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ABSTRACT

The recent advances in reinforcement learning have demonstrated the effective-
ness of vision-based self-supervised learning (SSL). However, the main efforts
on this direction have been paid on single-agent setting, making multi-agent re-
inforcement learning (MARL) lags thus far. There are two significant obstacles
that prevent applying off-the-shelf SSL approaches with MARL on a partially
observable multi-agent system : (a) each agent only gets a partial observation,
and (b) previous SSL approaches only take consistent temporal representations
into account, while ignoring the characterization that captures the interaction and
fusion among agents. In this paper, we propose Multi-Agent Joint-Predictive
Representations (MAJOR), a novel framework to explore self-supervised learning
on cooperative MARL. Specifically, we treat the latent representations of local ob-
servations of all agents as the sequence of masked contexts of the global state, and
we then learn effective representations by predicting the future latent representa-
tions for each agent with the help of the agent-level information interactions in a
joint transition model. We have conducted extensive experiments on wide-range
MARL environments, including both vision-based and state-based scenarios, and
show that our proposed MAJOR achieves superior asymptotic performance and
sample efficiency against other state-of-the-art methods.

1 INTRODUCTION

Representation learning has played an important role in recent developments of reinforcement learn-
ing (RL) algorithms. Especially self-supervised representation learning (SSL) has attracted more
and more attention due to its success in other research fields (He et al., 2019; Devlin et al., 2018;
Liu et al., 2019; Lan et al., 2019). Recently, numerous works(Srinivas et al., 2020; Zhu et al., 2022;
Yarats et al., 2021; Schwarzer et al., 2021a; Yu et al., 2022) have borrowed insights from differ-
ent areas and attempted to use SSL-based auxiliary tasks to learn more effective representations of
RL and thus improve the empirical performance. Through augmentation for inputs, it can conduct
multiple views for building SSL learning objectives, allowing the agent to improve data efficiency
and generalization to obtain better task-related representations. Moreover, many proper auxiliary
self-supervision priors proposed predictive representations with the help of an additional learned
dynamic model, which is utilized to encourage the representations to be temporally predictive and
consistent.

However, when meeting partially observable multi-agent systems, it is challenging to apply such
self-supervision priors to learn compact and informative feature representations in multi-agent rein-
forcement learning (MARL). The critical obstacle to learning effective representations in MARL is
that agents in partially observable multi-agent systems only have access to their observations, which
means that other agents’ behavior influences each agent’s observations. As a result, independently
building representation priors for each agent may be failed due to imperfect information. Further-
more, in the MARL context, it is more important to focus on the representations that embody the
interaction and fusion between agents in the environment but not temporal representations for each
agent. In other words, it is necessary to learn the representations that can take the other agents into
account.

In this work, we propose a novel representation learning framework for MARL, named Multi-Agent
Joint-Predictive Representations (MAJOR), which trains better representations for MARL by forc-
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ing representations to be temporally predictive and consistent for all agents at the same timestep. We
posit that in one timestep, latent representations of local observations of all agents can be treated as
the sequence of masked contexts of the global state so that we can predict the future latent represen-
tations for each agent with the representations of corresponding actions. Accordingly, we construct
a joint transition model as the bridge to connect all agents and implement the interaction of their
individual information. The joint transition model treats the encoded representations of individual
observations and actions as a sequence and attempts to predict future representations in latent space.
Meanwhile, we can also get another view of the subsequent timestep representations by feeding
sampled observations into the encoder. In this way, we build the SSL objective by enforcing con-
sistency across different perspectives of each observation. Besides, our proposed framework is a
plug-and-play module for almost common-used MARL methods.

Additionally, to maximize its power, we implement an instantiation of MAJOR on the basis of the
recently proposed MARL algorithm, named Multi-Agent Transformer (MAT, (Wen et al., 2022)),
which solves MARL issues via a sequential updating mechanism and an encoder-decoder architec-
ture. In MAT, the encoder seeks to extract post-interaction representations from observations; the
decoder then uses them to generate actions sequentially by a cross-attention mechanism. Moreover,
our proposed MAJOR can employ both representations generated from the encoder and decoder,
and the gradient derived from our representation learning objective can be back-propagated to both
the encoder and decoder.

To evaluate our proposed algorithm, we construct extensive experiments on several common-used
cooperative MARL benchmarks, including vision- and state-based environments in discrete and
continuous scenarios against current state-of-the-art baselines such as HAPPO, MAPPO, and MAT.
Results demonstrate its state-of-the-art performance across all tested tasks.

2 BACKGROUND

2.1 DEC-POMDP

Cooperative MARL problems are often modeled by decentralized Partially Observable Markov De-
cision Processes (Dec-POMDPs, (Oliehoek & Amato, 2016)) (N ,S, {Ai} , T , R,Ω,O, γ). Here,
N = 1, . . . , n is the set of agents, S is a set of states,A = ×iAi is the set of joint actions, T is a set
of conditional transition probabilities between states, T (s,a, s′) = P (s′ | s,a), R : S × A → R
is the reward function,O = ×iOi is a set of observations for agent i, Ω is a set of conditional obser-
vation probabilities Ω (s′,a,o) = P (o | s′,a), and γ ∈ [0, 1] is the discount factor. At each time
step, each agent takes an action ai, and the state is updated based on the transition function (using
the current state and the joint action). Each agent observes an observation based on the observation
function Ω (s′,a,o) (using the next state and the joint action) and a reward is generated for the
entire team based on the reward function R(s,a). The goal is to maximize the expected cumulative
reward over a finite or infinite number of steps.

2.2 MULTI-AGENT TRANSFORMER

Multi-Agent Transformer (MAT, Wen et al. (2022)) effectively casts cooperative MARL into Se-
quential Modeling (SM) problems wherein the task is to map the observation sequence of agents
to the optimal action sequence of agents. Its sequential update scheme is built on the Multi-Agent
Advantage Decomposition Theorem (Kuba et al., 2021) and Heterogeneous-Agent Proximal Policy
Optimization (HAPPO, Kuba et al. (2022)). The lemma provides an intuition guiding the choice of
incrementally improving actions, and HAPPO fully leverages the lemma to implement multi-agent
trust-region learning with a monotonic improvement guarantee. Unfortunately, HAPPO requests the
sequential update scheme in the permutation for agents’ orders, meaning that HAPPO cannot be run
in parallel. To address the drawback of HAPPO, MAT produces Transformer-based implementation
for multi-agent trust-region learning.

Concretely, MAT maintains an encoder-decoder structure where the encoder maps an input sequence
of tokens to latent representations. Then the decoder generates a sequence of desired outputs in an
auto-regressive manner wherein, at each step of inference, the Transformer takes all previously
generated tokens as the input. In other words, MAT treats a team of agents as a sequence, thus
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implementing the sequence-modeling paradigm for MARL. The encoder ϕ takes a sequence of ob-
servations o ≜ (oi1 , . . . , oin) in arbitrary order 1 and passes them through L computational blocks.
Each of these blocks has a self-attention mechanism(Vaswani et al., 2017) and a multi-layer percep-
tron (MLP), as well as residual connections to prevent gradient vanishing and network degradation
as depth increases. Thus we can obtain the encoding of the observations as ô containing interrela-
tionships among agents. Feeding the representations into the value head (an MLP), denoted as fϕ,
will get value estimations. The encoder’s learning objective is to minimize the individual version of
empirical Bellman error by:

LMATencoder

ϕ,fϕ
(ot) =

1

Tn

n∑
m=1

T−1∑
t=0

[
R (s,at) + γVϕ′,f ′

ϕ

(
ôimt+1

)
− Vϕ,fϕ

(
ôimt
)]2

(1)

where ϕ′ is the target network, which is nondifferentiable and updated every few epochs. Mean-
while, the decoder θ passes the embedding joint action to a sequence of decoding blocks. Crucially,
the decoding block replaces the encoder’s self-attention mechanism with a masked self-attention
mechanism; i.e., the attention of the action to be generated in the current step is computed only
among previously computed agents’ actions. The output of the last decoder block is a sequence of
representations of the joint actions. The same as the value head, this is fed into a policy head (also
an MLP), denoted as fθ, which outputs the policy πim

θ

(
aim | ôi1:n ,ai1:m−1

)
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learning objective is to minimize the clipping PPO objective proposed in HAPPO of
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) and Ât is an estimation of the joint advantage function,

e.g. GAE(Schulman et al., 2015).

3 OUR METHOD

3.1 CONNECTION BETWEEN JOINT TRANSITION MODEL AND SSL IN MARL

To encourage the observations and actions representations to integrate agent-level relationships and
interactions, we exploit a multi-agent world model in latent space as the bridge to connect both
observation representations and action representations of overall agents. Naturally, as described
in the formulation of Dec-POMDP, one can feed the global state with joint actions into the world
model T to predict the next state, i.e. implement T (s,a, s′) = P (s′ | s,a). In this work, we learn
a transformer-based joint transition model T̂ as an approximate version of the multi-agent world
model, whose inputs are joint observation representations and joint action representations, and its
outputs are the joint observation representations in the next timestep.

On the one hand, to achieve the goal of implementing information fusion among agents, it is better to
use individual observations rather than a global state as input. As a result, it will enforce the learned
joint transition model to (a) reconstruct the global state from individual observations, (b) predict
the future state of the next timestep, and (c) implement the observation mapping functions for each
agent. In this way, the joint transition model must infer the influences caused by others and try to
integrate all the imperfect information. As a result, executing consistency across different views of
individual observations can lead to better representations generated from encoder networks.

On the other hand, it is necessary to emphasize that we treat the individual observations as a
sequence of masked contexts of global state in the joint transition model. Based on the definition
of Dec-POMDP, observations are the outputs of the mapping function; in other orders, individual
observations can be seen as multiple views of the global state. This property revealed by Dec-
POMDP’s formulation in cooperative MARL inspires us to propose a self-supervised prior tailored
MARL. We use the joint transition model as a Masked Language Model (MLM, Devlin et al. (2018);
Lewis et al. (2019)) under core components in MARL, which is general in all MARL settings.

1Because the algorithm makes no assumptions about the order of the agents and don’t change the original
order, we subsequently omit the superscript about the agents’ order for the sake of simplicity of presentation.
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3.2 MULTI-AGENT JOINT-PREDICTIVE REPRESENTATIONS

Multi-Agent Joint-Predictive Representations(MAJOR) is an auxiliary objective to promote repre-
sentation learning in MARL and is generally applicable to different MARL algorithms, e.g., MAT
and MAPPO. The core process in the joint transition model of MAJOR is to implicitly recon-
struct the global state and then infer the future observation representation of each agent. This
mechanism enables the better use of agent-cross information when learning observation and action
representations, further enhancing the understanding of MARL agents for individual messages. The
overall framework of MAJOR is shown in Figure 1. We will introduce the components shown in the
framework in the following subsections.

Figure 1: An illustration of the full MAJOR method. representations from the online observation
encoder are used in the action decoder, value head, and policy head. They will also be utilized for
the prediction of future representations from the target observation encoder via the joint transition
model. The target observation encoder and projection head are defined as an exponential moving
average of their online version and are not updated via gradient descent. For brevity, we illustrate
the iterative K-steps results described in Equation 6 for the joint transition model totally in one loop.

Encoding observations and actions: We use MAT’s encoder ϕ and decoder θ, excluding the fi-
nal MLP individual, as the online observation encoder and action encoder, respectively. Taking the
observation sequence of arbitrary order ot as input, the online observation encoder applies a self-
attention mechanism and obtains post-interaction representations of agents, as ôt. Similarly to the
online observation encoder, the online action encoder accepts both the origin action sequence at

and observation representations oi1:n
t and the output action representations ât through the cross-

attention mechanism. We employ these representations with a goal that motivates them to forecast
future observation representations up to a given temporal offset K, iteratively. Following prior
work (Schwarzer et al., 2021a; Zhu et al., 2022; Yu et al., 2021b; 2022), we utilize another observa-
tion encoder for the encoding of original observations. This target encoder has the same architecture
as the online observation encoder, and its parameters are an exponential moving average (EMA) of
the online observation encoder parameters. Denoting the target observation encoder as ϕ̄ and the
momentum coefficient as τ ∈ [0, 1), the update scheme of the target observation encoder is:

θ̄ ← τ θ̄ + (1− τ)θ (3)

Joint Transition Model: We construct the predictive version of future observation representations
using a transformer-based joint transition model T̂ . The architecture of the joint transition model is
similar to the online encoder, but (a) contains L′ Multi-Head Self-Attention (MHSA) layers without
masks and (b) takes the combined sequence of observations and action representations as input
tokens and then only outputs the sequence of observation representations of the subsequent timestep.
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We obtain the t-th observation and action representations by feeding the origin observation sequence
and the action sequence into the online observation encoder and the action encoder. Then the input
tokens of the latent joint transition model can be mathematically represented as :

x = [ôi1t , âi1t , . . . , ôint , âint ] (4)

The process of passing the token sequence through the l th layer of the joint transition model can be
mathematically described as:

hl = MHSA
(
LN
(
xl
))

+ xl, xl+1 = FFN
(
LN
(
hl
))

+ hl (5)

Here, LN and FFN denote the LayerNorm and the Feed-Forward Network mentioned in (Vaswani
et al., 2017). Note that if the permutation order is known, one can also add agent ids’ embedding
and positional embedding on x. And we only select the odd elements of the output tokens of the
joint transition model as the corresponding predictive results for the latent future representations
inferred from previous observation and action representations. Furthermore, in the k-th step of
generating future representations where k = 2, . . . ,K, we use the joint transition model output
representations instead of the online observation encoders as the input latent observation tokens.
The process mentioned above can be denoted as

õt+1 ≜ T̂ (ôt, ât) , where ôt ≜ ϕ (ot) , and ât ≜ θ (ôt,at)

õt+k ≜ T̂ (õt+k−1, ãt+k−1) , where ãt+k−1 ≜ θ (õt+k−1,at+k−1) ,∀k = 2, . . . ,K
(6)

The joint transition model and prediction loss operate in the latent space, thus avoiding pixel-based
reconstruction objectives and making MAJOR robust for vision-based and state-based MARL set-
tings. In the following, we elaborate on the predictive loss between the prediction results and the
corresponding targets.

Prediction Loss: Motivated by the success of BYOL (Grill et al., 2020) in SSL and sample-efficient
RL(Schwarzer et al., 2021a; Yu et al., 2021b; 2022), we compute the future prediction loss of
MAJOR by calculating the cosine similarities between the predicted and observed representations.
Concretely, from the outputs of the joint transition model, i.e. the sequence of observation rep-
resentations set õt+1:t+K , we use a projection head g and a prediction head q to obtain the final
sequence of predictions result in ỹt+1:t+K ≜ q(g(õt+1:t+K)). Then we utilize a target projection
head ḡ (i.e. follows the same EMA update strategy in the target observation encoder) to process
the encoded results of original observations, which is denoted as ȳt+1:t+K ≜ ḡ(ōt+1:t+K) where
ōt+1:t+K ≜ ϕ̄(ot+1:t+K). Here, we apply a stop-gradient operation as illustrated in Figure 1 to
avoid model collapse, following BYOL. Finally, MAJOR’s objective is to enforce the final predic-
tion result in ỹt+1:t+K to be as close to its corresponding target ȳt+1:t+K . And we construct the
following cosine similarities between the normalized predictions and the target projections overall
agents and the offset timesteps:

LMAJOR
ϕ,θ (ot:t+K ,at:t+K−1) = −

1

Kn

K∑
k=1

n∑
i=1

(
ỹit+k

∥ỹit+k∥2

)⊤(
ȳit+k

∥ȳit+k∥2

)
(7)

Total learning objective: The proposed MAJOR is an auxiliary task that is optimized in conjunction
with MAT. Therefore, the overall loss function is:

Ltotal = LMATencoder

ϕ,fϕ
+ LMATdecoder

θ,fθ
+ λLMAJOR

ϕ,θ (8)

where LMATencoder

ϕ,fϕ
, LMATdecoder

θ,fθ
and LMAJOR

ϕ,θ are the MAT losses mentioned above and our pro-
posed joint-predictive representations learning objective, respectively. λ is a hyperparameter for
balancing the items. It is worth noting that, unlike other suggested SSL algorithms in CV and RL,
MAJOR can be employed with or without data augmentation, especially in situations where data
augmentation is unavailable or counterproductive. Moreover, MAJOR mainly focuses on capturing
the relationships among agents via the joint transition model. The proposed framework can also be
transferred to other MARL algorithms that follow the centralized training decentralized execution
(CTDE) paradigm, such as MAPPO(Yu et al., 2021a)/HAPPO(Kuba et al., 2022) and QMIX(Rashid
et al., 2018)/QPLEX(Wang et al., 2020), etc. Here, we provide the pseudocode of MAJOR in Algo-
rithm 1.
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Algorithm 1 Multi-Agent Joint-Predictive Representations

1: Input: Stepsize α, number of agents n, episodes K, steps per episode T .
2: Initialize: Observation encoder ϕ, Action decoder θ, Value head fϕ, Policy head fθ, Replay

buffer B, Joint transition model T̂ , Online projection head g, Online prediction head q, Target
observation Encoder ϕ̄, Target projection head ḡ.

3: while Training do
4: Sample a minibatch (ot,at, rt,ot+1) ∼ B.
5: Calculate LMATencoder

ϕ,fϕ
(ot) with Equation (1).

6: Calculate LMATDecoder

θ,fθ
(ôt,at) with Equation (2).

7: Sample another sequential minibatch (ot:t+K ,at:t+K−1) ∼ B.
8: Get projection/prediction representations ỹt+1:t+K and ŷt+1:t+K with Equation (6).
9: Calculate LMAJOR

ϕ,θ (ot:t+K ,at:t+K−1) with Equation (7)
10: Update the encoder/decoder, value/policy head, joint transition model, and online projec-

tion/prediction head by minimizing Ltotal with gradient descent according to Equation (8).
11: Update target observation encoder and target projection head with Equation (3)
12: end while

3.3 IMPLEMENT DETAILS FOR MAJOR

In practice, we define a hyperparameter H to control the update frequency of MAJOR’s loss, w.r.t.
MAT’s loss. In other words, we update MAJOR’s learning objective every certain number of it-
erations of the original MAT optimization strategy. Concretely, we sample a unique batch of B′

samples from the trajectories collected using the latest policy. Each sample consists of a temporal
set of observations and the corresponding actions, that is, (ot:t+K ,at:t+K). For the projection and
prediction head, we do not use BatchNorm Layer and replace ReLU with GELU activation units,
which is different from what BYOL did. In addition, our joint transition model’s architecture is the
same as the encoder used in MAT. In vision-based settings, we use three convolutional layers with
a ReLU layer after each convolutional layer, which is the same as DQN’s, as the feature extractor in
all algorithms. The full hyperparameters of MAJOR can be found in Appendix F.

4 RELATED WORK

4.1 OVERVIEW OF REPRESENTATION LEARNING AND SELF-SUPERVISED LEARNING

Self-supervised learning empowers us to exploit a variety of labels that come with the data for free.
With self-supervised learning, we can utilize inexpensive unlabeled data and establish the learning
objectives properly from designed pretexts to gain supervision from the data itself. SSL has been
developed in CV and NLP areas and can be divided into the various self-supervised pretexts in the
literature into four broad families(Ericsson et al., 2022): Masked Prediction, Transformation Predic-
tion, Instance Discrimination, and Clustering. (1) Masked Prediction methods (Mikolov et al., 2013;
Baevski et al., 2020; Pathak et al., 2016; Hu et al., 2020) mask a portion of word tokens or image
pixels from the input sentence or image and train the model to predict the masked components to ob-
tain effective representations. (2) Transformation Prediction methods (Gidaris et al., 2018; Sarkar &
Etemad, 2020; Xu et al., 2019) apply a transformation that maps from canonical views to alternative
views and trains the model to predict what transformation has been applied. (3)Instance Discrimi-
nation methods (Velickovic et al., 2019; Chen et al., 2020; He et al., 2019; Tian et al., 2020) apply
some transformation process in one instance to obtain multiple views of it and attempt to formalize
the contrastive instance discrimination. (4) And Clustering methods (Caron et al., 2018; 2020; Zhan
et al., 2020; Alwassel et al., 2020) focus on dividing the training data into several groups with high
intra-group similarity and low inter-group similarity. We recommend readers read (Ericsson et al.,
2022) to get more information.

4.2 SELF-SUPERVISED LEARNING AND REINFORCEMENT LEARNING

There exist substantial works taking advantage of SSL techniques to promote representation learn-
ing in RL. A popular approach is to jointly learn policy learning objectives and auxiliary objectives.
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As for constructing auxiliary SSL objectives, the primary way is to build multiple views of the same
input through masked-latent reconstruction or dynamic models with augmentations. For instance,
(Srinivas et al., 2020; Zhu et al., 2022) tried to extract high-level features from raw pixels using con-
trastive learning and performed off-policy control on top of the extracted features. (Schwarzer et al.,
2021a; Yu et al., 2021b; 2022; Zhang et al., 2021) leverage a dynamic model to obtain a predicted
version of the subsequent observation and then use contrastive learning to enforce consistency be-
tween the raw future observation and the prediction version of it in latent space. Another alternative
way of obtaining good representations is to pre-train the observation encoder to learn effective rep-
resentations before policy learning(Yarats et al., 2021; Stooke et al., 2021; Schwarzer et al., 2021b;
Yang & Nachum, 2021; Campos et al., 2021).

4.3 MULTI-AGENT REINFORCEMENT LEARNING AND REPRESENTATION LEARNING

Recent works (Yeh et al., 2019; Sun et al., 2019; Zhan et al., 2018; Yuan et al., 2021) study the
representation learning for developing models that predict trajectories over all agents at once but not
under the MARL context. And as far as we know, only a few works consider promoting representa-
tion in the MARL context. The most similar works are (Shang et al., 2021) and (Zhang et al., 2022).
(Shang et al., 2021) task each agent to predict its future location, arriving at an agent-centric predic-
tive objective to be combined in their proposed agent-centric attention module in the football game.
(Zhang et al., 2022) is a model-based MARL method that proposed a graph-assisted predictive state
representation learning framework that leverages the agent connectivity graphs to aggregate local
representations computed by each agent. Note that the SSL prior proposed in (Shang et al., 2021)
only be used in football-like environments and is not flexible. Additionally, our method aims to
build a general plugin for model-free MARL approaches so that model-based MARL methods are
not directly comparable to our method. We focus on the auxiliary task line in this work.

5 EXPERIMENTS

We consider a series of MARL benchmarks to evaluate MAJOR, including vision-based and state-
based MARL benchmarks. All hyperparameters settings can be found in Appendix G.

5.1 SETUP

Vision-based MARL Environments. Representation Learning and SSL techniques show their
strength in vision-based RL environments, such as DMControl and Atari. To evaluate whether our
proposed MAJOR is also powerful in such vision-based MARL settings, we run it on three physics-
based cooperative tasks in Multi-Agent Quadcopter Control(dubbed MAQC) (Panerati et al., 2021).
MAQC is an open-source, OpenAI Gym-like multi-quadcopter simulator that provides vision-based
observations and multi-agent controlling interfaces. Observations include video frames from the per-
spective of each drone (toward the positive direction of the local x-axis) for the RGB (∈ R64×48×4),
depth, and segmentation (∈ R64×48×1) views. The action of drones is continuous velocity and the
magnitude of the velocity.

Here, we briefly introduce the two scenarios, named Flock and LeaderFollower in MAQC. Denote
i-th agent’s xyz coordinates as x = (x, y, z), individual reward as ri, team reward is R =

∑n
i=1 ri,

and then: (i) In Flock, the first agent should keep its position with a predefined location (e.g., p) as
close as possible, and i-th agents(i > 1) need to track (i − 1)-th agent’s latitude, i.e., r1 = −||p −
x1||22, ri = −(yi − yi−1)

2 ∀i = 2, . . . , n (ii) The goal of LeaderFollower in MAQC is to train
the follower drones to track the leader drone, and the leader drone needs to keep its position with a
predefined position as close as possible, i.e., r1 = −||p−x1||22, ri = − 1

n (zi−z1)
2 ∀i = 2, . . . , n.

An overview of MAQC is shown in Figure 2. Note that in our experiments we only use the RGB
information provided by the simulator.

State-based MARL Environments. Since our method can be used not only in vision-based but also
in state-based scenarios in MARL environments, we also test our method in state-based cooperative
MARL scenarios. Our evaluation includes StarCraftII Multi-Agent Challenge (SMAC) (Samvelyan
et al., 2019), Multi-Agent MuJoCo (de Witt et al., 2020), and Google Research Football (Kurach
et al., 2020), in which the baselines compared show the current state-of-the-art performance.
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Figure 2: Overview of Multi-Agent Quadcopter Control environment and the observation for the
quadrotor. A quadrotor is (i) an easy-to-understand mobile robot platform whose (ii) control can
be framed as a continuous states and actions problem but, beyond 1-dimension, (iii) it adds the
complexity that many candidate policies lead to unrecoverable states, violating the assumption of
the existence of a stationary state distribution on the entailed Markov chain.

Baselines and evaluations. We select MAPPO, HAPPO, and MAT as the compared baselines
because they are general to both continuous and discrete MARL environments. Moreover, they
have achieved state-of-the-art performance on common-used MARL benchmarks. We keep the
hyperparameters proposed in their papers for a fair comparison of all algorithms. We run five random
seeds to get the mean and standard deviation of the evaluation metrics. We calculate the winning
rate in SMAC and the playing scores in Google Football. For other environments, we use episode
rewards as the evaluation metric. Additionally, we only select three super-hard difficulty scenarios
in the SMAC environment. And we play four drones in the MAQC simulator to test the performance
of candidates to be compared. As for Multi-Agent MuJoCo, we enforce agents can only observe the
state of their joints and bodies but not their immediate neighbor’s joints and bodies.

5.2 RESULTS AND ANALYSIS

Multi-Agent Quadcopter Control. Figure 3 shows the performance of MAJOR, compared with
strong baselines in the MAQC environment. The three tasks require drones (agents) to learn to fly to
a specific goal and keep a lower distance from others by controlling the velocity vector. The results in
Flock and LeaderFollwer demonstrates the strength of MAJOR since it conducts the joint transition
model and implicitly captures the relationships of euclidean distance via the learned joint transition
model so that for the goal of these two scenarios, being closed with other drones, MAJOR can inject
more helpful information into networks thus bring significant improvement w.r.t other algorithms.
Moreover, the results also illustrate that it is not enough to learn effective representations from high-
dimensional image-based observations only through policy optimization. So there are still many
challenges in applying MARL algorithms in vision-based environments. And we firmly believe that
our work will bring some inspiration for vision-based MARL studies.

Figure 3: Results on Multi-Agent Quadcopter Control. MAJOR outperforms all prior methods on
two of three tasks, and all methods cannot work on the Meetup.

SMAC, MA MuJoCo and Google Football. We compare MAJOR with the SOTA MARL methods
for typical state-based cooperative MARL benchmarks. According to Figure 4b, Figure 4a, and
Figure 4c, MAJOR also shows superior performance, which means that even though the observations
are non-visual signals, MAJOR still embodies the interaction and fusion between agents through the
joint transition model in the latent space. This can be significantly shown in Multi-Agent MuJoCo.
To cooperate, the robot agents must attempt to infer information from other joints and bodies. Other
compared methods only considered the feature encoding process from the perspective of policy
optimization. Still, MAJOR can take into account other agents’ positions and velocity by the extra
self-supervised representation learning task, which makes it natural to achieve better performance.

8
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Besides, our algorithm can also improve MAT’s sample efficiency in Google Football and SMAC
benchmarks.

(a) Multi-Agent MuJoCo

(b) StarCraftII Multi-Agent Challenge

(c) Google Research Football

Figure 4: Performance for MAJOR, MAT, HAPPO, and MAPPO on (a) Multi-Agent MuJoCo, (b)
StarCraftII Multi-Agent Challenge, and (c) Google Research Football. MAT outperforms compared
current state-of-the-art baselines in common cooperative MARL benchmarks.

6 CONCLUSION

In this paper, we introduce Multi-Agent Joint-Predictive Representations(MAJOR), a self-
supervised representation learning algorithm designed to improve the data efficiency of MARL
algorithms. MAJOR treats the individual observations as a masked sequence and learns the repre-
sentations that are jointly temporally predictive and consistent across different views overall agents,
by implicitly reconstructing the global state and directly predicting representations of observations
produced by a joint transition model and a target encoder. Experimental results on both vision-
based and state-based cooperative MARL benchmarks(i.e. Multi-agent Quadcopter Control, SMAC,
Multi-agent MuJoCo, and Google Football) show MAJOR’s state-of-the-art performance. Based on
the established connection between MARL and SSL, in the future, we will consider incorporating
cycle-consistent predictive or other powerful SSL priors into MAJOR and combining offline repre-
sentation pretraining with task-specific finetuning in the paradigm.

9
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A FURTHER DISCUSSION ON MAJOR

A.1 PERFORMANCE OF MAJOR

It is worth noting that the state-based observations in these environments usually contain the key
attributes demonstrating the position, velocity, and hp of the agents, which means that there are
no irrelevance or noisy messages in the vector. Thus, the neural network can easily capture useful
information, and selected baselines will achieve strong performance close to the upper bound with
the help of a powerful policy optimization mechanism. So our proposed representation learning
task can only take slight improvements w.r.t the original baseline. In other words, for state-based
observations, their representations are more effective than vision-based observations through the
learning process of MARL methods.

However, in contrast to low-dimensional state-based vectors, learning representations from high-
dimensional image-based observations only through policy optimization are more complicated. And
our experimental results of MAQC show a significant improvement compared with baselines, which
provides the benefit of extra representation learning in current MARL methods for vision-based
environments.

In this work, we mainly focus on extending SSL for MARL to improve efficiency, especially in
vision-based multi-agent environments. And the results of wide-range benchmarks can demonstrate
the generalization of our proposed method for both vision- and state-based scenarios.

A.2 MOTIVATION OF DESIGNING MAJOR FOR MARL

Firstly, we would like to emphasize that the goal of incorporating SSL in the single-agent RL method
is to learn more effective representations when fixing the encoder and the number of dimensions of
latent space, either visual inputs or state-based inputs. The more informative and rich representations
contained in a latent variable, the more effective it is to perform policy optimization. However,
in practice, vision-based inputs usually include many noisy and irrelevant components rather than
state-based inputs, which brings more obstacles to capturing informative features. Meanwhile, state-
based inputs are often designed with critical elements that reflect the physical attributes of the agent
with only a few distractions. For example, when we train the same RL algorithm (e.g., SAC) on
MuJoCo, it is accessible to extract features from the physical vector(i.e., velocity and position, etc.)
via MLP encoder and get high scores, but it is more challenge to use the CNN encoder to obtain good
representations and achieve the same performance in DeepMind Control Suite(i.e., visual MuJoCo).
Thus we believe that the benefit of applying SSL to both single- and multi-agent RL is more visible
on high-dimensional visual space inputs.

Secondly, as stated in the original paper, we would like to clarify that our work is not simply applied
SSL to existing MARL methods. It is worth noting that the representation learning challenge under
the MARL context is more difficult than the SARL situation since local observations will be affected
by the change in the ego agent’s policy and other agents’ behavior. As a result, simply applying SSL
priors for each agent may fail due to imperfect information. Furthermore, we believe that our work,
which concerned embodying the interaction and fusion among agents in the environment rather than
temporal representations for each agent, is not simply to apply SSL to MARL. And our work is
motivated by incorporating agent-level interactions to make representations that can take the other
agents into account to be more effective. Due to the time limitation of the rebuttal, we will attempt
to apply the common-used SSL technique in SARL, named SPR, on MAT to verify whether simply
doing the combination will work.

Thirdly, we believe that the vision-based multi-agent system will be paid more and more attention
in the future days. It is no doubt that real-world scenarios, such as 2D/3D robotics and eSports
games, are almost accepting visual signals but not state-based vectors. Recently, many works are
proposed in the community. Shah et al. (2018); Panerati et al. (2021) present simulators for control-
ling drones to visual signals collected with drone cameras. Chen et al. (2022) presents a bimanual
dexterous manipulation benchmark (Bi-DexHands) according to the cognitive science literature for
comprehensive reinforcement learning research. A similar job that predates Chen et al. (2022) is
OpenAI’s human-like robot hand Akkaya et al. (2019), which solves Rubik’s Cube and whose input
is generated by built-in sensors. Moreover, many robotic navigation benchmarks are presented with
more complex visual inputs, such as Deitke et al. (2020; 2022); Ahn et al. (2022), etc. Meanwhile,
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in eSports, the famous OpenAI Five (Berner et al., 2019) and AlphaStar (Vinyals et al., 2019) also
use human-like images as inputs. These developments indicate that more and more research will be
studied on multi-agent environments based on visual inputs. In other words, these 2D/3D robotics
and eSports areas provide powerful platforms for researchers to solve real-world problems using
MARL. And research based on these areas will also have greater potential to be applied to actual
industrial scenarios. However, current research on MARL seems to be lagging behind. The obser-
vations of the common-used benchmarks(e.g. SMAC, Google Research Football, MAMuJoCo) are
all based on hand-designed physical values. These environments seem too simplistic compared with
the real-world applications mentioned above. Thus it is meaningful to make an effort to explore
the idea of representation learning in MARL for vision-based multi-agent systems rather than toy
environments. And we believe our work will be useful to the community.

A.3 FEASIBILITY ANALYSIS OF MAJOR

Note that it may not work without any assumptions in Dec-POMDP with imperfect observation
mapping functions, i.e. all agent’s observations may not contain all the information in the state due
to the partial observation issue. In this work, we build MAJOR on MAT, and MAT utilities the
local observations to estimate the expected team return under a cooperative MARL context. The
MAT’s encoder with the value head is used to approximate the global value function and get a good
performance, illustrating that it can recover the state and then estimate the team return from the
sequence of partial observations. Thus we can assume that all agent’s observations in the evaluated
Dec-POMDP benchmarks can also contain all the state information, leading to our work becoming
practical. At the same time, in our experimental results, we find that MAJOR loss in all experiments
reduced rapidly, meaning that our method can work on common-used Dec-POMDP benchmarks
without pointed concerns.

As mentioned in the related work section of the original paper, Zhang et al. (2022) takes a study
of learning a dynamic model under model-based MARL in Dec-POMDP, which is similar to the
pointed issue. The work proposed a graph-based version adaptation of Predictive State Representa-
tions (Littman & Sutton, 2001) to infer the predictive representations and uses the representations as
the input of a policy optimization algorithm. Even though the method is not directly comparable to
our model-free way with the auxiliary task, Zhang et al. (2022) has implicitly proven the feasibility
of predicting future representations from individual historical observation. We recommend readers
to read Zhang et al. (2022) for more information. Furthermore, we believe that adding historical
trajectories of agents can address the issue as much as possible. And we will involve both temporal
information and agent-level interactions simultaneously in MAT and MAJOR to make them more
powerful in our future work.

A.4 FAIRNESS OF COMPARISON BETWEEN MAT AND CTDE METHODS

There is no doubt that MAT follows the CTCE(centralized training and centralized execution) pat-
tern. But MAT only takes partial observations rather than a global state in the training and execution
phases, while CTDE approaches must depend on the global state. However, in many vision-based
scenarios, the system state is enormous compared with observations since it has to use an extensive
view to cover all agents’ views to reflect the system(but most of its messages may be unnecessary).
Therefore, the huge-volume state may become the bottleneck of all CTDE MARL methods. Be-
cause MAJOR is more effective when applied to vision-based environments, comparing MAT with
typical CTDE methods will not result in many unfair issues, respectively.

B MORE EXPERIMENTAL RESULTS AND ANALYSIS

B.1 TRAINING CURVES FOR LOSS FUNCTION IN MAJOR AND MAT

Here we put the training curve of MAJOR loss and V loss in the four-drone Flock of MAQC and
give the qualitative analysis of MAJOR. As shown in Figure 5, the MAJOR loss reduces rapidly,
meaning that the MAT’s encoder and the joint transition model can account for the information of
other agents with the help of the designed auxiliary task. Meanwhile, as shown in Figure 6, the
global value function approximation also benefits from the compact representation of observations
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Figure 5: Training curve for MAJOR’s loss. Figure 6: Training curves for value loss.

Figure 7: Ablation study of forwarding steps K for the joint transition model where H = 1.

as training progresses since the MAJOR’s value loss is lower than MAT’s. The more accurately the
value function fits, the better the policy optimization effect. And we would like to infer that the
non-convergence policy causes the rapid overfitting issue of MAJOR’s loss at the beginning of the
training phase. Similar results can be found in other scenarios.

B.2 ABLATION STUDY

Here we give more details about the ablation study. In our method, the critical hyperparameters
are predefined K and H , meaning the number of forward steps for the joint transition model and
the updating frequency for MAJOR’s learning objective, respectively. Figure 7 shows the results
of K at {1, 2, 4, 8} in the four-drone Flock and LeaderFollower of MAQC. We find that extended
dynamics modeling consistently improves performance up to roughly. A larger K (e.g., 8) does
not bring further improvement since the network cannot predict long-term future representations as
the accumulation of single-step prediction. And Figure 8 illustrates that updating frequency can also
influence the efficiency of MAT. In our opinion, lazy updating for MAJOR will make representations
mismatch with the corresponding policy gradient, thus bringing a negative impact on MAT.

C INCORPORATING MAJOR ON OTHER MARL ALGORITHMS

In this section, we start by introducing how to incorporate our proposed auxiliary task into MARL
algorithms following the CTDE pattern, such as MAPPO and HAPPO. And then we will show the
results of the modified version of MAPPO/HAPPO on four-drone Flock in MAQC.

As stated in Sec. 1, the benefit of combining MAT with MAJOR is that it can employ both represen-
tations generated from MAT’s encoder and decoder. Thus, the gradient derived from our auxiliary
learning objective can be back-propagated to both the encoder and decoder simultaneously. Contrary
to MAT, common-used MARL algorithms(e.g., MAPPO, HAPPO) under the CTDE framework usu-
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Figure 8: Ablation study of updating frequency H of MAJOR’s learning objective where K = 4.

ally take the global state as the input for the critic network, so we need to modify the pipeline of the
proposed auxiliary task.

The following figure demonstrates the combined version of MAPPO. Since MAPPO’s critic net-
work does not use individual observations, we can only incorporate MAJOR in the actor and make
the gradient of auxiliary loss proportionate through the actor network. We are supposing the archi-
tecture of the actor network contains more than two MLPs after the encoder. We are supposing the
architecture of the actor network contains more than two MLPs after the encoder. In other words,
the pipeline of the actor network is:

o→ CNN/MLP(parameterized by θ)→ ô→MLP(parameterized by ϕ)→ â→MLP(parameterized
by ω)→ a

Figure 9: An illustration of incorporating MAJOR into MAPPO.

Thus, given the intermediate outputs of the actor network, we can obtain the observation and action
representations. The subsequent pipeline is similar to Figure 1. As shown in Figure 9, the differences
between MAPPO + MAJOR and MAT + MAJOR are:

• We treat MAPPO’s actor network as the sequential combination of observation en-
coder(dubbed ObsEncoder) and action encoder(dubbed ActEncoder) followed by the pol-
icy head. Alternatively, you can use a separate network as ActEncoder outside the actor
network.

• The actor’s ActEncoder only takes the observations’ representations as input.
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Figure 10: Results for combining MAJOR and MAPPO/HAPPO in LeaderFollow.

• We feed action representations generated from the actor’s ActEncoder rather than the exe-
cuted actions in sampled transitions into the joint-transition model.

Note that recently there has been some literature(Hu et al., 2021; Wang et al., 2022) utilizing Trans-
former models as a feature extractor for single observations, which contain a sequence of various
entities. So applying MAJOR on MAPPO/HAPPO will be similar to the shown pipeline in Figure
1. In this situation, we treat the global state as a sequence of observations or elements in the system.
And the joint transition model accepts representations from both actor and critic networks.

We have also evaluated the performance of the modified version of MAJOR in the four-drone Lead-
erFollower of MAQC. The result in Figure 10 illustrates that MAJOR can also improve both MAPPO
and HAPPO. But the improvement is not significant because MAJOR can only help the actor net-
work to learn more impact observation representations. Still, it does not benefit to critic network,
which makes no improvements for value estimation.

D EXTENDED BACKGROUND

D.1 EXISTING METHODS IN MARL

We will now give a quick overview of two cutting-edge MARL algorithms. Both are based on Prox-
imal Policy Optimization (PPO, Schulman et al. (2017)), an RL approach known for its simplicity
and stability of performance.

MAPPO (Yu et al., 2021a) was the first and most straightforward technique for implementing PPO
in MARL. It provides all agents with the same set of parameters and updates the shared policy based
on the aggregated trajectories of the agents. In detail, at iteration k + 1, it optimizes the policy
parameter θk+1 by maximizing the clip objective of

n∑
i=1

Eo∼ρπθk
,a∼πθk

[
min

(
πθ

(
ai | o

)
πθk (a

i | o)
Aπθk

(o,a), clip

(
πθ

(
ai | o

)
πθk (a

i | o)
, 1± ϵ

)
Aπθk

(o,a)

)]
,

where the clip operator (if required) trims the input value to keep it inside the interval [1− ϵ, 1 + ϵ].
Enforcing parameter sharing, on the other hand, is analogous to imposing a restriction θi =
θj ,∀i, j ∈ N on the joint policy space, which might result in a suboptimal conclusion that is
exponentially worse (Kuba et al., 2022). This encourages the development of more principled
heterogeneous-agent trust-region approaches, such as HAPPO.

HAPPO is one of the SOTA algorithms that completely exploits Multi-Agent Advantage Decompo-
sition (Kuba et al., 2021) to provide multi-agent trust-region learning with monotonic improvement
guarantees. During an update, the agents choose a permutation i1:n at random, and then, in the
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Figure 11: An illustration of the framework of BYOL.

sequence in which the permutation was chosen, each agent im picks πim
new = πim that maximizes

the aim of

Eim

o∼ρπold ,a
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where r(πim) = πim(aim |o)/πim
old (a

im |o). It is worth noting that the expectation is placed over the
newly-updated prior agents’ policies, i.e., πı1:m−1

new ; this reflects an intuitive understanding that, ac-
cording to Theorem (1), the agent im responds to its preceding agents i1:m−1. However, one dis-
advantage of HAPPO is that agent policies must adhere to the sequential updating strategy in the
permutation, preventing it from being executed in parallel.

D.2 BYOL-STYLE AUXILIARY OBJECTIVE

BYOL (Grill et al., 2020) is a powerful self-supervised representation learning algorithm that en-
forces the similarity of representations of the same visual observation across varied data augmen-
tation. Figure 11 shows the pipeline. BYOL has an online branch and a momentum branch. The
momentum branch is utilized to compute a stable goal for learning representations (Chen et al.,
2020; He et al., 2019). BYOL is made up of an online encoder f , a momentum encoder f̄ , an online
projection head g, a momentum projection head g, and a prediction head q. The momentum encoder
and projection head have the same design as the equivalent online networks and are updated by an
exponential moving average (EMA) of the online weights (see Equation 3 in the main manuscript).
The prediction head is only employed in the online branch, making BYOL’s design asymmetric.
BYOL initially generates two views v and v′ from an image x using image augmentations. The on-
line branch outputs a representation y = f(v) and a projection z = g(y), and the momentum branch
outputs y′ = f̄(v′) and a momentum version of projection z′ = ḡ(y′). BYOL then uses a prediction
head q to fit z′ from z, i.e., q(z) → z′. Finally, BYOL minimizes the similarity loss between q(z)
and a stop-gradient target sg(z′).

LBY OL
f,g,q = ∥q(z)− sg (z′)∥22 = 2− 2

q(z)

∥q(z)∥2
sg (z′)

∥sg (z′)∥2
.

Recent research brings BYOL-style learning objectives to vision-based RL for learning effective
state representations and demonstrates promising performance (Hansen & Wang, 2021; Schwarzer
et al., 2021a; Yu et al., 2021b; 2022; Yarats et al., 2021), inspired by the success of BYOL in learning
visual representations. Future state prediction (Schwarzer et al., 2021a), cycle-consistent dynamics
prediction (Yu et al., 2021b), prototype representation learning (Yarats et al., 2021), and invariant
representation learning (Hansen & Wang, 2021) are examples of BYOL-style learning. These studies
also suggest that supervising/regularizing anticipated representations in the BYOL’s projected latent
space is more successful than in the representation of original pixel space. Furthermore, BYOL-style
auxiliary losses are often trained with data augmentation since it may easily yield two BYOL views.
SPR Schwarzer et al. (2021a) and PlayVirtual (Yu et al., 2021b), for example, use random crop and
random intensity to enter observations in Atari games. The proposed MAJOR can also be classified
as BYOL-style auxiliary objectives.
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D.3 THE TRANSFORMER MODEL AND THE ATTENTION MECHANISM

Transformer (Vaswani et al., 2017) was created originally for machine translation jobs (e.g., input
English, output French). It has an encoder-decoder structure in which the encoder maps an input
sequence of tokens to latent representations and then the decoder generates a sequence of desired
outputs in an auto-regressive manner, with the Transformer taking all previously generated tokens as
input at each step of inference. The scaled dot-product attention, which captures the interrelationship
of input sequences, is a critical component of the Transformer. The attention function is written
as Attention (Q,K,V) = softmax

(
QKT

√
dk

)
V, where the Q,K,V corresponds to the vector of

queries, keys and values, which can be learned during training, and the dk represent the dimension
of Q and K. Self-attentions refer to cases when Q,K,V share the same set of parameters.

In practice, the MAT attention mechanism encodes observations and actions using a weight ma-
trix generated by multiplying the embedded queries, as well as keys. The embedded values are
multiplied by the weight matrix to output representations. While the encoder’s unmasked attention
employs a complete weight matrix to extract the interrelationships between agents, the decoder’s
masked attentions capture sequential actions with triangular matrices. With the properly masked at-
tention mechanism, the decoder can safely output the policy agent-by-agent. We recommend readers
give a look at Figure 2, and Algorithm 1 in Wen et al. (2022) to get more details about MAT.

E DYNAMIC PROCESS AND SOURCE CODE OF MAJOR

Please refer to https://anonymous.4open.science/r/MAJOR

F ADDITIONAL HYPER-PARAMETER IN MAJOR

Table 1: Hyperparameters used for MAJOR.

Hyperparameter Value
Number of prediction steps K 1
LMAJOR update frequency H 1
Auxiliary batch size for MAJOR B′ 128
Weight for MAJOR loss λ 1
Hidden units in projection/prediction head 512
Encoder MEA τ 0.01 SMAC and Google Football

0.05 MA MoJoCo and MAQC
EMA update frequency 1
Number of blocks for joint transition model 1
Number of heads for joint transition model 1

G HYPER-PARAMETER SETTINGS FOR EXPERIMENTS

During experiments, the implementations of baseline methods are consistent with their official
repositories, all hyper-parameters left unchanged at the origin best-performing status. The hyper-
parameters adopted for different algorithms and tasks are listed in Table 2-8. In particular, the ppo
epochs and ppo clip across different SMAC scenarios are unified to 10 and 0.05 respectively.
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Table 2: Common hyper-parameters used for MAJOR, MAT, MAPPO and HAPPO in the SMAC
domain.

hyper-parameters value hyper-parameters value hyper-parameters value

critic lr 5e-4 actor lr 5e-4 use gae True
gain 0.01 optim eps 1e-5 batch size 3200

training threads 16 num mini-batch 1 rollout threads 32
entropy coef 0.01 max grad norm 10 episode length 100

optimizer Adam hidden layer dim 64 use huber loss True

Table 3: Different hyper-parameters used for MAJOR and MAT in the SMAC domain.

Maps ppo epochs ppo clip num blocks num heads stacked frames steps γ

27m vs 30m 5 0.2 1 1 1 1e7 0.99
MMM2 5 0.05 1 1 1 1e7 0.99
6h vs 8z 15 0.05 1 1 1 1e7 0.99

Table 4: Different hyper-parameters used for MAPPO and HAPPO in the SMAC domain.

Maps ppo epochs ppo clip hidden leyer stacked frames network steps γMAPPO γHAPPO

27m vs 30m 5 0.2 2 1 rnn 1e7 0.99 0.95
MMM2 5 0.2 2 1 rnn 1e7 0.99 0.95
6h vs 8z 5 0.2 2 1 mlp 1e7 0.99 0.95

Table 5: Common hyper-parameters used for all methods in the Multi-Agent MuJoCo and Multi-
Agent Quadcopter Control domain.

hyper-parameters value hyper-parameters value hyper-parameters value

gamma 0.99 steps 1e7 stacked frames 1
gain 0.01 optim eps 1e-5 batch size 4000

training threads 16 num mini-batch 40 rollout threads 40
entropy coef 0.001 max grad norm 0.5 episode length 100

optimizer Adam hidden layer dim 64 use huber loss True

Table 6: Different hyper-parameter used in the Multi-Agent MuJoCo and Multi-Agent Quadcopter
Control domain.

Maps MAJOR MAT MAPPO HAPPO

critic lr 5e-5 5e-5 5e-3 5e-3
actor lr 5e-5 5e-5 5e-6 5e-6

ppo epochs 10 10 5 5
ppo clip 0.05 0.05 0.2 0.2

num hidden layer / / 2 2
num blocks 1 1 / /
num head 1 1 / /
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Table 7: Common hyper-parameters used for all methods in the Google Research Football domain.

hyper-parameters value hyper-parameters value hyper-parameters value

critic lr 5e-4 actor lr 5e-4 gamma 0.99
gain 0.01 optim eps 1e-5 batch size 4000

training threads 16 num mini-batch 1 rollout threads 20
entropy coef 0.01 max grad norm 0.5 episode length 200

optimizer Adam hidden layer dim 64 stacked frames 1

Table 8: Different hyper-parameter used in the Google Research Football domain.

Maps MAJOR MAT MAPPO HAPPO

ppo epochs 10 10 5 5
ppo clip 0.05 0.05 0.2 0.2

num hidden layer / / 2 2
num blocks 1 1 / /
num head 1 1 / /
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