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ABSTRACT

We introduce compositional soft prompting (CSP), a parameter-efficient learning
technique to improve the zero-shot compositionality of large-scale pretrained
vision-language models (VLMs) like CLIP. We develop CSP for compositional
zero-shot learning, the task of predicting unseen attribute-object compositions (e.g.,
old cat and young tiger). VLMs have a flexible text encoder that can represent
arbitrary classes as natural language prompts but they often underperform task-
specific architectures on the compositional zero-shot benchmark datasets. CSP
treats the attributes and objects that define classes as learnable tokens of vocabulary.
During training, the vocabulary is tuned to recognize classes that compose tokens
in multiple ways (e.g., old cat and white cat). At test time, we recompose the
learned attribute-object vocabulary in new combinations to recognize novel classes.
We show that CSP outperforms the CLIP on benchmark datasets by an average of
10.9 percentage points on AUC. CSP also outperforms CoOp, a soft prompting
method that fine-tunes the prefix context tokens, by an average of 5.8 percentage
points on AUC. We perform additional experiments to show that CSP improves
generalization to higher-order attribute-attribute-object compositions (e.g., old
white cat) and combinations of pretrained attributes and fine-tuned objects. The
code is available at https://github.com/BatsResearch/csp.

1 INTRODUCTION

Compositionality is the long-standing goal of artificial intelligence of creating new concepts by
combining existing primitive concepts (Chomsky, 1956; Fodor & Pylyshyn, 1988; Hupkes et al.,
2020; Lake & Baroni, 2018; Marcus, 2003). The practical advantage of compositionality for deep
neural networks lies in the ability to build new classifiers by combining existing classifiers. In this
work, we consider compositional zero-shot learning, a classification task where the model learns
to predict unseen or novel compositions of primitive concepts (Naeem et al., 2021; Nagarajan &
Grauman, 2018; Purushwalkam et al., 2019). Research on compositional zero-shot learning in
language and vision focuses on attribute-object compositions such as old tiger and young
tiger, where tiger is the object category described by the attributes old and young.

Existing methods for compositional zero-shot learning typically map attributes and objects to pre-
trained word embeddings and use a pretrained image encoder backbone to jointly align the image
and the attribute-object text representations to learn compositionality (Li et al., 2020; Mancini et al.,
2021a;b; Misra et al., 2017; Naeem et al., 2021; Nagarajan & Grauman, 2018; Purushwalkam et al.,
2019; Xu et al., 2021). However, the pretraining of the word embeddings and image encoder is
disjoint and isolated from each other, i.e., these methods learn to align image and text representations
from scratch. These task-specific architectures also are limited in flexibility. For example, to adapt
these methods to higher-order compositions with multiple attributes and objects such as small
furry cat or old white tiger, the original architecture needs to be modified. The ability to
generalize beyond the original training length is a key test for compositionality (Hupkes et al., 2020).
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Figure 1: An overview of compositional zero-shot learning with CSP. We fine-tune the vocabulary
for attributes and objects on the seen classes. Then we compose novel soft prompts to test on the
unseen classes.

In contrast, we propose to build on large-scale pretrained vision-language models (VLMs), which are
trained on massive amounts of aligned images and text (Jain et al., 2021; Jia et al., 2021; Li et al.,
2021; Radford et al., 2021). We focus on CLIP (Radford et al., 2021), a powerful vision-language
model pretrained on 400 million image-text pairs. CLIP has two main components: the image
encoder and the text encoder that produce vector representations for images and text in a multi-modal
embedding space. The text encoder accepts a textual input, or a prompt such as A photo of dog
to produce a vector representation for the class dog. Taking the cosine similarity with all the class
prompts and the image, we get a compatibility score for the classes and pick the one with the highest
score. However, CLIP without any fine-tuning underperforms task-specific architectures, even though
it has been pre-trained on vastly more data. (See Appendix A for details.) This finding suggests that
there is significant room for improvement from teaching VLMs like CLIP about composing concepts.

To improve VLMs for compositional zero-shot learning, we introduce compositional soft prompting
(CSP), a parameter-efficient learning technique that tunes tokens of vocabulary to represent primitive
concepts in a composable way. Fine-tuning large pre-trained models such as CLIP requires huge
amounts of compute and may lead to overfitting (Sung et al., 2021; Mitchell et al., 2022) (see also
Section 5). This challenge has motivated several soft prompting techniques in both language and
vision (Lester et al., 2021; Qin & Eisner, 2021; Vu et al., 2021; Zhou et al., 2021). These works
tune a single prompt on a downstream supervised task, often in a few-shot setting. For instance,
they typically use prompts such as A photo of [class] and tune the prefix A photo of on
the entire dataset. In contrast, CSP is a novel way of soft prompting. We treat the attributes and
objects that are composed to define classes as learnable tokens of vocabulary in a prompt as A photo
of [attribute] [object]. We tune on multiple [attribute] and [object] prompt
compositions, and then we recompose them into new prompts for zero-shot inference (Figure 1).

Our results show that CSP improves over the zero-shot performance of CLIP. CSP significantly
improves over CLIP across three benchmark datasets by an average accuracy of 13.7 percentage
points in the closed-world setting and 8.0 percentage points in the open-world setting (using the
AUC metric). CSP also outperforms CoOp, a soft prompting method that tunes the prefix context,
by an average of 7.3 percentage points in the closed-world setting and 4.3 percentage points in the
open-world setting on the AUC metric.

In addition to improved benchmark accuracy, CSP has several other advantages when tested on
other kinds of zero-shot inferences without any changes to training. We show that the learned
attribute vocabulary can be decomposed to better classify attributes in isolation, using prompts of the
form A photo of [attribute] object. We also show that training CSP with attribute-object
compositions improves CLIP’s performance on attribute-attribute-object compositions. Finally, we
show that CSP improves generalization to compositions of unseen attributes and seen objects. Prior
work on compositional zero-shot learning typically only evaluates unseen compositions of seen
attributes and seen objects.

In summary, our main contributions are:
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1. We introduce compositional soft prompting (CSP), a parameter-efficient learning technique
to improve the compositionality of large-scale vision-language models (VLMs). The at-
tributes and objects that are composed to define classes are treated as learnable tokens of
vocabulary. Unlike existing work on soft prompting, our learned prompts are tuned on
multiple compositions and then recomposed in new combinations for inference.

2. CSP improves the AUC accuracy of CLIP by an average of 10.9 percentage points across
three benchmark datasets (Isola et al., 2015; Yu & Grauman, 2014; Mancini et al., 2021a).
It also improves over CoOp, a soft-prompting method that tunes the prefix context, by an
average of 5.8 percentage points on AUC.

3. We conduct additional experiments to analyze CSP. We show that training on attribute-object
compositions improves CLIP’s accuracy on attribute classification alone, attribute-attribute-
object compositions, and compositions of pretrained and fine-tuned vocabulary.

2 RELATED WORK

We describe the related work in prompting, parameter-efficient learning, and compositional zero-shot
learning.

Prompting Prompting is a recent focus in the language and vision communities that has shown
benefits in zero-shot and few-shot learning on a wide range of tasks (Bach et al., 2022; Bommasani
et al., 2021; Brown et al., 2020; Lester et al., 2021; Radford et al., 2021; Qin & Eisner, 2021; Sanh
et al., 2022; Vu et al., 2021; Zhou et al., 2021; 2022). Discrete prompts are typically hand-written text
inputs that provide guidelines to large pre-trained models such as CLIP, GPT-3 (Brown et al., 2020),
etc. for inference without updating the model parameters. While manually engineering prompts can
help achieve better accuracy, it is often time-consuming and impractical to find the best prompt.

Soft prompting is an alternative to discrete prompts, where a part of the prompt is learned by
backpropagating without fine-tuning the entire model. Several works using soft prompts show
improved accuracy compared to hand-crafted prompts (Lester et al., 2021; Li & Liang, 2021; Qin &
Eisner, 2021; Shin et al., 2020; Vu et al., 2021; Zhou et al., 2021). In all these works, soft prompts
are a single input concatenated to all inputs for the entire task. In contrast, we learn tokens for each
primitive concept from multiple compositions and recompose them in new ways to represent unseen
classes for zero-shot inference. We show in Section 5 that traditional soft prompting can also improve
CLIP on compositional zero-shot learning, but generally not as much as CSP.

Recent works have used soft prompting for large-scale vision-language models. Zhou et al. (2021)
propose CoOp (contextual optimization), a soft prompting method for few-shot object classification.
Other applications include visual question answering (Jin et al., 2022) and video understanding (Ju
et al., 2021). Again, these works tune a single soft prompt on the entire dataset. One exception is
Ge et al. (2022), which learns multiple soft prompts for cross-domain adaption. While our work
shares similarities with their work, there are important differences. Our work decomposes the class
labels into multiple parts rather than splitting the prompt into domain-related granularities such
as domain-agnostic context, domain-specific context, and class label. Furthermore, we focus on
compositional zero-shot learning where we do not have access to labeled examples from the unseen
classes in the test set whereas they assume access to all the test classes during training.

Zhou et al. (2022) extend CoOp to CoCoOp (conditional contextual optimization) to reduce overfitting
in prompt tuning for few-shot object classification. They learn a lightweight network that takes the
image representation and produces a conditional vector that is added to the soft tokens in the prompt.
In Appendix B, we compare CoCoOp and the analogous conditional variant of CSP, CoCSP. While
CoCSP improves over CoCoOp across three datasets in the AUC metric, CoCSP does not improve
over CSP on these tasks.

Parameter-Efficient Learning Soft prompting is closely related to the growing body of work in
parameter-efficient learning (Houlsby et al., 2019; Guo et al., 2021; Mahabadi et al., 2021; Sung
et al., 2021; Ben-Zaken et al., 2022; Liu et al., 2022). They add small feedforward networks between
the layers in the pretrained model, or use sophisticated techniques to select a sparse set of model
parameters and update them by fine-tuning on a labeled training set. However, unlike CSP, the
methods do not assign semantic meaning to the parameters in order to enable composition. In
Appendix C, we experiment with CLIP adapters (Gao et al., 2021) for compositional zero-shot
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Figure 2: Comparison of CLIP in a zero-shot and CSP in a compositional zero-shot setting.

learning. We find that this approach, which was designed for few-shot learning, reduces accuracy on
unseen classes in three benchmark tasks.

Compositional Zero-Shot Learning The growing interest in compositional zero-shot learning has
contributed to several architectural innovations (Li et al., 2020; Mancini et al., 2021a;b; Misra et al.,
2017; Naeem et al., 2021; Nagarajan & Grauman, 2018; Purushwalkam et al., 2019; Radenović et al.,
2021). Early works compose attributes and objects with a transformation function (Misra et al., 2017;
Nagarajan & Grauman, 2018). Recent work uses separate encoding layers for attributes and objects,
and then combines them with late fusion using a linear layer or a multilayer perceptron (Purushwalkam
et al., 2019). The most successful methods represent the attribute and object relationship in a graph
and learn their compositions via graph convolutional networks (Mancini et al., 2021b; Naeem et al.,
2021; Ruis et al., 2021). Yun et al. (2022) study the emergence of compositionality in CLIP pre-
training by learning linear classifiers rather than soft prompts for primitive concepts. Scialom et al.
(2022) show that continually fine-tuning large language models can learn composable instructions.

Evaluating CLIP in a fair setting compared to the existing task-specific architectures for compositional
zero-shot learning is challenging. On the one hand, CLIP is trained on a web-scale dataset to which
other methods do not have access, and may even contain some of the classes from the unseen split.
On the other hand, existing task-specific architectures fine-tune orders of magnitude more parameters
than soft prompting, while using specialized architectures that do not adapt as easily as VLMs to new
tasks. For these reasons, our work focuses on improving CLIP-based baselines, and we include a
summary of the results comparing task-specific architectures in Section 5 and extended results in
Appendix A.

Compositional zero-shot learning is also closely related to the broader goal of compositionality
in artificial intelligence (Chomsky, 1956; Fodor & Pylyshyn, 1988). Existing works have studied
compositionality for image generation (Herzig et al., 2020), video synthesis (Ye et al., 2019; Bar
et al., 2021; Nawhal et al., 2020), visual reasoning (Johnson et al., 2017), semantic parsing (Drozdov
et al., 2022), language grounding (Jin et al., 2022), and question answering (Yuan et al., 2019). For
more in-depth discussion on compositionality, we refer the readers to Hupkes et al. (2020).

3 PRELIMINARIES

In this section, we formally define the task of compositional zero-shot learning and describe how
to use CLIP for compositional zero-shot inference. Let A = {a0, a1, ..., an} be the set of possible
attributes and O = {o0, o1, ..., om} be the set of possible object categories. Let the label space
Y be the Cartesian product of the attribute set and the object category set, Y = A × O. We are
given two disjoint label subsets such that Yseen ⊂ Y, Yunseen ⊂ Y, and Yseen ∩ Yunseen = ∅
where Yseen and Yunseen are the set of the seen and unseen classes. At training time, we are given
examples Sseen = {(x1, y1), ..., (xn, yn)} to learn some discriminative model f : X → Yseen.
During inference, we want the model to predict both seen and unseen classes in the test set, i.e.,
f : X → Ytest. In the closed-world evaluation, the test set is defined as Ytest = Yseen ∪Yunseen. In
the open-world evaluation, the model has to consider all possible permutations of the attribute-object
compositions, i.e., Ytest = Y and Yunseen = Y− Yseen.

We can easily adapt CLIP to compositional zero-shot inference by defining prompts appropriately.
The prompts used in CLIP for zero-shot inference differ from the prompts used in works like GPT-
3 (Brown et al., 2020) and T0 (Sanh et al., 2022). Instead of defining one prompt for an N -way
classification task, the N classes are transformed into natural language prompts such as A photo of
[class] (Figure 2, left). This results in N prompt vectors, which are used to compute the cosine
similarity with the image representation for prediction. For compositional zero-shot inference, we
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Figure 3: Training setup for CSP. The prompt with the attribute and object vocabulary is passed
through the text encoder to get the text representation. The example is passed through the image
encoder for the image representation. Next, we take the cosine similarity for all the prompts with
the image and compute the cross entropy loss. Finally, we backpropagate the loss through the text
encoder and update the attribute and object vocabulary weights.

replace the [class] placeholder with the attribute and object composition as follows: a photo of
[attribute] [object]. The change in prompt format allows us to represent pairs of attribute
and objects such as a photo of young cat in the text encoder without changes.

4 COMPOSITIONAL SOFT PROMPTING

In this section, we introduce compositional soft prompting (CSP), a parameter-efficient learning
technique for fine-tuning large pretrained models for better compositionality.

Motivation The goal of our work is to improve VLMs such as CLIP on compositional generalization
where they seem to underperform the current state-of-the-art methods (Appendix A). This is perhaps
because CLIP’s pretraining on data crawled from the web does not provide sufficient supervision
about attributes and how they combine with different objects. Therefore, we aim to teach VLMs
such as CLIP how to better compose primitive concepts. We approach this is a vocabulary-learning
problem because it is parameter efficient and gives us a natural way to compose new classes.

Prompt Construction CSP treats the attributes and objects that are composed to define classes as
learnable tokens of vocabulary and tunes them on multiple prompt compositions. We represent each
primitive concept, either attribute or object, as a new, auxiliary token in the VLM’s vocabulary. To
represent a class, we combine a fixed prefix and the corresponding primitive concepts, for example A
photo of young tiger, where young maps to the auxiliary weight vector for the corresponding
attribute and tiger maps to the auxiliary weight vector for the correponding object. Then, we
use these prompts for compositional zero-shot learning in the same way as we would for CLIP, as
described in Section 3. Training and inference with CSP is very simple as we only need to swap
the vocabulary of the attributes and objects for any desired composition in the prompt (Figure 2,
right). As a result, our method tunes only (|A|+ |O|)× d parameters where d is the dimension of
the vocabulary embedding. This is a novel form of soft prompting, because prior work (Lester et al.,
2021; Qin & Eisner, 2021; Zhou et al., 2021) tune prompts for seen classes and usually one prompt
for the whole task, whereas we compose learned prompt tokens to represent unseen classes at test
time.

Training We want to learn vector embeddings for the new, auxiliary vocabulary: θ = [θA;θO]

where θ ∈ R(|A|+|O|)×d. We learn them by composing prompts with them and fine-tuning them on
the seen classes. Figure 3 shows the overall learning process for CSP.

First, we initialize the learnable vocabulary with pretrained embeddings from CLIP using the concept
names, i.e. attributes and objects. If a concept, such as Faux Fur, has multiple tokens, we average
their pre-trained representations to initialize the learnable vocabulary. Next, for each class, we
construct a prompt with the pretrained vocabulary for the prefix context and learnable vocabulary for
the primitive concepts:

ta,o = (w0, . . . ,wp,θa,θo)

where wi ∈ Rd are the tokens of the prefix context, and θa and θo are the learnable parameters for
the attribute and the object in the prompt.
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Composition Train Validation Test

Dataset |A| |O| |A×O| |Yseen| |X| |Yseen| |Yunseen| |X| |Yseen| |Yunseen| |X|
MIT-States Isola et al. (2015) 115 245 28175 1262 30338 300 300 10420 400 400 12995
UT-Zappos Yu & Grauman (2014) 16 12 192 83 22998 15 15 3214 18 18 2914
C-GQA Mancini et al. (2021a) 413 674 278362 5592 26920 1252 1040 7280 888 923 5098

Table 1: Summary statistics of the datasets used in our experiments.

Next, we pass the prompt with learnable parameters through the text encoder to get the text represen-
tation:

ta,o =
VLMT (ta,o)

||VLMT (ta,o)||

Then, for some image x, we get the image representation from the image encoder:

x =
VLMV (x)

||VLMV (x)||

Finally, we compute the class probability:

pθ(y = (a, o) | x) = exp (x · ta,o/τ)∑
(â,ô)∈Yseen

exp (x · tâ,ô/τ)

where τ ∈ R is the temperature parameter from CLIP. We learn the parameters θ by minimizing the
cross entropy loss on the training dataset:

− 1

|Sseen|
∑

(x,y)∈Sseen

log pθ(y | x) + λ||θ||2

where λ ∈ R is the weight decay.

Inference During inference, we recompose the fine-tuned attribute and object vocabulary in the
prompt. We compose the candidate prompts with the tuned θ with the (attribute, object) pairs in the
same way during training. In both closed-world and open-world settings, we only replace attribute
and objects with the fine-tuned parameters in the prompt. Finally, we calculate the most likely
attribute and object pair as follows:

ŷ = argmax
y∈Ytest

pθ(y | x)

We include the pseudocode for inference in Appendix F.

5 EXPERIMENTAL EVALUATION

In this section, we describe our experiments with CSP . We compare CSP to CLIP-based baselines in
the closed-world and open-world settings of compositional zero-shot learning. We also compare the
performance of fine-tuned CLIP with CSPon the benchmark datasets. Finally, we demonstrate that
CSP can generalize beyond these benchmarks to three modified settings: attribute-only classification,
attribute-attribute-object composition, and inference with unseen attributes.

Dataset We experiment with three attribute-object composition benchmarks: MIT-states (Isola et al.,
2015), UT-Zappos (Yu & Grauman, 2014), and C-GQA (Naeem et al., 2021). Table 1 summarizes
the statistics of the datasets. MIT-states contains images of naturally occurring objects where each
object is described by an adjective. UT-Zappos contains images of shoes paired with fine-grained
states. For this dataset, we use the split suggested by Purushwalkam et al. (2019). C-GQA, a newly
introduced dataset derived from the Stanford GQA dataset (Hudson & Manning, 2019), contains
images of objects paired with states.

Benchmark Evaluation We follow the standard closed-world and open-world evaluation protocols.
In the closed-world setting, the unseen classes are a subset of all possible attribute-object combinations
and are defined in the dataset. In the open-world setting, the model considers all possible attribute-
object combinations.
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MIT-States UT-Zappos C-GQA

Method S U H AUC S U H AUC S U H AUC

Closed
CLIP 30.2 46.0 26.1 11.0 15.8 49.1 15.6 5.0 7.5 25.0 8.6 1.4
CoOp 34.4 0.1 47.6 0.1 29.8 0.1 13.5 0.0 52.1 0.5 49.3 1.8 34.6 1.7 18.8 1.4 20.5 0.2 26.8 0.3 17.1 0.2 4.4 0.1

CSP 46.6 0.1 49.9 0.1 36.3 0.1 19.4 0.1 64.2 0.7 66.2 1.2 46.6 1.2 33.0 1.3 28.8 0.1 26.8 0.1 20.5 0.1 6.2 0.0

Open
CLIP 30.1 14.3 12.8 3.0 15.7 20.6 11.2 2.2 7.5 4.6 4.0 0.27
CoOp 34.6 0.1 9.3 0.0 12.3 0.1 2.8 0.0 52.1 0.5 31.5 2.9 28.9 2.3 13.2 1.6 21.0 0.2 4.6 0.1 5.5 0.1 0.70 0.0

CSP 46.3 0.3 15.7 0.1 17.4 0.1 5.7 0.0 64.1 0.7 44.1 0.3 38.9 0.5 22.7 0.4 28.7 0.2 5.2 0.1 6.9 0.1 1.20 0.0

Table 2: Closed-world (Closed) and open-world (Open) results on MIT-States, UT-Zappos, and
C-GQA. For CoOp and CSP, we report the average performance of the models on 5 random seeds
with standard error.

Following prior work (Mancini et al., 2021a), we report the performance in the generalized zero-shot
learning for both the closed-world and the open-world settings. In generalized zero-shot learning,
we include both the seen and unseen classes in the test set. Several works have noted that zero-shot
models are biased towards the seen classes, so we follow the standard of adding a scalar bias to
the unseen classes (Chao et al., 2016; Ruis et al., 2021) . Following prior work, we vary the bias
from −∞ to +∞ to get a curve indicating the seen accuracy on the x-axis and unseen accuracy on
the y-axis. We report the area under the curve (AUC) and select the operating point with the best
harmonic mean (H) between the seen and unseen accuracy. We also report the best seen accuracy
(S) when bias is −∞ and the best unseen accuracy (U) when the bias is +∞. We average over five
random seeds, selecting the best-performing model after each epoch on the validation data.

Following prior work, we apply feasibility calibration to all methods for prediction in the open-
world setting. The open-world setting is particularly challenging as the label space contains all
possible combinations of attributes and objects in the dataset. For instance, the label space contains
feasible compositions such as young cat and eroded cliff and infeasible compositions such
as eroded cat. Existing work shows a significant drop in model performance from the closed-
world setting to the open-world setting (Mancini et al., 2021a;b). As suggested in Mancini et al.
(2021a), we apply a simple feasibility calibration based on GloVe embeddings (Pennington et al.,
2014) to filter out infeasible compositions. For more details, see Appendix G.

Baselines In our experiments, we primarily compare with CLIP-based baselines. We compare CSP
to pretrained CLIP (Radford et al., 2021) and CoOp (Zhou et al., 2021). CoOp is a soft-prompting
method that learns the prefix context with limited labeled examples in a few-shot setting. CoOp
resembles prompt tuning (Lester et al., 2021) applied to VLMs.

Training Details We implement CSP and the baselines with a pretrained CLIP model in PyTorch
(Paszke et al., 2019). We use the CLIP model ViT-L/14 which is the largest available model in our
experiments. Nonetheless, our method is agnostic to the choice of CLIP architecture. The pretrained
CLIP ViT-L/14 model has a vision transformer (ViT) as the image encoder and a transformer as the
text encoder.

We train CSP and CoOp by minimizing the cross entropy loss with the Adam optimizer over the seen
split in the dataset for 20 epochs. We use a single NVIDIA RTX 3090 or V100 GPU depending on
their availability to train all our models. For each dataset, we choose the best hyperparameters based
on the performance on the validation split. For more details, refer to Appendix H.

Benchmark Results Our results in Table 2 show that CSP significantly improves over CLIP on
all the benchmark datasets in the closed-world and open-world settings. In the closed-world setting,
we outperform CLIP in the AUC metric by 8.4 points on MIT-states, 28.0 point on UT-Zappos, and
4.8 points on C-GQA. Additionally, we show that CSP beats CoOp, a soft-prompting method, in the
AUC metric by 5.9 points on MIT-States, 14.2 points on UT-Zappos, and 1.8 points on C-GQA. In
results in the open-world setting show that CSP improves over CLIP by 2.7 points on MIT-States,
20.5 points on UT-Zappos, and 0.93 points on C-GQA in the AUC metric. We outperform CoOp on
MIT-States by 3.1 points, UT-Zappos by 9.5 points, and C-GQA by 0.50 points in the AUC metric.

We also report additional results on these benchmarks in the appendices. We compare CLIP-based
methods to existing compositional zero-shot learning methods in Appendix A. CSP outperforms
all these methods on two out of the three benchmarks on the AUC and harmonic mean metrics in
open- and closed-world settings, but as discussed in Section 2 such comparisons come with several
caveats, so we only include them in the appendices for additional context. We experiment with
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different backbones in Appendix E and the trend is consistent with the results reports here. Finally,
we qualitatively evaluate CSP in compositional zero-shot image to text retrieval in Appendix I.

Method MIT-States UT-Zappos C-GQA

CLIP 11.0 5.0 1.4
CLIP (FT) 22.2 0.1 24.5 1.6 10.5 0.2

CSP 19.4 0.1 33.0 1.3 6.2 0.0

Table 3: Closed-world results compar-
ing CSP and fine-tuned CLIP (FT). For
CSP and CLIP (FT), we report the aver-
age AUC on 5 random seeds with stan-
dard error.

Comparison with Full Fine-Tuning We aim to under-
stand the potential benefits of fine-tuning all the parameters
of CLIP instead of a small number. To that end, we fine-
tune all the parameters in CLIP on the seen classes in our
benchmark datasets.

Table 3 shows that fine-tuning CLIP can improve gener-
alization to unseen classes but still achieves lower AUC
compared to CSP on UT-Zappos. In addition, fine-tuning
CLIP requires GPUs with more memory and often metic-
ulous hyperparameter selection (Dong et al., 2022).

Comparison with Task-Specific Architectures We
compare CSP to existing task-specific compositional zero-shot learning architectures. We con-
sider the following task-specific architectures: CGE (Naeem et al., 2021), Co-CGE (Mancini et al.,
2021b) and ProtoProp (Ruis et al., 2021). These methods are the most recent best-performing methods
in the closed-world setting.

Method MIT-States UT-Zappos C-GQA

ProtoProp - 34.7 -
CGE 6.5 33.5 4.2
Co-CGE 6.6 33.9 4.1
CLIP 11.0 5.0 1.4

CSP 19.4 0.1 33.0 1.3 6.2 0.0

Table 4: Closed-world results compar-
ing CSP with task-specific architectures.
For CSP , we report the average AUC
on 5 random seeds with standard error.

Our results in Table 4 show that CSP outperform existing
task-specific architectures on MIT-States and C-GQA while
being competitive on UT-Zappos in AUC. We see that CSP
improves over existing task-specific architectures by 12.8
points on MIT-states and 2.0 points on C-GQA in AUC.
We include extended results including open-world setting
and additional baselines in Appendix A.

Generalization to Higher-Order Compositions To test
the additional flexibility afforded by VLMs, we test if train-
ing CSP with attribute-object compositions can generalize
to higher-order compositions such as attribute-attribute-
object compositions.

Method Accuracy

CLIP 62.7
CoOp 65.2 0.3

CSP 72.6 0.4

Table 5: Unseen ac-
curacy on 5 random
seeds with std. error.

We annotate a novel challenge dataset: AAO-MIT-States, a subset derived
from the MIT-States dataset. In this dataset, we annotate the images in the test
split of the MIT-States dataset with an additional attribute, to get an attribute-
attribute-object pair as the class label. More details on the annotation are
included in Appendix J.

We compare CLIP, CoOp, and CSP to classify images with attribute-attribute-
object classes. Since these class compositions are not present during training,
we treat them as unseen classes and calculate the unseen accuracy. We take
the best performing models for MIT-States and run inference on the challenge
dataset.

Table 5 shows that CSP improves over CLIP by an average 9.9 percentage points on unseen accuracy
and generalizes to attribute-attribute-object compositions without any modifications or training. The
results demonstrate that CSP improves the compositionality of CLIP’s vocabulary, even in ways that
were not explicitly supervised.

Generalization to Mixed Vocabulary To further test the additional flexibility afforded by VLMs,
we also evaluate CSP on compositional zero-shot learning with a mixture of pretrained and fine-tuned
vocabulary. This evaluation stems from the practical need to combine new unseen attributes with
fine-tuned vocabulary. Evaluating in this setting will allow us to assess whether the benefits of CSP
extend to classes including vocabulary not seen during fine-tuning. This setup goes beyond the above
benchmarks, which include unseen combinations of attributes and objects, but all attributes and
objects are seen during training. Now, we include completely unseen attributes.
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We apply CSP on UT-Zappos with different fractions of attributes as seen attributes. We randomly
select 25%, 50%, 75%, and 100% of the attributes and all the objects from the training set. Then, we
remove from the seen classes the attribute-object pairs that include an unseen attribute. Finally, we
train the on the remaining seen attribute-object pairs with five random seed values.

25.00% 50.00% 75.00% 100.00%
Fraction of Seen Attributes

0.0

0.1

0.2

0.3

0.4

0.5

Ac
cu

ra
cy

Generalization with Unseen Attributes

CLIP: Unseen attribute + seen object
CSP: Unseen attribute + seen object
CSP: Seen attribute + seen object (unseen pair)
CSP: Seen attribute + seen object (seen pair)

Figure 4: Results of CSP and CLIP with dif-
ferent fractions of pretrained and fine-tuned
vocabulary. In each fraction, we report the
average performance of CLIP and CSP on 5
random attribute splits.

For each split of the seen and unseen attributes, we
evaluate CSP by dividing the classes into three buck-
ets: (1) unseen attribute + seen object pairs, (2) seen
(i.e., fine-tuned) attribute + seen object pairs in un-
seen combinations, and (3) seen attribute + seen ob-
ject pairs in seen combinations. In this evaluation,
we refer to the classes in the first and second buckets
as the unseen classes and those in the third bucket as
the seen classes. This evaluation is more general than
typical compositional zero-shot learning, which only
evaluates on classes in the second and third buck-
ets. Similar to our evaluation in Section 5, we add a
scalar bias to the unseen classes and select the bias
that maximizes the harmonic mean between accuracy
on the unseen and seen classes in the validation set of
UT-Zappos. We then report accuracy on unseen ex-
amples in each of the three buckets. To contextualize
the performance of CSP, we report the accuracy of
CLIP on the unseen attribute + seen object pairs.

Figure 4 shows that the performance on unseen attribute + seen object pairs improves with CSP and
sufficient training pairs. Initially, the performance of CLIP and CSP are comparable but by providing
more combinations of supervision for the objects CSP significantly outperforms CLIP on the unseen
attribute + seen object evaluation bucket. These results demonstrate that the fine-tuned vocabulary of
CSP can improve the compositional zero-shot performance of pretrained vocabulary.

Additional Experiments We summarize the additional experiments included in the Appendices B,
C, D, and E.

MIT-States UT-Zappos C-GQA
Datasets

0

10

20

30

AU
C

Comparisons with Other Parameter Efficient Methods

CoCoOp
CLIP Adapter
CSP

Figure 5: Closed-world results on MIT-States,
UT-Zappos, and C-GQA comparing CoCoOp
(Appendix B), CLIP adapters (Appendix C),
and CSP. We report the average AUC on 5
random seeds.

We compare CSP with other parameter efficient meth-
ods (see Figure 5). In Appendix B, we experiment
with CoCoOp, the conditional variant CoOp that in-
corporates visual information, on compositional zero-
shot learning (Zhou et al., 2022). Our results show
that CSP outperforms CoCoOp on all three datasets.
In Appendix C, we compare CLIP adapter (Gao et al.,
2021) and CSP on compositional zero-shot learn-
ing. We see that CSP still achieves the highest AUC
across the datasets compared to CLIP adapters.

In Appendix D, to further test their flexibility, we
see whether the learned vocabulary generalizes to
classifying either attributes or objects alone. Our
results show that CSP consistently improves attribute
classification performance but can often reduce object
classification accuracy.

Finally, in Appendix E, we compare different ResNet and ViT backbones of CLIP. Our results show
that CSP performance improves with larger backbones. In particular, we observe the highest gains
with ViT backbones.

6 CONCLUSION

We present a new style of soft prompting, CSP, for compositional zero-shot learning. We show that
learning composable components of classes via soft prompting can improve downstream compo-
sitional zero-shot performance with a small number of parameters. We also demonstrate that the
learned vocabulary generalizes in multiple, useful ways.
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to make decisions that directly affect people. Models like CLIP are trained on Internet scale data
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any inference on unseen classes of data carries additional risk because of the domain shift between
training and application. For more details, we refer the readers to Section 7 in Radford et al. (2021).
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The code for our experiments is available at https://github.com/BatsResearch/csp. We also show the
pseudo-code for CSP in Appendix F. In Section 5, we provide all the relevant training details for the
experiments: pretrained models, training and validation splits, GPUs, and python libraries. Finally, in
Appendix H, we include the hyperparameters for all the datasets.
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MIT-States UT-Zappos C-GQA

Method S U H AUC S U H AUC S U H AUC

Closed

AoP(Nagarajan & Grauman, 2018) 14.3 17.4 9.9 1.6 59.8 54.2 40.8 25.9 17.0 5.6 5.9 0.7
LE+ (Misra et al., 2017) 15.0 20.1 10.7 2.0 53.0 61.9 41.0 25.7 18.1 5.6 6.1 0.8
TMN(Purushwalkam et al., 2019) 20.2 20.1 13.0 2.9 58.7 60.0 45.0 29.3 23.1 6.5 7.5 1.1
SymNet(Li et al., 2020) 24.2 25.2 16.1 3.0 49.8 57.4 40.4 23.4 26.8 10.3 11.0 2.1
CompCos (Mancini et al., 2021a) 25.3 24.6 16.4 4.5 59.8 62.5 43.1 28.1 28.1 11.2 12.4 2.6
ProtoProp (Ruis et al., 2021) - - - - 62.1 65.5 50.2 34.7 - - - -
CGE (Naeem et al., 2021) 32.8 28.0 21.4 6.5 64.5 71.5 60.5 33.5 33.5 15.5 16.0 4.2
Co-CGE (Mancini et al., 2021b) 32.1 28.3 20.0 6.6 62.3 66.3 48.1 33.9 33.3 14.9 15.5 4.1

CLIP (Radford et al., 2021) 30.2 46.0 26.1 11.0 15.8 49.1 15.6 5.0 7.5 25.0 8.6 1.4
CoOp (Zhou et al., 2021) 34.4 0.1 47.6 0.1 29.8 0.1 13.5 0.0 52.1 0.5 49.3 1.8 34.6 1.7 18.8 1.4 20.5 0.2 26.8 0.3 17.1 0.2 4.4 0.1

CSP (Ours) 46.6 0.1 49.9 0.1 36.3 0.1 19.4 0.1 64.2 0.7 66.2 1.2 46.6 1.2 33.01.3 28.8 0.1 26.8 0.1 20.5 0.1 6.2 0.0

Open

AoP(Nagarajan & Grauman, 2018) 16.6 5.7 4.7 0.7 50.9 34.2 29.4 13.7 - - - -
LE+ (Misra et al., 2017) 14.2 2.5 2.7 0.3 60.4 36.5 30.5 16.3 19.2 0.7 1.0 0.08
TMN(Purushwalkam et al., 2019) 12.6 0.9 1.2 0.1 55.9 18.1 21.7 8.4 - - - -
SymNet(Li et al., 2020) 21.4 7.0 5.8 0.8 53.3 44.6 34.5 18.5 26.7 2.2 3.3 0.43
CompCos (Mancini et al., 2021a) 21.4 7.0 5.8 0.8 53.3 44.6 34.5 18.5 26.7 2.2 3.3 0.43
CGE (Naeem et al., 2021) 32.4 5.1 6.0 1.0 61.7 47.7 39.0 23.1 32.7 1.8 2.9 0.47
Co-CGECW (Mancini et al., 2021b) 31.1 5.8 6.4 1.1 62.0 44.3 40.3 23.1 32.1 2.0 3.4 0.53
Co-CGEopen (Mancini et al., 2021b) 30.3 11.2 10.7 2.3 61.2 45.8 40.8 23.3 32.1 3.0 4.8 0.78

CLIP (Radford et al., 2021) 30.1 14.3 12.8 3.0 15.7 20.6 11.2 2.2 7.5 4.6 4.0 0.27
CoOp (Zhou et al., 2021) 36.80.1 16.5 0.1 16.1 0.1 4.7 0.0 61.80.5 39.3 1.3 35.6 0.7 19.5 0.6 20.90.3 4.5 0.2 5.7 0.2 0.73 0.0

CoOp (Zhou et al., 2021) 34.6 0.1 9.3 0.0 12.3 0.1 2.8 0.0 52.1 0.5 31.5 2.9 28.9 2.3 13.2 1.6 21.0 0.2 4.6 0.1 5.5 0.1 0.70 0.0

CSP (Ours) 46.3 0.3 15.7 0.1 17.4 0.1 5.7 0.0 64.1 0.7 44.1 0.3 38.9 0.5 22.7 0.4 28.7 0.2 5.2 0.1 6.9 0.1 1.20 0.0

Table 6: Closed-world (Closed) results on MIT-States, UT-Zappos, and C-GQA. For CoOp and
CSP, we report the average performance of the models on 5 random seeds with standard error. The
results for AoP, LE+, TMN, SymNet, CompCos, CGE, and Co-CGE are obtained from Mancini et al.
(2021b) and ProtoProp from Ruis et al. (2021). For extended results, see Appendix A.

A COMPARISON OF EXISTING TASK-SPECIFIC ARCHITECTURES

In this section, we compare CSP to existing task-specific compositional zero-shot learning methods.

Baselines We consider the following compositional zero-shot learning methods in closed-world
and open-world setting: AoP (Nagarajan & Grauman, 2018), LE+ (Misra et al., 2017), TMN
(Purushwalkam et al., 2019), SymNet (Li et al., 2020), CompCos (Mancini et al., 2021a), CGE
(Naeem et al., 2021), and Co-CGE (Mancini et al., 2021b). We also consider ProtoProp (Ruis et al.,
2021) in the closed-world setting.

Results Our results in Table 6 show that CSP outperform existing compositional zero-shot learning
method on MIT-States and C-GQA while being competitive on UT-Zappos in AUC. In the closed-
world setting, CSP improves over existing compositional zero-shot learning methods by 12.8 points
on MIT-states and 2.0 points on C-GQA in AUC. In the open-world setting, we improve over the
existing compositional zero-shot learning methods on MIT-States by 3.4 points and C-GQA by 0.42
points in AUC.

B CONDITIONAL VARIANT OF COOP AND CSP

We experiment with CoCoOp, the conditional variant of CoOp, on compositional zero-shot learning.
CoCoOp showed improved performance over CoOp in few-shot object classification by using visual
information to condition the prompts. We investigate if additional visual information in prompts can
help in compositional zero-shot learning.

CoCoOp uses a lightweight network to generate an image-specific bias vector and adds them to
the learnable vocabulary in the prompt. For fair comparison, we also extend CSP to CoCSP to
incorporate visual information into the prompts.

Setup We train CoCoOp and CoCSP with the same hyperparmeters in Appendix H. Additionally,
the lightweight network in our experiments is a two-layer multilayer perceptron with a ReLU
activation between the two layers. The input and the output dimensions of the network are d and the
hidden dimension is d/16 where d is the dimension of the vocabulary. The generated image-specific
bias vector is added to the context vocabulary in CoCoOp and attribute-object vocabulary in CoCSP.
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Method MIT-States UT-Zappos C-GQA

CLIP 11.0 5.0 1.4
CoOp 13.5 0.0 18.8 1.4 4.4 0.1

CSP 19.4 0.1 33.0 1.3 6.2 0.0

CoCoOp 11.3 0.6 18.8 1.1 4.2 0.1

CoCSP 17.6 0.1 32.7 0.3 5.7 0.0

Table 7: Closed-world results on MIT-States, UT-Zappos, and C-GQA. For CSP , CoOp, CoCoOp,
and CoCSP, we report the average AUC on 5 random seeds with standard error. ∗ denotes a bug in the
soft prompt for CoCoOp which we will fix in the final version. In CoCoOp for C-GQA, we average
the pre-trained vocabulary for attributes and objects with multiple tokens instead of using them as is
in the prompt.

Results Table 7 shows CoCSP improves upon CoCoOp across the three datasets. We also observe
no benefits over non-conditional methods such as CSP and CoOp in AUC. We suspect that additional
parameters for compositional generalization from seen pairs of concepts to unseen pairs.

C CLIP ADAPTERS WITH COMPOSITIONAL SOFT PROMPTS

We extend CLIP adapter (Gao et al., 2021) to compositional zero-shot learning. Adapters are an
alternate method of parameter-efficient learning for large-scale models that has shown improved
performance on several downstream tasks (Houlsby et al., 2019).

CLIP adapters are a variant of the adapters for few-shot object classification (Houlsby et al., 2019).
Instead of adding small feedforward networks to all the layers, they learn a multilayer perceptron in
the image encoder and the text encoder. They transform the image representation from the encoder
with the multilayer perceptron and include a residual connection from the image encoder and the
same for the text representation. While the CLIP adapters can be added to the text encoder, the
authors show that visual adapters perform better than textual adapters. For this reason, we compare
with visual adapters in the experiment.

Setup We add a CLIP adapter, a two-layer multilayer perceptron with ReLU activation, to the
image encoder. We use the same prompt prompt as CSP and train only the CLIP adapter. For fair
comparison, we also train a model with CSP and CLIP adapters where we jointly train the prompts
and adapter on the task. We train with the same hyperparamters settings for CLIP adapters and CLIP
adapters + CSP in Appendix H.

Method MIT-States UT-Zappos C-GQA

CLIP 11.0 5.0 1.4
CLIP adapter 9.5 0.1 31.5 0.9 3.2 0.1

CLIP adapter + CSP 8.3 0.2 32.5 1.0 2.7 0.0

CSP 19.4 0.1 33.0 1.3 6.2 0.0

Table 8: Closed-world results on MIT-States, UT-Zappos, and C-GQA. For CLIP adapter, CLIP
adapter + CSP , and CSP , we report the average AUC on 5 random seeds with standard error.

Results Table 8 shows that CLIP adapters can improve performance over CLIP but CSP performs
better on its own. We also observe that combining CLIP adapters with CSP can often hurt performance
in AUC.

D DECOMPOSITION OF ATTRIBUTES AND OBJECTS

To further test the flexibility of CSP, we investigate how the learned vocabulary performs on attribute
classification and object classification separately. We create prompts of the form a photo of [at
tribute] object and a photo of [object] classify images according to either attribute or
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MIT-States UT-Zappos C-GQA

Method A O A O A O

S
CLIP 16.6 44.3 8.8 58.5 3.6 25.4
CoOp 18.7 0.2 47.6 0.1 25.8 3.4 57.8 3.1 7.0 0.6 26.3 0.4

CSP 24.5 0.2 40.2 0.2 66.4 0.5 63.8 1.2 12.5 0.1 24.2 0.1

U
CLIP 19.4 46.8 11.1 65.6 4.1 25.4
CoOp 22.0 0.2 49.6 0.1 21.5 6.5 37.1 2.9 5.9 0.5 25.9 0.4

CSP 23.3 0.1 36.3 0.1 49.2 1.8 46.6 3.6 6.0 0.1 23.8 0.1

Table 9: Results for decomposition of learned attribute and object vocabulary. We report average
top-1 accuracy for attribute (A) and object (O) classification on 5 random seeds with standard error.
Evaluation is done on seen (S) classes and unseen (U) classes of each dataset.

object. We measure accuracy on two sets of evaluation data. The first is the seen classes of each
dataset, meaning that the classification is performed on new examples of attributes and objects that
previously have been seen in the same combination. The second is the unseen classes of the original
datasets, so this can be thought of as a kind of domain shift problem, evaluating how well the learned
primitive concepts can be reused in isolation on novel attribute-object combinations.

Table 9 shows that CSP consistently improves attribute classification performance, while often
reducing object classification accuracy. Sometimes CoOp improves over CLIP’s object classification
accuracy as well. This results indicates that CSP learns useful standalone attribute representations
that are also composable with objects, but that the resulting object representations might not be as
good on their own.

E MODEL ABLATION

Table 10 shows that CSP with a performance improves with larger backbones. We note that CSP
generally improves performance over CLIP. In particular, we see the gains are highest with ViT
backbones.

MIT-States UT-Zappos C-GQA

Method Backbone S U H AUC S U H AUC S U H AUC

CLIP ResNet-50 21.1 34.4 18.4 5.6 6.4 43.6 6.4 1.4 6.1 17.1 6.1 0.7
CLIP ResNet-101 25.2 37.4 21.7 7.5 11.2 35.2 11.9 2.8 7.3 19.7 7.6 1.1
CLIP ViT B/32 25.1 39.1 21.4 7.5 9.6 42.4 10.0 2.4 7.3 22.1 7.4 1.2
CLIP ViT L/14 30.2 46.0 26.1 11.0 15.8 49.1 15.6 5.0 7.5 25.0 8.6 1.4

CSP ResNet-50 35.0 0.1 30.3 0.1 23.0 0.1 8.3 0.1 21.8 1.6 11.3 1.7 10.2 1.2 1.8 0.3 17.9 0.3 14.7 0.2 10.2 0.2 1.8 0.0

CSP ResNet-101 38.9 0.1 32.1 0.2 25.2 0.1 9.9 0.1 42.2 1.2 9.1 1.3 10.0 1.1 2.6 0.5 17.7 0.1 17.0 0.2 12.0 0.1 2.3 0.0

CSP ViT B/32 36.4 0.4 42.5 0.2 28.6 0.1 12.4 0.1 57.1 0.4 57.3 0.6 39.3 0.6 24.2 0.4 30.1 0.1 23.4 0.2 19.4 0.3 5.7 0.1

CSP ViT L/14 46.6 0.1 49.9 0.1 36.3 0.1 19.4 0.1 64.2 0.7 66.2 1.2 46.6 1.2 33.0 1.3 28.8 0.1 26.8 0.1 20.5 0.1 6.2 0.0

Table 10: Closed-world ablation results with respect to different backbone architectures of CLIP. We
report the average performance of the model on 5 random seeds with standard error.

F PSEUDOCODE

Figure 6 shows the Torch-like pseudocode for inference with CSP. The function accepts the minibatch
of images, test pairs, and the clip model with the fine-tuned embeddings and returns the cosine
similarities between the image representation and the text representation scaled by a constant scalar.

G FEASIBILITY CALIBRATION FOR OPEN-WORLD SETTING

Feasibility calibration aims to filter out infeasible compositions that might be present in the open-
world setting. To filter out infeasible compositions, we follow the post-training calibration from
Mancini et al. (2021b). They conjecture that similar objects share similar attributes while dissimilar
objects are unlikely to share attributes. For example, cat and dog can share the attribute old but
cat and cliff do not share the attribute eroded.
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def inference(batch_images: nn.Tensor,
test_pairs: List[List, List],
model: nn.Module):

"""
Function to run inference with the fine-tuned embeddings.
Args:

batch_images (torch.Tensor): minibatch of images [n, h, w, c]
test_pairs (tuple): attribute-object pairs in the test

split [m, 2]
model (nn.Module): model with the fine-tuned embeddings

Returns:
torch.Tensor: cosine similarties of the minibatch images

and attribute-object pairs [n, m]
"""
prompt_template = "a photo of x x"
tokenized_prompt = tokenize(prompt_template)
tokenized_prompt = tokenized_prompt.repeat(len(test_pairs))
token_tensor = model.token_embedding(tokenized_prompt)

# fine-tuned embeddings
attr, obj = zip(*test_pairs)
attr_emb = model.soft_embedding(attr)
obj_emb = model.soft_embedding(obj)

# replace the "x x" in prompt template with fine-tuned embeddings
token_tensor = replace_emb(token_tensor, attr_emb, obj_emb)

# l2-normalized
text_rep = model.text_encoder(token_tensor)
image_rep = model.image_encoder(batch_images)

logits = (image_rep @ text_rep) * model.logit_scale.exp()

return logits

Figure 6: Torch-like pseudocode for inference with CSP.

We calculate the feasibility compositions for the composition (a, o) by computing the relationships
between the objects and the attributes. First, we find the similarities between the objects:

ρo(a, o) = max
ô∈Oseen

ϕ(o) · ϕ(ô)
||ϕ(o)|| ||ϕ(ô)||

where ρo(.) is the similarity between the object o with other objects ô and ϕ(.) is an embedding
function that maps attributes to pretrained embedding. We compute similarities between the attributes
in the same way.

Next, we combine the two similarities with a pooling function. In our case, we use mean pooling µ:

ρ(a, o) = µ(ρo(a, o), ρa(a, o))

where ρ(a, o) is the feasbility score for the composition (a, o). Finally, we filter out infeasible
compositions by considering compositions above a threshold T calibrated on the validation set to get
our final prediction:

ŷ = argmax
y∈Ytest, ρ(a,o)>T

pθ(y | x)

Following prior work, we compute feasibility calibration using GloVe embeddings (Pennington et al.,
2014), and filter out the infeasible attribute-object compositions based on the performance on the
validation split.

H HYPERPARAMETERS

In our work, we find the best hyperparameters for training CSP via a grid search. We train the
ViT-B/32 model for 50 epochs and use the same best performing hyperparameters to train all our
models including ViT L/14. We run a grid search with the following hyperparameters: (1) learning
rate: {5e − 03, 5e − 04, 5e − 05}, (2) batch size: {128, 256}, (3) attribute dropout: {0.0, 0.1, 0.2,
0.3}, and (4) weight decay: {1e− 05, 5e− 05}. We choose the hyperparameters for a dataset based
best unseen accuracy on the validation split. We reduce the number of epochs to 20 with ViT L/14 as
we found our models tend to converge earlier.
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Hyperparameter MIT-States UT-Zappos C-GQA

Learning rate 5e− 05 5e− 04 5e− 05
Batch size 128 128 128
Attribute dropout 0.3 0.2 0.3
Weight decay 1e− 05 1e− 05 5e− 05

Table 11: Hyperparameters for MIT-States, UT-Zappos, and C-GQA.

Figure 7: Additional qualitative comparison for image to text retrieval between CSP and CLIP on
CGQA. Selected samples with concepts correctly identified and top-5 retrieval results by CSP are
shown.

Table 11 shows the hyperparameters used to train CSP on all the datasets. The experiments with
CoOp and CLIP adapters do not use dropout as the original architecture did not use dropout in the
text or the image encoder. For the rest of the architecture, we use the same hyperparameters for CoOp
and CLIP adapters as CSP.

I ADDITIONAL QUALITATIVE EXAMPLES

In this section, we include additional examples from the compositional zero-shot image to text
retrieval tasks. Selected samples from CGQA in Figure 7 show that fine-tuning the vocabulary
enables CSP to better identify composed concepts compared to CLIP. In particular, we observe that
CSP ranks relevant attributes in the attribute-object composition better than CLIP.

J DATASET CREATION

We create AAO-MIT-States from the MIT-States dataset (Isola et al., 2015). Below we include details
on the annotation interface, annotators, and aggregation process for the annotations.

We annotate an additional attribute for the images paired with unseen classes in the test split of
MIT-States. The interface has three main components: (1) general instructions, (2) image with
caption, and (3) list of populated attributes. The general instructions provide the annotators with a
detailed description of the annotation task. To the right of the instructions is a randomly sampled
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image from the test split of MIT-States. Additionally, we include a caption describing the image. For
example, suppose we select an image of a wet cat, we ask the users: “which attribute best describes
the cat in the image presented?”. Since we have a large number of attributes in the MIT-States dataset,
we need a way to reduce the list of attributes the user observes while annotating a single image. We
use CLIP to predict the attributes except for the original attribute in the image and choose the top-5
attributes as annotation candidates. We also include an option to select none of the above.

Figure 8: Example annotation interface.

The dataset was annotated by two of the authors and two undergraduate research assistants. We
randomly sampled a total of 1200 images from test-split and asked the annotators to annotate from
the interface. We received annotations for 1089 instances where each image received exactly three
annotations. We aggregate examples for our dataset where all the three annotators agreed on the same
attribute other than “None of the above”. The total number of examples in the final annotated dataset
is 193. We have open-sourced the dataset in our code.

21


	Introduction
	Related Work
	Preliminaries
	Compositional Soft Prompting
	Experimental Evaluation
	Conclusion
	Comparison of Existing Task-Specific Architectures
	Conditional Variant of CoOp and CSP
	CLIP Adapters with Compositional Soft Prompts
	Decomposition of Attributes and Objects
	Model Ablation
	Pseudocode
	Feasibility Calibration for Open-World Setting
	Hyperparameters
	Additional Qualitative Examples
	Dataset Creation

