0.786 0.858 0.092

Table 1: Comparison of F1, Accuracy and FAR for PP and AAPP across prune ratios on Llama-2-7B-
Chat and Qwen2.5-14B-Instruct: AAPP has a lower False Acceptance Rate with higher classification
accuracy, behaving more similarly to the unpruned models.

Alignment Accuracy

The accuracy of these refusals and the behavior of the model, more generally, is shown in Table
1. It indicates that AAPP outperforms PP across prune ratios on Llama-2-7B-Chat and Qwen2.5-
14B-Instruct. The results for the pruned models are compared to the unpruned model, which we
consider to have a maximum for these metrics, as our pruned models cannot exceed the performance
of the base model. We use F1 to balance recall and precision, accuracy and False Acceptance Rate
to indicate how often the model does not refuse prompts. PP’s accuracy and F1 decline as pruning
increases, dropping to 0.575 and 0.585 at a 0.3 ratio for Llama2-7B-Chat. In contrast, AAPP retains
higher values, 0.741 accuracy and 0.760 F1, indicating stronger classification stability. Additionally,
AAPP maintains a lower False Acceptance Rate (FAR) (e.g. 0.216 vs 0.353 at 0.3). Similar results
can be seen for Qwen2.5-14B-Instruct. Overall, these results demonstrate AAPP’s ability to preserve
safety and behavior near to the unpruned models at reduced compute.

Toxicity against Prune Ratio

(a) Llama-2-7B-chat. AAPP maintains toxicity lev-
els closer to the unpruned baseline compared to PP,
demonstrating better preservation of safety alignment
under aggressive pruning.

(b) Qwen2.5-14B-Instruct. AAPP sustains lower toxic-
ity scores closer to the unpruned model across pruning
ratios, outperforming PP in safety preservation.

Figure 4: Toxicity vs prune ratio across models. AAPP consistently preserves lower toxicity and safer
outputs under pruning, outperforming PP across both Llama-2-7B-chat and Qwen2.5-14B-Instruct.
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Through toxicity, we can understand how safely the model responds. Figure 4a and 4b indicates that
across both models, AAPP shows clear safety gains over PP. On Llama-2-7B-Chat, PP’s toxicity
peaks at 0.044 at a 0.2 prune ratio, while AAPP stays nearly constant near 0.0075, matching the
unpruned baseline. Similarly, on Qwen2.5-14B-Instruct, PP reaches 0.08, but AAPP remains below
0.02. This demonstrates that AAPP preserves alignment even under heavy pruning. Although toxicity
scores decrease at high pruning ratios, this may reflect linguistic degradation rather than improved
safety. Pruning can suppress expressive activations, yielding flatter, less coherent text that is rated as
less toxic.

Conclusion

We propose a pruning method that preserves alignment while reducing inference cost. By integrating
a risk-aware gate with probe-guided pruning, we prevent the removal of alignment-critical structures
upon the input of an adversarial prompt and improves the efficiency-alignment frontier. Experiments
on Llama-2-7B-chat, Qwen2.5-14B-Instruct, and Gemma-3-12B-IT show that AAPP sustains lower
toxicity and greater classification accuracy at lower FLOP budgets, offering a practical route to safer
and more efficient LLMs.

Therefore, our method improves efficiency, scalability, and energy use without significantly compro-
mising safety. However, there is a risk of missed unsafe inputs as the model is pruned, but we reduce
the chance of this happening through conservative gating.

Limitations of our study include evaluation at mid-scale model sizes and approximate FLOP account-
ing. Future work will extend AAPP to larger models and investigate whether similar additions can be
made to build upon probe pruning in other contexts.
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