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Abstract

Video generation using Large Language Models (LLMs)
has shown promising potential, effectively leveraging the
extensive LLM infrastructure to provide a unified frame-
work for multimodal understanding and content generation.
However, these methods face critical challenges, i.e., token
redundancy and inefficiencies arising from long sequences,
which constrain their performance and efficiency compared
to diffusion-based approaches. In this study, we investi-
gate the impact of token redundancy in LLM-based video
generation and propose Vision Representation Compres-
sion (VRC), a novel framework designed to achieve More
in both performance and efficiency with Less video token
representations. VRC introduces learnable representation
compressor and decompressor to compress video token rep-
resentations, enabling autoregressive next-sequence predic-
tion in a compact latent space. The proposed approach
eliminates redundancy, reduces token sequence length, and
enhances the model’s ability to capture underlying video
structures. Our experiments demonstrate that VRC reduces
token sequence lengths by a factor of 4, achieving more
than 9× acceleration in inference while maintaining per-
formance comparable to state-of-the-art video generation
models. In addition, VRC not only accelerates the infer-
ence process but also significantly reduces memory require-
ments during both model training and inference.

1. Introduction
Diffusion-based video generation models [1, 2, 5, 9] have
showcased significant success in producing realistic and
high-quality videos. Recently, the powerful multimodal un-
derstanding capabilities of Large Language Models (LLMs)
have prompted some studies [8, 29] to explore their video
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Figure 1. Comparison of FVD and inference time (for 17 frames)
across models with different sizes on a single A100 GPU on Face-
Forensics [11]. VRC (ours) achieves better FVD and faster infer-
ence than Latte [9] and Loong [24] (our reproduction).

generation capability. This emerging paradigm of integrat-
ing visual generation capabilities into LLMs [23, 35] lays a
solid foundation for developing unified multimodal models
capable of understanding and generating visual content.

Recent studies [24] have explored the challenges faced
by autoregressive LLMs in video generation. These chal-
lenges stem from the fundamental differences between text
and visual data. While text is inherently information-dense,
enabling LLMs to excel by converting text into discrete to-
kens and predicting the next token autoregressively, videos
generally contain significant redundancy due to spatial and
temporal correlations. Although video tokenizers [8, 22] are
used to compress video frames into token sequences, these
tokenizers are unable to eliminate redundancy between ad-
jacent video tokens. For instance, a 17-frame video clip
with 256×256 resolution can produce 5120 tokens by Om-
niTokenizer [22]. This redundancy can result in information
leakage during autoregressive training, where the model op-
timizes the prediction loss by simply copying from preced-
ing previous tokens instead of learning the underlying struc-
tures or relationships within video frames. In addition, such
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redundant information leads to excessively long token se-
quences from video tokenizers, increasing inference time
for LLMs and causing cumulative errors by next-token pre-
diction during inference [24].

Given these challenges, we explore a critical question:
“Is it necessary to utilize such a large number of tokens to
represent a video clip for autoregressive LLM-based video
generation?” For example, modern video compression
standards like H.264 [25] achieve temporal compression by
recording only the differences between frames rather than
storing complete frames, leading to compression rates of
200 to 500 times. Inspired by this, we propose integrat-
ing a learnable video representation compressor and a rep-
resentation decompressor into the LLM-based framework.
Our method compresses the visual representation after tok-
enization, performs autoregressive predictions in the com-
pressed representation space, and then decodes these pre-
dictions back into the token embedding space by decom-
pressor. This approach not only reduces redundancy be-
tween adjacent video tokens, mitigating potential shortcuts
during training but also acts as an information bottleneck,
encouraging the LLM to capture the latent structure un-
derlying the video tokens. To further address information
leakage during autoregressive training and error accumula-
tion of next-token predictions during inference, we employ
sequence-level prediction for all frames beyond the first.
Specifically, the model predicts a sequence of tokens for a
subsequent frame simultaneously, which prevents error ac-
cumulation in frame sequences and compels the model to
learn the global relationships among tokens across frames,
rather than relying solely on unidirectional dependencies
from preceding tokens.

Our experimental results demonstrate that representation
compression significantly improves the performance of au-
toregressive LLM-based video generation models by effec-
tively reducing redundancy between adjacent video tokens.
Moreover, this compression reduces the sequence length
by 4 times, yielding substantial computational benefits, in-
cluding up to 9× faster inference and significantly reduced
memory requirements. As shown in Figure 1, VRC not
only achieves better results than Latte [9], a diffusion-based
model, but also exhibits faster inference speeds compared to
Latte and significantly outperforms commonly used LLM-
based models of the same size, such as Loong [24]. This
work unlocks the potential of LLM-based video genera-
tion models, providing a promising direction for improv-
ing their efficiency and effectiveness through representation
compression. Our main contributions are summarized as
follows:
• We demonstrate that compressing video representations

after tokenization effectively eliminates redundancy be-
tween adjacent tokens, improving the efficiency and per-
formance of LLM for autoregressive video generation.

• We propose Vision Representation Compression
(VRC) for LLM-based video generation that employs a
pair of learnable video representation compressor and
representation decompressor to reduce token redundancy.

• To mitigate error accumulation, we employ sequence-
level prediction, where the model simultaneously predicts
tokens for the next sequence. This prevents reliance on
unidirectional dependencies and helps the model learn
global relationships across frames.

• Experimental results show that VRC outperforms the
LLM baseline under the same size in inference time and
performance. Through compression, we reduce token se-
quence length by 4 times, achieve over 9× acceleration in
inference, and significantly lower memory requirements
in training and inference.

2. Related Work
2.1. Video Generation

Video generation has been extensively studied in recent
years, with various approaches proposed to tackle this chal-
lenging task. The research in this area can be broadly cate-
gorized into three main paradigms: GAN-based, diffusion-
based, and LLM-based methods. Early methods predomi-
nantly relied on Generative Adversarial Networks (GANs),
which generate realistic video sequences by training a gen-
erator and discriminator in an adversarial framework [12,
14, 16, 19, 32]. While GAN-based methods successfully
capture fine details in video frames, they often struggle with
mode collapse and maintaining temporal consistency in
longer video sequences. Diffusion-based video generation
methods have recently emerged as a powerful alternative,
leveraging stochastic processes to iteratively refine video
predictions [2–4, 6, 9, 21, 33, 34, 36]. These approaches
have demonstrated remarkable performance in generating
high-quality and temporally consistent videos. However,
diffusion-based methods are computationally intensive due
to the need for multiple iterations of the diffusion pro-
cess, which inherently lacks parallelizability, making them
resource-demanding during training and inference.

2.2. LLM-based Video Generation

LLM-based approaches, inspired by advances in LLMs,
frame video generation as an autoregressive next-token pre-
diction task. These methods discretize video frames into
tokens and leverage transformer architectures for sequence
modeling [8, 24, 29]. While LLM-based models bene-
fit from the scalability of transformers, they face signif-
icant challenges related to token redundancy and the in-
efficiency of handling long sequence lengths, which limit
their competitiveness compared to diffusion-based meth-
ods. LLM-based video generation has attracted attention
due to its compatibility with LLM infrastructures and its
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Figure 2. Redundancy between video frames. (Top) Comparison
of intra-coded and predictive-coded frames in terms of byte size,
calculated using the H.264 codec. (Bottom) The orange boxes
mark identical regions across frames, which are used in predictive
coding to reduce byte size.

potential to unify multimodal understanding and genera-
tion [23, 35]. A key component of these models is the video
tokenizer, which discretizes continuous video frames into
discrete tokens to enable transformer-based next-token pre-
diction. Prominent tokenizers, such as ViT-VQGAN [30]
and OmniTokenizer [22], aim to compress video data into a
manageable discrete token space while preserving semantic
information. Despite advancements in tokenization, redun-
dancy in video tokens remains a critical challenge for LLM-
based models. Adjacent frames often contain overlapping
information, leading to inefficiencies in sequence modeling
and shortcuts during training [24]. Recent efforts have at-
tempted to mitigate these issues through techniques such as
introducing causal 3D CNN in the video tokenizer [31] and
using multistage training processes [24]. However, redun-
dancy not only hampers the learning process by encourag-
ing the model to memorize rather than generalize but also
results in long sequences that significantly increase compu-
tational costs. Addressing this redundancy remains essen-
tial for improving the efficiency and effectiveness of LLM-
based video generation models.

3. Rethinking LLM-based Video Generation
3.1. Redundant Information Blocks Autoregressive

Model Learning

Different from text and images, videos contain substantial
redundancy between adjacent frames, due to many iden-
tical regions. Modern video encoding methods such as
H.264 [25] can achieve a high compression ratio by cal-
culating the differences between frames and encoding only
these differences. As shown in Figure 2, using H.264 to
encode these five frames, with the first frame set as an
intra-coded frame (encoded independently) and subsequent

frames as predictive-coded frames (encoding only the dif-
ferences relative to the first frame), the amount of informa-
tion needed to record each subsequent frame is significantly
less than that for the first frame.

In contrast, autoregressive video generation models pre-
dict video token sequences through next-token prediction.
This paradigm allows the model to rely on previous tokens
to generate subsequent redundant ones by simply copying
information, which impedes the learning of deeper struc-
tures and semantics underlying the video. Recently, Wang
et al. [24] observed an imbalanced loss during the train-
ing of autoregressive video generation models, where the
loss for earlier frames is much higher than for later frames.
This suggests that even with VQ tokenizers incorporating
spatiotemporal compression, such as OmniTokenizer [22],
the encoded video token sequences still exhibit significant
redundancy. Moreover, the model, which learns to gener-
ate subsequent tokens by simply copying information from
previous tokens, does not effectively support learning early
frame predictions. To address this issue, it is crucial to fur-
ther compress the information and eliminate redundancy in
autoregressive video generation.

3.2. Necessity of Information Bottleneck

The information bottleneck (IB) principle plays a crucial
role in representation learning by compelling models to
learn compressed and high-level representations. Accord-
ing to this principle [17], introducing a bottleneck forces the
model to focus on capturing only the most relevant features
essential for predicting the target variable. This effectively
eliminates redundant or irrelevant information, leading to
more robust and efficient representations.

Theoretically, the information bottleneck aims to find
a compressed representation T of the input X that retains
as much information as possible about the target Y , while
discarding unnecessary details from X . The optimization
problem can be formulated as:

min
p(T |X)

LIB = I(X;T )− βI(T ;Y ), (1)

where I(X;T ) represents the mutual information between
the input X and the learned representation T , enforcing
compression, and I(T ;Y ) denotes the mutual information
between the representation T and the target Y , ensuring
predictive accuracy; β is a positive trade-off parameter that
controls the balance between compression and relevance.
The core idea of the IB principle is to minimize I(X;T )
while maximizing I(T ;Y ). This balance ensures that the
learned representation T is both concise and informative for
downstream tasks.

For video generation, the presence of redundant infor-
mation between consecutive frames often leads to shortcut
learning, where models simply copy information from pre-
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Figure 3. Overview of the Vision Representation Compression (VRC) Framework. The input video embeddings are further compressed
through a learnable representation compressor to eliminate redundant information. The generation of the first frame tokens is conditioned
on previous first frame tokens and text tokens. The generation of subsequent frame representations is conditioned on the first frame tokens,
text tokens, and previous frame representations. VRC generates a sequence of frame representations simultaneously, implemented by an
attention mask shown on the right, combining both causal and bidirectional attention. We omit the embedding layer for clarity and use
colored blocks with/without borders to indicate tokens and embeddings/representations. We use different colors to indicate tokens/embed-
dings/representations from different frames

vious frames rather than learning meaningful latent struc-
tures. Introducing IB offers two significant advantages:
(1) By compressing the representation space, it reduces re-
dundancy between adjacent video tokens, which helps pre-
vent the model from overfitting to trivial patterns, thereby
encouraging the learning of more substantial temporal de-
pendencies. (2) The bottleneck enforces the extraction of
high-level and abstract features, thus enhancing the model’s
ability to capture the underlying dynamics of video se-
quences. Theoretically, this approach aligns with the princi-
ple that reducing the mutual information between the previ-
ous frames and subsequent representations (I(X;T )) com-
pels the model to focus on features different from previous
frames.

4. Vision Representation Compression for
Video Generation with LLMs

4.1. LLM-based Video Generation

The LLM utilized for video generation is a transformer
model designed for next-token prediction. To process both
text and video, a text tokenizer and a video tokenizer are
employed to convert inputs into discrete tokens.

Given a video sequence consisting of 1 + T frames with
resolution H × W , the video tokenizer compresses the

frames into a sequence of (1 + T
t )×N tokens, where

N =
H

p
× W

p
, (2)

where p × p represents the downsampling rate in the video
tokenizer. The video tokenizer utilizes a causal 3D convo-
lutional neural network (CNN) with a temporal stride of t to
downsample the input sequence along the time dimension,
resulting in discrete tokens.

The LLM-based video generation is framed as an autore-
gressive sequence modeling problem. The input to the LLM
is a sequence of tokens that includes both the text prompt
tokens and the discrete video tokens. The model learns to
predict the next video token in the sequence conditioned on
all previous tokens:

LLLM = Exi
[− logPθ(xi | x<i;xtext)] (3)

where xi denotes the i-th token in the video sequence.

4.2. Vision Representation Compression

In our approach, the first frame tokens x0 are independent
of subsequent frames due to the causal 3D CNN design em-
ployed in the video tokenizer (e.g., OmniTokenizer). Since
the generation process is conditioned solely on the text in-
put, we retain the first frame embeddings separately from
the compression step.
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The subsequent video embedding sequence, excluding
the first frame, is represented as xN :(1+T

t )×N . As shown in
Figure 3, this sequence undergoes compression via a learn-
able representation compressor that reduces its size from
(Tt )×N to (Tt )×M , i.e.,

M =
H

p× r
× W

p× r
, (4)

where r represents the downsampling ratio, and H and W
denote the height and width of the input frames, respec-
tively. The resulting compressed embeddings are denoted
as z0:(1+T

t )×M . The compressed embeddings are concate-
nated with the text embeddings xtext and the uncompressed
first frame embeddings x0:N to form the input sequence for
the autoregressive transformer. This sequence is defined as:

s = Concat(xtext,x0:N , z0:(1+T
t )×M ), (5)

where s denotes the combined sequence of embedding input
to the transformer model. The Concat(·) operation refers
to the concatenation operation. VRC performs both down-
sampling and upsampling operations exclusively along the
spatial dimensions of the token embeddings. This design
choice ensures that no compression is applied along the
temporal dimension, thereby preventing information leak-
age across time steps.

4.3. Next Sequence Prediction

As shown in Figure 3, the distribution of the first frame to-
kens is conditioned on the text tokens: P (xi|x<i;xtext).
The prediction of subsequent frames is conditioned on
both the first frames and the text input. For subsequent
frames, VRC generates their continuous embeddings in
the compressed representation space, effectively optimizing
the use of model capacity. To reduce reliance on ground-
truth tokens during training and to enhance generalization,
we replace traditional next-token prediction with a next-
sequence prediction strategy. Instead of predicting a single
token, VRC generates a sequence of embeddings simulta-
neously. Specifically, the model predicts M embeddings
zi×M :(i+1)×M conditioned on the prior text and frame em-
beddings: Pθ(zi×M :(i+1)×M |xtext;x0:N ; z0:i×M ). This is
achieved using a tailored causal attention mask, as shown
in Figure 3. The embeddings within the same predicted se-
quence segment, zi×M :(i+1)×M , can fully attend to each
other bidirectionally. However, they do not access subse-
quent sequence segments, thereby preserving the autore-
gressive nature of the generation process. Moreover, the
bidirectional attention within each sequence leverages the
spatial coherence inherent in visual data, which aligns better
with the non-sequential structure of image representations:

Ai,j =

{
1, if j ≤ i or (i, j) ∈ same segment
0, otherwise

, (6)

Algorithm 1 Inference Procedure for VRC

Require: Text prompt xtext, maximum frame count T
Ensure: Generated video tokens Xvideo

1: Initialize s← xtext ▷ Concatenate text tokens
2: Step 1: Generate first frame tokens autoregressively
3: for i = 1 to N do
4: Generate token xi ∼ P (xi | x<i,xtext) using autoregressive

decoding
5: end for
6:
7: Step 2: Compress the first frame tokens
8: Encode the first frame tokens x1,x2, . . . ,xN to obtain the sequence

of embeddings: E = Embed(x1,x2, . . . ,xN )
9: Compress the embedding sequence E using the representation com-

pressor to get compressed embeddings: Z = Compress(E)
10: Update s← Concat(s,Z) ▷ Concatenate compressed first frame

with text tokens
11:
12: Step 3: Autoregressively generate subsequent frames and com-

press them
13: for i = 1 to T

t
do

14: Generate the compressed embeddings for the next sequence seg-
ment:

15: Zi×M :(i+1)×M ∼ P (Zi×M :(i+1)×M | s)
16: Upsample the compressed embeddings to obtain the token repre-

sentations: Xi ← Upsample(Zi×M :(i+1)×M )
17: Downsample the token representations back to compressed em-

beddings: Zi×M :(i+1)×M ← Compress(Xi)
18: Update s← Concat(s,Xi) ▷ Concatenate compressed

embeddings to the sequence
19: end for
20:
21: Step 4: Convert final embeddings to video tokens
22: Xvideo ← Decode(s)
23: return Xvideo

where Ai,j denotes the attention mask for the embeddings.
This allows each embedding zj within the current sequence
to attend to previous embeddings and those within the same
sequence but restricts access to subsequent sequences. By
generating embeddings in chunks and using bidirectional
attention within each chunk, VRC achieves efficient se-
quence modeling without information leakage, enhancing
both prediction accuracy and representation learning.

The predicted representations of subsequent video
frames are processed by a learnable representation decom-
pressor, which decompresses them and computes the log-
its for the corresponding video tokens. These logits, along
with those from the first frame tokens, are then used to com-
pute the overall loss. The loss function is composed of two
components: one for the generation of the first frame and
another for the generation of the subsequent frames, i.e.,

L = Lfirst + Lsub,

Lfirst = Exi
[− logPθ(xi | x<i;xtext)] , i < N,

Lsub = Exi×N:(i+1)×N

[
− logPθ

(
xi×N :(i+1)×N |

xtext;x0:N ; z0:i×M ; )] , 1 ≤ i ≤ T

τ
. (7)
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4.4. Inference

During the inference phase, the VRC model follows a se-
quential process to generate video frames conditioned on a
given textual prompt. This process can be broken down into
three primary stages: (1) generating the tokens for the first
frame autoregressively, (2) compressing the first frame to-
kens, (3) autoregressively generating and compressing sub-
sequent frames, and (4) converting the final embeddings
into video tokens. The details of the entire procedure are
summarized in Algorithm 1.

5. Experiments
5.1. Experimental Settings

We evaluate our proposed VRC framework on both class-
to-video and text-to-video generation. Then we analyze
the effect of model size, model initialization, representa-
tion compression ratio, and memory consumption. Finally,
we demonstrate samples of our generation results for both
class-to-video and text-to-video generation and give quali-
tative analysis.

Implementation Details. All experiments were con-
ducted on 8 NVIDIA A100 GPUs, utilizing a global batch
size of 96. The model was implemented in three model
sizes: Base (B), Large (L), and XLarge (XL), with param-
eter counts of 100M, 340M, and 770M, respectively. We
employed the Adam optimizer [7] with a learning rate set to
1 × 10−4. The video representation model compresses in-
puts at three levels with compression ratios of 4, 16, and 64,
with the default set to 4. The architecture of the compressor
and decompressor modules varies based on the compression
ratio: for a ratio of 4, we utilize 2-layer convolutional neural
networks (CNNs) for both the compressor and decompres-
sor, while for ratios of 16 and 64, we employ 3-layer and
4-layer CNNs along with corresponding transposed con-
volutional layers. For video tokenization, we leverage the
OmniTokenizer [22], which encodes video sequences con-
sisting of 17 frames at a resolution of 256× 256 pixels into
discrete tokens of size 5 × 32 × 32. For text-to-video gen-
eration, the parameter of our model is 1.2B. In addition, we
initialize the parameter of our video model through a pre-
trained class- or text-to-image model.

Datasets and Evaluation Metrics. We evaluate our pro-
posed VRC framework on class-to-video and text-to-video
generation tasks. For class-to-video generation, follow-
ing Latte [9], we conduct experiments on the FaceForen-
sics [11], SkyTimelapse [27], UCF101 [15], and Taichi-
HD [13] datasets. Following previous works [9, 14, 29], the
evaluation metric is the Fréchet Video Distance (FVD) [20],
which assesses the quality of generated videos by compar-
ing feature distributions between generated and real videos
using a pretrained Inception network. Lower FVD scores

Table 1. FVD comparison on class-to-video generation datasets.
⋆ indicates that we reproduced the results of Loong using training
on 17 frames. “FFS” represents the FaceForensics dataset. Bold
numbers indicate the best performance.

Method FFS SkyTimelapse UCF101 Taichi-HD

GAN-based Video Generation Model

MoCoGAN [18] 124.7 206.6 2886.9 -
MoCoGAN-HD [18] 111.8 164.1 1729.6 128.1
DIGAN [32] 62.5 83.11 1630.2 156.7
StyleGAN-V [14] 47.41 79.52 1431.0 -
MoStGAN-V [12] 39.70 65.30 1380.3 -

Diffusion-based Video Generation Model

PVDM [33] 355.92 75.48 1141.9 540.2
LVDM [4] - 95.20 372.0 99.0
Latte [9] 27.08 42.67 333.61 97.09

LLM-based Video Generation Model

VideoGPT [29] 185.9 222.7 2880.6 -
Loong⋆ [24] 46.11 62.71 254.47 105.53
VRC (Ours) 26.64 41.95 250.53 96.39

Table 2. Comparison of average time consumption of generating
one video clip of 17 frames on a single A100 GPU, under differ-
ent model sizes. Blue text indicates the acceleration factor of our
proposed method (VRC) compared to the baseline models.

Method B (100M) L (340M) XL (770M)

Latte [9] 5.00 s (5.68×) 6.02 s (3.42×) 6.61 s (2.29×)
Loong [24] 12.32 s (13.98×) 15.22 s (8.64×) 26.08 s (9.03×)

VRC (Ours) 0.88 s 1.76 s 2.89 s

indicate higher video fidelity. We utilize the FVD im-
plementation from StyleGAN-V [14]. For text-to-video
generation, we train on 300K samples from the Vimeo
dataset [10] and evaluate using both FVD and CLIP Sim-
ilarity (CLIPSIM) [26]. CLIPSIM quantifies the semantic
alignment between the generated videos and the input text.
Zero-shot evaluations are performed on the MSR-VTT [28]
dataset, where CLIP-based similarity scores are calculated
between the generated and ground-truth videos. Higher
CLIPSIM scores indicate better alignment with the textual
prompts. Both evaluations are conducted on videos with a
resolution of 256× 256 in 16 frames.

5.2. Quantitative Results

Class-to-Video Generation. As shown in Table 1, our
proposed framework, Vision Representation Compres-
sion (VRC), outperforms other methods across all datasets
on FVD scores. It demonstrates the effectiveness of our
vision representation compression strategy in eliminating
redundancy and improving model learning. In particular,
VRC achieves this superior performance with significantly
faster inference speeds, thanks to the reduced sequence
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Table 3. Comparison of video models on CLIPSIM and FVD met-
rics for zero-shot text-to-video generation on MSR-VTT. “Para.”
indicates the model parameter.

Method Backbone Para. CLIPSIM↑ FVD↓

CogVideo [6] Diffusion 5B 0.2631 1294
MagicVideo [36] Diffusion - - 998
ModelScopeT2V [21] Diffusion 1.7B 0.2930 550
Show-1 [34] Diffusion 4.3B 0.3072 538

VideoPoet [8] LLM 8B 0.3049 213
Loong [24] LLM 7B 0.2903 274
VRC (Ours) LLM 1.2B 0.2890 308

100M 340M 770M

40

60

80

FV
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FaceForensics
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100M 340M 770M

100

110
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Taichi-HD

Figure 4. Performance comparison on various class-to-video
datasets across different model sizes of our method.

length enabled by representation compression. Specifi-
cally, VRC shows an acceleration of over 9× compared
to the typical autoregressive LLM-based method (Loong),
as shown in Table 2. Moreover, VRC, as an LLM-based
video generation model, even outperforms diffusion-based
models such as Latte in inference speed, showcasing its ef-
ficiency.

Text-to-Video Generation. As shown in Table 3, VRC
achieves results comparable to recent proposed video gener-
ation models such as Loong, VideoPoet, and Show-1. Con-
sidering that our current model size is significantly smaller
than that of VideoPoet and Loong due to computational
resource limitations, these results are particularly impres-
sive. Compared to ModelScope, which has a similar model
size, VRC demonstrates similar CLIPSIM scores and better
FVD scores. It is worth noting that VideoPoet is not open-
sourced, and other diffusion-based models exhibit similar
generation speeds to Latte. As shown in Table 2, VRC
achieves much faster inference speeds while maintaining
comparable generation quality.

5.3. Analysis

Scaling Laws Analysis. To evaluate whether our pro-
posed VRC framework can scale effectively, we assess
the performance of class-to-video generation across four
datasets using models of varying sizes, ranging from 100M
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Figure 5. Performance of different compression rates on various
datasets. The dotted line is the FVD score of the baseline without
any representation compression (Loong⋆).
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Figure 6. GPU memory usage for training (single A100, batch
size 1) and inference (single A100, batch size 16) across different
model sizes. The ref dotted line is the GPU memory of NVIDIA
4090 GPU (24GB).

to 770M parameters. The results are shown in Figure 4.
Due to great performance with a compression rate of 4 in
Figure 5, the scale analysis experiments are conducted with
a compression rate of 4. Performance consistently improves
as the model size increases, demonstrating the scalability of
our proposed VRC framework.

Analysis of Compression Rate. We evaluate the effect
of different representation compression rates during train-
ing, ranging from 4 (2 × 2), 16 (4 × 4), to 64 (8 × 8), on
four class-to-video generation datasets. The results, shown
in Figure 5, indicate that the 4 compression rate achieves the
best performance, with further increases failing to improve
results. The model performance decreases as the compres-
sion rate further increases. Excessive compression can lead
to information loss, leaving insufficient information for the
model to predict subsequent frames accurately. In particu-
lar, models trained with a compression rate of 4 (2× 2) out-
perform the baseline model without compression (Loong⋆),
as indicated by the dotted line. This empirical evidence
demonstrates that in VRC, representation compression en-
hances the model’s learning capability through eliminating
redundant information.
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Figure 7. Videos generated by Loong⋆ and VRC are sampled on the following class-to-video datasets: UCF101, Taichi-HD, FaceForensics,
and SkyTimelapse.

A white car with purple patterns and rims, moving slowly in an urban setting.

Misty forest with mountains in the background on a foggy morning.

A paraglider with a blue and yellow canopy soaring over a grassy hillside on a misty day .

A woman's face with a soft, introspective expression, viewed through a hazy or fogged lens .

Figure 8. Text-to-video results generated by VRC. Each video
contains 17 frames, displayed here with an interval of 2 for clarity.

Analysis of GPU Memory. Figure 6 shows the GPU
memory usage of our method compared to the baseline
(Loong) across model sizes (100M, 340M, 770M). Our ap-
proach consistently requires less GPU memory, with a re-
duction of around 30% during training and around 20% for
inference. This efficiency allows better scalability to larger
models and lower latency in practical deployments. In ad-
dition, our method can be fine-tuned on a single NVIDIA
4090 GPU (24GB memory) even for the 770M model,
whereas Loong exceeds this capacity.

5.4. Qualitative Analysis

We present qualitative samples of our generated results for
class-to-video generation and text-to-video generation in

Figure 7 and Figure 8, respectively. As shown in Figure 7,
VRC produces video clips of higher quality compared to
Loong⋆ across all four datasets. For instance, in the UCF
samples, Loong⋆ (first row) shows cumulative errors in the
generated case. In the Taichi-HD samples, Loong⋆ (third
row) confuses the person’s chest and arm, whereas VRC
(fourth row) generates a more realistic and anatomically
correct human body. In FaceForensics, the face generated
by Loong⋆ (fifth row) appears almost static, while VRC
(sixth row) produces dynamic facial expressions and move-
ments. For text-to-video generation, the samples demon-
strate that VRC effectively follows textual instructions to
generate coherent, realistic, and smooth video clips.

6. Conclusion

In this work, we proposed Vision Representation Com-
pression (VRC), a framework for autoregressive LLM-
based video generation that leverages representation com-
pression to address redundancy and inefficiency. VRC’s
learnable compressor and decompressor modules reduce se-
quence length and enhance the model’s ability to capture
video structures. Experiments show VRC achieves bet-
ter generation results on multiple class-to-video datasets,
surpassing even diffusion-based models like Latte in FVD
scores and offering up to 9× faster inference compared to
common LLM-based methods like Loong. This work high-
lights the potential of representation compression as a key
strategy for advancing LLM-based video generation, and
paves a new way for more efficient, scalable, and effective
LLM-based video generation models.
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[11] Andreas Rössler, Davide Cozzolino, Luisa Verdoliva, Chris-
tian Riess, Justus Thies, and Matthias Nießner. Faceforen-
sics: A large-scale video dataset for forgery detection in hu-
man faces. arXiv preprint arXiv:1803.09179, 2018. 1, 6

[12] Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny.
Mostgan-v: Video generation with temporal motion styles.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 5652–5661, 2023. 2,
6
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A. Model Details
The model architecture includes several variants of GPT
with different sizes, tailored to balance computational ef-
ficiency and model performance. The configurations are as
follows:
• B (100M): 12 layers, 12 heads, hidden dimension is 768
• L (3430M): 24 layers, 16 heads, hidden dimension is

1024
• XL (770M): 36 layers, 20 heads, hidden dimension is

1280
• 1.2B: 22 layers, 32 heads, hidden dimension is 2048
All model variants use a codebook size of 8192.

The architecture also incorporates a compressor and a
decompressor, designed to achieve a compression rate of
4. These components leverage convolutional operations,
activation functions, and batch normalization for effective
feature transformation and spatial adjustments.
• Compressor: The compressor reduces the spatial resolu-

tion of the input while preserving its essential features. It
consists of a convolutional layer with a stride of 2 and a
kernel size of 3, enabling progressive downsampling. The
final layer employs a 1× 1 convolution to adjust the out-
put channel dimensions without altering the spatial reso-
lution.

• Decompressor: The decompressor restores the spatial
resolution to its original size. It employs a transposed
convolutional layer with a stride of 2 and a kernel size of
4 to upsample the input. Similar to the compressor, a final
1×1 convolution ensures the output matches the required
channel dimensions.

Both the compressor and decompressor utilize ReLU acti-
vation functions and batch normalization to enhance non-
linearity and improve training stability.

B. Importance of Image Pretraining
The training pipeline for video generation models, includ-
ing class-to-video and text-to-video tasks, is divided into
two distinct stages. In the first stage, a class- / text-to-
image model is trained. This involves using class or text
descriptions along with 10 randomly sampled frames from
each video as the training dataset. And the second stage be-
gins, focusing on training the class- / text-to-video model.
Throughout both stages, the image and video training data
are encoded using the same video tokenizer, OmniTok-
enizer [22], ensuring consistent data representation across
the training pipeline.

To validate the effectiveness of image generation pre-
training for initialization in VRC, we conduct an ablation
study by comparing models trained with and without image
generation pretraining across four class-to-video generation
datasets. As shown in Table 4, models initialized with im-
age generation pretraining achieve significantly better FVD

scores across all datasets. These results highlight the impor-
tance of image generation pretraining for providing a strong
initialization, which enhances the performance of VRC in
video generation tasks.

Table 4. FVD comparison with and without image generation pre-
training across different datasets.

Pretraining FaceForensics SkyTimelapse UCF101 Taichi-HD

✓ 26.64 41.95 250.53 96.39
× 73.74 80.41 279.74 135.22

C. User Study
We conducted a user study to compare our VRC framework
with the baseline model (Loong⋆). For this, we sampled 50
videos per model using identical text prompts. Participants
were shown pairs of videos generated by the two models
in a randomized order and asked to choose their preferred
video based on Video Consistency and Video-Text Match-
ing. The study was blind, with users unaware of the model
identities. We collected 300 responses. As shown in Fig-
ure 9, our VRC model was preferred by users in both cate-
gories, with 70% favoring VRC for video consistency and
79% for text alignment, demonstrating superior visual co-
herence and semantic accuracy.

0% 20% 40% 60% 80% 100%

79%

70%

7.2%

6.5%

13.8%

23.5%

Video Text Matching

Video Consistency

VRC preferred No Preference Loong  Preferred

Figure 9. User study on text-to-video generation with 17 frames.

D. Data Source of Figure 2
To generate the data used in Figure 2, we first encode a se-
quence of five frames into a video using the H.264 encoding
standard. The following FFmpeg command is used for this
purpose:

ffmpeg -i ./frames/frame_%d.png -c:v
libx264 -crf 23 -g 5 -keyint_min 5 -
sc_threshold 0 output.h264

where the command takes the input images (‘frame 1.png‘,
‘frame 2.png‘, etc.) and compresses them into an H.264
video file (‘output.h264‘). Key parameters include:
• -crf 23: Specifies the compression level, with 23 be-

ing the default value that balances quality and file size.
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• -g 5: Sets the Group of Pictures (GOP) length to 5
frames, ensuring one I-frame (intra-coded frame) is fol-
lowed by four P-frames (predictive-coded frames).

• -keyint min 5: Ensures a minimum interval of 5
frames between two consecutive I-frames.

• -sc threshold 0: Disables scene change detection,
enforcing the specified GOP structure regardless of con-
tent changes.
Next, we extract the file size of each encoded frame to

analyze the amount of data used for the I-frame and subse-
quent P-frames. This is done using the following FFprobe
command:

ffprobe -show_frames -select_streams v -
show_entries frame=pkt_size -of csv=p=0
output.h264 > frame_sizes.csv

where the command processes the H.264 video file and out-
puts a CSV file (‘frame sizes.csv‘) where each row cor-
responds to the size (in bytes) of a specific frame. The
‘pkt size‘ field provides the size of the encoded frame, en-
abling us to analyze the differences in data usage between
the I-frame and P-frames. The resulting data highlights the
redundancy in video frames, as P-frames typically require
significantly less data than the I-frame.”
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