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ABSTRACT

Recent work has shown that supervised learning alone, without temporal differ-
ence (TD) learning, can be remarkably effective for offline RL. When does this
hold true, and which algorithmic components are necessary? Through extensive
experiments, we boil supervised learning for offline RL down to its essential el-
ements. In every environment suite we consider, simply maximizing likelihood
with a two-layer feedforward MLP is competitive with state-of-the-art results of
substantially more complex methods based on TD learning or sequence modeling
with Transformers. Carefully choosing model capacity (e.g., via regularization
or architecture) and choosing which information to condition on (e.g., goals or
rewards) are critical for performance. These insights serve as a field guide for
practitioners doing Reinforcement Learning via Supervised Learning (which we
coin RvS learning). They also probe the limits of existing RvS methods, which
are comparatively weak on random data, and suggest a number of open problems.

1 INTRODUCTION

Offline and off-policy reinforcement learning (RL) are typically addressed using value-based meth-
ods. While theoretically appealing because they include performance guarantees under certain as-
sumptions [27], such methods can be difficult to apply in practice; they tend to require complex
tricks to stabilize learning and delicate tuning of many hyperparameters. Recent work has explored
an alternative approach: convert the RL problem into a conditional, filtered, or weighted imitation
learning problem. This typically uses a simple insight: suboptimal experience for one task may
be optimal for another task. By conditioning on some piece of information, such as a goal, re-
ward function parameterization, or reward value, such experience can be used for simple behavior
cloning [5, 6, 8, 10, 17, 23, 26, 29, 32, 34, 38]. We refer to this set of approaches as RL VIA SU-
PERVISED LEARNING (RVS). These approaches commonly condition on goals [6, 18, 29] or reward
values [5, 26, 38], but they can also involve reweighting or filtering [10, 26, 32, 34].

Figure 1: RvS learning conditioned on goals (RvS-G) and on rewards (RvS-R) compared with
prior approaches and baselines. Each bar is the average over many tasks in each suite. Using just
supervised learning with a feedforward MLP, RvS matches the performance of methods employing
TD learning and Transformer sequence models. https://github.com/scottemmons/rvs
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Figure 2: (a) As input, RvS takes a precollected replay buffer of experience. An outcome ω can be an
arbitrary function of the trajectory, such as future states or rewards. (b) RvS uses hindsight relabeling
of the replay buffer to construct a training dataset. The observed actions act as demonstrations for
the observed outcomes. (c) Our implementation of RvS uses an MLP with two fully connected (fc)
layers to predict actions. At test time, we can condition on arbitrary outcomes.

RvS methods are appealing because of their algorithmic simplicity. However, prior work has put
forward conflicting hypotheses about which factors are essential for their good performance, includ-
ing online data [18], advantage weighting [26], or large Transformer sequence models [5]. The first
question we study is: what elements are essential for effective RvS learning? Beyond this, it also
remains unclear on which tasks and datasets such methods work well. For example, prior work
has argued that temporal compositionality (dubbed “subtrajectory stitching”) is an important com-
ponent for solving offline RL when there are few near-optimal trajectories present in the data (e.g.,
the Franka Kitchen and AntMaze tasks in D4RL [12]). A priori, one might expect that dynamic
programming via TD learning is needed for these tasks. So we also ask: what are the limits of RvS
learning, and does it scale to settings with few near-optimal trajectories?

The main contribution of this paper is a study of RvS methods on a wide range of offline RL prob-
lems, as well as a set of analyses about which design factors matter most for such methods. First,
we show that pure supervised learning (maximizing the likelihood of actions observed in the data)
performs as well as conservative TD learning across a diverse set of environments. Second, simple
feedforward models can match the performance of more complex sequence models from prior work
across a wide range of tasks. Finally, choosing to condition on reward values versus goals can have
a large effect on performance, with different choices working better in different domains. These
simple results contradict the narrative put forward in many prior works that argue for more complex
design decisions [5, 26, 27]. To the best of our knowledge, our results match or exceed those re-
ported by any prior RvS method. We believe that these findings will be useful to the RL community
because they help to understand the essential ingredients and limitations of RvS methods, providing
a foundation for future work on simple and performant offline RL algorithms.

2 RELATED WORK

Recent offline RL methods use many techniques, including value functions [15, 27], dynamics esti-
mation alongisde value functions [24, 37, 42], dynamics estimation alone [3, 7, 39], and uncertainty
quantification [1, 41, 42]. In this paper, we focus on offline RL methods based on conditional be-
havior cloning that avoid value functions. The most common instantiation of these methods are
goal-conditioned behavior cloning [8, 18, 29] and reward-conditioned behavior cloning [26, 35, 38].
Prior work has also looked at conditioning on different information, such as many previous
timesteps [5, 23], tasks inferred by inverse RL [10], and other task information [6, 21]. While
these methods can be directly applied to the offline RL setting, some prior works combine these
methods with iterative data collection [18, 38], which is not permitted in the typical offline RL set-
ting. Kumar et al. [26] study reward-conditioned policies and do present experiments in the offline
RL setting. However, in contrast with our work, the results from Kumar et al. [26] suggest that
good performance cannot be achieved through RvS learning but only through additional advantage-
weighting [32, 34]. More recent work [5] presents a conditional imitation learning method for the
offline RL setting that avoids advantage weighting by introducing a higher-capacity, autoregressive
Transformer policy. In contrast to these prior works, we show that simple conditioning with standard
feedforward networks can attain state-of-the-art results. While these results do not require advantage
weighting or high-capacity sequence models, they do require careful tuning of the policy capacity.
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3 REINFORCEMENT LEARNING VIA SUPERVISED LEARNING

In this section, we describe a formulation of Reinforcement Learning via Supervised Learning. We
do not propose a new method but rather place many existing methods under a common framework.
After this, we will investigate what design decisions are important to make such methods work well.

To formulate RvS methods in a general way, we assume an agent interacts with a Markov decision
process with states st, actions at, initial state distribution ps(s1), and dynamics p(st+1 | st, at).
The agent chooses actions using a policy πθ(at | st) parameterized by θ. We assume episodes have
fixed lengthH and use τ = (s1, a1, r1, s2, a2, r2, · · · ) to denote a trajectory of experience. As some
trajectories might be described using multiple outcomes, we use f(ω | τ) to denote the distribution
over outcomes that occur in a trajectory. We study two types of outcomes. The first type of outcome
is a state (ω ∈ S) that the agent visits in the future: f(ω | τt:H) = Unif(st+1, st+2, · · · , sH). We
refer to RvS methods that learn goal-conditioned policies as RvS-G. The second type of outcome
is the average return (ω ∈ R) achieved over some future number of time steps: f(ω | τt:H) =

1(ω = 1
H−t+1

∑H
t′=t r(st′ , at′)). (Note that we found it important to use the max episode length as

a constant H in the denominator for all trajectories, treating early terminations as if they received
0 reward after they terminated.) We refer to RvS methods that learn reward-conditioned policies
as RvS-R. It is also possible to condition on other information, such as the parameters of a reward
function inferred via inverse RL [10] or the parameters of a task, such as turning left or right [6].
We focus on RvS methods applied to the offline RL setting. These methods take as input a dataset
of experience, D = {τ} and find the outcome-conditioned policy πθ(at | st, ω) that optimizes

max
θ

For all
trajectories:∑
τ∈D

For all timesteps
in that trajectory:∑

1≤t≤|τ |

E

For all achieved
outcomes:

ω∼f(ω|τt:H)[log πθ(at | st, ω)].

Algorithm 1 RvS-Learning

1: Input: Dataset of trajectories, D = {τ}
2: Initialize policy πθ(a | s, ω).
3: while not converged do
4: Randomly sample trajectories: τ ∼ D.
5: Sample time index for each trajetory, t ∼ [1, H], and

sample a corresponding outcome: ω ∼ f(ω | τt:H).
6: Compute loss: L(θ)←

∑
(st,at,ω)

log πθ(at | st, ω)
7: Update policy parameters: θ ← θ + η∇θL(θ)
8: end while
9: return Conditional policy πθ(a | s, ω)

While the basic formulation of this
conditional policy is simple, in-
stantiating RvS methods that at-
tain excellent results has proven
challenging [26, 38]. In the re-
mainder of this paper, we present
an empirical analysis of the de-
sign choices in RvS methods. We
aim to understand which design
choices are needed to make RvS
methods perform well on diverse
benchmark tasks, including how
two different choices for ω (goals
and rewards) compare in practice.

4 TASKS AND DATASETS

To provide a comprehensive empirical study of RvS methods, we selected a broad range of tasks; the
state-based tasks in prior work on various types of RvS or conditional imitation methods typically
include only a subset of the domains we consider [5, 18, 26]. Our goal will be to include: (1) domains
and datasets that are appropriate for different types of conditioning, including goals and rewards; (2)
datasets that include different proportions of near-optimal data, ranging from near-expert datasets to
ones with very few or no optimal trajectories at all; (3) datasets that run the gamut in terms of task
dimensionality; (4) domains that have been studied by prior value-based offline RL methods.
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GCSL is a suite of goal-conditioned environments used by Ghosh et al. [18] to evaluate GCSL,
a goal-conditioned RvS method with online data collection. We adapt these tasks for offline RL
by using a random policy to collect training data, which results in suboptimal trajectories. The
tasks include 2D navigation with obstacles (FourRooms, Eysenbach et al. [9]); two end-effector
controlled Sawyer robotic arm tasks (Door and Pusher, Nair et al. [31]); the Lunar Lander video
game, which requires controlling thrusters to land a simulated Lunar Excursion Module (Lander);
and a manipulation task that requires rotating a valve with a robotic claw (Claw, Ahn et al. [2]).

Gym Locomotion v2 tasks consist of the HalfCheetah,
Hopper, and Walker datasets from the D4RL offline
RL benchmark [12]. We use the random, medium,
medium-expert, and medium-replay datasets in our
evaluations, which consist of (a mixture of different) policies
with varying levels of optimality. This requires learning from mixed and suboptimal data, and we
will see that TD learning methods perform comparatively well on the random data.

Franka Kitchen v0 is a 9-DoF robotic manipulation task
paired with datasets of human demonstrations. This task orig-
inates from Gupta et al. [19] and was formalized as an of-
fline RL task in D4RL [12]. Solving this task requires com-
posing multi-step behaviors (e.g., open the microwave, then
flip a switch) from component skills. This task includes three
datasets: complete, where all trajectories solve all tasks in
sequence; partial, where only a subset of trajectories per-
form the desired tasks in sequence; and mixed, which con-
tains various subtasks but never all in sequence, requiring gen-
eralization and temporal composition.

AntMaze v2 involves controlling an 8-DoF quadruped to
navigate to a particular goal state. This benchmark task,
from D4RL [12], uses a non-Markovian demonstrator policy
and was intended to test an agent’s ability to learn tempo-
ral compositionality by combining subtrajectories of differ-
ent demonstrations. There are three mazes of increasing size:
umaze, medium, and large, and there are two datasets
types: diverse and play. The D4RL paper [12] claims
that “diverse” data navigates from random start locations to
random goal locations while “play” navigates between hand-picked start-goal pairs. Prior work
has proposed that, for tasks requiring temporal compositionality, dynamic programming with value-
based methods should be particularly important [12]. However, we find in AntMaze that RvS out-
performs all the dynamic programming methods we consider.

When applying RvS learning methods, one must choose a type of outcome, such as rewards or goals.
In Kitchen and AntMaze, the reward function is implemented in terms of goals. The kitchen reward
is for completing multiple subtasks, so we condition RvS-G on a state in which all the subtasks
have been achieved. For AntMaze, we condition RvS-G on the goal location in the maze. This
choice makes the additional assumption that we know how the reward function is defined, rather
than just receiving samples from the reward function. Because GCSL is inherently a multitask,
goal-conditioned setup, we omit reward conditioning and only report RvS-G. Conversely, because
there is no clear way to define performance in Gym w.r.t. a goal, we omit goal conditioning and only
report RvS-R. For all tasks, we report scores in the range [0, 100]. For GCSL, the score corresponds
to the percentage of episodes in which the agent achieves the goal. In the other environments, we
follow Fu et al. [12] and normalize the score according to 100 · return−random

expert−random . (Images from [12, 18].)

5 ARCHITECTURE, CAPACITY, AND REGULARIZATION

We instantiate the RvS framework in Section 3 using a simple feedforward, fully-connected neural
network. We condition on either the reward-to-go [26, 38] or a goal state [18, 19, 29] by merely
concatenating with the input state (see Figure 2). Our aim is to identify the essential components of
such methods; we eschew more complex architectures such as Transformer sequence models [5]. On
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the tasks we consider, we show that our simple implementation achieves performance competitive
with prior work that uses these more complex components. However, seemingly minor choices in
the architecture do matter. These architectural choices include tuning capacity and regularization,
suggesting that overfitting and underfitting are major challenges for RvS. Additionally, the choice
of what to condition on (goals or rewards) also has important and domain-specific repercussions.

Capacity and regularization. In Figure 3, we compare different architecture sizes and regular-
ization settings on a single task from each task suite. The best-performing architectures are gener-
ally larger than the architectures used in standard online RL [28] and imitation learning [11, 22].
This conclusion is intuitive, since RvS policies must represent both the optimal policy and policies
for other conditioning values (e.g., other goals or suboptimal rewards). This result may help ex-
plain the contradictory conclusions from prior work regarding the importance of more complex
design decisions [5, 26]. The results in Figure 3 also highlight the importance of regulariza-
tion: while dropout sometimes has no effect (pusher), it improves performance in some tasks
(kitchen-complete) and worsens performance in other tasks (hopper-medium-expert
and antmaze-medium-play).

What can we say about these results on network capacity and regularization? The
hopper-medium-expert dataset is large, and it contains only two modes: one from a medium-
quality policy, and one from an expert policy. So, it is not surprising that this data doesn’t need
regularization. In contrast, kitchen-complete is a small dataset of human demonstrations
solving many different subtasks. Prior work has found that human demonstrations are harder to
fit than artificial demonstrations [30], and this may explain why kitchen-complete generally
benefits from dropout. In antmaze-medium-play, relatively few trajectories are successful, so
we are surprised to see that the best-performing hyperparameter setting does not use regularization.
In pusher, regularization neither helps nor hurts, underscoring that the (lack of) impact of regu-
larization depends on the task at hand. Overall, we speculate that regularization balances a tension
between two competing demands on the policy. First, even if the behavior policy is simple, the con-
ditional action distribution may be complex. Second, the policy must be sufficiently well regularized
to generalize well to new goals or conditioning variables.

Output distributions. The form of the policy’s output distribution also influences the policy’s ca-
pacity. While unimodal Gaussians are a common choice with continuous action spaces [14, 26, 27],
a categorical distribution over a discretized action space allows the policy to represent more com-
plex, multi-modal distributions [18, 29]. To study the importance of the policy output distribution,
we use the low-dimensional GCSL environments, where we can discretize the full action space.
Figure 4 (left) shows that across the GCSL suite, categorical distributions either match or outper-
form Gaussian distributions. Similar to the results from the previous section, these results highlight
how increasing the policy’s model capacity can improve performance. Again, our finding stands in
contrast to standard RL methods, which work well with unimodal Gaussians [20, 36] We conjecture
that upweighting better data, as done by previous methods [26], may make it easier for low-capacity
policies to fit the data. While both upweighting data and increasing model capacity allow the policy
to better fit the data, increasing model capacity may be a simpler approach.

Figure 3: Capacity and regularization: We vary capacity (via network width) and regulariza-
tion (via dropout) on one environment from each task suite. Larger networks perform better on
hopper-medium-expert and kitchen-complete, suggesting the importance of high-capacity pol-
icy networks. However, dropout also usually boosts performance in kitchen-complete, suggesting that a
combination of high-capacity policies with effective regularization is important for achieving good results.
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Figure 4: (Left) In the GCSL suite, a categorical distribution in discretized action space generally
outperforms a unimodal Gaussian distribution in continuous action space. This fits the broad pattern
we observe that higher-capacity RvS models perform better. (Right) In D4RL Kitchen, validation
loss is only loosely correlated with final performance.

Tuning with validation loss. Hyperparameter optimization is especially important in the offline
RL setting, as evaluating different hyperparameter configurations requires interacting with the en-
vironment [33]. Since RvS methods reduce the RL problem to a supervised learning problem, we
hypothesize that the validation loss of this supervised learning problem might be an effective metric
for tuning important hyperparameters, such as policy capacity and regularization. To test this, we
train models on 80% of each Franka Kitchen dataset with two different hyperparameter settings: a
regularized setting with dropout p = 0.1 and small batch size 256; and an unregularized setting
without dropout and a large batch size of 16, 384. We show results in Figure 4 (right). For all three
datasets, validation set error does correlate with performance, but the strength of this correlation
varies significantly. In general, the validation loss does not provide a reliable approach for hyperpa-
rameter tuning. Fully automated tuning of hyperparameters remains an open question [13, 33].

A recipe for practitioners. We suggest the following process for online hyperparameter tun-
ing: incrementally increase network width until performance saturates, and then try adding a bit
of dropout regularization (e.g., dropout p = 0.1). If validation loss indicates that under/overfitting
is an issue, one can also try increasing/decreasing the batch size, respectively.

Table 2 in the Appendix summarizes the hyperparameters that we found to work best for each task.

6 COMPARING RVS WITH PRIOR OFFLINE RL METHODS

Having identified key design decisions for implementing RvS learning, we now compare RvS to
prior offline RL methods. We evaluate both goal-conditioned behavioral cloning (RvS-G) and
reward-conditioned behavioral cloning (RvS-R) using the domains in Section 4. We then discuss
what these results imply about the performance, design parameters, and limitations of RvS methods.

Baselines and prior methods. On the D4RL benchmarks, we compare RvS learning to (i) value-
based methods and (ii) prior supervised learning methods and behavioral cloning baselines. For
(i), we include CQL [27] as well as the more recent TD3+BC [14] and Onestep RL [4] methods.
TD3+BC and Onestep RL both involve elements of behavior cloning. We use CQL-p to denote
the CQL numbers published in [12] and CQL-r to denote our best attempt to replicate these results
using open-source code and hyperparameters from the CQL authors. For (ii), we include behavioral
cloning (BC), which does not perform any conditioning; Filtered (“Filt.”) BC, a baseline appearing
in [5] which performs BC after filtering for the trajectories with highest cumulative reward; and
Decision Transformer (DT) [5], which conditions on rewards and uses a large Transformer sequence
model. Both BC and Filtered BC are our own optimized implementations [25], tuned thoroughly
in a similar manner as RvS-R and RvS-G. In Kitchen and Gym locomotion, Filtered BC clones the
top 10% of trajectories based on cumulative reward. In AntMaze, Filtered BC clones all successful
trajectories (those with a reward of 1) and ignores the failing trajectories (those with a reward of 0).
On the GCSL benchmarks, we compare to GCSL using numbers reported by the authors [18]. This
gives the GCSL baseline the advantage of online data, whereas RvS uses only offline data. We do
not run RvS-G on the Gym locomotion tasks, which are typically expressed as reward-maximization
tasks, not goal-reaching tasks. For additional details about the baselines, see Appendix A.
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Table 1: Overall performance. RvS conditioned on goal states (RvS-G) is state-of-the-art in the AntMaze, Kitchen, and GCSL suites. RvS conditioned on rewards
(RvS-R) performs worse at these tasks, highlighting the importance of the conditioning variable. In Gym, RvS-R matches the performance of Decision Transformer
while only using an MLP. *For the sake of completeness, we include CQL-p, TD3+BC, and Onestep numbers that use AntMaze version v0. See Appendix A for
more discussion of this and other experiment details.

Suite Environment BC Filt. BC TD3+BC Onestep CQL-r CQL-p DT RvS-R RvS-G GCSL

D4RL AntMaze

umaze-v2 54.6 60.0 78.6 64.3 44.8 74.0 65.6 64.4 65.4
umaze-diverse-v2 45.6 46.5 71.4 60.7 23.4 84.0 51.2 70.1 60.9
medium-play-v2 0.0 42.1 10.6 0.3 0.0 61.2 1.0 4.5 58.1
medium-diverse-v2 0.0 37.2 3.0 0.0 0.0 53.7 0.6 7.7 67.3
large-play-v2 0.0 28.0 0.2 0.0 0.0 15.8 0.0 3.5 32.4
large-diverse-v2 0.0 34.3 0.0 0.0 0.0 14.9 0.2 3.7 36.9
antmze-v2 average 16.7 41.4 27.3* 20.9* 11.4 50.6* 19.8 25.6 53.5

D4RL Gym

halfcheetah-random-v2 2.3 2.0 11.0 6.9 18.6 2.2 3.9
hopper-random-v2 4.8 4.1 8.5 7.8 9.3 7.5 7.7
walker2d-random-v2 1.7 1.7 1.6 6.1 2.5 2.0 -0.2
random-v2 average 2.9 2.6 7.0 6.9 10.1 3.9 3.8
halfcheetah-medium-replay-v2 36.6 40.6 44.6 42.4 47.3 36.6 38.0
hopper-medium-replay-v2 18.1 75.9 60.9 71.0 97.8 82.7 73.5
walker2d-medium-replay-v2 26.0 62.5 81.8 71.6 86.1 66.6 60.6
medium-replay-v2 average 26.9 59.7 62.4 61.7 77.1 62.0 57.4
halfcheetah-medium-v2 42.6 42.5 48.3 55.6 49.1 42.6 41.6
hopper-medium-v2 52.9 56.9 59.3 83.3 64.6 67.6 60.2
walker2d-medium-v2 75.3 75.0 83.7 85.6 82.9 74.0 71.7
medium-v2 average 56.9 58.1 63.8 74.8 65.5 61.4 57.8
halfcheetah-medium-expert-v2 55.2 92.9 90.7 93.5 85.8 86.8 92.2
hopper-medium-expert-v2 52.5 110.9 98.0 102.1 102.0 107.6 101.7
walker2d-medium-expert-v2 107.5 109.0 110.1 110.9 109.5 108.1 106.0
medium-expert-v2 average 71.7 104.3 99.6 102.2 99.1 100.8 100.0
gym-v2 average 39.6 56.2 58.2 61.4 63.0 57.0 54.7

D4RL Kitchen

kitchen-complete-v0 65.0 4.0 11.8 43.8 1.5 50.2
kitchen-mixed-v0 51.5 40.0 24.2 51.0 1.1 60.3
kitchen-partial-v0 38.0 66.0 20.8 49.8 0.5 51.4

kitchen-v0 average 51.5 36.7 18.9 48.2 1.0 54.0

GCSL

claw 14.8 28.0
door 95.8 28.0
four rooms 63.0 81.0
lunar 54.7 70.0
pusher 81.8 83.0
gcsl average 62.0 58.0
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Overall performance and comparison to prior methods. Table 1 shows the results of this com-
parison, leading to several conclusions about how our RvS implementations compare to prior value-
based and supervised methods. In all suites, either RvS-G or RvS-R attains results that are compa-
rable to the best prior method. The finding that conditional imitation with standard fully connected
networks attains competitive results stands in contrast to prior work, which emphasizes advantage
weighting and Transformer sequence models [5, 26]. As we discussed in Section 5, good perfor-
mance requires a careful combination of high capacity and regularization, and it may simply be that
this seemingly contradictory combination of components was not adequately explored in prior work.

Subtrajectory stitching. The mixed dataset in Kitchen and all of the AntMaze tasks consist of
suboptimal trajectories. Attaining expert performance requires recombining parts of these trajecto-
ries. Such stitching is usually viewed as a key benefit of dynamic programming methods, so it is
surprising that RvS-G performs as well as prior methods based on dynamic programming (TD3+BC
and CQL). In these same tasks, RvS-G outperforms RvS-R. We speculate that the spatial information
encoded by goal information helps RvS-G generalize. BC works well in the Kitchen environment
but poorly in the AntMaze tasks, perhaps becaue the Kitchen task contains experience that is easier
to imitate. As a direction for future work, we propose studying if conditioning on goals can help
provide compositionality in space just as the Bellman backup provides compositionality in time.

Figure 5: GCSL results.

Reaching arbitrary goals. An important capability of RvS-G, com-
pared with more standard offline RL methods, is that it learns a pol-
icy that can reach many goals. To test how well RvS-G can learn to
reach arbitrary goals from random offline data, we compare to GCSL,
an RvS learning method that performs iterative online data collec-
tion [18]. We use the same tasks used by GCSL. Each of the tasks
in the GCSL suite requires that the agent reach a goal drawn uniformly
at random from the set of possible goals. The results shown in Fig-
ure 5 indicate that RvS-G can successfully reach many different goals
entirely from randomly collected offline data. Although it may still be
that iterative online collection, as proposed in prior work [18, 38], may
be helpful in some domains, in this case simple offline training appears
to suffice.

Random datasets. While on average RvS-R is competitive with prior methods on the Gym Loco-
motion tasks, TD learning performs better on the random datasets; indeed, CQL performs especially
well on halfcheetah-random (Table 1). This suggests that RvS methods may more generally
perform worse on random datasets in comparison to TD learning methods.

frequency  of 
returns in dataset

50 100
Target Returns

50

100

Achieved
Returns

y = x

Figure 6: A failure to interpolate.

Analysis of reward conditioning. Next, we
analyze what RvS-R actually learns and how
it uses the conditioning variable. First, we
use the walker2d-medium-expert task
to analyze the behavior of RvS-R for target
rewards. The walker2d-medium-expert
dataset contains two modes (“medium” and
“expert”, as shown in Figure 6). Conditioning
the network on a range of reward targets (X-
axis), Figure 6 shows that the policy’s achieved
return (Y-axis) corresponds only to the two
modes in the dataset. The policy cannot in-
terpolate between the two modes. In effect, it
appears that RvS is mimicking a subset of the
demonstrations, but doing so without explicit
filtering (as is done in Filtered BC).

This analysis highlights the importance of the conditioning variable. It is not obvious a priori that a
reward target of 100 will lead to a return of 70, whereas a reward target of 110 will lead to a return
of 105. Following prior work [5], we tune the reward target for every task (see Table 2). Choosing
this hyperparameter in a truly offline setting is an important problem for future work.
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7 DISCUSSION AND FUTURE WORK

We presented an empirical study of offline RL via supervised learning (RvS) methods, which solve
RL problems via conditional imitation learning. While prior work is divided on which elements of
RvS are crucial for good performance, or even how well such methods actually work, our results
provide three conclusions. First, if capacity and regularization are chosen correctly, RvS methods
with simple fully connected architectures can match or outperform the best prior methods. Second,
properly choosing the conditioning variable (e.g., goal or reward) is critical to the performance
of RvS methods. Third, RvS methods remain competitive in tasks such as Franka Kitchen and
AntMaze, where there is little optimal data. These conclusions suggest multiple directions for future
work. Because policy capacity and regularization are critical to good performance, is there a method
for automatically tuning these hyperparameters? Validation error is not a reliable metric. Also, the
choice of conditioning variable is important: how might we automate this choice? Addressing these
questions may increase the performance and applicability of RvS learning methods.
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Table 2: Hyperparameters. Architecture and design parameters that we found to work best in each
domain. We define an epoch length to include all start-goal pairs in GCSL, i.e., to be |D|

(
H
2

)
. In

D4RL, we set all epoch lengths at 2000
(
50
2

)
= 2450000.

Hyperparameter Value Environment

Hidden layers 2 All
Layer width 1024 All
Nonlinearity ReLU All
Learning rate 1e-3 All

Epochs 10 GCSL
50 Kitchen

2000 Gym
Gradient steps 20000 AntMaze

Batch size 256 GCSL, Kitchen
16384 Gym, AntMaze

Dropout 0.1 GCSL, Kitchen
0 Gym, AntMaze

Goal state Given GCSL
All subtasks completed Kitchen

(x, y) location AntMaze
Reward target 110 Gym medium-expert, AntMaze, Kitchen

90 Gym {hopper, walker2d}-medium-replay, walker2d-medium
60 Gym hopper-medium
40 Gym random, halfcheetah-{medium, medium-replay}

Policy output Discrete categorical GCSL
Unimodal Gaussian Kitchen, Gym, AntMaze

A EXPERIMENT DETAILS

In this section, we provide more details about our experiments in each environment suite. For every
task, we use 5 random training seeds and 200 evaluation rollouts for RvS.

GCSL Following the GCSL protocol [18], we collect offline data for RvS by performing random
rollouts in each environment. As in GCSL, we set the environment time limit (i.e., max episode
duration) to 50 actions, and the rollout policy uses a discretized action space. We collect 50,000
timesteps of experience in FourRooms, 100,000 timesteps of experience in Door and Lander,
and 500,000 timesteps of experience in Pusher and Claw. We take our GCSL baseline numbers
from those reported in the GCSL paper at the corresponding number of timesteps for each environ-
ment [18].

Gym Locomotion We use the v2 versions of the datasets for all algorithms. Because the v2 datasets
fix issues with the v0 datasets, we omit the published CQL-p numbers, which use v0 and are no
longer comparable. We instead report our replication of CQL, denoted CQL-r, using v2. We report
the DT [27], TD3+BC [14], and Onestep [4] numbers from the corresponding papers. We use
the reverse KL regularization variant of Onestep because this variant attains the best performance.
Because DT did not run experiments with the random datasets, we run them ourselves using the
default hyperparameters in the open-source codebase released by the DT authors. We omit numbers
for RvS-G because there is no clear way to define the Gym tasks in terms of goals.

Franka Kitchen We use the v0 versions of the datasets and omit TD3+BC, Onestep, and DT num-
bers, which are not provided by the authors. We include the previously published CQL-p numbers
from D4RL [12] as well as CQL-r, our own replication of CQL, and BC and Filtered BC, our own
baselines.

AntMaze We use the v2 versions of the datasets for RvS, CQL-r, BC, Filtered BC, and DT. Be-
cause the DT authors do not test in AntMaze, we ran these experiments ourselves using the default
hyperparameters in the open-source codebase released by the DT authors. We include previously
published numbers for CQL-p [12] and TD3+BC [14], as well as Onestep numbers we received via
email correspondence with the Onestep authors. These numbers for CQL-p, TD3+BC, and Onestep
use the v0 versions of the datasets, which are the same as the v2 versions except that the v0 timeout

12



Published as a conference paper at ICLR 2022

Figure 7: Validation mean-squared-error and evaluation return versus training gradient steps in
Frank Kitchen. Each line includes 5 random seeds across each of the three datasets: complete,
partial, and mixed. Surprisingly, we find that although each hyperparameter setting has nearly
identical validation loss, the evaluation return varies by as much as 1.4x. This indicates that dropout
and network capacity are having important effects on performance beyond validation loss.

flags indicating the ends of episodes contain errors. Because our initial experiments suggest that TD
learning methods are fairly robust to errors in the timeout flags, we include these numbers for the
sake of completeness.

Codebases Here are links to all of the codebases we use in our experiments:

1. RvS: https://github.com/scottemmons/rvs

2. CQL-r: https://github.com/scottemmons/youngs-cql

3. DT: https://github.com/scottemmons/decision-transformer

4. BC and Filtered BC: https://github.com/ikostrikov/jaxrl

B THE IMPACT OF MODEL CAPACITY AND REGULARIZATION

As we find in Section 5 that model capacity and regularization are important for performance in
seemingly contradictory ways, we hypothesize that this can be explained by validation loss. So, for
5 random seeds in each of the 3 Franka Kitchen datasets (complete, partial, and mixed), we
measure validation loss and return throughout training for three different settings of policy hyper-
parameters: network width 1024 with dropout p = 0.1, network width 1024 with dropout p = 0 (no
dropout), and network width 256 with dropout p = 0 (no dropout). We expect that a larger network
width leads to better validation loss, explaining its better return. We expect adding regularization
also has this pattern of better validation loss and therefore better return.

In Figure 7, we plot the results: validation loss is nearly identical across all of the hyperparameter
settings, but return can vary by as much as 1.4x between different hyperparameter settings. We also
observe that evaluation return steadily increases even after validation loss has mostly leveled off.
This is surprising and refutes our hypothesis; furthermore, it provides the insight that model capacity
and dropout are having effects beyond just the validation loss. A similar phenomenon occurs in
Neural Machine Translation, where cross entropy loss can decline while the quality of the translation
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(a) D4RL Gym (b) kitchen-complete

Figure 8: (a) Different strategies for choosing goals in D4RL Gym. (b) Commanding the policy to
complete different subtasks in kitchen-complete.

(measured by BLEU score) remains constant [16], and in contrastive representation learning, where
lower capacity models have worse losses on the test set but still learn better representations for
downstream tasks [40]. It is an important open problem for the field to understand why architecture
decisions can impact performance beyond validation loss.

C COMPARISON OF CONDITIONING STRATEGIES

To further study how different goal and reward conditioning strategies compare, in Figure 8a, we
show the performance of four strategies: Reward Scalar, Reward Goal, Length Goal,
and Optimized Goal. In Reward Scalar, we condition RvS-R on a return that is various frac-
tions of expert performance. In Reward Goal, we condition RvS-G on states from randomly selected
timesteps near the end of the highest-reward demonstration trajectories. In Length Goal, we condi-
tion RvS-G on states from randomly selected timesteps near the end of the longest demonstration
trajectories. In Optimized Goal, we do a random search over 200 Length Goals and condition RvS-
G on the highest performing one. (Note that Optimized Goal requires access to the environment, so
it is not strictly offline RL; we are including it here as an oracle experiment.) We see that across all
the goal selection strategies we consider, the performance of RvS-G cannot match the performance
of RvS-R, since the Gym tasks are not inherently goal-conditioned.

In Figure 8b, we compare the performance of RvS-G in kitchen-complete when commanded
to reach different goal states. The kitchen-complete task requires the agent to open a mi-
crowave, move a kettle, flip a light switch, and slide open a cabinet. For “all,” we command the
policy to reach a state where all the subtasks are achieved. For “random,” we randomly select one
of the tasks and command the policy to reach a state where that task is complete. For “microwave,”
“kettle,” “light switch,” and “slide cabinet,” we command the agent to reach a state where that one
subtask is achieved. For “dynamic,” rather than leaving the goal fixed throughout the trajectory, we
initially command the agent to complete the first subtask. Then, once the first subtask is complete,
we update the command to include the second subtask (and so on for all remaining subtasks). As
expected, we see that the oracle dynamic strategy, as well as conditioning on all subtasks completed,
perform the best. Surprisingly, commanding the microwave to be opened outperforms commanding
the other individual subtasks. We speculate that the microwave subtask might appear most often in
the demonstrations.
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