L))

Check for
Updates

Spice-E: Structural Priors in 3D Diffusion using Cross-Entity
Attention

Etai Sella®
Tel Aviv University
Tel Aviv, Israel
etaisella@gmail.com

Noam Atia
Tel Aviv University
Tel Aviv, Israel
noamatia@mail.tau.ac.il

Semantic Shape Editing

O N

Re N
Il \
|
1 s 1
1 \ 1
1 1 .
I 1 <
1 1
1 1
1 1
1 1
1 |
I ~/ P |
| < I
1 - I
1 1
1 1
\ . \ .
I\ 3D Guidance the se§+ a“rea s “the fop = ,I 3D Guidance
\ wider’ rounded 7
N . e e o

Py . k.

Gal Fiebelman®

Tel Aviv University
Tel Aviv, Israel
galfiebelman@mail.tau.ac.il

Hadar Averbuch-Elor
Tel Aviv University

Tel Aviv, Israel
hadar.a.elor@gmail.com

Text-conditional Abstraction-to-3D

'a red vehet chair 'a futuristic space captain chair'

Figure 1: Our method adds structural guidance to 3D diffusion models. As illustrated above, this allows for generating text-
conditional 3D shapes that enforce task-specific structural priors. For instance, input shapes can be semantically edited (left)
and primitive-based abstractions can be transformed into high-quality textured shapes that conform with the target text (right).
Our results can be optionally refined using an auxiliary process (represented by black arrows above).

ABSTRACT

We are witnessing rapid progress in automatically generating and
manipulating 3D assets due to the availability of pretrained text-
to-image diffusion models. However, time-consuming optimization
procedures are required for synthesizing each sample, hindering
their potential for democratizing 3D content creation. Conversely,
3D diffusion models now train on million-scale 3D datasets, yielding
high-quality text-conditional 3D samples within seconds. In this
work, we present Spice-E — a neural network that adds structural
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guidance to 3D diffusion models, extending their usage beyond text-
conditional generation. At its core, our framework introduces a
cross-entity attention mechanism that allows for multiple entities—
in particular, paired input and guidance 3D shapes—to interact via
their internal representations within the denoising network. We
utilize this mechanism for learning task-specific structural priors
in 3D diffusion models from auxiliary guidance shapes. We show
that our approach supports a variety of applications, including 3D
stylization, semantic shape editing and text-conditional abstraction-
to-3D, which transforms primitive-based abstractions into highly-
expressive shapes. Extensive experiments demonstrate that Spice-E
achieves SOTA performance over these tasks while often being
considerably faster than alternative methods. Importantly, this is
accomplished without tailoring our approach for any specific task.
We will release our code and trained models.
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1 INTRODUCTION

Text-guided 3D generation has recently seen tremendous success,
empowering us with the ability to convert our imagination into
high-fidelity 3D models through the use of text [Lin et al. 2023;
Poole et al. 2022; Wang et al. 2023a,b]. Consequently, there has been
increasing interest in leveraging this generative power for editing
existing 3D objects [Chen et al. 2023a; Metzer et al. 2023; Sella et al.
2023; Zhuang et al. 2023], a longstanding goal in computer vision
and graphics [Igarashi et al. 2005; Lewis et al. 2023; Magnenat et al.
1988]. Unfortunately, these text-guided methods require timely
optimization procedures for producing a single sample, as they
rely on the guidance of pretrained 2D diffusion models such as
Stable Diffusion [Rombach et al. 2022] over multiple rendered views,
making them challenging to apply in practical settings.

In parallel with these advancements, million-scale 3D datasets
pairing 3D data with text directly [Deitke et al. 2023a,b] have paved
the way for the creation of powerful 3D diffusion models [Jun and
Nichol 2023; Nichol et al. 2022]. These direct generative models
can synthesize text-conditional 3D assets conveying complex visual
concepts, and they achieve this in a matter of seconds, orders of mag-
nitude faster than methods utilizing 2D diffusion models. However,
they are inherently unconstrained and lack the ability to enforce
structural priors while generating 3D samples, and thereby cannot
be effectively utilized in the context of 3D editing applications.

Inspired by recent progress adding conditional control to 2D dif-
fusion models [Zhang et al. 2023], we ask: How can we provide pre-
trained transformer-based 3D diffusion models with task-specific
structural control? And importantly, how can we achieve such
structural control while preserving the model’s expressive power,
and to do so without having access to (possibly) proprietary data
or large computation clusters? This requires architectural modifi-
cations that maximize the utilization of pretrained weights during
model finetuning on the one hand while still acquiring task-specific
structural priors from auxilary guidance shapes on the other.

Accordingly, we present Spice-E (Structural Priors in 3D Diffu-
sion using Cross-Entity Attention)!, a neural network that adds
structural guidance to a 3D diffusion model. Our key observation
is that the self-attention layers within transformer-based diffusion
models can be modified to enable interaction between two different
entities (i.e. 3D shapes) — one depicting the input and the other
depicting the guidance entity. We introduce a cross-entity atten-
tion mechanism that mixes their latent representations by carefully
combining their queries functions, which have recently been shown
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for being instrumental in modifying the structure of generated im-
ages [Cao et al. 2023b; Wu et al. 2023]. This operation allows for
finetuning a 3D diffusion model to learn task-specific structural
priors while preserving the model’s generative capabilities. During
inference, Spice-E receives a guidance shape in addition to a target
text prompt, enabling the generation of 3D shapes conditioned on
both high-level text directives and low-level structural constraints.
The outputs of our system can be further refined by an auxiliary
process (ie., [Yi et al. 2023]), which enhances the appearance and
geometric details, albeit at the cost of increased processing time.
We show the effectiveness of our framework using different 3D
editing tasks, such as semantic shape editing and text-conditional
Abstraction-to-3D, which transforms a primitive-based abstract
shape into a high-quality textured shape (see Figure 1 for an illus-
tration of these tasks). We perform extensive experiments, demon-
strating that our approach surpasses existing methods specifically
targeting these tasks, while often being significantly faster.

2 RELATED WORKS
2.1 Text-guided Shape Manipulation

The emergence of powerful text-image representations, most no-
tably CLIP [Radford et al. 2021], has driven progress in shape editing
and manipulation via language prompts. Several methods use CLIP
for stylizing input meshes, matching their 2D image projections
with a target prompt [Chen et al. 2022; Michel et al. 2022]. CLIP
guidance has also been exploited for generating rough un-textured
shapes [Sanghi et al. 2022, 2023], for optimizing a neural radiance
field (NeRF) [Mildenhall et al. 2021] depicting the 3D object [Jain
etal. 2022; Lee and Chang 2022; Wang et al. 2022] and for deforming
3D meshes [Gao et al. 2023].

This progress has been further accelerated with the rise of dif-
fusion models, which allow for generating diverse imagery con-
veying complex visual concepts. DreamFusion [Poole et al. 2022]
introduced Score Distillation Sampling (SDS), a method that uses
a 2D diffusion model to guide the optimization of a 3D model.
SDS was later used in follow up text-to-3D works such as Prolific-
Dreamer [Wang et al. 2023b], Score Jacobian Chaining [Wang et al.
2023a], DreamGaussian [Tang et al. 2023] and Magic3D [Lin et al.
2023], as well as image-to-3D techniques such as RealFusion [Melas-
Kyriazi et al. 2023] and Magic123 [Qian et al. 2023]. In addition, this
generative power has also been leveraged for editing existing 3D ob-
jects. Vox-E [Sella et al. 2023] and DreamEditor [Zhuang et al. 2023]
have shown that it is possible to locally edit shapes using an SDS
loss. LatentNeRF [Metzer et al. 2023] and later Fantasia3D [Chen
et al. 2023a] propose a conditional text-to-3D variant, which is also
provided with an input 3D shape.

However, these aforementioned works all require timely opti-
mization for each individual sample, and hence they are challenging
to apply in practical settings. Several methods have been proposed
for texturing 3D meshes using image diffusion models while by-
passing SDS [Cao et al. 2023a; Chen et al. 2023b; Richardson et al.
2023]. These methods, however, cannot modify the object’s geom-
etry and operate on a texture map representation, and not on the
3D representations directly.
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Methods performing text-guided shape manipulation without
the use of pretrained text-image models are significantly less preva-
lent. Text2Shape [Chen et al. 2019] introduce a dataset tying 15K
shapes from ShapeNet [Chang et al. 2015] with textual descrip-
tions, utilized for text-to-3D generation and also later for manipula-
tion [Liu et al. 2022]. Changelt3D [Achlioptas et al. 2022] introduce
the ShapeTalk dataset, containing textual descriptions discriminat-
ing pairs of 3D shapes (also originating from ShapeNet), allowing
for manipulating input shapes. LADIS [Huang et al. 2022] propose
a disentangled latent representation which better localizes the 3D
edits. We demonstrate that our technique allows for outperforming
these prior 3D manipulation works, while enabling additional ap-
plications which are not necessarily restricted to specific domains.

2.2 Controllable Shape Representations

The problem of creating editable 3D representations has been exten-
sively studied in recent years, not only in the context of text-guided
techniques. DualSDF [Hao et al. 2020] represent shapes using two
granularity levels, allowing to manipulate high resolution shapes
through proxy primitive-based representations. Other works have
shown that such primitive-based decompositions can also facili-
tate tasks such as shape completion [Ganapathi-Subramanian et al.
2018; Sung et al. 2015]. More recently, Tertikas et al. [2023] proposed
PartNeRF which generates shapes that are an assembly of distinct
parts, each parameterized with a neural radiance field. KeypointDe-
former [Jakab et al. 2021] discover 3D keypoints, rather than shape
primitives, which can be edited for deforming 3D shapes. Several
works couple implicit 3D representations with 2D modalities, al-
lowing for editing the 3D shapes from 2D inputs [Cheng et al. 2022;
Zheng et al. 2023]. DIF [Deng et al. 2021] represents shapes using
a template implicit field shared across a shape category and a 3D
deformation field per shape. EXIM [Liu et al. 2023] introduces a hy-
brid representation composed of an explicit part that enables coarse
localization and an implicit part that enables fine global geometric
editing and color modifications. SPAGHETTI [Hertz et al. 2022b]
propose a shape representation composed of Gaussian Mixture
Models which allows for achieving part-level control. SALAD [Koo
et al. 2023] later extend this framework to incorporate a diffusion
neural network using a cascaded framework.

Several works edit shapes represented as neural fields by propa-
gating edits from selected 2D projections [Liu et al. 2021; Yang et al.
2022]. Neutex [Xiang et al. 2021] represent appearance using 2D tex-
ture maps, allowing for editing textures using 2D techniques. Prior
works have also shown that implicit neural fields can be coupled
with an explicit mesh representation for editing them using as-
rigid-as-possible deformations [Garbin et al. 2022; Xu and Harada
2022; Yuan et al. 2022]. Neural Shape Deformation Priors [Tang
et al. 2022] predict a neural deformation field given a source mesh
and target location of defined handles.

In this work, we propose to manipulate shapes via text-guidance
in addition to various structural priors, offering a flexible interface
that can operate in various settings. Our approach bears some simi-
larity to SDFusion [Cheng et al. 2023], which enables conditional
generation with multiple modalities including text. However, unlike
SDFusion which requires training from scratch for each application,
our work leverages pretrained text-3D diffusion models, allowing
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for a quick finetuning of these models without necessarily having
access to the data or a vast number of high-end GPUs.

2.3 Conditional Generation with Diffusion
Models

Many works are recently seeking new avenues for gaining control
over the outputs generated by text-to-image diffusion models [Cao
et al. 2023b; Geyer et al. 2023; Hertz et al. 2022a; Patashnik et al.
2023; Tumanyan et al. 2023; Wu et al. 2023]. ControlNet [Zhang et al.
2023] adds conditional control to 2D diffusion models, finetuning
models to learn task-specific input conditions. They demonstrate
image generation results using various conditions, including Canny
edges and user scribbles. Our work is conceptually similar — we
modify 3D diffusion models to learn task-specific structural priors.

To achieve structural control over the generation, we manipulate
the internal representations of the denoising networks. Prior work
have shown that manipulation of these representations, notably the
cross-attention and self-attention layers, allows for effective editing
of images and videos [Chefer et al. 2023; Geyer et al. 2023; Ruiz et al.
2023]. In particular, several works recently demonstrate that Query
features roughly control the structure of the generated images [Cao
et al. 2023b; Wu et al. 2023]. Cao et al. [2023b] have demonstrated
that Query features in the self-attention layers play a pivotal role
in modifying the structure of the generated image, showing that
non-rigid manipulations can be obtained by querying fixed Keys
and Values. Similarly, Wu et al. [2023] keep fx and fy frozen while
finetuning spatio-temporal attention blocks for creating temporally-
consistent videos. Inspired by these 2D techniques, our approach
carefully mixes Query features belonging to different 3D shapes to
learn task-specific structural priors in 3D diffusion models, which
are composed of self-attention layers, unlike 2D diffusion models
that also contain cross-attention layers.

3 METHOD

In this section, we introduce Spice-E, an approach for incorporating
structural priors in pretrained 3D diffusion models. We first review
concepts related to the self-attention layers within a transformer-
based diffusion model (Section 3.1). We then introduce Cross-Entity
Attention, the core component of our approach (Section 3.2). Finally,
we describe how to apply it in a transformer-based 3D diffusion
model (Section 3.3, Figure 2).

3.1 Preliminaries

We begin by describing the self-attention layers that compose the
network blocks within a transformer-based diffusion model. At
each timestep t, the noised latent code z; is passed as input to the
denoising network. For each self-attention layer I, the intermediate
features of the network, denoted by ¢;(z;), are first projected to
Keys (K), Queries (Q), and Values (V) using learned linear layers
fo: fk: fv- Explicitly stated, K = fi (¢;(21)), Q = fo(¢i(z)) and
V= i (d(z0)).

The similarity between the Keys and Queries is initially com-
puted, and then multiplied by the Values. Specifically, the pairwise
dot product Q - KT measures how relevant each key is to the corre-
sponding query. This is then scaled by the square root of the key
dimension d, normalised through a softmax function to obtain a



SIGGRAPH Conference Papers 24, July 27-August 01, 2024, Denver, CO, USA

‘an alien space%h\‘er"

Etai Sella, Gal Fiebelman, Noam Atia, and Hadar Averbuch-Elor

Guidance Latent - Z, X T steps

("
Positional Encodln |
) o1

® Concatenation :
/

N
3 < | | inear D :I\
| Projection A\ 4 A\ 4

Denoised Latent - ZO
= % -

Figure 2: Finetuning 3D diffusion models with Spice-E. We finetune a transformer-based diffusion model [Jun and Nichol 2023],
pretrained on a large dataset of text-conditional 3D assets, to enable structural control over the generated 3D shapes. The
diffusion model (in gray) is modified to use latent vectors from multiple entities at each step t — a conditional guidance shape
X, encoded into the guidance latent Z; and a noisy input latent Z;. The self-attention layers are replaced with our proposed
cross-entity attention mechanism. At inference time the fine-tuned diffusion model receives the guidance latent Z., random
gaussian noise Z1 and a guidance text as input and over T steps gradually denoises the input to produce an output latent Zo. The
output latent can be decoded into the output shape X,,;, represented as either a neural radiance field or a signed texture field.

Random Noise - Zp

Cross- Cross-
Entity Entity

Linear
Attention Attentlon

Pro]ectlon

Attention

unit vector and finally aggregated to produce the attention function:

KT
Q ) v
Vd
which is a weighted sum of V, with higher weights for values whose
corresponding keys have a larger dot product with the query.

Attn(Q, K, V) = softmax ( (1)

3.2 Cross-Entity Attention

Next we introduce the Cross-Entity Attention mechanism, our core
technical contribution, illustrated in Figure 3. This mechanism
modifies self-attention layers located within transformer-based dif-
fusion models, allowing for latent vectors originating from multiple
entities (i.e. 3D shapes) to interact. The input to our Cross-Entity
Attention block is a pair of latent vectors (z, c¢), where z denotes a
noised latent code and ¢ denotes a conditional latent that encodes
structural information we would like to add to the original network.
In our setting, the original network is a transformer based diffusion
model, pretrained on millions of 3D assets.

As we are interested in preserving the capabilities of the original
network, we first apply the zero-convolution operator Z to c. This
isa 1 x 1 convolution layer with both weight and bias initialized to
zeros, which was recently proposed for adding control to pretrained
image diffusion models in ControlNet [Zhang et al. 2023]. Due to its
zero initialization, it ensures that the network will not be effected
by the conditional latent code when training (or finetuning) begins.

We define the cross-entity attention mechanism over the Queries
of the latent vectors, as we are interested in manipulating the
structure of the shape encoded within z, while preserving its vi-
sual appearance. Formally, the noised latent code z is projected to
K = fi($(2)). Q = fo(¢(2)) and V = fir(#(2)), denoting ¢(2) as

the network’s intermediate features. We then perform:

Ox = fo(9(2) + fo.(Z(4c(0))), @

where fo_ and ¢.(c) are a learned linear layer and intermediate
features, initialized randomly.

The output of our cross-entity attention block is the attention
function computed over these updated Queries. That is, the output

Pro]ect .

c
: ¢c(c)‘ @

Softmax (Q‘ + Q)KT)
*‘ ¢(2)

=== (o] (][]
Figure 3: Cross-Entity Attention. Given a pretrained self-
attention block, we add a conditional latent ¢ originating
from a different entity (i.e. 3D shape). Our proposed mech-
anism mixes the Queries features (after a zero-convolution
operator Z is applied to c), allowing for incorporating struc-
tural priors from c.

Z: Pro]ect

of our proposed block is zoyr = Attn(Qx, K, V). We allow all block
parameters to optimize freely during model finetuning. Intuitively,
our attention mechanism acts as a fully-functional self-attention
block when finetuning begins. As finetuning progresses, the net-
work gradually learns how to utilize information from the guidance
shape at each layer. Note that this is in contrast to a more simple
cross-attention mechanism, such as that used in [Loizou et al. 2023],
which has no ability to retain a self-attention component.

3.3 Structural Priors in 3D Diffusion Models

In this section, we describe how our cross-entity attention mecha-
nism can be integrated into transformer-based 3D diffusion models
to enable structural control over the generated outputs. We use the
recently proposed Shap-E [Jun and Nichol 2023] as a reference 3D
diffusion model. Shap-E was trained on several million 3D assets,
and is capable of generating diverse high-quality 3D objects condi-
tioned on text prompts. For completeness, we briefly describe its
architecture, which we modify for creating Spice-E.

Shap-E maps a 3D shape X to a latent representation z € R4xd
via an encoder E. Specifically, we have z = E(X), with a latent
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dimension d = 1024. The input X is composed of both RGB point
clouds and RGBA rendered images. The latent z can be linearly
projected into the weights of either a NeRF or a signed texture field
(STF) representation via a decoder D. Note that a STF, which is
essentially a signed distance field that also provides appearance in-
formation, can be represented as a colored mesh, as further detailed
in prior work [Gao et al. 2022; Shen et al. 2021]. For text-conditional
generation, this latent representation, together with pre-pended
tokens representing the CLIP text embedding and the timestep
embedding, is fed to a transformer-based diffusion model. The dif-
fusion model is trained following the setup of Ho et al. [2020],
directly minimizing the error between the original and predicted
(de-noised) latent code.

To generate shapes conditioned on structural priors (in addi-
tion to text prompts), we modify the system’s input to also use a
conditional guidance 3D shape X.. We freeze the encoder E, and
fine-tune the pre-trained 3D diffusion generative model (modified
as detailed below) on datasets of inputs and guidance shapes that
are encoded with E. Each self-attention block is replaced with a
cross-entity attention block. To avoid overfitting, we use constant
intermediate features ¢, for each block, unlike ¢;(z) which are
layer dependent.

During training, given an input latent representation z cor-
responding to an input 3D asset X;, (i.e. zg = E(Xjn)), noise is
progressively added to it, producing a noisy latent z;, where ¢ repre-
sents the number of timestamps noise is added. Given zo, a time step
t, a text prompt czex; and a latent representation z. corresponding
to the 3D conditional guidance shape X, our model My learns
to directly predict the denoised input latent representation zg by
minimizing the same objective used in Shap-E:

2
L= szo,t,ctgx,,co“MG(zt) I, Crexts Zc) - Z0| |2 (3)

An overview of our training process is shown in Figure 2.

During inference our system is only provided with the guidance
shape X, encoded into the latent Z. with E and a text prompt
(ctext). We sample from My, starting at a random noise sample z7.
This sample is gradually denoised into Zp, which is then decoded
into our 3D output X,y;, represented as either a NeRF or a STF,
using D.

3.4 Optional Refinement

. Our outputs can be refined using an auxiliary unsupervised iter-
ative process that uses 2D diffusion models. Specifically, we can
replace the Shap-E initialization in GaussianDreamer [Yi et al. 2023]
with Spice-E. GaussianDreamer then proceeds to optimize the Gaus-
sians initialized according to our outputs using Score Distillation,
producing more detailed Gaussian splats at the expense of time,
specifically increasing generation time from roughly 20 seconds
to 15 minutes. See Figures 1 and 5 for results before and after this
optional refinement stage. Note that all other reported results are
provided without refinement.
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4 TASKS

We demonstrate the utility of Spice-E using three text-conditioned
3D-to-3D tasks: semantic shape editing (Section 4.1), text-conditional
abstraction-to-3D (Section 4.2), and 3D stylization (Section 4.3).

For each task, we construct a dataset of latent representations and
target text-prompts and fine-tune the pretrained 3D diffusion model
following the procedure described in the previous section. In other
words, we encode a set of input and conditional shapes {Xin, Xc}
via E to obtain a set of latent representations {z, z.} which are
used together with their corresponding target text prompts {czexs }
for finetuning. Below, we describe the tasks and provide experimen-
tal details, as well as discuss alternative methods and evaluation
metrics. Additional details and comparisons, including perceptual
studies, are provided in the supplementary material.

4.1 Semantic Shape Editing

4.1.1 Task description. Several works have recently explored the
problem of performing semantic fine-grained edits of shapes using
language [2022; 2022]. For this task, the target text prompt describes
desired semantic modifications to be performed over the input
shape. For example, given an input chair, target texts include “the
legs are thinner" or “there is a hole in the back".

4.1.2  Experimental details. . For this task, we use the ShapeTalk
dataset proposed by Achlioptas et al. [2022]. This dataset contains
pairs of distractor and target models (originating from ShapeNet) an-
notated with a textual annotation describing the shape differences
from the distractor shape to the target one. For finetuning mod-
els on this task, we use distractor models as conditional guidance
shapes X, and target models as the input ones X;,. We randomly
replace 50% of the distractor models with the target ones to further
enforce structural similarity to the target models. During inference,
only the distractor model and the associated textual description
are fed to Spice-E. We follow their setup, finetuning models for
the Table, Lamps, and Chair categories and using their train/set
splits. We perform additional filtering to these sets to ensure that
the distractor and target models are sufficiently close, as we ob-
serve that many pairs are geometrically very different. This yields
datasets containing approximately 15% of the shapes from the orig-
inal ShapeTalk dataset (i.e. 8K pairs on average for training). See
the supplementary material for details.

4.1.3  Alternative Methods. . We compare against Changelt3D [2022],
which operates over point cloud representations. We use their
outputs directly, as these are publicly available. In the supple-
mentary material, we also perform a qualitative comparison with
LADIS [2022] over results reported in their paper (as source code or
trained models are not available we cannot conduct a quantitative
evaluation).

4.1.4  Evaluation metrics. . We follow the evaluation protocol pro-
posed by Achlioptas et al. [2022]. Specifically, we use the following
metrics:

Linguistic Association Boost (LAB) uses their pretrained listener
model for measuring the difference in the predicted association
score between the input-output shapes and the target text prompt.
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Geometric Difference (GD) uses a standard Chamfer distance to
measure the geometric difference between the input and output
shapes (scaled by 1072 in comparison to the distances reported in
[Achlioptas et al. 2022]), evaluating shape identity preservation.
localized-Geometric Difference (I-GD) uses a part-based segmen-
tation model to only measure geometric differences in regions
unrelated to the edit text.

Class Distortion (CD) uses their pretrained shape classifier for mea-
suring the absolute difference of the shape category probability,
comparing the input and output shapes.

4.2 Text-conditional Abstraction-to-3D

4.2.1 Task description. . Primitive-based surface reconstruction
is a longstanding problem in computer vision and graphics [Gal
et al. 2007; Hao et al. 2020; Schnabel et al. 2009]. We explore this
problem in the context of our framework. Specifically, given a proxy
primitive-based abstract representation and a target text prompt,
we are interested in generating a corresponding high-resolution 3D
shape that conforms to the target text prompt while maintaining
fidelity to the input abstract shape.

4.2.2  Experimental details. . We use 3D models from ShapeNet [Chang

et al. 2015] annotated with textual descriptions for this task. Several
methods provide means of abstracting shapes of a given category
into an assembly of cuboid primitives [Sun et al. 2019; Tulsiani
et al. 2017; Yang and Chen 2021]. Therefore, to create correspond-
ing primitive-based shape representations, we utilize the trained
Airplane, Chair and Table models given by Yang and Chen [2021].
We also use their splits for constructing train/test datasets.

4.2.3 Alternative Methods. . We compare against SketchShape, the
variant from LatentNerf [Metzer et al. 2023] conditioned on coarse
shapes, and Fantasia3D [Chen et al. 2023a] which can optionally use
a guidance shape. Note that both of these methods are optimization-
based, and therefore, are significantly slower at inference time.

4.2.4  Evaluation metrics. . We measure geometric differences (us-
ing the GD metric discussed in Section 4.1) between the input
primitive-based proxy shape and the output shape to evaluate how
well the model enforces the structural priors from the guidance
abstract shape. Furthermore, we evaluate to what extent our results
are faithful to the edit prompt using the following metrics:

CLIP Similarity (CLIPg;,,) measures the similarity between the
output objects and the target text prompts, using the cosine-distance
between their CLIP embedding.

CLIP Direction Similarity (CLIPp;,), first introduced for evaluating
image edits in StyleGAN-NADA [Gal et al. 2021], measures the
cosine distance between the direction of the change from the input
and output rendered images and the direction of the change from
an input prompt to the edit prompt. To evaluate these CLIP based
metrics, we render 20 images of both the output and guidance
shapes from uniformly-distributed azimuth angles around the 3D
object, and average over these angles.

4.3 3D Stylization

4.3.1 Task description. . This task aims at performing text-driven
editing of an uncolored 3D asset. Following Michel et al. [2022], we
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Table 1: Semantic Shape Editing Evaluation. Below we re-
port performance over the ShapeTalk [Achlioptas et al. 2022]
test set (averaging only over highly similar shapes, as dis-
cussed in Section 4.1). As illustrated above, our method yields
significantly higher LAB scores, suggesting edits that are se-
mantically more accurate, at the expense of slightly higher
geometric differences.

Method LABT GD| I-GD| CD|
Changelt3D [Achlioptas et al. 2022]  0.27  0.003  0.009 0.05
Ours 0.44  0.007 0.013  0.05

define style as the object’s texturing and fine-grained geometric
details.

4.3.2  Experimental details. . To construct a dataset for this task,
we utilize the large-scale Objaverse [Deitke et al. 2023b] dataset.
Each model in Objaverse is accompanied by metadata, which in-
cludes fields such as name, description, categories, and tags. For
our purposes, we need text prompts that describe the object’s style
and overall appearance. We observed that using the available meta-
data directly (e.g. selecting specific fields) yields highly noisy target
prompts. Therefore, we finetune the InstructBLIP [Dai et al. 2023]
model to extract target prompts from the object’s metadata and
associated rendered imagery (see the supplementary for additional
details); the model’s outputs are used as the text prompts c;ex for
learning 3D stylization, along with the encoded 3D assets zp and
the uncolored assets z.. We construct a training dataset containing
roughly 7.5K items overall.

4.3.3 Alternative Methods. . We compare against two gradient-
based optimization techniques: Latent-Paint, the variant from Latent-
Nerf [Metzer et al. 2023] that operates over 3D meshes directly (only

modifying the object’s texture), and Fantasia3D [Chen et al. 2023a].
For this task, we compare against two variants of Fantasia3D: One

that only performs appearance modeling (henceforth denoted as

Fantasia-Paint) and the full model, which also modifies the object’s

geometry. In the supplementary material, we also compare against

Vox-E [Sella et al. 2023], a recent optimization-based method pro-
posed for performing text-guided editing of 3D objects.

4.3.4 Evaluation metrics. . For this task, we use the same evaluation
metrics discussed above in Section 4.2: CLIPg;,,, CLIPp; and GD,
to evaluate both the fidelity to the edit and the guidance shape.

5 EXPERIMENTS

We present the results and comparisons for the tasks described
above in Section 5.1. We then ablate the design choices for the cross-
entity attention block in Section 5.2. Finally, we discuss limitations
in Section 5.3. Additional results, comparisons and ablations can be
found in the supplementary material.

5.1 Evaluation

5.1.1 Semantic Shape Editing. . Results for the semantic shape
editing task are reported in Table 1. As illustrated in the table, our



Spice-E: Structural Priors in 3D Diffusion using Cross-Entity Attention

4' /i\\ i\ Q4 »‘

The seat has a rounded It looks like a
edge straw

It has four legs

Figure 4: Semantic shape editing results are shown above
(input guidance shape on the left and edited outputs on the
right, shown in different colors for visualization purposes).
As illustrated in the figure, our method can semantically edit
input shapes according to target prompts, while preserving
the shape’s structure.

Table 2: Text-conditional Abstraction-to-3D Evaluation. Be-
low we compare the performance of SketchShape [Metzer
et al. 2023] and Fantasia3D [Chen et al. 2023a] against ours
over the primitive-based shape conditioning task. As illus-
trated, our method can more faithfully preserve the input
structure, while exhibiting significantly faster inference time.
GD is not computed for SketchShape as it outputs a NeRF
representation.

Method CLIPs;;, T CLIPp;» T GD |  Run Time

SketchShape 0.27 0.01 —  ~ 15 minutes
Fantasia3D 0.27 0.01 0.06 ~ 30 minutes
Ours 0.28 0.03 0.01 ~ 20 seconds

edits better reflect the target text prompts, yielding an average LAB
score of 0.44 versus 0.27 for Changelt3D. Both methods are capable
of generating objects resembling their respective object categories,
as illustrated by the low class distortion values. Our method yields
slightly higher GD and [-GD scores. Generally, we observe that the
outputs generated by Changelt3D often do not deviate significantly
from the inputs (which is also consistent with the lower LAB scores).
This is further illustrated in Figures 10 and 4.

5.1.2  Text-conditional Abstraction-to-3D. . Results for the text-
conditional abstraction-to-3D task are reported in Table 2. As shown
in the table, our generated 3D shapes can more faithfully preserve
the abstract input guidance shapes, yielding better GD scores com-
pared to Fantasia3D (GD is not computed for SketchShape as it
outputs a NeRF representation). While Fantasia3D was not trained
with any geometric supervision (thus explaining this lower GD
score), we believe this metric is important in emphasizing that prior
work are not suitable for this task. Note that our method also main-
tains high fidelity to the text prompts, outperforming both methods
over CLIP ;- while achieving comparable CLIPg;, scores, all while
exhibiting significantly faster inference times. See Figure 5 for a
qualitative comparison, and additional results in Figure 7.

5.1.3 3D Stylization. . Results for the 3D stylization task are re-
ported in Table 3. As illustrated, our edits capture the target text
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Figure 5: Text-conditional Abstraction-to-3D Comparison.
We compare to the results obtained using SketchShape [Met-
zer et al. 2023] and Fantasia3D [Chen et al. 2023a]. Methods
are provided with a proxy cuboid-based abstract shape with
a target prompt (left). As illustrated in the figure, our results
better preserve the structure of the abstract guidance shape,
while conveying the target text prompt. In the rightmost
column (denoted as "Ours++"), we present results obtained
after the optional refinement stage.

Table 3: 3D Stylization Evaluation. We compare against
Latent-Paint [Metzer et al. 2023] and two versions of Fan-
tasia3D [Chen et al. 2023a] (with and without geometry mod-
eling) over the 3D stylization task. As illustrated below, our
edits are comparable with prior work and can be achieved
orders of magnitude faster. GD is computed only for methods
that can modify the geometry of the shape.

Method CLIPs;; T CLIPp;y T GD | Run Time

Latent-Paint 0.27 0.01 — ~ 15 minutes
Fantasia3D-Paint 0.28 0.01 — ~ 15 minutes
Fantasia3D 0.28 0.01 0.06  ~ 30 minutes
Ours 0.27 0.01 0.01 ~ 20 seconds

prompt well, yielding results comparable with Latent-Paint and Fan-
tasia3D, while being orders of magnitude faster. Additional results
can be seen in Figure 8.

5.1.4 Additional Experiments. . To better illustrate what differ-
ences in CLIP-based metrics mean, we perform two additional
experiments: (i) No Operation baseline, measuring the CLIPg;,, of
the guidance shape to the target text, and (ii) Oracle, measuring
CLIPg;;, on the ground-truth shape and CLIPp;, in the direction
pointing from the guidance shape to the ground truth shape. These
provide a lower and upper bound over these metrics in our setting.

For both the text-conditional abstraction-to-3D and the 3D styl-
ization tasks, the No Operation baseline produces lower CLIPg;,,
scores of 0.25 and 0.24 (for abstraction-to-3D and 3D stylization, re-
spectively) and a CLIPp;, of 0.0, while the Oracle produces CLIPg;,,
scores of 0.28 (for both tasks) and CLIPp;, scores of 0.02 and 0.05
(for abstraction-to-3D and 3D stylization, respectively). Indeed, for
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Figure 6: Qualitative ablation results, obtained for test shapes
from the text-conditional abstraction-to-3D task. We com-
pare our cross-entity attention mechanism (right) with sev-
eral baselines, detailed in Section 5.2. As illustrated above,
our approach allows for generating 3D shapes that conform
to the guidance structure significantly better than baseline
methods, while remaining faithful to the target text prompt.

both tasks, the performance of our method, as well as competing
methods, all fall in the range of the upper and lower bounds given
by these baselines, with the CLIPp;, metric suggesting room for
further improvement by future work.

5.2 Ablations

Next we ablate our cross-entity attention mechanism, demonstrat-
ing that comparable structural control cannot be achieved with base-
line methods. We compare to the following baselines: (i) Shap-Epr,
the original Shap-E model finetuned on each dataset with text guid-
ance only (no structural guidance is added). (ii) SDEdit3D, inspired
by the image editing technique SDEdit [Meng et al. 2021], which
uses the Shap-Epr models. During inference, noise is added to the
conditional latent, and it is denoised with the target textual prompt.
(iii) CrossOnly, an ablated version of our framework that uses Cross-
Attention instead of our Cross-Entity Attention mechanism, i.e.
using only the conditional queries. (iv) ControlNet3D, inspired by
the network architecture used in ControlNet [Zhang et al. 2023],
which freezes and clones the original network blocks of Shap-E,
creating a frozen and trainable copy of it. The guidance shape is
passed through the trainable copy with intermediate outputs added
to the appropriate frozen copy blocks as residuals through a zero-
convolution (see the supplementary material for more details).

We conduct experiments over the text-conditional abstraction-to-
3D task. As illustrated in Figure 6, these baselines methods cannot
faithfully preserve the conditional guidance shape. For instance, the
ControlNet3D results are of significantly lower quality in compari-
son to our method. We attribute this visual gap to the much larger
number of parameters that need to be optimized in comparison
to our method (50M vs. 330M additional parameters), making this
method more prone to overfitting on the relatively small datasets we
use (i.e. resulting in the model forgetting its pretrained knowledge).
Quantitatively, the baselines yield significantly worse GD scores:
0.06 (Shap-EpT), 0.05 (SDEdit3D), 0.03 (CrossOnly) and 0.03 (Con-
trolNet3D), compared to 0.01 for our approach, further showing
that their outputs strongly deviate from the guidance shapes.

In the supplementary material, we also conduct additional per-
ceptual studies to evaluate user’s preference of our results over
the ControlNet3D baseline. We also conduct additional ablations
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to motivate our design choices. In particular, we modify our cross-
entity attention mechanism in various ways, including removing
the zero-convolution operators and performing cross-attention over
the Keys or Values. These ablations demonstrate that our proposed
cross-entity mechanism allows for better preserving the structure of
the guidance shape in comparison to other possible modifications.

5.3 Limitations

Our method allows for learning various types of structural priors
for generating text-conditional shapes guided by 3D inputs, but
there are several limitations to consider, as also shown in Figure 9.
First, our approach inherits limitations from diffusion-based tech-
niques and in particular from Shap-E, which we build our method
upon. While Shap-E can generate diverse high-quality 3D shapes,
it still struggles to bind multiple attributes to objects, limiting the
scope of possible object edits. Furthermore, we observe that highly
complicated shapes are not often successfully encoded, leading to
noisy data used for both training and evaluation. As our approach
can be added on top of other transformer-based 3D diffusion mod-
els, we expect that with the emergence of stronger backbones, more
powerful edits can be achieved.

Additionally, our approach does not offer explicit control over
the tradeoff between the fidelity to the input guidance shape and
the consistency with the target prompt. This often leads to results
which are either not functionally plausible (for instance, see the
ping pong table on the top row of Figure 7 where the table’s legs
make it challenging for the table to correctly function as intended)
or conversely do not sufficiently preserve the guidance structure.

6 CONCLUSION

In this work, we presented Spice-E, a new approach for adding
structural control to 3D diffusion models. We demonstrated that
our method facilitates several text-conditional 3D editing tasks,
without the need for tailoring the network architectures or training
objectives. Our work represents a step towards the goal of democra-
tizing 3D generation, making 3D object editing more accessible to
non-experts by providing them with task-specific structural control
within seconds. Technically, we introduced the cross-entity atten-
tion mechanism, which allows for mixing latent representations
corresponding to different 3D shapes while preserving the capa-
bilities of the pretrained 3D diffusion model. We believe that our
mechanism could potentially improve a wide variety of applications
where guidance is injected into a generative framework, beyond
the realm of 3D shape generation and manipulation.
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Figure 7: Text-conditional abstraction-to-3D results for test
shapes from the Table category. The leftmost column dis-
plays the guidance input — a proxy cuboid-based shape. The

remaining columns showcase our results over two different
target text prompts.
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Guidance A bowl of fruit next
to a book on a
tablecloth

Guidance A pink bus

Figure 9: Limitations. Above, we present two failure cases.
These likely result from incorrect multiple attribute binding
(the fruit bowl and the book colored similarly) or insuffi-
cient preservation of the guidance structure (changing the
guidance pickup truck into a bus and switching the back of
the guidance truck to the front of the bus).

SIGGRAPH Conference Papers "24, July 27-August 01, 2024, Denver, CO, USA

) |

Guidance A corked bottle

A bowling pin

A modern vase
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Figure 8: 3D stylization results results are shown above. The
leftmost column displays the guidance input — an uncol-
ored 3D asset. The remaining columns showcase how the
guidance input is styled according to the target text prompt.

Changelt3D

Ours

Its legs are taller

Its top is not connected from its center to
the leg

Figure 10: Semantic Shape Editing Comparison. We compare
to prior work performing semantic shape editing above. As
Changelt3D [Achlioptas et al. 2022] operates over a point
cloud representation, we show input point clouds on the
left and edited point clouds on the right. For our results, we
visualize the point clouds after shape encoding, hence our
inputs are not identical to theirs. As illustrated in the figure,
our method can perform more significant edits, yielding
edited shapes that better reflect the target prompts.
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