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ABSTRACT

There is a growing interest in model-based deep learning (MBDL) for solv-
ing imaging inverse problems. MBDL networks can be seen as iterative algo-
rithms that estimate the desired image using a physical measurement model and a
learned image prior specified using a convolutional neural net (CNNs). The itera-
tive nature of MBDL networks increases the test-time computational complexity,
which limits their applicability in certain large-scale applications. We address this
issue by presenting structured pruning algorithm for model-based deep learn-
ing (SPADE) as the first application of structured pruning for MBDL networks.
SPADE reduces the computational complexity of CNNs used within MBDL net-
works by pruning its non-essential weights. We propose three distinct strategies
to fine-tune the pruned MBDL networks to minimize the performance loss. Each
fine-tuning strategy has a unique benefit that depends on the presence of a pre-
trained model and a high-quality ground truth. We validate SPADE on two distinct
inverse problems, namely compressed sensing MRI and image super-resolution.
Our results highlight that MBDL models pruned by SPADE can achieve substan-
tial speed up in testing time while maintaining competitive performance.

1 INTRODUCTION

The recovery of unknown images from noisy measurements is one of the most widely-studied prob-
lems in computational imaging. This task is often known as inverse problems. Conventional meth-
ods solve these problems by formulating optimization problems that consist of a data fidelity term
enforcing consistency with the measurements and a regularizer imposing prior knowledge of the
unknown images (Hu et al., 2012; Elad & Aharon, 2006; Rudin et al., 1992). The focus in the area
has recently shifted to methods based on deep learning (DL) (Gilton et al., 2020; Lucas et al., 2018;
McCann et al., 2017). A widely-used approach involves training a convolutional neural network
(CNN) to map the measurements directly to a high-quality reference in an end-to-end fashion (Kang
et al., 2017; Chen et al., 2017; Wang et al., 2016).

Model-based deep learning (MBDL) has emerged as an alternative to traditional DL (Ongie et al.,
2020; Kamilov et al., 2023; Monga et al., 2021). The key idea behind MBDL is to iteratively update
images through operators that integrate the measurement models of the imaging systems and the
learned CNNs. Notable examples of MBDL include plug-and-play (PnP) (Venkatakrishnan et al.,
2013; Sreehari et al., 2016), regularization by denoising (RED) (Romano et al., 2017), deep unfold-
ing (DU) (Schlemper et al., 2018; Yang et al., 2016; Hammernik et al., 2018) and deep equilibrium
models (DEQ) (Gilton et al., 2021; Heaton et al., 2021). Despite its superior performance, the itera-
tive nature of MBDL also results in high computational cost during testing, limiting its applicability
in large-scale applications. The computational complexity of MBDL arises from both the measure-
ment models and the learned CNNs within the operators. Although several studies in MBDL have
reduced the computational demand of the measurement models (Liu et al., 2022; Wu et al., 2020;
Sun et al., 2019; Liu et al., 2021; Tang & Davies, 2020), to the best of our knowledge, effort to
mitigate the computational cost from the standpoint of the CNN priors remains unexplored.

In this paper, we bridge this gap by proposing a novel application of Structured Pruning Algorithm
for model-based DEep learning (SPADE). SPADE uses the group `1 -norm criteria to rank the im-
portance of filters in the pre-trained CNN and then progressively eliminates filters from the least to
the most important. We propose three distinct learning strategies for fine-tuning the pruned models
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Figure 1: An illustration of the pipeline of SPADE. SPADE consists of two components (see Sec-
tion 3): (a) a structured pruning algorithm that physically removes CNN filters based on the group
`1-norm, and (b) fine-tuning algorithms to minimize the performance loss between the pre-trained
model and the pruned model. Each fine-tuning strategy has unique applicability depending on the
presence of the pre-trained models and high-quality ground truth.

depending on the availability of pre-trained models and ground truth: (a) supervised penalizes the
discrepancy between pruned model output and corresponding ground truth; (b) school enforces con-
sistency between pruned model output and that of the pre-trained model; (c) self-supervised relies
exclusively on testing dataset by using the losses of data fidelity and equivariant imaging (Chen et al.,
2021). We validated SPADE on two imaging problems: compressed sensing MRI (CS-MRI) and
image super-resolution. We conducted comprehensive experiments to demonstrate the effectiveness
of SPADE.

2 BACKGROUND

Inverse Problems. Consider imaging inverse problems that aim to recover unknown images x 2 Rn

from noisy measurements y 2 Rm characterized by a linear system

y = Ax+ e , (1)

where A 2 Rm⇥n represents the measurement model of the imaging system, and e 2 Rm denotes
an additive white Gaussian noise (AWGN) vector. Due to the noise perturbation and ill-posedness
(i.e., m ⌧ n), it is common to solve this problem by formulating an optimization problem

bx 2 argmin
x2Rn

f(x) with f(x) = h(x) + g(x) , (2)

where h(x) denotes the data-fidelity term that quantifies consistency with the measurements y, and
g(x) is the regularizer that imposes a prior on x. For example, a widely-used data-fidelity term and
regularizer in imaging are least-square h(x) = 1

2 kAx� yk22 and total variation g(x) = ⌧ kDxk1
where D is the gradient operator, and ⌧ is the trade-off parameter.

DL and MBDL. There is a growing interest in DL for solving inverse problems due to its excellent
performance (see reviews in (Gilton et al., 2020; Lucas et al., 2018; McCann et al., 2017)). A widely-
used approach in this context trains a CNN to directly learn a regularized inversion that maps the
measurements to high-quality reference (Kang et al., 2017; Chen et al., 2017; Wang et al., 2016; Zhu
et al., 2018). MBDL has emerged as powerful DL framework for inverse problems by integrating
the measurement models and learned CNNs (see also reviews in (Ongie et al., 2020; Kamilov et al.,
2023; Monga et al., 2021)). Notable examples of MBDL include plug-and-play (PnP) (Venkatakr-
ishnan et al., 2013; Sreehari et al., 2016), regularization by denoising (RED) (Romano et al., 2017),
deep unfolding (DU) (Schlemper et al., 2018; Yang et al., 2016; Hammernik et al., 2018) and deep
equilibrium models (DEQ) (Gilton et al., 2021; Heaton et al., 2021). PnP/RED refers to a family of
algorithms that consider a CNN denoiser D✓ parameterized by ✓ as the imaging prior and then use
D✓ in fixed-point iterations of some high-dimensional operators T✓ . For example, the fixed-point
iteration of PnP proximal gradient method is formulated as

x
k+1 = T✓(x

k) = D✓(x
k � � ·rh(xk)) , (3)

2



Under review as a conference paper at ICLR 2024

where � > 0 denotes the step size, and k = 0, ...,K. DU denotes a special end-to-end network
architecture obtained by interpreting a finite iteration of PnP/RED as different layers of the network.
DEQ (Bai et al., 2019; 2020) is a recent approach that allows training infinite-depth, weight-tied
networks by analytically backpropagating through the fixed points using implicit differentiation.
Training DEQ for inverse problems is equivalent to training a weight-tied DU with infinite iterations.
To be specific, the forward pass of DEQ estimates a fixed-point x̄ of the operator x̄ = T✓(x̄). The
backward pass of DEQ updates D✓ by computing an implicit gradient of the training loss `

r`(✓) =
�
r✓T(x̄)

�T�
I�rxT(x̄)

��Tr`(x̄). (4)

MBDL has exhibited excellent performances in many imaging problems, such as MRI (Gan et al.,
2020; Liu et al., 2020; Sriram et al., 2020; Cui et al., 2023; Hammernik et al., 2021; Schlemper
et al., 2018; Hu et al., 2022), CT (Adler & Oktem, 2018; Wu et al., 2021; Liu et al., 2021; 2022;
He et al., 2019a), and image restoration (Zhang et al., 2021; 2020; Gilton et al., 2021). However, its
iterative nature results in a high computational cost due to multiple CNN applications, limiting its
use in large-scale or computation-constrained applications. While numerous studies have tackled the
computational demand associated with the measurement models (Liu et al., 2022; Wu et al., 2020;
Sun et al., 2019; Liu et al., 2021; Tang & Davies, 2020), to the best of our knowledge, the reduction
of the computational cost from the perspective of the CNN priors has not yet been explored.

Network Pruning. Network pruning denotes the process of eliminating weights, filters, or channels
of a pre-trained network to obtain lightweight models (see also recent reviews in (Ghimire et al.,
2022; He & Xiao, 2023; Cheng et al., 2023; Hoefler et al., 2021)). Pruning methods can be divided
into unstructured pruning and structured pruning. Unstructured pruning virtually masks out unim-
portant individual weights throughout the network. Since the unimportant weights are not removed
physically, specialized software or hardware is required for computational acceleration in structural
pruning (Zhang et al., 2016; Parashar et al., 2017; Zhou et al., 2018a; Chen et al., 2019). Structured
pruning, on the other hand, physically removes entire filters, channels, or layers, leading to faster
inference without the need of any specialized hardware or software. Many approaches have been
proposed to identify the importance of the network filters prior to removing any of them, including
those are based on (a) certain criteria of the filters (He et al., 2018; Lin et al., 2020; Hu et al., 2016;
Li et al., 2017), such as `1-norm (Li et al., 2017), (b) minimizing the reconstruction errors (Luo
et al., 2017; Yu et al., 2018), or (c) finding the replaceable filters with similarity measurements (He
et al., 2019b; Zhou et al., 2018b).

Fine-tuning Pruned Networks. Following the pruning of the network, it is common to fine-tune
the pruned model to minimize performance degradation (see also Section 2.4.6 in (Hoefler et al.,
2021)). A widely-used strategy is to use the same amount of training data for the pre-trained models
to retrain pruned models (Han et al., 2015; Hu et al., 2016; Li et al., 2017; Luo et al., 2017; He
et al., 2017; Yu et al., 2018; Zhou et al., 2018b; Lin et al., 2020; Lee & Song, 2022). In imaging
inverse problems, high-quality ground truth is commonly considered as the learning target for CNNs.
However, ground truth data is not always available in practice, which limits the applicability of
this fine-tuning approach in MBDL models. Other fine-tuning approaches include re-initialization
of the pruned model’s weight based on lottery-ticket-hypothesis (Frankle & Carbin, 2018), and
knowledge distillation (KD) that configures the pre-trained and pruned networks as a teacher-student
pair (Hinton et al., 2015; Dong & Yang, 2019; Mirzadeh et al., 2020; Lee & Song, 2022). For
example, KD in (Dong & Yang, 2019) proposes an auxiliary loss function to match the prediction
of a pruned network and soft targets unpruned network.

Self-supervised Deep Image Reconstruction. There is a growing interest in developing DL meth-
ods that reduce the dependence on the ground truth data (see recent reviews in (Akçakaya et al.,
2022; Tachella et al., 2023; Zeng et al., 2021)). Some widely-used strategies include Noise2Noise
(N2N) (Lehtinen et al., 2018; Gan et al., 2022), Noise2Void (N2V) (Krull et al., 2019), deep im-
age prior (DIP) (Ulyanov et al., 2018), compressive sensing using generative model (GSGM) (Bora
et al., 2018; Gupta et al., 2021), and equivariant imaging (EI) (Chen et al., 2021). In particular, EI
assumes the set of ground truth is invariant to a certain group of transformations �. The training
loss of EI can then be formulated as

`EI(✓) = `
�
f✓(Abx�), bx�

�
with bx� = � f✓(y) , (5)

where f✓ denotes the DL model, and � 2 � is an instance of the transformation. The effectiveness
of EI has been validated in a variety of imaging (Chen et al., 2021; 2022), such as sparse-view CT
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and image inpainting. EI can also be integrated with another training loss, such as data-fidelity loss
and adversarial loss (Mao et al., 2017). As can be seen in the next section, we exploit EI to fine-tune
our pruned model using exclusively the testing dataset.

Our Contributions: (1) We propose the first network pruning algorithm specifically designed for
MBDL models, aiming to reduce computational complexity at testing time. While the technique
of network pruning has been extensively explored across a variety of tasks in computer vision, its
potential has remained unexplored in the realm of imaging inverse problems; (2) We develop three
distinct fine-tuning methods to minimize the performance gap between pre-trained and pruned mod-
els. Each of these methods, to be detailed in the following section, is intuitive and holds practical ap-
plicability for inverse problems; (3) We have conducted comprehensive experiments across various
imaging problems, diverse MBDL methods, and different pruning ratios. Such extensive numerical
validations represent a novel contribution, as they have not been performed in prior works.

3 STRUCTURED PRUNING ALGORITHM FOR MBDL

As illustrated in Figure 1, SPADE consists of a filter-pruning method and several fine-tuning meth-
ods. For the filter pruning method, we adopt DepGraph (Fang et al., 2023) to identify layer depen-
dencies and form layer groups across the network. Let f✓ denote the original unpruned model with
N layers. Let also f�✓,j and f+✓,j denote the input and the output of the jth layer f✓,j , respectively.
Consider two types of dependencies between f�✓,j and f+✓,i for all i, j = 1, . . . , N : (a) inter-layer
dependency for i 6= j indicates that f�✓,j and f+✓,i are topologically connected and correspond to the
same intermediate features of the network, and (b) intra-layer dependency for i = j exists if and
only if the mapping from f�✓,j to f+✓,i can be expressed as a diagonal matrix. Another conceptual inter-
pretation of intra-layer dependency is that f+✓,j and f�✓,i share the same pruning scheme (Fang et al.,
2023). For example, consider a convolutional layer (Conv). Consider a filter K 2 RKin⇥Kout⇥H⇥W

in a Conv, where Kin denotes the number of input channels, Kout is the number of output channels,
and H ⇥ W represents the kernel size. Pruning the input of a Conv necessitates pruning the ker-
nel along the Kin dimension. Conversely, pruning the output demands alterations along the Kout
dimension. The difference in pruning schemes for the input and the output of Conv indicates the
absence of an intra-layer dependency. DepGraph examines all inputs and output pairs to compute
their dependencies (see also Algorithm 1 in (Fang et al., 2023)).

The layer groups across the network can then be constructed based on the identified dependencies
(also refer to Algorithm 2 in (Fang et al., 2023)). Each group must adhere to the following con-
ditions: (a) the group can be represented as a connected graph, where the nodes are the layers
within the group, and the edges denote the topological connections between the input and output
of two layers (i.e., inter-layer dependency); (b) the hidden layers (i.e., non-edge layers) within the
group must exhibit intra-layer dependencies. Note that the inter-layer and intra-layer dependen-
cies ensure that the prunable dimensions, such as the number of feature map channels in CNN,
are identical across different layers in the same group. For example, consider a sample network of
{Conv1 ! BN1 ! Conv2 ! BN2}, where ! denotes topological connection, and BN is the batch
normalization layer. The resulting layer groups include {Conv1,BN1,Conv2} and {Conv2,BN2}.
The prunable dimension of the first and the second group match the output channel of Conv1 (or the
input channel of Conv2) and the output channel of Conv2, respectively.

We use the group `1-norm to evaluate the importance of parameters in each layer group. To be
specific, consider a layer group with M layers with i = 1, ...,M denoting the ith layer within the
group. Let also w

i

k
be the filters of the kth prunable dimension in the ith layer for k = 1, ...,K. The

group `1 norm vector of a layer group is formulated as ↵ = [↵1, · · · ,↵k] where

↵k =
1

M

MX

i=1

��wi

k

��
1
, k = 1, . . . ,K . (6)

For each layer group, we compute the group `1 norm and subsequently select a subset of the smallest
↵k according to a pre-defined pruning ratio. Parameters associated with this subset are then pruned.
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Figure 2: Illustration of testing time evolution between MBDL models and the pruned variants
using SPADE. Left: evolution of the distance between two consecutive images; Middle and Right:
evolution of the testing PSNR values compared to the ground truth. We used the supervised and
school strategies to fine-tune DEQ and USRNet, respectively. Note how models pruned by SPADE
can significantly reduce the testing time while maintaining competitive performance.

Let f✓̂ be the pruned model. SPADE considers three distinct fine-tuning algorithms to minimize the
performance loss between f✓̂ and f✓ . Each fine-tuning method has unique applicability depending
on the presence of the unpruned model and high-quality ground truth.

(a) supervised (SV): SV considers a training set consisting pairs of measurements and ground truth
{yi,xi}Ni=1, where N denotes the total number of training samples. The loss function of SV mini-
mizes the difference between the reconstruction of the pruned model and ground truth

`sv(✓̂) =
NX

i=1

`(f✓̂(yi), xi) . (7)

This training strategy is also the most common scheme for training CNNs for imaging inverse prob-
lems starting from scratch. Despite its effectiveness (see Sec. 4.1), SV relies on a collection of
high-quality ground truth, which might not be always available in practice.

(b) school (SC): SC considers a testing set of unseen measurements {yj}Mj=1 where M denotes the
total number of testing samples. The loss function of SC penalizes the discrepancy between the
outputs of pruned model and those of unpruned model

`sc(✓̂) =
MX

j=1

`(f✓̂(yj), f✓(yj)) . (8)

SC can be seen as a new branch of KD in imaging, where we transfer the “knowledge” from the
unpruned model (teacher) to the pruned model (student). The reason why it is called school follows.
Unlike SV, SC only requires access of the pre-trained model.

(c) self-supervised (SS): Compared to SC, SS considers a particular case where the pre-trained
models are unavailable for some reason (e.g., privacy). The key idea behind SS is to fine-tune f✓̂
using exclusively the testing set {yj}Mj=1. Let � denote a certain group of transformations. The loss
function of SS can be formulated as

`ss(✓̂) =
MX

j

`(Ajf✓̂(yj), yj)| {z }
Data Fidelity

+ `
�
f✓̂(Aj bx�,j), bx�,j

�
| {z }

Equivariant Imaging

. (9)

where bx�,j = �j f✓̂(yj), and �j ⇠ � is a transformation sampled randomly from �.

4 NUMERICAL RESULTS

The goal of our experiments was to validate the effectiveness of SPADE on different imaging prob-
lems, different MBDL networks, and different pruning ratios. We tested SPADE on two imaging
problems: CS-MRI and image super-resolution. We used peak signal-to-noise ratio (PSNR) and
structural similarity index (SSIM) for quantitative evaluation. We pre-defined pruning ratios of 5%,
10%, 20%, and 40%, resulting in actual pruning ratios of 10%, 20%, 35%, and 65% since the layers
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Table 1: Quantitative evaluation of MBDL models pruned by SPADE with different fine-tuning
strategies in CS-MRI at the sampling rate of 16.6 %.

Network Pruning Ratio PSNR (dB) SSIM (%) Time (ms) Speed Up # Params
Supervised School Self-supervised Supervised School Self-supervised

DEQ

0 % 42.13 98.7 4954.30 ⇥1.00 999,428

10 % 42.02 41.85 40.37 98.6 98.6 98.2 4812.57 ⇥1.03 878,644
20 % 42.02 41.69 38.79 98.7 98.6 97.7 4708.00 ⇥1.06 793,159
35 % 41.94 41.32 36.14 98.6 98.5 96.5 4233.70 ⇥1.17 635,311
65 % 41.36 39.99 34.54 98.5 98.2 95.7 3274.58 ⇥1.51 353,328

VarNet

0 % 39.25 97.7 161.6 ⇥1.00 19,634,712

10 % 39.16 38.86 39.11 97.7 97.6 97.4 161.4 ⇥1.00 17,567,216
20 % 39.06 38.71 38.59 97.7 97.5 97.3 151.8 ⇥1.06 15,772,920
35 % 38.85 38.54 37.46 97.6 97.4 96.9 144.7 ⇥1.12 12,477,088
65 % 38.12 37.36 34.17 97.3 96.7 95.3 122.6 ⇥1.32 6,988,752

E2EVar

0 % 44.24 99.2 210.7 ⇥1.00 20,119,610

10 % 44.18 43.76 40.12 99.2 99.1 97.7 209.3 ⇥1.01 18,052,114
20 % 44.17 43.24 39.91 99.2 99.0 97.6 201.1 ⇥1.05 16,257,818
35 % 43.71 42.66 39.28 99.1 98.9 97.3 192.8 ⇥1.09 12,961,986
65 % 42.62 41.58 37.82 98.8 98.5 96.9 170.4 ⇥1.24 7,473,650

Figure 3: Degradation PSNR percentage of pruned MBDL models compared to the unpruned model
in different pruning ratios and different fine-tuning strategies. These results correspond to experi-
ments of CS-MRI at the sampling rate of 16.6 %. Note how supervised fine-tuning method can
reduce 65% parameters while maintaining less than 4% PSNR degradation.

dependent on the pruned layers are also removed. (see Sec. 3). All pre-trained models were trained
in a supervised learning manner to ensure their optimal performance. We implemented � in (9) as a
set of rotations. We pre-trained and fine-tuned the MBDL models by using the Adam optimizer with
the learning rate being 10�5. We conducted all experiments on a machine equipped with an AMD
EPYC 7443P 24-Core Processor and 4 NVIDIA RTX A6000 GPUs.

4.1 COMPRESSED SENSING MRI

The measurement model of CS-MRI consists of a set of complex measurement operators depending
on a set of receiver coils {Si}. For each coil, we have Ai = PFSi, where F is the Fourier
transform, P denotes the diagonal sampling matrix, and Si is the diagonal matrix of sensitivity
maps. We used T2-weighted MR brain acquisitions of 165 subjects obtained from the validation
set of the fastMRI dataset (Knoll et al., 2020) as the fully sampled measurement for simulating
measurements. We obtained reference coil sensitivity maps from the fully sampled measurements
using ESPIRiT (Uecker et al., 2014). These 165 subjects were split into 145, 10, and 10 for training,
validation, and testing, respectively. We followed (Knoll et al., 2020) to retrospectively undersample
the fully sampled data using 1D Cartesian equispaced sampling masks with 10% auto-calibration
signal (ACS) lines. We conducted our experiments for sampling rate of 16.7% and 12.5%.

We tested SPADE on DEQ and two DU models: VarNet (Hammernik et al., 2018), and E2E-
VarNet (Sriram et al., 2020). We implemented DEQ with forward iteration as in (3) and EDSR (Lim
et al., 2017) as the CNN architecture. We ran the forward-pass of DEQ with a maximum number of
iterations of 100 and the stopping criterion of the relative norm difference between iterations being
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Table 2: Quantitative evaluation of MBDL models pruned by SPADE with different fine-tuning
strategies in CS-MRI at the sampling rate of 12.5 %.

Network Pruning Ratio PSNR (dB) SSIM (%) Time (ms) Speed Up # Params
Supervised School Self-supervised Supervised School Self-supervised

DEQ

0 % 38.07 96.9 4954.30 ⇥1.00 999,429

10 % 38.06 37.87 36.13 96.9 96.9 96.2 4812.57 ⇥1.03 878,644
20 % 38.07 37.77 34.94 96.9 96.8 95.6 4708.00 ⇥1.06 793,159
35 % 37.68 37.42 32.54 96.8 96.7 93.9 4233.70 ⇥1.17 635,311
65 % 37.13 36.33 30.26 96.5 96.2 90.4 3274.58 ⇥1.51 353,328

VarNet

0 % 36.17 96.3 161.6 ⇥1.00 19,634,712

10 % 36.04 36.04 35.80 96.3 96.2 95.9 161.4 ⇥1.00 17,567,216
20 % 36.06 35.89 35.36 96.3 96.2 95.8 151.8 ⇥1.06 15,772,920
35 % 35.80 35.55 34.69 96.1 95.9 95.2 144.7 ⇥1.12 12,477,088
65 % 35.30 34.07 31.13 95.7 94.9 92.6 122.6 ⇥1.32 6,988,752

E2EVar

0 % 40.41 98.0 210.7 ⇥1.00 20,119,610

10 % 40.31 40.00 37.31 98.0 97.9 96.4 209.3 ⇥1.01 18,052,114
20 % 40.23 39.72 37.30 98.0 97.9 96.2 201.1 ⇥1.05 16,257,818
35 % 40.14 39.30 35.74 97.9 97.6 95.6 192.8 ⇥1.09 12,961,986
65 % 38.93 38.43 34.62 97.4 97.1 95.0 170.4 ⇥1.24 7,473,650

Figure 4: Degradation PSNR percentage of pruned MBDL models compared to the unpruned model
in different pruning ratios and different fine-tuning strategies. These results correspond to experi-
ments of CS-MRI at the sampling rate of 12.5 %. Note how supervised fine-tuning method can
reduce 65% parameters while maintaining less than 4% PSNR degradation.

less than 10�4. The implementations of VarNet and E2E-VarNet were from their official repository1.
The difference between E2E-VarNet and VarNet is that E2E-VarNet has an additional coil sensitivity
estimator compared to VarNet. Noted that SPADE did not prune this estimator for E2E-VarNet. We
also used the estimated coil sensitivity map for self-supervised fine-tuning. The training of unpruned
models for E2E-VarNet and VarNet took around 7 days, and that for DEQ was 10 days.

Table 1 shows quantitative evaluations of MBDL models pruned by SPADE in MRI at a sampling
rate of 16.6%. Figure 3 illustrates the PSNR degradation percentage of the pruned model com-
pared to the unpruned network at the same sampling rate. Figure 3 demonstrates that the supervised
fine-tuning strategy is highly effective, resulting only up to 4% PSNR degradation to achieve approx-
imately 65% fewer parameters and up to ⇥1.51 speed up. Both Figure 3 and Table 1 also indicate
that one can achieve a ⇥1.06 speed up in testing time with virtually no cost in PSNR degradation
by removing 20% of parameters. Moreover, Figure 3 highlights that the school fine-tuning method
can achieve competitive performance against supervised fine-tuning across different pruning ratios.
Table 1 further shows that DEQ can achieve higher speed up than DU models under the same prun-
ing ratio, which we attribute to its large number of forward iterations. Table 2 and Figure 4 present
similar evaluations as in Table 1 and Figure 3, but at a sampling rate of 12.5%, with consistent
observations.

Table 3 presents a quantitative evaluation of pruned MBDL models and equivalently parameterized
models trained from scratch on fine-tuning losses of supervised and self-supervised. Note that the re-
trained models use the same loss as the fine-tuned pruned model. The results in Table 3 demonstrate

1https://github.com/facebookresearch/fastMRI
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Table 3: Quantitative evaluation of pruned MBDL models and equivalently parameterized models
trained from scratch, shown in SPADE and Random columns, respectively. Noted that the retrained
models use the same loss when fine-tuning the pruned model. The “�” column denotes the quan-
titative difference between “SPADE” and “Random”. (a): self-supervised fine-tuning strategy. (b):
supervised fine-tuning strategy. This table demonstrates improved performance by pruning MBDL
models over re-training equivalently parameterized models. Note how SPADE with self-supervised
fine-tuning method can outperform re-trained model at least 8dB in PSNR.

(a)

Network Pruning
Ratio

PSNR (dB) SSIM (%)

SPADE Random � SPADE Random �

E2E-VarNet

0% 44.24 99.1

10 % 40.12 29.94 10.18 97.7 90.3 7.4
20 % 39.91 28.77 11.14 97.5 88.6 8.9
35 % 39.28 26.74 12.54 97.3 85.7 11.6
65 % 37.82 29.28 8.54 96.9 90.2 6.7

VarNet

0% 39.25 97.7

10 % 39.10 18.96 20.14 97.4 54.2 43.2
20 % 38.59 19.11 19.48 97.3 55.0 42.3
35 % 37.46 17.13 20.33 96.9 51.1 45.8
65 % 34.17 17.54 16.63 95.3 51.7 43.6

(b)

Network Pruning
Ratio

PSNR (dB) SSIM (%)

SPADE Random � SPADE Random �

E2E-VarNet

0% 44.24 99.1

10 % 44.18 42.40 1.78 99.1 98.7 0.4
20 % 44.17 42.23 1.94 99.1 98.7 0.4
35 % 43.71 41.69 2.02 99.1 98.4 0.7
65 % 42.62 41.50 1.12 98.8 98.4 0.4

VarNet

0% 39.25 97.7

10 % 39.15 38.09 1.06 97.7 97.3 0.4
20 % 39.06 38.11 0.95 97.7 97.2 0.5
35 % 38.85 38.03 0.82 97.6 97.1 0.5
65 % 38.12 35.67 2.45 97.3 95.9 1.4

that pruned models can outperform equivalently parameterized models retrained using the same fine-
tuning loss. Note how pruned models with a self-supervised fine-tuning strategy can achieve at least
an 8 dB improvement in PSNR compared to the retrained networks.

4.2 IMAGE SUPER-RESOLUTION

We consider the measurement model of form A = SH , where H 2 Rn⇥n is the blurring matrix,
and S 2 Rm⇥n denotes the standard d-fold down-sampling operator with d

2 = n/m. We evaluated
SPADE on CSDB68 dataset. We conducted our experiments for down-sampling factors of 2 and
3. We followed (Zhang et al., 2020) to experiment with 8 different Gaussian blur kernels and four
motion kernels. We tested SPADE on a DU model, USRNet (Zhang et al., 2020), in the school
fine-tuning method to simulate the circumstance where only pre-trained network is accessible. We
used the pre-trained model provided by the official repository2.

Table 4 shows quantitative evaluation of USRNet pruned by SPADE with school fine-tuning strategy
in image super-resolution at the scale of ⇥2 and ⇥3. This table highlights that the school fine-tuning
strategy can achieve ⇥1.81 speed up while maintaining less than 1% degradation in both PSNR
and SSIM values. Figure 5 shows visual results of USRNet and its pruned variants in image super-
resolution at the scale of ⇥3. Figure 5 demonstrates that the pruned models can achieve qualitatively
competitive performance compared to the unpruned network.

5 CONCLUSION

This work proposes SPADE, the first application to reduce the test-time computational complexity
of model-based deep learning through neural network pruning. SPADE employs group `1-norm
to identify the significance of CNN weights, pruning them in ascending order of importance. We
propose three distinct fine-tuning strategies to minimize the performance deviation between pruned
and pre-trained models. Each of these fine-tuning methods possesses unique applications, contingent
on the availability of high-quality ground truth and a pre-trained model: (a) supervised strategy
minimizes the discrepancy between the output of the pruned model and the corresponding ground
truth; (b) school ensures consistency between the outputs of the pruned and the pre-trained models;
(c) self-supervised exclusively relies on the testing dataset, leveraging data fidelity and equivariant
imaging losses.

2https://github.com/cszn/USRNet
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Table 4: Quantitative evaluation of USRNet pruned by SPADE with school fine-tuning strategy in
image super-resolution at the scale of ⇥2 and ⇥3. The “Degrad. %” columns denote degradation
percentage of PSNR values of pruned models compared to that of pruned models. Note how school
fine-tuning method can gain 1.81⇥ speed up with less than 1% performance degradation.

Scale Pruning Ratio PSNR (dB) SSIM (%) Time (ms) Speed Up # Params
School Degrad. % School Degrad. %

⇥2

0 % 29.96 100.0 % 86.5 100.0 % 272.2 ⇥1.00 17,016,016

10 % 29.81 99.5 % 86.2 99.6 % 262.8 ⇥1.04 15,314,620
20 % 29.81 99.5 % 86.1 99.5 % 248.9 ⇥1.09 13,730,964
35 % 29.80 99.5 % 86.1 99.5 % 241.8 ⇥1.13 10,837,246
65 % 29.70 99.1 % 86.0 99.4 % 150.3 ⇥1.81 6,094,762

⇥3

0 % 27.56 100.0 % 79.0 100.0 % 272.2 ⇥1.00 17,016,016

10 % 27.43 99.5 % 78.5 99.3 % 262.8 ⇥1.04 15,314,620
20 % 27.43 99.5 % 78.5 99.3 % 248.9 ⇥1.09 13,730,964
35 % 27.42 99.5 % 78.5 99.3 % 241.8 ⇥1.13 10,837,246
65 % 27.32 99.1 % 78.2 98.9 % 150.3 ⇥1.81 6,094,762

Figure 5: Visual results of USRNet and its pruned variants with the school fine-tuning strategy at
scale of ⇥3. Note how USRNet has been pruned more than 65% parameters but kept similar visual
quality compared to the unpruned model.

We evaluated the efficacy of SPADE through applications in compressed sensing MRI and image
super-resolution, employing several MBDL models. The experimental results in MRI demonstrate
that: the (a) supervised strategy can realize up to ⇥1.51 speed up in testing time by eliminating
65% of parameters, with less than 4% degradation in testing PSNR values; it can also attain ⇥1.06
speed up with negligible performance cost; (b) school can achieve competitive performance against
supervised, with less than 3% PSNR degradation across different pruning ratios and MBDL models;
(c) self-supervised can outperform equivalently parameterized models trained from scratch using the
same loss function. The results in image super-resolution further corroborate the effectiveness of
SPADE on the school fine-tuning method. Future directions for this research include testing SPADE
with alternative approaches to ranking the importance of CNN weights, and exploring different
losses to enhance the self-supervised fine-tuning methods.
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