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Abstract

In the era of foundation models, fine-tuning pre-trained models for specific down-
stream tasks has become crucial. This drives the need for robust fine-tuning meth-
ods to address challenges such as model overfitting and sparse labeling. Molecular
graph foundation models (MGFMs) face unique difficulties that complicate fine-
tuning. These models are limited by smaller pre-training datasets and more severe
data scarcity for downstream tasks, both of which require enhanced model general-
ization. Moreover, MGFMs must accommodate diverse objectives, including both
regression and classification tasks. To better understand and improve fine-tuning
techniques under these conditions, we classify eight fine-tuning methods into three
mechanisms: weight-based, representation-based, and partial fine-tuning. We
benchmark these methods on downstream regression and classification tasks across
supervised and self-supervised pre-trained models in diverse labeling settings. This
extensive evaluation provides valuable insights and informs the design of a refined
robust fine-tuning method, ROFT-MOL. This approach combines the strengths of
simple post-hoc weight interpolation with more complex weight ensemble fine-
tuning methods, delivering improved performance across both task types while
maintaining the ease of use inherent in post-hoc weight interpolation.

1 Introduction

In recent years, foundation models [1} 2] have achieved success in learning high-quality, general-
purpose representations of images and text through pre-training on diverse datasets [3} 14, 15, |6} [7,
8. To adapt these pre-trained models for downstream applications, additional training on task-
specific data, known as fine-tuning, is often required. However, vanilla fine-tuning frequently
encounters challenges, including model overfitting 9} [10, [11], catastrophic forgetting of pre-trained
knowledge [12] [13} [14} [15], and distribution shifts between fine-tuned and test samples, which
can lead to negative transfer [[16} [17]. These challenges highlight the need for robust fine-tuning
strategies [[18, 19,120} 21, 122} [23]].

Recently, the advantages of foundation models have been extended to various scientific applica-
tions [24} 25, 126]. Among these, molecular graph foundation models (MGFMs) have gained signifi-
cant attention for their promising potential in biochemistry [27, 28}, 129} (30} [31} 132} 133} 34, [35. [36]].
While MGFMs exhibit scaling behaviors similar to foundation models in other domains [37], they
face unique challenges related to data and tasks.

A primary challenge stems from the significantly smaller pre-training datasets in this domain, typically
consisting of at most O(100M ) molecular samples, compared to the billions of samples used in other
domains [38]. This limitation restricts the parameter scale of MGFMs (O (1000 ) parameters) and
their generalization capacity [39} 40]. Furthermore, downstream tasks in this domain often involve
limited data for fine-tuning, with datasets containing only tens or a few hundred labeled samples [41]],
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exacerbating the difficulty of achieving robust model generalization. In addition to data constraints,
many downstream tasks, such as molecular property prediction, are regression-based [42,43]]. These
tasks require models to capture fine-grained numerical patterns, which presents a distinct requirement
compared to the coarse-grained feature reliance typical in classification tasks in CV and NLP. These
factors collectively highlight the need for a careful examination of fine-tuning strategies for MGFMs
and their appropriate improvement.

To answer this question, we introduce ROFT-MOL, a benchmark that evaluates existing fine-tuning
methods across diverse molecular property prediction tasks. To explore factors influencing the
fine-tuning (FT) performance of MGFMs, we categorize 8 FT methods into 3 distinct mechanisms:
1) weight-based FT, which ensembles the weights from both pre-trained and fine-tuned models, 2)
representation-based FT, which regularizes the proximity between pre-trained and fine-tuned latent
data representations, and 3) partial FT, which optimizes only a subset of the pre-trained model’s
weights while keeping the rest frozen. To derive generalizable insights into how different fine-tuning
mechanisms interact with pre-training strategies and downstream task types, we evaluate six diverse
pre-trained models, spanning self-supervised and supervised learning, with pure graph-based, graph
transformer based and multi-modal models in varying scales, then evaluate on a broad set of molecular
property prediction tasks, including 8 classification and 4 regression tasks. To simulate the challenges
encountered during the fine-tuning stages of MGFMs, we further consider the few-shot and out-of-
distribution settings. Drawing from the broad range of pre-trained models and downstream tasks, we
indeed find that the choice of best fine-tuning mechanism is highly determined by the pre-training
objective and the downstream task type. We summarize high-level insights as follows, with further
detailed results presented in Sec.[d] The bold text within brackets indicates the corresponding support
in the experiment sections for clear cross-referencing:

* Impact from Supervised vs. Self-supervised pre-trained models: Supervised pre-training learns
domain-specific information with task supervision, while self-supervised pre-training captures
general-purpose knowledge through training on generic synthetic tasks. We observe that, in few
shot fine-tuning, supervised pre-training generally yields better fine-tuning performance than self-
supervised pre-training even when the pre-training tasks do not align well with the fine-tuning
tasks. In contrast, for non-few-shot settings, supervised pre-training performs better only when the
supervised pre-training tasks closely align with the downstream tasks [Q2].

» Impact from Classification vs. Regression tasks: Regression tasks need more precise numerical
labels and finer molecule modeling. Therefore, MGFMs face less risk of overfitting in regression
tasks compared to classification tasks, particularly in the few-shot setting [Q1].

* Correspondence with different fine-tuning methods: For self-supervised pre-trained models,
weight-based fine-tuning often results in better performance by effectively integrating general
knowledge from pre-training with task-specific knowledge from fine-tuning [Finding 1]. On
the other hand, partial fine-tuning typically leads to underfitted molecular representations in
few-shot fine-tuning, particularly for regression tasks [Finding 2]. For supervised pre-trained
models, representation-based fine-tuning performs well due to the preservation of domain-relevant
pre-trained representations [Finding 3].

Based on the findings, we argue that the first step in selecting or designing an effective fine-tuning
strategy is to consider the pre-training strategies. Then after finding the suitable fine-tuning mech-
anisms, we need to take the type of downstream tasks into account. For instance, weight-based
fine-tuning methods generally work the best under self-supervised pre-trained model, while simple
post-hoc weight interpolation between pre-trained and fine-tuned model weights (WiSE-FT) performs
well for classification tasks but struggles with regression tasks. In contrast, a more complex weight
ensemble approach (L2-SP) achieves better performance in regression tasks, though it comes with
the cost of increased tuning complexity. Therefore, inspired by the rule, we propose a new method,
DWISE-FT that achieves strong performance for both regression and classification tasks as a weight-
based solution for self-supervised pre-trained model. DWiSE-FT combines the strengths of WiSE-FT
and L2-SP, providing strong performance for both task types while maintaining the plug-and-play
ease of post-hoc interpolation. The success of DWiSE-FT showcases that our benchmark identifies
valuable insights in improving fine-tuning strategies given distinct MGFMs.

2 Finetuning Methods for Evaluation

In this section, we briefly introduce representative methodologies used in pre-training and fine-tuning
for MGFMs.



Self-supervised Pre-training strategies have been proven to be effective in generating transferable
molecular representations for downstream tasks [44]. In a high level, they can be divided into
reconstruction methods and contrastive methods. The generative-based strategies adopt mask-based
graph reconstruction by utilizing graph autoencoders [28 145} 146,147, context predictions [27,[35]] and
generative language model pre-training [48}49]]. On the other hand, contrastive-based methods aim
for maximizing the similarity between perturbed instance pairs [50} 30} 51} 152} 53] 154} 155] 1561157, 58]
Moreover, the advancement of language models has prompted numerous studies to employ multi-
modal frameworks. These approaches harness language models to enhance molecular understanding
through techniques such as cross-modal contrastive learning and alignment [59 160, 61} 162].

In this work, we select GraphMAE [28]] as the representative of the recontruction-based pre-trained
model, which focuses on masked feature reconstruction with scaled cosine error that enabled robust
training. Regarding the contrastive pre-trained model, we choose Mole-BERT [52] that combines the
node-level masked atom modeling to predict the masked atom tokens and the graph-level contrastive
learning through triplet loss and contrastive loss. Lastly, we choose MoleculeSTM [60] as the
representative of multi-modal molecule structure-text model that jointly learning molecules’ chemical
structures and textual descriptions via a contrastive learning strategy.

Supervised Pre-training. Recently, to leverage more diverse datasets and tasks, researchers started
exploring the ability of supervised pre-training with multi-task learning for molecular representa-
tions [63} 131} 132]. We adopt pre-trained models trained on multi-task labeled samples in a supervised
manner from the Graphium library [32]]. In addition to the GNN-based backbone, more expressive ar-
chitectures like Graph Transformer [64} 165, 66] have been proposed and can be used as the pre-trained
backbone with supervised labels, which we adopt GraphGPS [65] as a representative.

Fine-tuning’s overall goal is to adapt the pre-trained model to downstream applications. Specifically,
given a pre-trained GNN encoder fg with parameters 6 initialized from the pretrained parameters
0,1, fine-tuning optimizes the encoder fg and an additional prediction head g¢ with parameters ¢
over downstream molecules {(G;, y;)}¥.;. The vanilla version, full-FT, optimizes the entire model

weights following: N
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where 0 is initialized as @, and £ denotes the loss function for prediction tasks. As discussed,
there are advanced fine-tuning strategies proposed on top of the full-FT framework. As shown in
Fig.[I] we group them into three categories based on their mechanisms and benchmark representative
methods for each category. More FT methods that fall into each category or others will be discussed
in Appendix [C|

e Partial FT strategies only optimizes partial weights of the pre-trained model, i.e., a subset of
weights within {0, ¢} will be updated following the same objective as Eq.|l| Linear Probing (LP)
only trains the additional prediction head g during the FT. Surgical FT [12] updates only partial layers
within the encoder. For instance, we can update the weights for k-th layer of the GNN encoder as
mingg), ¢} Zf\il L(ge o fo(G:),y:), where k is the hyperparameter that can be tuned. LP-FT [20]
aims to address the issue of pre-trained feature distortion during the full-FT process. It first performs
the LP step to the prediction head g4 while keeping the encoder fg with fixed pre-trained parameters
Oy, followed by applying full-FT with the tuned prediction head.

o Weight-based FT strategies mainly update the entire model weights through combining pre-
trained model weights and fine-tuned model weights. WiSE-FT [19]] linearly interpolates between
pre-training parameters 8, and fine-tuning parameters 6y using a mixing coefficient a, to get the
interpolated GNN fo, = with weights O, = (1 — ) - Oprc + o - 0. We first perform full-FT to
obtain the adapted encoder fg, and classifier g4, then apply post-hoc weight ensembling to get fq,,,
with final predictions given by g o fo,,(G:). @, as a hyperparameter, controls the weight ensemble.
L2-SP [14]] regularizes the fine-tuning model weights @ closer to the pre-trained weights .. by
Q(0, ¢) = 2]|0 — By |3. We optimize for 6 and ¢ by combining the prediction loss from Eq. [1|and
(0, ¢) with tunable trade-off coefficient J.

o Representation-based FT methods mainly regulate the latent representation space during
FT. Feature-map [13|] adds distance regularization between the latent representations of pre-
trained and fine-tuned models to the Full-FT loss. The regularization is defined as () =

) Zf\; 311fo(Gi) — fo,.(Gi)||3. where § controls the regularization strength. BSS [[I7] aims at
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Figure 1: The overall framework of fine-tuning strategies evaluated in our benchmark, ROFT-MOL,
and the proposed novel method, DWiSE-FT. (I) The GNN encoder is pre-trained on a large database
by the objective Ly, and fine-tuned on the downstream dataset by Ly (c.f., Eq. E[) 1) Partial-FT,
2) Weight-based FT, and 3) Representation-based FT achieve robust fine-tuning by freezing partial
pre-trained model weights, regularizing model weights and latent representations, respectively. (II)
DWiSE-FT combines the strength of simple post-hoc weight interpolation with more elaborate weight
ensemble, showing the improved performance while maintaining easy usage.

resolving the negative transfer issue through eliminating the spectral components corresponding to

small singular values that are less transferable. The regularization is done as Q(F') = ¢ Zle o2,
where F' = [fo(Go), - , fa(Gp)] is the feature matrix of a batch of graphs and o_; are the i-th
smallest singular values obtained from the SVD of F'. We can tune k and ¢ to determine the number
of singular values to penalize and the degree of penalty.

3 Experimental Settings in the Benchmark

In this section, we briefly introduce the experimental settings in this work. More detailed experimental
settings can be found in Appendix [F]

Foundation Models. For self-supervised pre-training, we adopt three open-source pre-trained
checkpoints: Mole-BERT, GraphMAE, and MoleculeSTM. For supervised pre-training, we use
models from the Graphium [32] library, which get pre-trained on the Toymix and Largemix datasets
provided in this library. To differentiate between them, we refer to these models as Graphium-Toy and
Graphium-Large. For larger graph transformer based model, we adopt the pre-trained checkpoint of
GraphGPS [65]] pre-trained on the PCQM4MV?2 [67]. For details of datasets used in pre-training are
in Appendix [D] Furthermore, we include the traditional baseline XGBoost [68]] for Fewshot scenarios
to better compare with the foundation model in Appendix

Downstream Datasets. We use 8 classification and 4 regression datasets for downstream task
evaluation. Detailed statistics and references for these tasks are in Appendix [E]

1 Classification. The BBBP dataset measures if a molecule will penetrate blood-brain barrier. The
Tox21, ToxCast, and ClinTox datasets are related to toxicity qualitative measurements. The Sider
dataset stores qualitative results of different types of adverse drug reactions. The MUYV dataset
is specifically designed for validation of virtual screening techniques. The HIV dataset provides
qualitative activity results of the molecular ability to inhibit HIV replication. The BACE dataset
contains qualitative binding results for a set of inhibitors of human -secretase 1 (BACE-1).

1 Regression. Esol is a dataset which measures aqueous solubility of molecules. The Lipo dataset
measures the octanol-water partition coefficient. Cep is a subset of the Havard Clean Energy Project
(CEP), which estimates the organic photovoltaic efficiency. Malaria measures the drug efficacy
against the parasite that causes malaria.

Dataset Splits. For each downstream dataset, we experiment with random, scaffold, and size splits to
create the Train/Val/Test subsets. Specifically, the random splitting shuffles the data, maintaining the
Train/Val/Test sets as in-distribution (ID). The other two splitting methods simulate out-of-distribution
(OOD) challenges in real-world applications. For scaffold splitting, we follow prior works [69]],
ensuring structural differences in molecular scaffolds across splits. Size splitting, following Zou et al.
[70], arranges molecules in ascending order by size, evaluating model generalization across different
molecule sizes.
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Figure 2: Average Rank improvements over Full-fine-tuning for 7 robust fine-tuning methods in self-
supervised and supervised pre-training across 8 classification (a, b) datasets and across 4 regression
(¢, d) datasets. Each subfigure presents few-shot-50 (left of the dashed line) and few-shot-100 (right
of the dashed line) settings, with random, , and size splits.

Size of fine-tuning samples. In practice, molecular property prediction tasks can have very limited
experimentally-validated data, e.g., with less than 100 samples [41]]. Thus, we consider both Non-
Fewshot and Fewshot settings to better simulate the label scarcity issue. In the Non-Fewshot setting,
we use all available samples from the splitted train set. In the Fewshot settings, we sample subsets
of 50, 100, and 500 molecules from the Train set for fine-tuning, while keeping the Val/Test sets
unchanged to ensure a fair comparison. Note that we exclude MUV, Tox21, and ToxCast datasets for
the Fewshot settings, as we cannot randomly select training samples while ensuring that all tasks have
a specified number of labels simultaneously, due to the severe label scarcity issues in these datasets.

Evaluation Metrics. We use AUC to evaluate the performance for classification datasets and
RMSE for regression datasets. We report the model performance over 5 random seeds and the test
performance are reported based on the best validation performance. The AVG, AVG-F, AVG-R
denote the average metrics, average metrics without max and min values, and average rank over all
the datasets for each evaluated method, respectively.

Table 1: A summary of evaluated pre-trained models and their corresponding result tables for
reference. “CLF” and “RGS” represent classification and regression tasks, respectively, while “NON”
and “FEW” denote Non-Fewshot and Fewshot settings.

Reference Tables of Experimental Results

Objectives Models CLF-NON CLF-FEW RGS-NON RGS-FEW
Mole-BERT 0]
Self-Supervised GraphMAE 12 114 13 115]
MoleculeSTM 3] 10] O 1]
. Graphium-Toy 6]
Supervised Graphium-Large 3] 10| 9] 1]
GraphGPS 12 14 13| 15]

4 Results and Analysis

This section mainly analyzes the experimental results from Mole-BERT and Graphium-Toy models as
representatives of self-supervised and supervised pre-training. Table[I]is a summary of all pre-trained
models we test on and their corresponding result tables for reference. Since we observe similar
trends from pre-trained models of the same category, we will refer to them in our result analysis
and compare over different pre-trained models in Sec. 3] Due to limited space, more findings with
different fine-tuning methods and pre-trained models comparison can be found in Appendix [G]

4.1 Self-supervised Pre-trained Models
Q1: How does self-supervised pre-training influence downstream prediction tasks?

(1a) Regression tasks require more task-specific knowledge from downstream fine-tuning
compared to classification tasks.



Table 2: Robust fine-tuning performance on 8 Classification datasets (AUC metrics) in the
Non-Fewshot setting, evaluated across 3 dataset splits (RANDOM, SCAFFOLD, SIZE), over
MOLE-BERT and GRAPHIUM-TOY models. AVG, AVG-F, AvG-R denote the average AUC,
average AUC without max and min values, and average rank over all the datasets for each method,
respectively. Standard deviations across five replicates are shown. We bold and underline the best
and second-best performances in each scenario.

SPLIT METHODS CLINTOX BBBP BACE HIV MUV SIDER Tox21 TOXCAST AVG  AVG-F  AVG-R

SELF-SUPERVISED PRE-TRAINING (MOLE-BERT)

FuLL-FT 77.70 £ 1.50 80.12 4+ 1.07 77.00 = 0.80 80.50 + 0.81 63.47 +0.77 78.31 +£0.28 65.18 + 0.35 74.37 3.75
LP 66.49 £ 0.46 78.70 £ 0.27 77.154+0.12 79.27+0.48 62.01 4 0.60 78.12£0.15 64.75 4+ 0.17 TLTT 6.12
SURGICAL-FT  68.19 £ 1.58 67. 84.24£0.37  76.65 £ 0.46 81.60 & 1.02 64.61 4 0.31 78.34 +0.10 65.21 4 0.28 72.95 3.62
SCAFFOLD LP-FT 70.35+0.99 68.30+£0.65 81.90=+0.70 76.69 £+ 0.40 77.65 £ 1.15 63.38 + 0.67 77.60 £0.19 65.32 4 0.24 72.65 4.88
WISE-FT 73.59 4 3.74 66.52 4 3.29 82.734+0.87 77.21+0.69 81.92+094 63.62+0.62 78.05 4 0.28 65.41 4+ 0.25 73.78 3.38
L2-SP 73.95+1.86 6786+ 1.68 8L4TE080 T76.63+0.56 77.21+£0.72 65.27+0.45 78.66+0.17 63.55+0.16 73.26  4.50
FEATURE-MAP  70.65 + 0.76 65.41 +2.37 73.444+0.23 76.71+0.26 80.03 +0.47 64.35+0.17 76.61£0.39 65.77£0.15 71.43 5.25
BSS 76.07 4+ 3.23 67.47 + 3.80 80.98 4+ 1.27 77.1240.86 77.35 + 1.76 63.88 4 0.80 78.19 £+ 0.40 65.00 4 0.27 73.53 4.50
FULL-FT 72.78 £ 1.74 87.37+0.82 66.00 & 1.99 79.85 £ 0.64 77.0242.15 52.46 +0.29 75.74 £0.48 63.13 4 0.32 72.42 4.88
LP 76.07£0.32 82.73+£0.76 47.18 £ 0.45 78.16 £0.24 78.52 + 1.60 51.2540.22 74.92+£0.22 63.33 +0.20 70.37 6.00
SURGICAL-FT  73.55 4 0.81 88.82+0.53  66.43 4 0.88 79.30 £ 0.87 80.52+1.47 51.87+0.23 76.32+0.16  64.51 +0.20 73.44 3.50
SIZE LP-FT 75.324+0.93 83.42 + 1.67 64.84 +1.38 79.10+1.14 52.82 +0.32 76.40 £0.28 63.37 +0.29 73.07 3.88
WISE-FT 73.45 4+ 1.08 87.79 +1.53 66.58 4+ 1.11 79.89 4+ 1.75 .46 £ 0.49 76.46 + 0.46 63.53 4 0.65 73.05 3.00
L?-SP 73.97 +0.88 87.15 4+ 0.68 64.58 +1.93  80.05 £+ 0.53 52. 0.22 75.84 +0.28 60.63 + 0.36 71.65 5.12
FEATURE-MAP  74.61 4+ 0.53 85.42 +0.31 51.23 + 0.46 76.39 £ 0.91 51.96 £0.26 76.81+0.25 63.42+0.76 69.73 5.00
BSS 73.99 +£0.77 86.84+1.00 66.97+1.58 79.64+1.44 73424260 53.50+0.66 7569+ 0.26 62.41 4+ 0.69 72.02 4.62

SUPERVISED PRE-TRAINING (GRAPHIUM-TOY)
FuLL-FT 81.27 + 3.88 69.17 +1.32 79.75 + 1.07 76.42 +0.72 76.84 +1.80 63.63 4+ 0.06 78.12 4+ 0.46 66.37 4+ 0.26 74.45 3.75
LP 80.48 4+ 0.00 66.90 = 0.00 80.44 4+ 0.00 75.83 +0.00 73.35 4+ 0.00 62.03 4+ 0.00 79.02 £ 0.00 66.09 + 0.00 73.61 5.12
SURGICAL-FT ~ 86.17+0.00 73.71+0.00 84.16+0.00 77.47+0.00 78.87+0.00 64.02+0.00 78.23+0.00 67.34+0.00 76.63 1.38
SCAFFOLD - 83.67 +3.53 69.98 +0.83 79.28 £ 0.32 76.17 £ 2.01 77.82+1.15 61.20 + 0.00 76.94 £+ 0.00 66.28 +0.00 74.41 4.62
WISE-FT 85.40 £ 1.61 71.894+1.79 78.13 +2.92 76.69 +1.76 74.37+ 1.79 63.58 4 0.00 77.98 £0.33 66.48 4 0.43 74.26 3.62
L?-SP 76.83 4 8.87 67.35 +0.82 62.35 4+ 0.15 62.21 4+ 0.45 76.27 £ 0.32 62.75 4 0.88 69.87 6.62
FEATURE-MAP  90.13 £2.12  70.99 £ 0.27 78.74 4+ 0.76 62.124+0.02 79.99+0.12 65.03+0.08 75.25 3.50
BSS 79.99 4+ 5.89 67.10 +£0.93 61.20 + 0.08 61.13 +0.95 76.69 £ 0.64 65.45 4 0.89 70.18 7.38
FULL-FT 85.96 + 4.28 87.62 4 0.90 67.41 4 2.44 81.47 +1.94 72.03 + 2.55 =+ 0.01 69.71 4+ 0.37 61.31 4 0.37 72.98 3.88
LP 81.84 +0.02 78.09 £+ 0.00 58.08 +0.01 77.48 +£0.00 69.46 + 0.00 53.59 +0.00 73.65 £+ 0.00 61.25 4+ 0.00 69.67 5.38
SURGICAL-FT ~ 86.594+0.01  89.07 +£0.00 70.94 4 0.01 82,50 £0.00 74.47+£0.00 56.24+£0.00 7230+0.00 62.74+0.00 74.92 1.62
SizE LP-FT 86.78 .69 88.02 £ 1.50 63.72+1.85 82.57 +£0.46 51+ 1.77 52.40 +0.00 68.23 + 0.87 60.85 4 0.00 72.61 4.00
WISE-FT 82.44 £ 3.02 87.76 £ 0.5 72.89+0.66 81.37+1.07 7+ 3.44 55.87 4 0.01 68.85 4+ 0.84 60.61 4+ 0.53 73.31 3.62
L?-SP 71.03 4 3.67 81.32 4+ 1.51 68.82 4 0.06 70.66 £ 0.00 64.69 + 0.32 52.08 4 0.84 70.91+0.34 56.50 4 0.01 67.10 6.88
FEATURE-MAP  82.48 +3.25 87.70 + 0.64 69.56 4+ 0.20 67.23+1.93 71.49+0.13 54.434+0.03 74.12+0.09 58.73+0.04 70.60 4.38
BSS 72.4240.03 82.92 + 1.60 62.76 +4.23 72.81+0.66 65.79 + 5.31 52,894+ 1.12 71.91+£0.44 57.79+ 1.80 67.25 6.25

Table 3: Robust fine-tuning performance on 4 Regression datasets (RMSE metrics) in the
Non-Fewshot setting, evaluated across 3 dataset splits (RANDOM, SCAFFOLD, SIZE), over
MOLE-BERT and GRAPHIUM-TOY models. AVG-R,AvG-R* denote the average rank and the
rank based on the average normalized performance over all the datasets for each method, respectively.
Standard deviations across five replicates are shown. We bold and underline the best and second-best
performances in each scenario.

. DS SELF-SUPERVISED PRE-TRAINING (MOLE-BERT) SUPERVISED PRE-TRAINING (GRAPHIUM-TOY)
SpLT METHODS
EsoL Lipo MALARIA Cep AVG-R  AVG-R" | EsoL Lipo MALARIA Cep AVG-R  AVG-R®
FULL-FT 1126 £0.014  0.728+0.011 115240015 1.377+0.015  3.75 5 091140041 0.709+£0.009  1.110+0.009  1.419+0.014  4.00 4
LP 1614£0010  0870+£0.003  1.110£0.002  2.006+0.002  7.00 8 097340000 088140000  1.105+£0.000  1.826+0.000  6.75 8
SURGICAL-FT  1.166 % 0.017 1120£0.014 1601 £0.006 525 6 089240000 070940000  1.105+£0.000  1.419+0.000 350 2
SCAFFOLD LP-FT 1.070 +0.021 11440022 1.397£0.013 350 4 092240004 073540019 1080 +0.005 4 0.037  4.00 3
WISE-FT 1.264 % 0.055 1.072+0.001 147040020  4.00 2 0.888£0.014 070840008  1128+0.021 024 375 6
L?-SP 1.099 4 0.030 110140001 1.631£0.006 375 3 094840022  0729+£0015  1.141£0.015 7.00 7
FEATURE-MAP 1403 £0.012 08420004 108340002 178740003 575 7 0895+ 0016  0.688+0.018 1.074+0.000 2.50 1
BSS 111040022 07260004 11250018 138540018  3.00 1 0896+ 0018 071840018  1.130 +0.005 4.50 5
FULL-FT L419£0.044 074540008  0.896+0.007 1.89340.035  3.25 3 1.070+0.082  0.719+£0.010  0.886 % 0.007 1.00 4
LP 2073£0.012 09120004  0.921+0.008  2.381£0.006  8.00 8 L11540.000  0.82040.000  0.907 % 0.000 8.00 8
SURGICAL-FT  1.685+£0.060  0.775+0.007 08900005 214540022  5.00 6 0.993£0.000 0.71940.000  0.860 + 0.000 2.50 1
Size LP-FT 144040081 0.735£0.013  0.893£0.007  1.905+0.016  3.50 2 103840038 0.694+£0.012  0.88340.005 275 2
b WISE-FT 1.814 % 0.092 ). 0.873+£0.005 195140024 450 5 1100 £0.005  0.691£0.015  0.894%0.007 4.50 6
L2-SP 1.438 % 0.046 X 0.888+0.005 210140016  4.00 4 L053+0.026  0.72040.015  0.904 % 0.002 6.00 7
FEATURE-MAP  1.656 £0.025  0.880£0.011  0.893+0.002 225240008  6.25 7 0.993£0.034  0.724+0.009 0884 % 0.001 4.50 3
BSS 1.375+£0.019 0.731£0.007 088740010 190040016  1.50 1 10430022 0.703£0.016  0.905 % 0.005 3.75 5

When checking the few-shot results in Fig. 2aland [2¢] full fine-tuning ranks the highest for regression
tasks but only achieves mid-tier performance for classification tasks. This disparity likely arises from
the distinct nature of these tasks. Classification tasks typically require coarser-grained features, as
exemplified by the Tox21 dataset. In this case, determining toxicity may largely rely on recognizing
certain functional groups, such as toxicophores or structural alerts [[71]]. In contrast, regression tasks
demand finer-grained features. For example, predicting precise solubility involves factors such as
partial charge distribution, conformational flexibility, and hydrogen bond patterns, among others [[72].
Consequently, models fine-tuned for regression tasks must acquire more downstream knowledge
during the fine-tuning process and are generally less prone to overfitting compared to those used for
classification tasks.

(1b) Molecular representations learned from self-supervised pre-training are not informative
enough for downstream tasks.

As shown in Tables [2]and [3] LP is consistently the worst performing method for self-supervised
pre-trained models across all data splits, even under the few-shot fine-tuning in Fig. [2a] and
Furthermore, this behavior is widely observed across all tested self-supervised models as GraphMAE
and MoleculeSTM, which contrasts the observations in CV where LP demonstrates robust OOD
performance by preserving high quality and generalizable features from pre-trained embeddings [19,



20]. We attribute this to the misalignment between general-purpose representations produced by
self-supervised pre-training and the features required by the specific molecular tasks. Consequently,
relying solely on tuning the classifier g is insufficient to extract meaningful predictions from these
non-informative representations.

Below, we summarize insightful findings from the performance of different fine-tuning strategies.

e Finding 1. Under few-shot fine-tuning, weight-based fine-tuning strategies stand out with
WISE-FT for classification tasks and L2-SP for regression tasks.

Among various fine-tuning methods, weight-based approaches consistently outperform others across
a wide range of experiments, regardless of the few-shot sample sizes (Fig.[2a]and [2c). Self-supervised
models are known to capture general-purpose knowledge for substructure discovery[39]. During fine-
tuning, combining pre-trained and fine-tuned weights proves effective in extracting molecular patterns
relevant to downstream tasks. Notably, WiSE-FT demonstrates superior performance on classification
datasets, whereas L2-SP excels in regression tasks. This finding is also supported by MoleculeSTM
in table Where L?-SP remains as top method under all few-shot regression tasks and WiSE-FT
excels under Fewshot-50 classification. Essentially, WiSE-FT applies a straightforward post-hoc
linear interpolation between pre-trained and fine-tuned models, governed by a single coefficient.
In contrast, L2-SP implicitly determines the weight combination through the training loss [13} [14]],
aligning with statement (1a) that regression tasks typically demand more nuanced modeling.

o Finding 2. Partial FT results in underfitted molecular representations under Fewshot settings,
which is more severe for regression tasks compared to classification.

For the non-few-shot fine-tuning (Tables [2]and [3), surgical FT and LP-FT improve over full FT in
both classification and regression tasks. However, in few-shot fine-tuning, both methods rank as the
worst methods. This is likely because partial fine-tuning underfits and bias towards the the limited
samples. This issue is more pronounced in regression tasks.

4.2 Supervised Pre-trained Models
0Q2: How does supervised pre-training influence downstream tasks?

We first discuss the task similarity between the datasets used in the pre-training and downstream
fine-tuning process. As introduced in Appendix. D] the ToyMix dataset used for supervised pre-
training contains QM9, Tox21 and Zinc12K. The predictions from QM9 are not directly related to
our downstream tasks, but may involve indirect correlations, as the quantum chemical properties
provided by QM9 are highly valuable for characterizing molecular features. Tox21 is an overlapping
dataset that also exists as one of the downstream datasets. Its tasks in predicting qualitative toxicity
measurements are highly related to the downstream ClinTox and ToxCast datasets, and also correlate
to the Sider dataset which contains evaluation in drug side effects. Lastly, Zinc12K, which is to
predict the constrained solubility, is relevant to the Esol and Lipo datasets that involve solubility
predictions. Other downstream tasks do not share the same tasks with pre-training directly. Then we
observe the following rules.

(2a) Under few-shot fine-tuning, supervised pre-training models generally yield higher fine-
tuning performance compared to self-supervised pre-training, regardless of the pre-training
and fine-tuning task correlations.

Supervised pre-training brings more benefits to downstream tasks than self-supervised pre-training in
few-shot situations when checking Tables @ andm Besides, the benefits are less relevant to the task
similarity in contrast to the non-few-shot cases. For example, the improvements are also observed in
HIV and Cep datasets even their tasks do not share with pre-training tasks directly. This implies that
learned domain-specific knowledge still offer better insights than generic knowledge when fine-tuning
guidance is minimal.

(2b) Under non-few-shot fine-tuning, fine-tuning performance given supervised pre-training
outperforms self-supervised pre-training when its objectives closely align with downstream
tasks, while task misalignment may harm performance.

From Tables [2] and [3] we observe consistent fine-tuning performance improvements over self-
supervised pre-training on highly task-correlated downstream datasets including ClinTox, Esol,
Lipo and Tox21. Even when pre-training involves regression tasks and downstream tasks are classifi-
cation, performance gains occur if the physical meanings align. For datasets that do not directly share



Table 4: DWiSE-FT performance on 4 Regression datasets (RMSE metrics) in the Fewshot set-
ting with 50, 100 samples, evaluated across 3 dataset splits (RANDOM, SCAFFOLD, SIZE) given
MOLE-BERT model. AvG-R denote the average rank. Standard deviations across five replicates
are shown. We bold and underline the best and second-best performances in each scenario.

FEWSHOT 50 FEWSHOT 100
SeLIT METHODS ESOL LiPo MALARIA cep AVG | EsoL LiPO MALARIA cep AVG
WISE-FT  1384£0.047 121240020 12760007 241040051 375 | 1.189£0030 114240025 1.256+0.006 22110028  3.00
RANDOM L2-SP 137240029 119640019 12770006 228040031 300 | 1161£0.016 114940007 126040004  2131£0.014 3.5
Top 132950021 116440010 1271+£0007 2275£0022 125 | 1120£0038 113940017 1.256+0.006 21310014 150
DWISE-FT 1.378 £ 0.055 1.189 + 0.020 1.273 + 0.009 2.2224£0.059 2.00 1.132 £ 0.025 1.138+£0.028 1.256+0.004 2.129+0.020 1.25
WISE-FT 184240056 117740009 11620004 2450£0.043 350 | 15140063 104140017  LI51£0.007 2301 £0.042 350
scamroLy  LASP 1699£0.049 108640009 LI62£0002 233140024 250 | 147340009  0.961£0.003  1153£0.002 220140038 250
; Top 1.680£0.042 1036 +0007 11590000 2.292+0026 125 | 143650054 09370008 1.149+0.003 21870031 125
DWISE-FT 1616 £0.047 11100013 11730005  23064£0.030 250 | 14850041 097940014  1158+0.009 2149+0.040 275
WISE-FT 2.615+0.072 1.391 + 0.042 0.929 + 0.004 2.762 £ 0.053 4.00 2.216 £ 0.056 1.124 £ 0.031 0.917 £ 0.004 2.543 £ 0.027 3.75
SizE L2SP 2393£0068  1306+0.037  0.915%£0002 2497+£0.019 250 | 1731£0.071 1.025+0.028 09050002  2424£0.024 175
Tor 2.369 £ 0.075 1297 +£0.040 0.911£0.002 2497 +0.019 1.50 1.731 £ 0.071 1.025+0.028 0.898 + 0.003 2.424 £+ 0.024 1.50
DWISE-FT 1488£0.101 L113+0021 09130007 253940023 175 | 1469£0052 103140022  0.920+£0006 2.390£0.025 225

tasks with pre-training, we observe mixed performance on Sider, Malaria, and Cep datasets, and even
worse performance on HIV and MUYV datasets. This observation contrasts to few-shot cases in (2a),
which entails that downstream task specific knowledge can be learned given sufficient guidance on
top of generic knowledge from self-supervised pre-training.

Below are some detailed findings with different fine-tuning methods given supervised pre-training.

e Finding 3. Fine-tuning strategies that regularizes towards pre-trained molecular representa-
tions rank top, while weight-based methods are suboptimal.

From non-few-shot (Tables [2]and [3)) and few-shot fine-tuning (Figs. [2b]and [2d) in both supervised
models with ToyMix and LargeMix, surgical FT and Feature-map tend to be the top-ranking methods.
However, best performing weight-based methods for self-supervised pre-training, only show mediocre
performance here. This can also be observed in the larger-scale GraphGPS model as discussed in
Appendix In addition, the other representation-based method BSS shows limited performance
compared to Feature-map, which directly regularizes the distance to pre-trained representations. These
observations suggest that given the task alignment between supervised pre-training and downstream
fine-tuning, pre-trained representations tend to contain transferable features for downstream tasks.
Consequently, controlling the degree to preserve pre-trained representations is the key to downstream
fine-tuning performance.

4.3 Discussions over Pre-trained Models

Our extensive evaluation shows that the ranking of fine-tuning techniques remains consistent across
pre-trained models within the same category, either supervised or self-supervised, regardless of model
architecture, scale, or pre-training dataset. This suggests that our guidance for selecting fine-tuning
methods based on the pre-training paradigm is broadly applicable and generalizable across diverse
model designs. For instance, self-supervised models such as Mole-BERT and MoleculeSTM tend to
benefit more from weight-based fine-tuning, while supervised models like Graphium and GraphGPS
perform better with feature-based approaches.

5 Methodology Exploration

Based on findings in Sec.[d] we observe that weight-based fine-tuning generally performs well under
self-supervised pre-training. However, the top strategy varies: WiSE-FT excels in classification
tasks, while L2-SP is more effective for regression tasks. This motivates us to further explore the
connections and trade-offs between these methods to identify potential improvements. In this section,
we introduce DWiSE-FT, an extension of the weight ensemble method unifying the strengths from
WiSE-FT and L2-SP. DWiSE-FT demonstrates top-ranking results through efficient post-processing
that better suits the practical fine-tuning needs.

5.1 Motivation

As introduced in Sec. 2] WiSE-FT adopts the post-hoc linear interpolation between the pre-trained
and fine-tuned model weights as (1 — @) - Opre + - . Although L?-SP does not explicitly have

weight interpolation in the form, the optimal weight 6y from the weight-regularized loss £~(0) is
indeed the linear interpolation of the optimal model from full FT 6 and the pre-trained model 0.



Proposition 1. Given £(0) = L(0) + 2116 — 6,.||3, we define the optimal weights as 0, =
argming £(0) and 6; = argming £(0).

Q76 = (A +0T) "' AQT; + 5(A + 1) Q"6 . @)
where H is the hessian matrix of L evaluated at 67 and H = QAQ".

Namely, L2-SP can be seen as a more tailored weight ensemble method, employing variable mixing
coefficients for different weights. This approach balances the influence of the prediction loss and the
degree of weight regularization, unlike the fixed interpolation controlled by « across all weights in
WiSE-FT. By accounting for subtle differences in loss values, L2-SP is better suited for regression
tasks, which are more sensitive to numerical variations.

While L2-SP excels on regression datasets, its regularization coefficient is less interpretable and
necessitates retraining when experimenting with different values. In contrast, WiSE-FT offers a
simpler and more flexible approach, performing post-hoc interpolation without additional training
once the model is fine-tuned once. Furthermore, the mixing coefficient « is both easy to adjust and
straightforward to interpret. Therefore, our goal is to find a method that benefits from both WiSE-FT
and L2-SP to accommodate regression and classification tasks at the same time.

5.2 Algorithm

We propose DWiIiSE-FT that shares the framework of using the « to control the weight ensemble
between the pre-trained model and fine-tuned model. The key idea, inspired by Eq.[d]is to enable
different cv values when ensembling the weights for different encoder layers as shown in Fig.[I] Given
the pre-trained model with parameters 6. and model after full fine-tuning with parameters 6y, The

interpolated model has weights 8" with mixing coefficient o; for the i-th layer as:
6l = (1 —a,)- 61, +q, -6 3)

pre

This approach naturally incorporates the characteristics of L?-SP and even surgical FT: The weight
ensemble in DWiSE-FT offers the flexibility through varying mixing layer-wise coefficients between
the pre-trained and fine-tuned models, addressing the limitations of WiSE-FT. Additionally, we enable
the selection of ¢ through optimization via validation loss gradient inspired by the Gradient-based
Neural Architecture Search (NAS) [73]].

5.3 Experiment results

Regarding the classification datasets, DWiSE-FT should have the performance at least as good as
WISE-FT since WiSE-FT is the special case of DWiSE-FT with one fixed mixing coefficient. We
evaluate DWiSE-FT to see how it improves upon WiSE-FT and matches the superior performance
of L2-SP for regression tasks under few-shot fine-tuning. Please note that, due to space constraints,
we only present the experiments for few-shot fine-tuning with 50 and 100 samples in the main text.
The complete table is available in Appendix E, Table [I6] In Table @] we compare DWiSE-FT’s
performance against WiSE-FT, L2-SP, and the best-performing method in each setting. Specifically,
we find that DWiSE-FT consistently outperforms WiSE-FT. Furthermore, DWiSE-FT often surpasses
L2-SP or at least maintains comparable results in most scenarios. Additionally, in some cases,
DWIiSE-FT even exceeds the performance of the best-performing methods. Therefore, DWiSE-FT
can be a great candidate for fine-tuning on regression datasets in practice since it guarantees top
performance with easier usage.

6 Conclusion

This work benchmarks totally 8 fine-tuning methods, categorizing them into three groups, and evaluate
them across 12 downstream datasets under 36 different experimental settings covering 3 dataset
splits, 4 training sample sizes, and 6 molecular pre-trained models. The design of these settings
reflects practical demands of molecular representation fine-tuning under 1) diversified foundation
model with both supervised and self-supervised pre-training, 2) wide range of downstream tasks
in both classification and regression that has not been widely studied by previous literature and
3) scarcely labeled molecules for fine-tuning. The study analyzes what is needed when facing
classification vs. regression tasks and when given supervised vs. self-supervised pre-training. Then,



we provide insights in best performing fine-tuning methods accordingly under aforementioned
scenarios. Additionally, we propose an extended fine-tuning method DWiSE-FT, driven by our
observations, that maintains top-ranking results through a more efficient and automated design for
certain fine-tuning scenarios. This highlights the value of our benchmark in offering valuable insights
for both fine-tuning methodology design and practical guidance in molecular representation learning.
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material?
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Justification: The access to datasets and codes are provided and we include the detailed
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reproduce the results. See the NeurIPS code and data submission guidelines (https:
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Experiments compute resources
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puter resources (type of compute workers, memory, time of execution) needed to reproduce
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Answer: [Yes]
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* The answer NA means that the paper does not include experiments.
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experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We follow the code of ethics.
Guidelines:

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.
* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We include the broader impact discussion in appendix.
Guidelines:
» The answer NA means that there is no societal impact of the work performed.
* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations

(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cite the sources of the datasets that are used.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: The new assets introduced in the paper are well documented.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

23



Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Proof of proposition 1

Proposition 2. Given L£(8) = L£(8) + 2116 — 6,.||3, we define the optimal weights as 0y =
argming £(0) and 0}, = argming £(6).

Q"0; = (A+6I)'AQ”6; + 5(A + 1) 'QT6,, . 4)
where H is the hessian matrix of L evaluated at 0; and H = QAQ".

Proof. Based on the quadratic approximation, we can approximate £(6) as follows:
£(68) = £(65) + £(63)(6 — 6;) + 3(6 — 6)H(6 — 6})
= £(67) + 5(6— 6;)"H (6 - 67)
since £(05) = 0 as 65, is the minimum. Then, we add the weight regularization term, such that
£(6) = £(67) + (0 — 6) H(O — 07) + 516, — 6y

Then, we solve for 8y by setting V.£(0) = 0
H (0 — 0}) +6(0 — Opre) = 0
(H +61)0y = HO}, + 66,
O = (H + 6I)" (HO; + 66,r)
0 = (QAQ” +0I)71(QAQ” 6}, + 6pre)
Or = (QA +30)QT)H(QAQT; + 66,)
Q" 0y = (A + D) 'AQTE; + 6(A + 1)1 QT Oy

B Limitations and Future Works

We acknowledge certain limitations in this current work and highlight potential improvements for
future research. Firstly, this study primarily focuses on the property prediction tasks of small
molecules using 2D-graph based foundation models. Exploring a broader array of foundation models
across a wider range of applications—such as covering more areas like DNA, proteins, and materials,
addressing various scientific tasks like linker design and chemical reactions, and incorporating
diverse data formats like 3D geometric data—is highly worthwhile. Secondly, although we attempt
to include many representative fine-tuning methods from various categories in this study, additional
fine-tuning methods from different categories, as discussed in Appendix[C| deserve investigation. For
instance, future research could explore whether graph-specific fine-tuning methods offer additional
benefits over non-graph fine-tuning approaches across various settings we design. Thirdly, the method
DWIiSE-FT introduced here is an extension and combination of existing methods directly motivated
by our benchmark findings for specific fine-tuning scenarios. Future work may involve more thorough
exploration into fine-tuning methodology design inspired by our current findings, and aiming to
develop approaches effective across a broader range of fine-tuning scenarios.

Regarding the broader impact, we recognize our work can be beneficial to the drug discovery and
material science, but people should be aware of the misuse of molecular property prediction tasks to
harmful chemical production.

C Additional Discussions of Related Works

In this section, we additionally discuss more related works about fine-tuning (FT) techniques. De-
signing advanced fine-tuning strategies first gained attention in the computer vision (CV) and natural
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language processing (NLP) domains, leading to the development of various research directions. We
categorize the mainstream approaches into the following groups.

Partial model FT. Numerous studies demonstrate that freezing certain parameters while fine-tuning
only specific components of the pre-trained model can help mitigate overfitting during the fine-tuning
process 744751764 [77,178,[79]]. Specifically, Linear Probing (LP) only trains the additional prediction
head during FT. Surgical FT [12] selectively fine-tunes a subset of layers based on the specific
mechanism of distribution shifts. Partial FT is similar to the concept of parameter efficient fine-tuning
methods like LoRA [80], Prefix tuning [81] and IA3 [82]. We also include an additional study on
LoRA performance in App.[G.3]

Weight-based FT strategies mainly control the model weights during the FT. Specifically, WiSE-
FT [19], grounded on the linear mode connectivity [83]], linearly interpolates between pre-training
parameters and fine-tuning parameters by a mixing coefficient. L2-SP [14] regularizes the fine-tuning
model weights using L? distance to constrain the parameters around pre-trained ones. REGSL [84]
further introduces a layer-wise parameter regularization, where the constraint strength gradually
reduces from the top to bottom layers. MARS-SP [85] adopts the projected gradient method (PGM)
to constrain the fine-tuning model weights within a small sphere centered on the pre-trained ones.
More recently, TPGM [86] further incorporates trainable weight projection radii constraint for each
layer, inspired by MARS-SP, to support layer-wise regularization optimization.

Representation-based FT methods mainly regulate the latent representation space during FT. Feature-
map [13] adds distance regularization between the latent representations of pre-trained and fine-
tuned models to the Full-FT loss. DELTA [87] specifically constrains feature maps with the pre-
trained activations selected by channel-wise attention. BSS [17]] penalizes the spectral components
corresponding to small singular values that are less transferable to prevent negative transfer. Li et al.
[88] proposes to transfer representations by encouraging small deviations from the reference one
through an regularizer based on optimal transport. Inspired by this, GTOT-Tuning [89] presents
optimal transport-based fine-tuning framework. LP-FT [20] first performs LP to prediction head
while keeping the pre-trained encoder fixed, followed by applying full-FT with the tuned prediction
head.

Architecture Refinement. Besides the weight and representation based FT, StochNorm [90]] refactors
the widely used Batch Normalization (BN) module and proposes Stochastic Normalization, to transfer
more pre-trained knowledge during the fine-tuning process and mitigate over-fitting.

Contrastive-based FT. As discussed in Sec. [2] contrastive-based strategies have been widely demon-
strated to be effective in the pre-training stage. There are other works which explore its effectiveness
in the fine-tuning process. Gunel et al. [91]], Bi-tuning [92], Core-tuning [93] and COIN [94] intro-
duce supervised contrastive learning [95] to better leverage the label information in the target datasets
with more discriminative representations as a result. More recently, FLYP [96] shows that simply
finetuning a classifier via the same contrastive loss as pre-training leads to superior performance in
finetuning image-text models. Oh et al. [97] fine-tunes the model with contrastive loss on additional
hard negative samples, which are generated by geodesic multi-modal Mixup, for robust fine-tuning in
multi-modal models.

Graph-specific fine-tuning techniques. Apart from the CV and NLP domains, several fine-tuning
techniques specifically designed for the Graph-ML domain have recently been proposed. GTOT-
Tuning [89] achieves efficient knowledge transfer from the pre-trained models by an optimal transport-
based FT framework. Bridge-Tune [98] introduces an intermediate step that bridges pre-training
and downstream tasks by considering the task similarity between them. G-tuning [99] tunes the
pre-trained GNN so that it can reconstruct the generative patterns (graphons) of the downstream
graphs. Li et al. [100]] leverages expressive adapters for GNNs, to boost adaptation to the downstream
tasks.

D Pre-training Datasets Detail

For self-supervised pre-training, Mole-BERT and GraphMAE are pre-trained over 2M molecules
sampled from the ZINC15 database [101], following previous works [[102]. MoleculeSTM is ini-
tially trained on PubChemSTM, a large multimodal dataset comprising over 280,000 chemical
structure—text pairs contructed from the PubChem database [103].
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For supervised pre-training, we use the models from the Graphium [32] library, which get pre-trained
on the Toymix and Largemix datasets provided in this library. The ToyMix dataset [32]], totally 2.61M
graph-level data points, contains QM9 [[104]], Tox21 [42] and Zinc12K [105]]. Specifically, QM9
consists of 19 graph-level quantum properties associated to an energy-minimized 3D conformation of
the molecules. Zinc12K is to predict the constrained solubility which is the term logP — SA — cycle
(octanol-water partition coefficients, logP, penalized by the synthetic accessibility score, SA, and
number of long cycles, cycle). The Largemix dataset, totally 343.4M graph-level data points and
197.7M node-level data points, contains four different datasets with tasks taken from quantum
chemistry (PCQM4M_G25_N4), bio-assays (PCBA1328) and transcriptomics (L1000 VCAP and
MCF7). Specifically, L1000 VCAP and MCF7 are from the LINCS L1000 database [[106]], which is
generated using high-throughput transcriptomics. VCAP and MCF7 are, respectively, prostate cancer
and human breast cancer cell lines. The PCQM4M_G25_N4 dataset is sourced from the PubChemQC
project [[107] that computed DFT properties on the energy-minimized conformation of 3.8M small
molecules from PubChem. The PCBA1328 dataset, originally sourced from Wang et al. [108]],
comprises 1,328 assays and 1.56M molecules and contains information about a molecule’s biological
activity across various assay settings. The pretraining dataset for GraphGPS is PCQM4Mv2, which
is a large-scale molecular dataset containing 3.75M graphs curated from PubChemQC. The task is
to regress the HOMO-LUMO gap, a quantum physical property originally calculated using Density
Functional Theory.

E Dataset Statistics
The statistics and references of the downstream datasets included in this work are shown in Table

Table 5: Summary for the molecular datasets used for downstream FT, where “# TASKS” and “#
MOLECULES” denote the number of tasks and molecules of each dataset, respectively.

DATASET EVALUATION METRICS TASK # TASKS  # MOLECULES
BBBP [[109] AUC CLASSIFICATION 1 2,039
Tox21 AUC CLASSIFICATION 12 7,831
ToxCAsT [110] AUC CLASSIFICATION 617 8,576
SIDER [111] AUC CLASSIFICATION 27 1,427
CLINToX [112] AUC CLASSIFICATION 2 1,478
MUYV [113] AUC CLASSIFICATION 17 93,087
HIV ZAHAREVITZ [[114] AUC CLASSIFICATION 1 41,127
BACE [115] AUC CLASSIFICATION 1 1,513
EsoL [116] RMSE REGRESSION 1 1,128
Lipo [117] RMSE REGRESSION 1 4,200
MALARIA [118] RMSE REGRESSION 1 9,999
CEP [[119] RMSE REGRESSION 1 29,978

F Details of Experimental Implementation

Pre-training Implementations. For self-supervised pre-training, we use the open-source pre-trained
checkpoints of Mole—BERTE] and GraphMAEﬂ For supervised pre-training, we follow the same
training pipeline as proposed in the Graphiunﬂ We drop out the task head MLPs used for supervised
pre-training during the downstream fine-tuning process, keeping only the graph encoder component.
Note that we keep the architecture of the GNN encoder and the graph pooling strategy the same
across the three pre-training models. Specifically, we use a 5-layer Graph Isomorphism Networks
(GINs) with 300 hidden dimension and mean pooling as the readout function.

Fine-tuning Implementations. We keep the same training configurations across all the downstream
datasets, pre-training models, and fine-tuning strategies, following Hu et al. [27]. Specifically, for

*https://github.com/junxia97/Mole-BERT
*https://github.com/THUDM/GraphMAE
https://github.com/datamol-io/graphium
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each distinct setting, we fine-tune the pre-training models with 5 random seeds (0-4). We use a batch
size of 32 and a dropout rate of 0.5. For each dataset, We train models for 100 epochs and report the
test performance when the optimal validation performance is achieved.

Hyperparameter Tuning. We set learning rate to be 0.001 for all the methods and train for 100
epochs. Below is the detailed sets of hyperparameters we tuned for each fine-tuning strategy.

* Surgical FT: We tune k as which layer in GNN encoder to be updated from {0, 1,2, 3,4}
since our backbone architecture is a 5-layer GIN.

* WiSE-FT: We tune the mixing coefficient «« from {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}
to control the weight ensemble from pre-trained model and fine-tuned model. A larger o
indicates the weights are adopted more from the fine-tuned model.

e L2-SP/ BSS/ Feature-map: For these three methods that involve an additional regularization
term in the loss, we tune the regularization coefficient § from {1, 0.1,0.01,0.001,0.0001}
to control the degree of regularization. For BSS, we follow the original paper and set & to be
1 meaning that we are regularizing the smallest singular value.

* LP-FT: We train the LP step before full fine-tuning for 100 epochs and then use the updated
prediction head as initilization for the full-FT afterwards for 100 epochs. The training all
use the default learning rate 0.001.

e Full FT/ LP: There is no additional hyperparameter tuning, where we use the default
fine-tuning setting.

e DWISE-FT: We tune the initialization of «; for each layer ¢, where we use the same value to
initialize for all layers from {0.9,0.7,0.5} and the learning rate for validation loss descent
from {0.001, 0.005,0.01}. We tune « over validation sets over 200 epochs.

Indeed, from the DWiSE-FT experiments with different starting points of mixing coefficients, the
variance of final results is small since it will converge towards the optimal value of mixing coefficients
regardless of the initial starting point given a reasonable training time.

Computing Resources The experiments are run on NVIDIA RTX A6000 with 48G memory.

G Further Result Discussions

G.1 Comparisons over pre-trained models

We mainly select the pretrained models based on their pre-training objective divided as supervised
and self-supervised learning as discussed in[2] Then, among each category of pretrained models, we
diversify with different architecture, model size and detailed training objective or pretraining dataset
to discover the effect to the downstream finetuning method selection.

In the following, we will briefly discuss some more results that are not included in the main text with
more pretrained models we tried. Detailed tables can be found in Appendix

In general, we found the trend discussed in the main text about the difference of supervised pretrained
model and self-supervised pretrained model hold in most cases. Especially, how they prefer over
the representation based finetuning techniques or the weight based finetuning techniques remain
consistent. However, some small variations may happen regarding the model size and architecture.
For instance, for smaller model like 5 layer base GIN model, it is less likely to overfit on fewshot
dataset compared to the larger scale graph transformer model. Also, the model expressiveness and
capability will vary with different model scale. Therefore, we can compare the rank of different
finetuning methods under pretrained models with the same scale, while it is not directly comparable
if the model scale is significantly different.

For instance, both the Graphium model and the GraphGPS demonstrate superior performance from
the representation based method like feature-map and BSS compared to other techniques. However,
in contrast to the Graphium-Toy model results in the main text that feature-map perform better than
BSS especially under the very few shot scenarios. In the GraphGPS results, we find that feature-map
tend to be better with more finetuning samples and BSS tends to be better than feature-map in the
fewshot cases. This might be due to the variation in the model size that leads to more overfitting,
where BSS regularize over noisy feature space through penalizing smaller eigenvalues can be more
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crucial in reducing overfitting compared to feature-map. Also, we experience a change in pretrained
dataset compared to the ToyMix and LargeMix in the Graphium model, where the PCQM4Mv?2 is
less diversed. This might also cause the degraded performance of feature-map under GraphGPS
with fewshot scenario since the learned representation from pretraining might not directly fit the
downstream task. When there are more samples available, there might be a larger overlap with the
learned representation space. Furthermore, we also observe the worse performance of LP and LP-FT
under the larger model which coincides with findings in the main text from Graphium models.

The conclusions presented in Section 4 generalize well to models pre-trained on large-scale datasets,
such as GraphGPS (pre-trained on PCQM4MV?2) and Graphium-Large (trained on the LargeMix
dataset containing hundreds of millions of labeled molecular graphs). In Section 4.3 and Appendix
G.1, we analyze the consistency of trends across all six pre-trained models in our benchmark. Below,
we summarize key observations that hold true for models trained on large-scale data:

 Supervised pre-training on large datasets leads to stronger downstream performance, particularly in
few-shot settings. This aligns with our main conclusion in Section 4.2 (Q2), where we compare
supervised and self-supervised pre-training. Models like GraphGPS and Graphium-Large consis-
tently outperform self-supervised models such as Mole-BERT and GraphMAE under the same
fine-tuning protocols.

» Representation-based fine-tuning methods (e.g., Feature-map and BSS) remain top-performing
strategies for supervised pre-trained models on large-scale datasets, consistent with Finding 3. This
trend holds across both classification and regression tasks, and across different dataset splits.

* Partial fine-tuning methods (e.g., LP and Surgical-FT) continue to underperform in few-shot
settings. This observation supports Finding 2, and reflects their tendency to underfit in data-scarce
regimes, even when the underlying pre-trained model is strong.

G.2 Comparisons over traditional method

To further understand the effect from foundation model pre-training and fine-tuning process, we
include the XGBoost algorithm as a representative for the traditional method. Specifically, we tested
the XGBoost algorithm under the Fewshot setting with 50, 100 and 500 samples to see whether it can
surpass the performance of foundation model when the training data is scarce. The featurizer being
used for the XGBoost model is the Extended Connectivity Circular Fingerprints adopted from the
MoleculeNet paper. Then, we keep the exact same splits with the other experiments under random,
scaffold and size split. From the result in table[I8] we can conclude that foundation model result (e.g.)
from Mole-BERT surpass the performance in XGBoost on almost all the settings. This indicates the
benefit from the pretraining and finetuning framework and the value of our work in selecting the best
finetuning technique given different pretraining situation.

G.3 Study on parameter efficient fine-tuning methods

As an additional study over parameter efficient fine-tuning method, we incorporate the LoRA [80]]
results for GraphGPS under the scaffold split across three regimes: Fewshot-50, Fewshot-500, and
non-fewshot. The results are shown in the table [[9

Across both classification and regression tasks, LoRA falls short of full fine-tuning in roughly two-
thirds of cases, with the gap widening for regression when more samples are available. This pattern is
unsurprising since more challenging tasks and larger downstream datasets generally require updating
a greater number of parameters. In the instances where LoRA does outperform full-FT, its results
typically lie between standard full fine-tuning and the strongest fine-tuning baselines. Notably, under
the Fewshot-50 regression setting, LORA occasionally matches or even exceeds the best benchmarked
fine-tuning methods, highlighting its potential in extremely low-data scenarios.

G.4 Additional study of DWIiSE-FT on other pretrained models

We additionally test DWiSE-FT on other pretrained model like GraphGPS. As shown in Table[17] we
report the results of fewshot fine-tuning with 50 samples under scaffold and size splits. These results
show that DWiSE-FT not only significantly improves over WiSE-FT and L2-SP, but also matches
or exceeds the best-performing method (TOP) in some cases. This demonstrates that DWiSE-FT
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remains effective even under supervised pre-training, including on models like GraphGPS where
traditional weight-based methods struggle.

G.5 Additional findings

e Finding 4. LP with pre-trained molecular representations from supervised pre-training
surpasses full FT under few-shot fine-tuning, except for size splits.

For few-shot fine-tuning with 50 and 100 samples (c.f., Fig. [2b] and [2d), LP surpasses full FT in
random and scaffold splits, differing from self-supervised pre-training discussed in (1a). This again
supports the claim that directly adopting molecular representations from supervised pre-training
retain useful knowledge for downstream tasks. But interestingly, this does not hold for size splits.
We believe it is due to the susceptibility of graph level tasks under size shift, as noted in prior OOD
studies [70]. Namely, the prediction head tends to overfit to the mapping from representations to
output labels with molecules in a specific range of sizes, and thus cannot generalize to OOD molecules
of different sizes.

¢ Finding 5. Regulating feature representations brings significant benefits under few-shot
fine-tuning but has only a marginal impact in non-few-shot fine-tuning.

Representation-based methods incorporates additional representation regularization in addition to full
FT. BSS aims to eliminate noisy or non-transferable dimensions by regularizing small singular values
of representations and Feature-map enforces a close distance of the fine-tuned representations to the
pre-trained representations. Since the baseline full FT performs well under non-few-shot settings
(c.f., Tables[2]and[3)), and pre-trained molecular representations are unsatisfying as discussed in Q1,
having fine-tuned representations to unsatisfying pre-trained representations does not lead to any
benefits. While under few-shot fine-tuning, representation regularization prevents overfitting with
limited samples on top of full FT to some extend.

H Additional Experimental Results

In this section, we present complementary baseline results over all pretrained models that are not
shown in the main text due to space limit. Table[I]is a summary of all pre-trained models we test
on and their corresponding result tables for reference. Also, a complete table including all few-shot
fine-tuning results for DWiSE-FT (including Fewshot 500 case omitted in the main text) are in
Table
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Table 6: Robust fine-tuning performance on 5 Classification datasets (AUC metrics) in the Fewshot
setting (covering FEWSHOT-50, FEWSHOT-100, FEWSHOT-500), evaluated across 3 dataset splits
(RANDOM, SCAFFOLD, SIZE), over MOLE-BERT and GRAPHIUM-TOY models. We bold and
underline the best and second-best performances in each scenario.

SPLIT METHODS SELF-SUPERVISED PRE-TRAINING (MOLE-BERT) SUPERVISED PRE-TRAINING (GRAPHIUM-TOY)
CLINTOX BBEBP. Bace HIV SIDER __ AVG_AVG-F_AVG-R | CLINTOX BBBP Bace HIV SiER WG AGF AR
FEWSHOT-50
FULL-FT 74.45 £ 2.10 88.56 £ 0.83 75.80 4+ 0. 57.41 £ 0.69 52.224048  69.69 69.22 4.40 70.14 £ 0.52 T7.57 £ 0.01 80.45 + 0.00 63.57 £ 0.00 69.46  70.43 6.00
77.50 £ 1.31 82.05 £ 0.37 75.04 £ 0.58 53.34 £ 2.39 51.40£0.11  67.87 6.80 81.04 £ 0.00 81.57 + 0.00 49.05 £ 0.00 70.27  72.74 4.20
SURGICAL-FT ~ 77.91+1.25 8541 +0.66 75.94+0.40 57.90 +0.40 51.99+0.18  69.83 3.80 84.99 + 0.00 81.93£0.00 64.72+0.00 7314 T4.76 2.40
RANDOM LP-FT 77.66+£0.74 88.99+0.14 7518+0.48 57.38 +£0.37 51.68+£0.16  70.18 4.40 69.84 + 0.00 80.15 + 0.00 78.64+£0.00 6582+ 0.00 69.60  71.43 6.00
WISE-FT 76.12 £ 3.87 88.72 + 1.05 75.50 £ 0.51 58.50 £ 0.77 52.23+0.50  70.25 3.00 81.94 +0.03 83.74 + 0.00 78.47 £ 0.00 63.17 £ 0.00 56.4 0.00 72.75 7453 4.40
L2-SP 76.27 £ 1.05 88.50 £ 1.25 75.17 £ 0.90 59.09 £ 5227 £032 70.26 3.60 72.26 + 1.46 81.07 £ 0.13 79.75 £ 0.50 63.68 £ 0.92 55.48 £ 0.00 70.45 7190 5.20
FEATURE-MAP  74.43 £ 2.07 88.40 £ 0.84 73.84 £ 0.66 5T03£1 51.82 £ 0.31 69.28 6.40 84.80+0.129 853310021 81.53+0.194 60.64£0.016 56.49 £ 0.005 75.66 2.60
BSS 75.31 +3.21 88.69 £ 0.54 7550+0.38 59.19+158 52.13+0.37 70.16 3.60 74.14 + 2.15 77.94 3 78.82+1.14 64.45 £ 1.10 5.57 £ 0.05 7218 5.20
FULL-FT 60.18 £ 1.70 59.68 £ 1.79 68.88 +2.31 AT £ 6.57 53124045 5047 6.00 61.94 + 0.00 62.14 £ 0.00 76.51 £ 0.94 63.74 £ 0.00 54.02 £ 0.00 62.61 7.40
LP 60.36 + 0.84 57.58 £ 0.82 70.25+1.28 5745+ 5.76 5176 £0.37  59.48 6.40 79.10 + 0.00 57.74 £ 0.00 76.54 £0.00  65.43 £ 0.00 55.88 £ 0.00 66.57 4.80
SURGICAL-FT  60.80+1.05 60.86+0.98 71.16+0.84 58.60 + 52.24+£021  60.73 4.00 71.30 £ 0.00 63.24 £ 0.00 76.34 £ 0.00 66.81 £ 0.00 56.56 + 0.00 67.12 4.40
SCAFFOLD LP-FT 59.59 + 1.11 60.36 + 1.20 71.57 +0.37 56.18 £2.07  53.31+£0.29 6020 4.40 65.30 + 0.00 63.16 + 0.00 77.15 + 0.00 66.60 £ 0.00 53.65 + 0.00 65.02 6.00
WISE-FT 67.60 + 3.67 6051+ 164 7225+125  63.65+ 2.09 50.66 £0.93  62.93 3.00 67.34 + 0.00 65.55 + 0.00 78.66 + 0.00 65.28 £ 0.00 55.17 £ 0.00 66.06 4.80
L2-SP 61.76 £ 1.22 59.53 £ 2.09 T0.81+£0.79  64.76+240 52954045 6196 3.60 83.15 £ 0.03 66.76 + 0.00 78.75 4 0.74 68.22 + 0.02 55.86 £ 0.00 T1.24 2.20
FEATURE-MAP  61.30 £ 1.94 55.91 £ 2.04 65.37+£0.99  61.18+235 52.64+£1.03 5928 59.46 5.60 7749+ 0.04 67.13 £0.01 7857+0.03  64.39£0.01 56.74 £ 0.00 69.67 3.20
BSS 6794258 GOADE21S  T051E182  G039+223  SBISE046 6248 6291 300 | 60741002 65612000  79.10:000 6847001 5197 +0.03 6795 320
FULL-FT 66.75 + 0.92 80.03 £ 0.54 43.23 4 1.5 62.00 £ 3.04 4781 £0.77 5996 5.80 67.61 £ 0.01 71.89 =5.76 48.57 £+ 0.01 52.54 £ 0.00 53.48 £ 0.00 57.88 5.20
LP 78.19 £ 0.32 39.81 +0.34 48.97 £ 1.66 46.13+0.24  56.4: 7.00 71.21 £ 0.01 40.44 £ 0.01 48.13 £ 0.00 55.62 = 0.00 53.85 6.00
SURGICAL-FT 8219+086 12262237 5613132 A6TTE04 5931 560 | 7U70+001 1606£001  5309£000  5486+0.00 5812 500
SizE LP-FT 0 82.00 £ 0.83 42.83 + 1.39 61,12+ 1.15 48.77T+£0.32  60.83 4.20 68.90 £ 0.01 47.57 £ 0.00 47.28 £ 0.00 54.15 + 0.00 55.58 6.20
WISE-FT 7076 £131 81924319 6558+249 56, 47.24 £ 057 6442 4.00 72.03 £ 0.01 45.24 £ 0.01 53.43 £ 0.00 53.59 + 0.00 59.05 4.80
L2-SP 69.09+1.06 83.98+198 52.70+4.51 68 +3.16  50.80 £2.97 64.05 2.00 72.95 +0.73 63.38 £ 5.27 63.46 £3.90 66.83 +0.03 54.89 £ 0.01 64.56 3.20
FEATURE-MAP 82.52+0.74 5161 +1.25 66.37 +3.56 49.65+0. 63.54 3.00 76.65 + 0.06 71.39 +0.05 65.20 + 0.01 57.29 +£0.43 64.63 3.00
BSS 80.29 +3.12 50.73 + 6.35 62.56 + 2.53 19.05+0.61  62.06 4.40 72.26 +0.16 68.79 66.98 £0.01  55.61 +0.00 63.79 2.60
T-100
FULL-FT 86.87 £ 0.80 79.91 4+ 0.70 60.88 + 1.37 53.88+£0.60  72.05 69.31 + 1.27 82.85 + 0.00 64.82 + 2.36 56.88 + 0.00 5.00
84.18 £ 0.62 73.16 £0.46 51.26 £ 1.30 2.78 £0.31  68.17 81.85 + 0.00 80.80 + 0.00 79.25 £ 0.00 51.60 £ 0.00 57.78 4 0.00 6.00
SURGICAL-FT & 85.66 £ 0.52 77.00 +0.74 59.34 £ 0.42 3.63+0.44 7143 75.51 +0.00 86.37£0.00 84.51+0.00 87+ 0.00 2.00
RANDOM LP-FT 79.86 + 1.12 87.26 £ 0.81 78.86 £ 0.48 59.37 +£0.51 54.31+£032 7193 81.73 +£0.32 83.54 £ 0.02 81.91 +0.04 58.74 £ 0.00 3.20
WISE-FT 85.55+£1.43  86.76 £ 0.42 7453 +£097 61.90+1.36 56.41+069 73.03 71.90 + 1.49 83.18 £ 0.83 83.63 £ 0.95 57.66 + 0.00 5.00
L2-SP 79.13 £ 3.68 86.89 £ 0.40 79.66 £ 0.35 59.92 £ 1.04 54.64 4035  72.05 76.28 + 0.02 81.15 + 1.52 R0.71 4+ 1.44 59.02+054 7223 T73.66 4.40
FEATURE-MAP  78.12:4£3.01 87.80+0.62 73.50 4 0.69 59.97 £0.75 50£024  70.58  70.53 5.40 82.51£0.15 85.94 + 0.5¢ 82.09 + 1.02 57.8240.05 7434 T5.98 3.60
BSS 79.00 + 4.62 87384052 80.12+0.33  60.22+ 1.07 53.88+0.72 7212 7311 3.20 7238 +1.42 80.11+0.78 81.64 + 0.64 56.85 & 0.81 70.93  72.05 6.80
FULL-FT 70.51 £70.51 62,11+ 1.32 68.39 + 3.19 61.60 £ 1.74 52204026 6296  64.03 4.80 70.75 + 0.00 65.39 + 0.25 77.66 £ 0.30 59.73 £ 0.00 54.53 + 0.00 65.61  65.29 5.80
60.68 £ 60.68  58.10 £ 0.99 69.41 £ 1.69 57.12 £ 4.63 52.11+0.51 59.48  58.63 7.60 80.09 = 0.00 53.89 & 0.00 78.39 =+ 0.00 64.11 £ 0.00 56.03 £ 0.00 66.50  66.18 3.80
SURGICAL-FT  65.93 £ 65.93  61.45 +1.01 70.20 £ 1.91 59.62 £ 0.64 5249+ 067 61.94 6233 5.20 75.08 + 0.00 64.49 + 0.00 78.42 + 0.00 67.41 £ 0.00 87 +0.00 68.05  68.99 3.40
SCAFFOLD LP-FT 66.18 +2.14 61.52+0.91 71.48 £ 0.58 60.76 + 1.04 53.68 £ 046  62.7: 62.82 4.00 67.42 + 0.00 66.33 = 0.00 7491 £ 0.44 64.40 £ 0.00 53.25 £ 0.00 65.26  66.05 5.80
WISE-FT 64.71+£282 62884230 7595+163 6267+£242 5427082 6410 6342 2.20 74.35 + 0.00 64.90 + 0.06 78.06 + 0.96 62.56 + 0.00 54.55 + 0.00 66.88  67.27 5.00
L2-SP 70.98 + 2.49 61.93 £ 2.03 72494086 66.43 + 52.51+£0.93 6487  66.45 2.60 74.06 + 0.20 66.14 + 0.00 77154 0.00  72.98 4+ 1.69 54.82+0.78 69.03  71.06 3.80
FEATURE-MAP 63, 1.60 58.78 £ 1.66 67.61 £ 0.30 58.27 £ 3.68 60.49  60.29 6.20 79.79 £ 0.36 63.60 £ 0.03 78.91£038 69.71 +£0.32 56.33 063 6967 70.74 2.60
BSS 7099 £1.94 6247+ 0.62 6947 £2.49 6209 +0.93 6345 64.68 3.40 68.24 £ 1.75 65.35 + 0.00 78.31 +0.01 61.43 £0.16 53.73 £ 0.45 6541 65.01 5.80
FULL-FT 72.17+£223 80.54 £ 1.53 59.53 £ 0.71 61.90 £ 2.19 48.97T+£0.30 6462 64.53 4.80 73.66 £ 0.01 81.77 £ 0.00 60.31 +4.27 59.36 + 4.03 54.37 £ 0.00 65.80  64.44 5.60
LP 68.13+£043 8153052  49.67+2.12 46.66 £3.40  47.08£0.22 5861 54.96 740 7212+ 0.01 13 £ 0.00 47814007 47.18 +£0.00 55.11 £ 0.00 54.87  51.68 7.00
SURGICAL-FT  70.80 + 0.56. 83.61 £ 0.40 58.55 £ 3.14 55.86 +1.29 47754049 6331 61.74 5.20 78.60 £ 0.01 80.76 + 0.00 56.62 + 0.01 66.14 £ 0.00 67.45  67.12 3.40
SizE LP-FT 83.62+0.40 59.92+1.08 60.87 £ 1.57 50.40+£0.29 6457  62.95 4.00 76.90 + 2.09 8529 +0.00 66.72+0.02 51.80+0.00 i 66.74 2.80
WISE-FT 81.89 £ 5.23 55.66 + 2.06 53.27 £ 8.19 48.26 £0.31 6220  60.28 5.80 73.22 4 0.01 82.39 + 0.00 62.81 + 1.46 61.23 £ 0.03 65.75 4.40
L2-SP 83.39 £ 0.71 6046+ 1.08 63144217 50744254 66.20 65.62 2.20 76.11 £ 2.63 75.35 £ 0.41 66.17 £ 0.04  74.02 4+ 1.42 7185 3.80
FEATURE-MAP  69.78 £ 2.65 83.55+£1.25 6251+ 1.38 51.26 £0.38 64.95 63.31 3.20 76.90 + 0.04 76.51 + 0.06 61.49+3.16 6251 £1.43 66.84 4.6
BSS 73.74+£281 8091+ 1.12 60.12 + 1.15 50.20+£0.94 6560 65.64 3.40 78.11+ 747 73.92 +0.09 64.84 + 0.40 68.42 + 0.08 69.06 4.40
FEWSHOT-500
FULL-FT 86.07+1.80 92.76 £ 0.54  85. 67.49 £ 0.86 61.33+£024 7873 T9.85 3.40 88.53 + 1.79 91.44 + 1.06 83.72 £ 0.59 58.51 + 0.00 78.49  80.83 420
84.85 + 0.40 87.91 £ 0.20 73.59 55.25 £ 0.21 59.54+£0.14 7223 72.66 7.60 91.56 + 0.00 85.15 + 0.00 83.18 £ 0.00 58.78 £ 0.00 7710 78.38 4.20
SURGICAL-FT ~ 87.77 £0.56  92.14 £ 0.57 84.09 £ 0.45 67.76 £ 0.31 59.66 +£0.22  78.28 4.40 91.31 £ 0.00 92.11 + 0.00 69.71 £ 0.00 59.93 £ 0.00 79.51  81.84 2.40
RANDOM LP-FT 85.55 + 0.75 92.20£0.29 85.79 + 0.37 68.44 + 0.80 61.06 £ 055  78.61 3.60 88.82+ 1.84 91.07 £ 0.99 66.62 £ 0.69 7.89 +0.00 77.66  79.78 5.20
WISE-FT 87.70 + 1.47 91.02+0.72 85.36 + 0.44 62.00+£220 6411+0.55 7804 4.00 89.75 + 1.06 92.30 = 0.39 66.27 £2.15 58.65 + 0.00 78.11  T9.87 4.20
L2-SP 85.46 £ 1.06 92.44 £ 0.82 85.11 +0.32 68.42 £ 0.77 59.37+£0.56  78.16 5.00 85.20 + 4.89 82.38 + 1.17 66.64 + 1.36 57.95 £ 0.76. 7462 76.62 6.60
FEATURE-MAP  83.42 4 3.42 90.57 £ 0.49 76.69 + 0.41 68.24 £ 0.93 59.62+036  75.71 6.40 91.58 £ 0.23 91.80 + 0.46 8520081 72784013 60.19+0.04 8033 8322 1.40
BSS 86.17+1.34 9276 £0.38 86.04£032 69341040 61454051 79.15 1.60 82.20 £ 1.72 81.21 + 1.30 8313+ 136  64.65+ 1.05 57.16 +0.83 6 76.02 7.80
FULL-FT 69.18 £251  69.56+£0.99  79.14+0.95 69.86 £ 1.35 56.92+£0.20  68.93 4.20 T7.16 £ 1.95 67.79 £ 0.50 T4.30 £ 3.48 64.63 £ 2.67 57.97 £ 0.00 6.00
61.91 +0.52 64.03 £ 0.55 T7.67 £ 0.10 66.13 £ 1.48 60 + 0. 65.87 6.60 81.39 + 0.00 65.24 + 0.00 80.66 + 0.00 67.92 £ 0.00 58.93 4 0.00 4.20
SURGICAL-FT  66.75+0.43  67.11 +0.80 80.66 +£0.43 7220 +0.83 69.13 4.00 80.56 + 0.00 7047 + 0.00 80.77+£0.00  72.03 £ 0.00 85+ 0.00 3.80
SCAFFOLD LP-FT 69.91 £1.83 G858 +£0.18 78.46 £0.74 69.38 £ 0.59 68.88 4.20 85.20 +1.39 .55 7.44+0.32 66.97 £ 0.52 54.41 £ 0.00 5.20
WISE-FT 68.66 + 1.86. 6482+ 1.71 8201 +0.60 69.76 3.20 80.96 + 1.12 68.94+ 0.8 80.28 £ 0.18 64.84 + 3.83 57.45 £ 0.02 4.40
L2-SP 69.22 + 2.59 68.11 £ 0.95 T7.74 4+ 1.08 69.40 3.80 T1.73 4437 67.66 £ 0.75 TT.77T+0.03 69.70 £ 0.04 56.84 + 1.27 6.00
FEATURE-MAP  66.14 £ 1.79 64.83 £ 2.2 72.50 + 0.52 66.90 5.60 83.65 + 0.24 70.95+040 8256+ 0.05 73.09+0.29 59.58 £ 0.07 1.40
BSS 69.65+1.86  69.04 +£0.33 78.20 + 1.39 56.75+0.46  68.90 4.40 7420 +£5.33 66.12 +1.31 78.40+1.52  73.95+0.94 57.05 % 0.91 5.00
FULL-FT 74.96 + 1.19 87.81 £ 1.32 54.53 + 1.81 65.86 £ 0.67 51.08£0.59  66.85 3.60 70.32 £ 4.85 82.67 £ 0.65 59.41 4+ 0.01 TL78 £ 4.10 53.99 4 0.00 5.00
LP 67.80 £ 0.62 8224 £047 4877+ 0.42 52.20 £ 3.32 50.51 £ 031 60.30 7.20 75.60 + 0.01 75.14 £ 0.00 50.85+£0.10  58.39 +0.00 6.20
SURGICAL-FT  70.35+0.30 88.56+0.70 60.124+1.38  61.09+0.81 51.85+0.40  66.39 3.60 88.47 + 0.00 52.64 +0.01 69.72 £ 0.00 4.00
SizE LP-FT 71.38 £ 0.64 86.43 £ 0.68 53.50 + 1.98 65.30 £ 0.73 49.99+0.30 6532 63.39 6.20 83.51 + 1.98 49.10 £ 3.02 7161+ 4.67 420
WISE-FT 73.53 + 1.46 86.56 £ 1.25 6574 +£1.37 5155+ 09.46 48.62+£0.38 6520  63.61 5.20 85.26 + 1.99 48.52+£0.83 7523+ 1.71 4.20
L2-SP 73.43 + 1.31 86.82 £ 1.64 56.73 + 3.41 67.80 + 1.83 51.01+£0.60 67.16  65.99 3.80 78.60 £ 2.29 59.94 £ 002 T73.61+ 1.82 3.60
FEATURE-MAP  76.06 £0.62  81.83 £ 0.64 58.42+£0.90 6794+ 141 50.84£030 67.02 6747 3.60 88.49 = 0.80 58.95+0.13  67.62+2.74 4.00
S! 74.26 + 1.07 88.06 £ 0.96 56.71 + 1.82 66.29+1.10 5291 +065 67.65 6575 2.80 68.01 +0.70 79.45 + 2.68 59.39 + 6.07 7178 £ 1.54 54.88 + 1.50 4.80
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Table 7: Robust fine-tuning performance on 4 Regression datasets (RMSE metrics) in the Fewshot
setting (covering FEWSHOT-50, FEWSHOT-100, and FEWSHOT-500), evaluated across 3 dataset
splits (RANDOM, SCAFFOLD, SIZE), over MOLE-BERT and GRAPHIUM-TOY models. AVG-R,
AVG-R* denote the average rank and the rank based on the average normalized performance over
all the datasets for each evavluated method, respectively. Standard deviations across five replicates
are shown in parentheses. We bold and underline the best and second-best performances in each

scenario.
SpLIT METHODS SELF-SUPERVISED PRE-TRAINING (MOLE-BERT) SUPERVISED PRE-TRAINING (GRAPHIUM-TOY)
EsoL Lipo MALARIA CEP AVG-R  AVG-R® EsoL Lipo MALARIA CEP AVG-R  AVG-R*
FEWSHOT-50
FULL-FT 1.390 £ 0.051 1.276 £ 0.006 2.383 £ 0.046 3.50 4 1.223 £ 0.000 1.062 £ 0.000 1.284 £ 0.000 2.359 + 0.000 6.25 7
LP 1.296 + 0.005 3.736 £ 0.020 8.00 8 1.085+0.000 1.07240.000  1.27240.000  2.571 +0.000 4.00 3
SURGICAL-FT 1.295 + 0.004 3.596 + 0.037 7.00 7 1.17440.000  1.009 £+ 0.000  1.277 £ 0.000 3.25 2
RANDOM LP-FT 1.2914+0.005  2.296 + 0.012 6 1.386+0.000  1.019+0.000  1.286 +0.000 5.25 H
WISE-FT 1.276 £0.007  2.410 4 0.051 5 1.219£0.000  T.060£0.000  1.280 # 0.000 5.25 4
L2-SP 1.277 £ 0.006 2.280 + 0.0: 3 1.147 £ 0.026 1.092 £ 0.001 1.283 £ 0.000 2&|Zt0070 5
FEATURE-MAP  1.329 £+ 0.021 1.271£0.007  2.448 £0.010 1 1.089 £ 0.001 1.046 £ 0.000 1.276 £ 0.000  2.191 +0.017 1
BSS 1.365 & 0.028 1 +0.006  2.275+0.022 2 11754 0.011 1.128 4 0.035 1.281 £ 0.000 2.262 + 0.064 6
FULL-FT 4 0.058 1.178 £ 0.005 2.356 + 0.033 5 353 + 0.000 1.071 £ 0.000 1.168 4 0.000 2.001 £ 0.000 8
LP 4 £ 0.020 1167 £0.002  3.849 + 0.009 8 1.226+0.000  LO13+0.000  1.166 £0.000  2.450 £+ 0.000 6
SURGICAL-FT 599 + 0.039 1167 £0.003  3.81940.017 7 1.239£0.000  T.019£0.000 1.162+0.000  2.083 + 0.000 2
SCAPFOLD 1.822 £0.014 1.184 £ 0.004 22?2i0026 6 1.283 £ 0.000 1.033 £ 0.000 1.169 £+ 0.000  1.949 = 0.000 5
1.842 £ 0.056 1 2.454 £ 0.043 4 1.320 £ 0.000 1.071 £ 0.000 1.168 £ 0.000 =+ 0.000 7
1.699 £ 0.049 2.331 £ 0.024 2 1.273 £ 0.047 1.015 £ 0.007 1.166 £ 0.000 4
1.823 +0.028 036 = 1159 £0.000  2.425+0.012 1 1.213+£0.001 0.991+0.000  1.164 & 0.000 1
1.680+0.042 1.114£0.008  1.165+0.001  2.319+0.025 3 122240012 1.039+0.000  1.166 & 0.000 3
FULL-FT 1.297 £0.040  0.929 £ 0.004 2.656 + 0.039 4 1.441 £ 0.000 1.055 £ 0.000 0.914 £ 0.000 2.329 £+ 0.000 7
LP 0.941 £ 0.004 4.706 £ 0.022 8 1.443 £ 0.000 1.003 £ 0.000 0.936 £ 0.000 2 688 £ 0.000 8
SURGICAL-FT 0.943 + 0.004 4.265 £ 0.028 7 1.469 £ 0.000 1.015 £ 0.000 0.914 £ 0.000 5
SIZE LP-FT ? 421 + 0 060 0.939 + 0.007 2.525 + 0.013 6 1.395 4 0.000  0.999 £ 0.000 0.907 + 0.000 1
- WISE-FT 0.929+0.004 2762 £ 0.053 5 140000  1.071+0.000 0.905 % 0.000 4
L2-SP 0.915+0.002  2.497 +0.019 2 6+0.055  0.997£0.000  0.908 % 0.000 5 3
FEATURE-MAP  2.422 £ 0.021 0911 +£0.002  2.659 + 0.021 1 1.41540.005  0.989 +0.027  0.921 £0.002  2.254 + 0.001 3.00 2
2.369 + 0.075 0.925 £ 0.003 2.563 £ 0.022 3 1.499 £ 0.028 0.997 + 0.000 0.907 +£ 0.000 2.381 % 0.006 5.00 6
FEWSHOT-100
FULL-FT 1.141 4 0.030 1.256 + 0.006  2.150 4+ 0.021 2.00 1 1.191 £ 0.000 1.103 4 0.000 1.258 4 0.000 2.076 +0.118 5.25 4
LP £0020 L. X 1.280£0.003  3.235+0.019 8 1.066 +0.000  1.045 = 0.000 £0.000 475 5
SURGICAL-FT  1.9534£0.039  1.281£0.020  1.270+0.006  3.019 & 0.047 7 1.075£0.000  1.030 & 0.000 1.935+0.000 275 2
RANDOM LP-FT 1.244 £ 0.057 1.147 £0.018 1.277 £ 0.003 2.156 £0.019 6 1.689 £ 0.000 1.097 £ 0.000 1.273 £ 0.000 2.044 £0.015 6.25 8
B WISE-FT 1.189 £ 0.030 1.256 £ 0.006  2.211+0.028 2 1.131 £ 0.000 1.078 £0.000  1.256 +0.000  2.001 = 0.071 3.75 3
L2-SP 1.161 £ 0.016 1.260 +£0.004  2.131 +0.014 4 1.098 £ 0.012 1.077 4 0.001 1.270 4 0.001 2.261 + 0.008 5.25 6
FEATURE-MAP 1120 + 0.038 1.266 +0.004  2.283+0.011 5 0.995+0.018 1.025+£0.000 1.258+0.003  1.937+0 175 1
BSS 1.199 £ 0. 111940023 125940006 213240019 3 1.055+0.009  1.136 4 0.000 4 0 69 £0.010  6.25 7
FULL-FT 1.436 £0.054  1.026 £ 0. UU') 1.160 £ 0.011 2.198 + 0.034 4 1.111 £ 0.000 1.037 £ 0.000 1.172 £ 0.000 1.965 £ 0.023 5.00 6
LP 3.255 £ 1.154 £ 0.003 3.350 £ 0.007 8 1.228 £0.000  0.960 +0.000  1.162 £ 0.000 2.423 + 0.000 4.50 5
SURGICAL-FT 1.156 £ 0.003 2.914 + 0.066 7 1.087 £0.000  0.966 4+ 0.000 1.156 +0.000 1.959 + 0.000 1.25 1
SCAFFOLD. LP-FT 1.163 £ 0.004  2.187 4+ 0.034 6 1.111 £ 0.000 0.984 + 0.000 1.173 £ 0.000 2.149 + 0.012 5.25 4
. WISE-FT 1151+ 0.007  2.301 +0.042 3 111040000 1.027£0.000  1.169 £ 0.000 L013+£0.049 425 3
L2-SP LI53£0.002  2.201+0.038 2 1252£0.021 099440013  1.163 % 0.000 +0.052 575 7
FEATURE-MAP 1.149 £0.003  2.356 £ 0.018 1 158 £ 0.020 0.966 + 0.010 1.161 £ 0.000 +0.019 3.50 2
BSS 1453i0008 1.040 £ 0.018 1.160 £ 0.006 2210 £0.018 5 1.253 £ 0.027 1.033 £ 0.015 1.167 £ 0.000 2.333 +0.022 6.50 8
1.889 4 0.065 1.077 £0.028 0.918 + 0.005 2.425 + 0.024 3 1.41140.000  0.962 4 0.000  0.921 £ 0.006 2 328 £0.015 4.75 5
0.911 + 0.003 4.115 £ 0.038 8 1.253 4 0.000 0.981 + 0.000 0.924 + 0.000 8
0.912+0.002  3.174 £ 0.048 7 T329£0.000  0.965+0.000  0.910 £ 0.000 2
Size 1.085+£0.014  0.92040.008  2.468 +0.021 4 1.242£0.000 0.962 +0.000  0.912 + 0.000 1
?)IthDSb 1.124 £0.031 0.917 £ 0.004 2.543 £ 0.027 i 5 1.398 £ 0.000 0.963 + 0.000 0.907 £ 0.002 2.319+0.014 3.75 4
1.731 £0.071 1.025 028  0.905+0.002 2.424 4+ 0.024 1.25 1 1.418 £ 0.035 0.998 £0.038  0.906 £0.000  2.436 £ 0.072 5.50 6
FEATURE-MAP 2135 £ 0.077 0.898 £0.003  2.500 £ 0.017 3.25 2 1.335 £ 0.005 0.967 + 0.008 0911 +£0.001  2.265 + 0.020 3.75 3
BSS 1.734 4 0.060 0. +0.008 2.439 £ 0.015 4.00 6 1.387 4 0.039 0.998 £0.006  0.906 £0.000 2518 +0.137 5.50 7
FE
FULL-FT 0.883 £ 0.032 1.194 £ 0.003 1.891 £ 0.026 3 753 £ 0.000 0.842 + 0.000 1.221 £0.012 1.806 = 0.005 4.75 4
LP +0.011 1.216 £ 0.002 2.285 £ 0.004 8 1.007 £ 0.000 0.972 £ 0.000 1.223 £ 0.000 2.117 £ 0.000 7.25 8
SURGICAL-FT 0. 961 +0.013 1.201 £ 0.005 1.962 4 0.009 6 0.748 £0.000  0.825+0.000  1.210 + 0.000 1.795 £ 0.000 3.00 2
RANDOM LP-FT 0.884 + 0.035 1.215 £ 0.002 1.904 4 0.011 5 0.697 +£0.000  0.835 + 0.016 1.220 + 0.008 1.794 + 0.004 2.00 3
WISE-FT 0.995 £ 0.010 +0.003 +0.021 4 0.74 0.852£0.001  1.228 £+ 0.004 5.25 5
L2-SP 0.878 + 0.026 1192£0.004 1.893+0.018 1 090740020 124340006 182250003 6.00 7
FEATURE-MAP  1.057 & 0.008 1.196 £ 0.002 2.019 £ 0.004 7 0.840 £0.013  1.200+0.014 1.773 £0.008 1.75 1
BSS 0.886 £ 0.010 1.194 £0.006  1.862 + 0.010 2 O7loi0024 0.892 £ 0.014 1.248 £ 0.006 1.824 £ 0.006 6.00 6
FULL-FT 1.196 £+ 0.013 1.137 £ 0.016 l BQZiOOI‘ 4 0.956 + 0.000 0.888 +0.011 1.149£0.014  1.787 + 0.020 4.50 5
LP 1.867 4 0.006 1.140 £ 0.002 8 1.006 £ 0.000 0.921 + 0.000 1.162 4 0.000 2.183 + 0.000 8.00 8
SURGICAL-FT  1.221 +0.011 +0.005 1 na,i +0.007 6 0.955+£0.000  0.887+0.000  1.138+0.000 1.787+0.000  3.75 3
SCAFFOLD LP-FT 1.112+0.015 £0.005  1.895+0.013 5 140000 088340025  1.143:£0.000  1.791+£0.008  3.50 4
WISE-FT 1.388 £ 0.023 1.114 £0.002 1.936 £ 0.037 3 0.947 £0.000  0.893 £ 0.007 1.134 £0.011 1.800 £ 0.006 4.00 2
L2-SP 1.163 £ 0.026 1 126 £ 0.011 1.885 4 0.011 2 0.991 £ 0.018 0.878 + 0.012 128 4 0.002 2.017 £ 0.179 4.50 7
FEATURE-MAP  1.495 £ 0.016 2.008 £ 0.010 7 0.966 £0.014  0.826 £0.017  1.136 £ 0.003 1.792 £ 0.011 3.50 1
BSS 1.188 +0.026 1.881+0.010 1 0.977+£0.021  0.885+0.014 1.126+0.007 1.949£0.127 425 6
FULL-FT 1.692 £ 0.070 0.922 +0.013 3 L1154£0.019  0.84840.038  0.915 % 0.000 1230 £0.009 525 5
LP 2.290 £0.017 1 U&’J =0 005 0.908 + 0.002 X 8 1.073 £0.000  0.871 £ 0.000 0.904 +£ 0.000 135 = 0.000 5.25 8
SURGICAL-FT  1.928 £ 0.039 0.895 £ 0.007 0.919 £ 0.007 2.397 £0.014 i 6 1.094 £ 0.000 0.807 +£ 0.000 0.904 +£0.000  2.200 + 0.000 2.75 1
SIZE LP-FT 1.674 £ 0.030 0.954 +£0.011  2.328 £0.017 3.25 5 1.081 + 0.024 0.842 + 0.021 0.925 + 0.000 2.280 % 0.000 5.25 7
o WISE-FT 2,071 £0.078 0.912 + 0.003 2.379 + 0.086 5.75 7 1.116 +£0.023  0.805+0.015  0.907 4+ 0.001 2
L2-SP 1. 629 i 0 084 0.904+0.003  2.368+0.013 2,50 1 1.1834+0.055  0.853+£0.031  0.903 £ 0.004 6
FEATURE-MAP 0.895+0.002  2.366+£0.006  4.25 4 1.193£0.058  0.850 4 0.021 01 +0.025 +0. 4
BSS 1 biOiODJS 0.925 £ 0.019 2.370 £0.013 4.00 2 1.142 £ 0.049 0.834 £0.018  0.900 £0.003  2.245 £ 0.027 4.00 3
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Table 8: Robust fine-tuning performance on 8 Classification datasets (AUC metrics) in the
Non-Fewshot setting, evaluated across 3 dataset splits (RANDOM, SCAFFOLD, SIZE), over
MOLECULESTM and GRAPHIUM-LARGE models. AVG, AVG-F, AvG-R denote the average
AUC, average AUC without max and min values, and average rank over all the datasets for each
method, respectively. Standard deviations across five replicates are shown in parentheses. We bold
and underline the best and second-best performances in each scenario.

SpLIT METHODS CLINTOX BBBP BACE HIV MUV SIDER Tox21 TOXCAST AVG  AVG-F  AVG-R
SELF-SUPERVISED PRE-TRAINING (MOLECULESTM)
FULL-FT 89.90 +1.49 93.43 +0.99 89.82 4+ 1.08 84.72+1.11 77.82 4+ 3.46 62.12+£1.15 82.49 +0.41 72.95 4 0.31
LP 74.32 4+ 1.90 84.76 + 0.29 74.85 4+ 0.27 74.15 £ 0.69 76.86 + 1 0( 59.69 4 0.24 73.724+0.20 66.19 +0.14
SURGICAL-FT ~ 86.04 £ 0.89 93.68 £ 0.51 89.994+046 85.68 +0.84 63.64+0.78 81.84 +0.66 71.83 +0.55
RANDOM LP-FT 86.39 £ 1.85 93.72+0.93 89.82+0.57  84.17% 1.1'11 62.19 £ 1.00 82.54 £ 0.51 72.19 4 0.52
WISE-FT 90.35+1.26 90.41+0.86 8438 £1.05 62.17£1.25 82.67+0.32 73.08 +0.32
L*-SP 89.69 +1.39 89.214+0.92 50.21 +4.41 61.07+1.22 71.02+0.
FEATURE-MAP  79.93 4+ 1.54 83.69 4 0.24 80.03£1.01 59.93+0.14 67.51 4 0.30
BSS 90.17+2.84 9416+0.55 89.74+1.12 819(‘:&1 29 76.64 +1.29 61.87+0.69 83.26 £0.57 74.55+0.31
74.944+7.23 68.62 +0.80 75.35 + 2.06 76.03 £0.91 73.43 +2.50 57.88+1.18 76.67 £ 0.68 63.62 4+ 0.27 72.00
65.07 £1.08 59.39 +0.35 69.24 4 0.16 69.97 £ 0.57 59.934+0.37  69.87£0.28 60.05 4 0.25 65.69
71.07i4lﬂ 67.78 £ 0.60 2.36  76.80+1.06 59.24 +1.22 75.5 4 63.27 +0.70 7172
SCAFFOLD 67. (J) +1.42 3+ 1.14 i +0.82 58514 1.15 62.98 +0.51 71.41
7737+ 1.44 +0.74 74.38 +£2.20 58.19+1.26 76.89+0.69 64.05+0.34 72.87
74.62 +4.99 79.91+229 73.97+0.78 61.62 +2.07 59.78 £ 0.33 75.39 +£0.51 62.34 +0.82 69.37
61.06 +2.00 65.124+1.98 82.66+0.62 74.54+1.00 60.47+0.45  70.39+0.11 60.10 + 0.19 67.40
73.89+6.04 70.04+2.00 77.94+2.04 76.28 £1.28 76.20+1.33  59.99 + 1.39 75.86 + 1.08 63.62 + 0.50 72.65
61.94 +2.67 82.80 +2.31 63.62 +1.19 77.81+2.99 72.05 4+ 2.96 71.08 £0.77 62.474+0.83 68.16
55.54 4 0.65 75.89 4 0.90 42.3140.48 67.54 +1.27 69.87 + 1.51 68.10 + 0.39 57.50 4 0.19 62.05
SURGICAL-FT 88.90+0.74 61.99+2.13 9 76.07 £ 0.57 72.24+0.28 60.52 4+ 0.95 68.91
SIZE LP-FT 6. +3. 83.124+5.20 65.48 £0.70 4 244279 72.65+0.59 61.71+0. 68.72
WISE-FT 63.85 + 3.69 81.81 +2.80 62.71 +1.26 7. 8'}&202 73.40 +2.08 56. 63i0 3 71.27£0.77 62.70 4 0.87 68.63
L*-SP 63.67 £1.79 88.00 + 1.00 63.98 4 1.51 T7.38 £ 1.25 58.29 £+ 3.74 56.23 & 1.70 71.93 £0.21 59.29 +0.72 65.76
FEATURE-MAP  64.41 +1.38 86.82 +0.76 59.62 4+ 1.17 70.714£0.99 76.01 4+ 0.60 55.03 +0.30 67.98 £ 0.41 57.9140.31 66.11
BSS 67.80+4.60  84.90 +2.20 62.77+3.69 7813+2.21 7458+ 1.13 54.91 4 1.34 71.40+0.44 63.04+0.35 69.62
SUPERVISED PRE-TRAINING (GRAPHIUM-LARGE)
FULL-FT 81.27 4+ 3.88 69.17 +1.32 79.75 4+ 1.07 76.42+0.72 76.84 +1.80 63.63 + 0.06 78.12+0.46 66.37+0.26  73.95
LP 80.48 £ 0.00 66.90 £ 0.00 80.44 4 0.00 75.83 £ 0.00 73.35 4 0.00 62.03 £ 0.00 79.02 £ 0.00 66.09 +0.00  73.02
SURGICAL-FT 73.71+0.00 84.16 +0.00 77 47+0.00 78.87+0.00 64.02+0.00 78.23+0.00 67.34+0.00 76.25 70 63
SCAFFOLD LP-FT 69.98 + 0.83 79.28 +0.32 77.82+1.15 61.20 £ 0.00 76.94 £ 0.00 66.28 4+ 0.00 3.92 74.41
WISE-FT 85.40 + 1. 61 71.89+1.79 78.13 +£2.92 7437+ 1.79 63.58 +0.00 77.98 +£0.33 66.48 + 0.43 74.26
L?-sP 76.83 + 8.87 67.35+0.82 78.17 4+ 0.02 62.35+0.15 62.21 4+ 0.45 76.27 +0.32 69.87
FEATURE-MAP  90.13 £2.12  70.99 £ 0.27 83.17 4+ 0.49 73.614+0.03 78.74 4+ 0.76 62.12+£0.02  79.99+0.12 75.25
79.99 £+ 5.89 67.10 £0.93 78.12+2.32 72.50 £0.51 61.20 +0.08 61.13 £0.95 76.69 + 0.64 b54 i089 70.18
FULL-FT 85.96 +4.28 87.62 +0.90 67.41 +2.44 81.47+1.94 72.03 +£2.55 54.72 4+ 0.01 6() 71+0.37 61.3140.37 72.53  72.98
LP 81.84 +£0.02 78.09 + 0.00 58.08 4+ 0.01 77.48 +0.00 69.46 4 0.00 53.59 4 0.00 61.254+0.00  69.18
SURGICAL-FT ~ 86.59 £0.01  89.07 + 0.00 0.94 £ 0.01 82.50+0.00 74.47+0.00 56.24+0.00 62.74+0.00 74.36
SIZE LP-FT 86.78 £2.69 88.024+1.50 63.724+1.85 82.57+0.46 7351+1.77 52.40 £ 0.00 60.85+0.00  72.01
WISE-FT 82.44 +3.02 87.76 £ 0.5 72.89+0.66 81.37+1.07 73.67 4+ 3.44 68.80 + 0.84 60.61 £0.53  72.93
L*-SP 71.03 & 3.67 81.32 £ 1.51 68.82 4 0.06 70.66 £ 0.00 64.69 £ 0.32 52.08 4 0.84 70.91 +0.34 56.50 £0.01  67.00
FEATURE-MAP  82.48 +3.25 87.70 + 0.64 69.56 + 0.20 67.23+£1.93 71.494+0.13 54.434+0.03 74.12+£0.09 58.73+£0.04 70.72
72.4240.03 82.92 + 1.60 62.76 4 4.23 72.81 £ 0.66 65.79 & 5.31 52.89 & 1.12 71.91 £ 0.44 57.79+1.80  67.41

Table 9: Robust fine-tuning performance on 4 Regression datasets (RMSE metrics) in the
Non-Fewshot setting, evaluated across 3 dataset splits (RANDOM, SCAFFOLD, SIZE) over
MOLECULESTM and GRAPHIUM-LARGE models. AVG-R,AVG-R* denote the average rank
and the rank based on the average normalized performance over all the datasets for each method,
respectively. Standard deviations across five replicates are shown in parentheses. We bold and
underline the best and second-best performances in each scenario.

SELF-SUPERVISED PRE-TRAINING (MOLECULESTM)

SUPERVISED PRE-TRAINING (GRAPHIUM-LARGE)

SpLIT METHODS

EsoL Lipo MALARIA CEeP AVG-R  AVG-R® | EsoL Lip0 MALARIA Cep AVG-R  AVG-R*

FULL-FT 0.901:£0.063  0.660+0.013  1.067+£0.009  1.401£0.035  3.00 2 0.643£0.011  0.605+0.011  1.085+0.007  1.399£0.015  4.00 4

LP 1.374 £0.011 1.067 £ 0.015 1.207 £ 0.004 1.999 £ 0.003 8.00 8 0.699 + 0.000 0.672 + 0.000 1.105 £ 0.002 1.658 = 0.011 7.75 8

SURGICAL-FT  1.056 & 0.028 1.074 £ 0.010 1.547 +0.011 6.00 6 0.617 £0.000 0.582+0.000 1.047+0.000 1.392 + 0.000 1.25 1

RANDOM LP-FT 0.922 +0.023 1.076 £ 0.014 1.365 4 0.029 3.25 3 0.618 + 0.023 0.591 + 0.008 1.059 4+ 0.000  1.355 + 0.008 2.00 2

WISE-FT 0.934 + 0.061 1.064+0.007 T1460+0.012  3.75 5 0.630£0.006  0.606£0.008 1086 +0.007  1430£0.019  5.00 3

L2-SP 0.884 +0.025 1.087 £ 0.011 1.385 £ 0.031 3.75 4 0.647 £ 0.028 0.662 £ 0.014 1.059 £ 0.001 1.466 £ 0.050 5.75 7

FEATURE-MAP  1.018 £ 0. 02-1 1.106 £ 0.005 1.536 4 0.008 6.50 7 0.660 + 0.240 0.642 + 0.009 1.059 4 0.001 1.419 £ 0.037 5.25 5

BSS 1070 £0.016  1.351 +0.016 175 1 0.619 + 0.030 0.611 +£0.017 158 £ 0.041 1.404 + 0.029 5.00 6

FULL-FT 1.105+0.018  1.395 4+ 0.041 4.50 5 0.878£0.010  0.731£0.003  1.107 +0.008 9 + 0.0: 4.50 5

LP L133£0.002  2.009 +0.004 8.00 8 0.886£0.005  0.77240.000  1.103+0.000  1.635£0.0 6.25 7

SURGICAL-FT 1297i0044 1.105 £ 0.013 1.518 £ 0.010 4.50 6 0. £0.000 0.675 4 0.000 1.090 £ 0.000 1.480 £ 0.000 2.75 3

SCAFFOLD P-FT 1.331 £ 0.033 1.107 £0.011 1.356 £ 0.030 4.00 4 0.887 £ 0.002 0.709 £ 0.016 1.091£0.007  1.380 = 0.005 3.75 4

- WISE-FT 1.347 £ 0.036 1.090 £0.015  1.505 4 0.045 3.00 2 0.876 + 0.011 0.727 + 0.004 1.120 £ 0.008 1.430 £ 0.041 4.75 6

L?-SP 1.300 +0.017 1106 +0.005  1.34740.020  3.75 3 0.905+0.022 0778 4£0.009  1.1474+0.003 1518 +0.011 7.50 8

FEATURE-MAP  1.383 & 0.008 1.098 £ 0.004 1.518 £ 0.003 6.00 7 0.853 £0.005  0.692 + 0.002 1.149 £ 0.002 1.427 £ 0.052 3.50 2

BSS 1.300 £ 0.024 1.097 £0.013  1.319 +0.023 2.25 1 0.873 £ 0.024 0.707£0.015  0.166 £0.000 1.431 £0.016 3.00 1

FULL-FT 0.883 £ 0.008  1.834 +0.038 3.25 2 1.020 £ 0.009 0.800 £0.013  1.847 +0.043 2.75 2

LP 0.912 + 0.004 2.402 £ 0.018 8.00 8 1.190 £ 0.000 0.912 + 0.000 2.101 + 0.026 7.75 8

SURGICAL-FT 0.889+£0.014  1.99840.020  5.25 6 1.10540.000  0.745+0.000 0.871+0.000 1.902+0.000  4.50 5

SizE LP-FT 0.897 £ 0.009 1.763 £ 0.037 3.25 3 1.067 £0.034  0.703 £0.016  0.892+0.014 1.884 £0.017 3.75 4

WISE-FT |383i0||8 0.889 + 0.008 1.902 £ 0.05: 5.25 5 1.026 £ 0.011 0.721 £ 0.009 0.888 £ 0.011 1.848 £ 0.035 2.75 1

L2-SP 1.390 +£0.115 0.896+£0.007  1.786+0.022  3.25 4 1.0014+0.023  0.805+0.010 903 £ 0.004 E 5.25 6

FEATURE-MAP 1458 + 0.045 0.896+£0.011  2.007+0.018  6.00 7 1.028 £ 0.032 767+£0.002  0.925 +0.002 6.50 7

BSS 1.408 £0.100 0. 700 0.020  0.887 £ 0.011 1.725 + 0.026 L75 1 0.985 + 0.040 0.901 +£ 0.006 1 883 + (Y 023 2.75 3

33



Table 10: Robust fine-tuning performance on 5 Classification datasets (AUC metrics) in the Fewshot
setting (covering FEWSHOT-50, FEWSHOT-100, FEWSHOT-500), evaluated across 3 dataset splits
(RANDOM, SCAFFOLD, SI1ZE) over MOLECULESTM and GRAPHIUM-LARGE models. We bold
and underline the best and second-best performances in each scenario.

SeLiT METHODS SELF-SUPERVISED PRE-TRAINING (MOLECULESTM) SUPERVISED PRE-TRAINING (GRAPHIUM-LARGE)
CLINTOX, BBBP BACE HIV SIDER AVG_ AVG-E__AVG-R | CLINTOX BBBP BACE HIV SIDER AVG_AVG-E_AVG-R
FEWSHOT-50
FULL-FT 49.60 +2.85 84.86 + 1.30 TATAE 144 49474090  63.85 4.80 74.25 +0.00 82.09+0.77 81.04 +0.00 52.55+0.00  70.55 6.00
52.66 + 3.14 T8.85+ 1.75 58.02 £3.19 52. 2 50.23 4047 5843 6.40 64.37 £ 0.00 86.23 £+ 0.00 81.47 + 0.00 5.00
SURGICAL-FT 54434439 86.64+096 141925095 61.71+£064 5110082 6576 200 | 76034000 ST04£000 82.4440.00 3.60
RANDOM LP-FT 4771+ 2.16 84.36 + 2.65 74.92 £ 0.95 55.8241.53 51.62+0.37 62 §9 4.60 76.40 £0.00 8210 + 0.00 73.86 £ 0.00 4.20
WISE-FT  55.69+537 84624145 74025130 49.41+0.89 0 | 75774000 84054085  81.30+000 360
L?-sP 50.07 + 2.37 85694+ 1.19 7518 +1.16 50.58+£0.93  63.99 6140 3.60 75.314+2.24 84.45 +4.02 80.56 + 0.00 4.60
FEATURE-MAP  54.09+321  T877E405 6788054 125027 6126 5913 620 | 7I01+000 88814000 8176003 3.80
BSS 52.06 + 3.58 85.62+ 1.18 T4.31 £ 1.83 51184069 6441 6L76 3.80 75.33 £ 0.00 81.30 + 1.08 80.98 + 0.00 73.66 5.20
FULL-FT 45624548  58.05+2.70 62.30 +1.27 4.88£0.29 5394  53.93 2.60 74.79 4 0.00 61.10 + 0.00 74.43 £ 0.00 66.82 5.60
LP B076E131 50504135  56.94+234 5 36 4611 4762 780 | GT20£000 64315000 6524000 55. 6160 560
SURGICAL-FT  45.60 + 9.96 56.02 + 1.54 63.07 +0.78 55184047 5277 52.27 3.80 7174 £+ 0.00 62.43 + 0.00 74.64 £ 0.00 55.55+0.00 6599  66.59 4.00
ScarroLD LP-FT 33974365 5531£206  OLSTE 080 S.06E046 5044 5212 520 | 6166000  63.3940.00  76.820.00 30505000 6290 60.52 460
WISE-FT 47.69+£522 57.80+2.92 62.06 + 1.03 55.16 £0.57  54.01  53.55 2.60 73.934+0.00 65.16+0.00 7482 +0.00 514.92+0.00 66.64 67.82 3.60
17-5P 45544540 S606E199 6175166 5230 420 | 6843+000 64014093 7463 =000 56.54+000 6601 6630 320
FEATURE-MAP  26.69 + 2.38 56.71 £ 1.18 61.18 +5.30 51.40 6.60 65.60 £+ 0.03 63.73 + 0.00 70.32 £ 0.00 54724003 6507  66.55 5.20
BSS 42194178 5T094132  63.74+279 54754037 5357 5397 320 | 7789004 61794000 7427163 55034001 6711 6754 420
FULL-FT 58524298  5880+9.95 3617629 BLOTE131 5150 5418 420 | 71154000 80.00+000 59.96£300 480: 5320£000 6247 6144 460
LP 57.53+4.82 4554 +£17.14  47.39+ 1.62 50.80 +0.73 91 48.83 6.60 72.11 £ 0.00 56.80 £ 0.01 57.63 £ 0.00 49.154+0.00  59.57  58.86 7.20
SURGICAL-FT 61324819 54191151  44.96 = 7.70 5141098 5273 5246 480 83994000 6217000 6200000 54994000 6697 6528 240
SizE LP-FT 54.70 £9.04 55.56 £ 3.73 43, U&tlj‘.‘l 51.88+0.55  50.62 5149 5.80 X 79.53 £ 0.00 59.30 £ 0.00 5t E)Z 10£0.00  63.92  62.66 5.00
WISE-FT 61.60 4+ 5.18 56.83 +9.47 4248 £ 6.40 5228 +£1.23 5276 53.24 3.80 70.51 4 0.00 78.10 £ 0.00 59.48 £3.21 54 53.24£0.00 6310 61.38 5.20
L?-sp 60.54+221 6277 +£6.52 47.51 £8.30 51524+ 1.67 54.88 54.71 2.60 65.70+£0.03 8588 +0.76 56.81 +0.04 G: 57.10£0.00 6566 61.86 3.80
FEATURE-MAP 5085+ 1.06 5021+ 1.87  A7.65+3.15 SLAS£050  50.66 4978 540 | 69054001 85654001 61.95+058 64824008 S081+001 6648 6531 360
BSS 6226189 60.79+7.04 49.70+2.37 5L19+1.56 5516 54.61 2.80 7363001 7993+ 1 56.91 £3.73 52.67£1.33 56.22+0.72 63.87 62.25 4.20
FEWSHOT-100
FULL-FT 73.60 4+ 7.53 82.09 + 2.90 80.72 +1.22 5158 +0.43  69.98 7208 5.00 66.36 + 0.01 86.40 + 2.10 78.44 £ 0.00 63.35 56.74 £ 0.00 6.20
LP G43ELA0 7363097 60.60 =389 53ATH021 6237 6159 660 | 65674000 90.26+£000 SI88E000 6 5.20
SURGICAL-FT  71.20 + 2.70 83.50 +0.95 80.44 + 0.62 53.434£090 70.24 7143 4.20 71.48 +0.00 86.23 £+ 0.00 85.03 + 0.00 3.20
RaNDOM P-FT 6316+ 1.86 8426+ 137  79.93+2.67 01 52184081 6893 6941 520 | 70774000 89944000 7787 =204 5.20
WISE-FT T2.72+8.35 83524324 8826+145 6219274 51.66 £0.43 7167 7281 3.80 68.92 +0.01 6.48 £ 0.54 79.32 £ 0.00 6.00
L2-sP 73054280 249105 8LE0£123 G 21 53924082 7085 7262 300 | TATAE131 86204230  BL62E101 400
FEATURE-MAP  68.01 + 2.06 5+ 0.58 69.27 + 0.87 58.07 89 54.33+0.73 6561 6512 6.00 7548 £0.27 88, 85.79 + 0.00 1.60
BSS 76.21£6.50 83524 1.90 81694+040 6354+£205 5326+084 7164 7381 2.20 69.93 + 3.53 86.70 + 1.52 82.64 £ 0.83 4.60
FULL-FT 5476286 5625+ 178 6485+ 126 5507+ 147 5742 5583 420 | 6397£000 62754000 7488 =178 540
19.89 + 3.86 48.69 +1.72 60.40 £ 2.76. 5208 +0.26  50.59  50.52 7.40 70.42 £+ 0.00 64.36 + 0.00 65.17 + 0.00 5.20
SURGICAL-FT  56.64 4 4.28 54.30 4 2.39 6.81 + 0.67 5529 +£0.58 57.33  55.41 4.20 7538 £0.00  64.72 4 0.00 77.93 £ 0.00 3.00
SCAFFOLD. LP-FT 49.82 +6.97 52 T4+3.13 BEt‘j 4 5~7v55t029 56.39 5! '{Xs 4.40 6 + 0.00 58.24+£0.00  79. 631000 3. -8 5.00
5853+£522  56.16 & 1.85 64.17 £ 1.08 55.114+£1.23 5749 56.60 4.40 i £0.00 6528+0.00 7568+ 1.80 66.29  66.69 3.40
57.60 + 4.63 57.53 + 1.08 6450 £ 1.83  59.39+8.16 57.05+102 5921 5817 2.60 68.62 + 4.37 60.41 +1.38 77.83 £ 0.00 66.65  66.96 4.60
44.86 4+ 3.28 55.25 £ 0.79 57.69 £ 5.35 50 5400 £ 088 5148 51.62 7.00 70.26 4+ 1.11 64.93 4 0.00 76.91 £0.74 66.09  66.25 4.40
58.38+539 58274049 70.00+2.70 19 56.50+1.02  60.33 5839 1.80 67.78 +0.01 64.18 +0.07 77.20 £ 1.05 5348+ 0.88  66.95 68.03 5.00
70.8545.54 75.13 £ 3.96 54.43 £3.01 .91 52.07+1.73  62.51 5.20 70.63 +0.00 72.63 £ 0.00 52.51 £0.01 58.234+0.00 61.30  60.46 5.60
5 6 2. 56.25 + 8.75 3.06 + 1.32 48 51.18 7.60 63 £ 0.00 70.39 £ 0.00 62.63 £ 0.01 5141£0.00 6100 61.06 6.80
SURGICAL-FT  67.51 £7.23 81.75 + 2.07 6097 + 1 5 = 1.60 65.37 3.00 71.87 +0.01 83.49 £+ 0.00 62.88 + 0.01 55.99+0.00 67.85  66.59 3.40
SIZE LP-FT 67074245 8212+368 5730+265 65844510 65.09 3.20 69.57 + 0.01 83.67 4 0.00 52.47 £0.01 57.5340.00  64.95 62.88 4.80
WISE-FT 70.06 +5.49 73.88 £ 4.80 52.00 £ 3.06 56.91 61.43 4.80 61 +0.03 71.35 £ 0.00 54.49 £ 0.00 58.37+0.00 6399 64.28 3.80
L2-sP 65.62 4+ 4.40 79.46 £ 0.79 55.84 £4.07 63.81 £ 7.20 63.71 6176 4.40 72.35 4+ 1.40 78.03 £ 1.06 54.40 £ 2.22 56.49+£0.24 6568 6533 3.80
FEATURE-MAP  65.63 + 1.73 70.03+£3.19 63.06+1.89 45.00+2.28 59.83 6134 4.60 73.82+002 8464+007 64.80+255 5258 +0.10  67.81  67.27 2.60
BSS 70.90 £2.39  77.56 + 251 59.84 £ 4.41 65.31 65.24 6535 3.20 68.24 +1.78 78.43 £ 251 56.42 £ 3.96 56.42 4 1. 63.42  60.75 5.20
FEWSHOT-500
FULL-FT 85.93+£206 91.93+0.96 83.67 +0.92 5842+£220 7793 7997 3.20 84.07 4 1.48 90.39 + 1.55 86.30 + 0.62 57.68 £ 1.79 4.60
e 3 85.18 £0.26 70.83 £0.51 3 56.80+0.21  70.83  70.73 8.00 82.41 +0.00 92.73 + 0.85 82.98 +£0.43 58.71 £ 0.00 4.80
SURGICAL-FT  83.62 4 1.90 01684046 86.18+0.83 6837074 60.29+ 087 7803 3.40 3.31 -+ 0.00 87.93 + 0.00 61.57 + 0.00 3.60
RANDOM LP-FT 8! 8!)1‘27% 90. S.L‘It204 lf‘d.U)tu&'l 53 5 5(.110.71 76.70 5.80 84, %Di 1.06 "16tu'> ?‘J 77+ 0.96 3.80
WISE-FT 10+ 2.16 9153 4+ 1.15 84.19 + 0.86 7 58254204  T7.73 X 4.20 84.69 4+ 0.44 86.41 £ 0.64 57.89 4 0.15 3.60
L*s 8417+397  9219+1.11  84.82+0.95 59.314+0.96 7811  79.68 2.00 89.58 £2.13 8231+ 141 57.10+0.75 6.00
FEATURE-MAP  83.37 + 1.03 88.80 +0.29 TO88£0.14 57T.64£065 7581 775 6.40 85.13 4+ 1.33 87.01 £ 0.09 60.05 4 0.87 3.20
BSS 91.81 +0.80 84.68 + 0.83 58.854+1.06 7811 79.97 3.00 88.61+0.79 89.84 +2.25 82.33 +£0.77 56.61 + 1.58 6.40
FULL-FT 63.02+3.19 64.84 +£1.51 71.91£2.43 56.27+094  64.92 6546 5.60 70.99 +6.79 67.23 £ 0.00 77.62 £ 1.36 55.71 £ 0.00 5.00
LP 56.80 4 1.80 58.21 +0.93 67.33 £ 0.37 56.58 £0.58 5841  57.20 7.20 64.78 +0.07 67.80 £+ 0.00 69.90 £+ 0.00 59.93 £ 0.73 5.40
SURGICAL-FT ~ 69.47 +3.18  65.26 +0.62 76.72+1.60 55.72+0.55  67.42 3.00 70.29+000 71.03+0.00 79.83+0.00 55.85 £ 0.00
SCAFFOLD. LP-FT 65.09 + 3.54 64.23 + 1.67 69.36 + 2.11 57.33 £ 0.4 65.08 4.60 77.43£0.00  66.06 +£0.27 78.31 £ 0.00 Z)(i 95 £ 0.00
WISEFT 6489407 64854147 71945208 65.38 500 | T203+£050 7010000  77.63% 140 56.64 % 0.00
L2-sP 69.03 4+ 2.49 06+ 1 T4.07 £1.26 66.65 3.80 76.53 + 1.81 66.90 + 1.99 75.37 £ 1.13 55.87 4 1.39
FEATURE-MAP  60.01 £ 3.1 E 75425070 G0.08+203 58.45+038 G357 80 | G833 % GTTTE0AS  T893+0.05 58.79+0.10
BSS 68.30£286 67.26+098 TI83+215 69.99+180 5743+0.73 6756 68.52 2.00 7333+ 3.14 66.51 + 1.39 T4B2E£ 446 55.56 + 1.49
FULL-FT 60.10 4+ 5.25 76.35 £ 2.26 50.25 £ 3.29 56.23 54404170 59.47 6.00 79.55 4+ 2.13 87.68 +0.71 54.92 £ 3.57 52.47 £ 0.00
59.95 +0.51 63.98 £1.71 40.46 + 4.26 54.82 740 73.86 +1.59 85.67 +0.00 56.69 £ 0.00 2.17 £ 1.22
SURGICAL-FT 6 541 86.62+184 5172+ 280 63.13 3.00 72.39 4 0.00 87.00 + 0.00 61.62 + 0.00
S LP-FT 55394442 TS83£722 5366%335 61.19 460 | 79694350 85974150 G0.12£220 51.2740.00
WISE-FT 62.14 4+ 1.97 75214223 48.40 £2.94 59.11 5.80 80.52 4+ 1.79 7. 54.19 £ 3.09 53.01 £ 0.00 4
L7-SP 64.97+£0.50 83224187 51144426 69.62+£3.36 56.72+1.04 6513 6377 180 | 7319+0.2 50.43 + 3.01 55.04+0.79 4.40
FEATURE-MAP  63.06 + 1.12 5+ 1.70 43.45 £ 0.50 G .37 204071 6124 60.86 4.60 76.08 +0.12 6258 +134 66.73% 53.11 4 0.07 2.80
G287£570 80694255  51.61+452 5648200 6380 6224 280 | 8239520 8469+ 131 6022385 7506+£000 34334073 7134 300
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Table 11: Robust fine-tuning performance on 4 Regression datasets (RMSE metrics) in the Fewshot
setting (covering FEWSHOT-50, FEWSHOT-100, and FEWSHOT-500), evaluated across 3 dataset
splits (RANDOM, SCAFFOLD, SIZE) over MOLECULESTM and GRAPHIUM-LARGE models.
AVG-R, AvG-R* denote the average rank and the rank based on the average normalized performance
over all the datasets for each evavluated method, respectively. Standard deviations across five
replicates are shown in parentheses. We bold and underline the best and second-best performances in
each scenario.

SpLIT METHODS SELF-SUPERVISED PRE-TRAINING (MOLECULESTM) SUPERVISED PRE-TRAINING (GRAPHIUM-LARGE)
EsoL Liro MALARIA CEP AVG-R  AVG-R” EsoL Liro MALARIA CEP AVG-R  AVG-R*
FEWSHOT-50
FULL-FT 1.310 £ 0.025 3.433 £ 0.226 5. 00 6 1.125 4 0.000 1.156 4 0.019 277 + 0.000 2.198 + 0.001 5.75 7
LP 3.519 £ 0.052 8 1.176 + 0.000 1.131 4 0.000 2.113 £+ 0.000 6.50 8
SURGICAL-FT J 272+ 0.199 7 1.055 + 0.000 1.076 4 0.000 2.192 + 0.000 4.00 4
RANDOM ! T 1 G()() + 0 129 l 396 + () 011 358 £ 0.037 4 1.096 £ 0.000  1.032 + 0.002 2.092 £ 0.002 3.00 1
B WISE-FT 2.135 £ 0.07: 1.298 + 0.023 +0.235 5 1.116 £ 0.000 1.151 £ 0.024 1.278 £0.000  2.075 = 0.004 4.00 3
L*-SP 1.297 + 0.006 =+ 0.055 1 1.161 £ 0.000 1077 £ 0.019 1.276 + 0.000 2.127 £ 0.015 4.00 5
FEATURE-MAP 1.301 =+ 0.009 2.398 £ 0.037 3 1.133 £ 0.002 1.106 £ 0.003 1.277 4+ 0.001 2.108 + 0.002 3.75 2
BSS l450t0057 1.314 £0.018  2.244 + 0.036 2 1.188 £ 0.004 1.109 £ 0.021 1.276 £0.000  2.108 £ 0.029 4.25 6
FULL-FT 2.790 £0.116 1.195 £ 0.025 3.395 £ 0.191 6 1.237 £ 0.000 1.079 £ 0.000 1.175 £ 0.000 2.051 % 0.000 4.00 7
LP 1.206 £ 0.012 3.870 £ 0.038 8 0.929 +£0.000  1.096 + 0.000 1.170 £ 0.000 53 £ 0.000 3.75 1
SURGICAL-FT 1.191 £ 0.004 ( 7 1.240 + 0.000 1 =+ 0.000 1.180 + 0.000 009 + 0.000 4.00 2
SCAFFOLD LP-FT 1.263 + 0.009 4 1.241 + 0.000 1.085 £ 0.000 1. +0.000 . 5.00 8
2.76: 1.181£0.008  3.496 £ 0. lJO 5 1.247 £ 0.000 1.099 £ 0.000 1.166 £ 0.000 24 £ 0.000 4.25 4
1.654 £ 0.086 11854 0.008  2.255 4+ 0.026 2 1.280 £ 0.003 1.107 4 0.002 11754 0.000  1.997 +0.016 5.50 6
FEATURE-MAP 1.783 £ 0.03 1.195 £ 0.008 2.401 £ 0.028 3 1.267 4+ 0.110 1.037 + 0.006 1.170 £ 0.14 2.073 +0.016 4.75 5
BSS 1.632 + 0.048 +0.016 2.287 £ 0.028 1 1.159 + 0.007 1.100 + 0.002 1.162 + 0.000 2.060 £ 0.009 4.25 3
FULL-FT 3.457 £ 0.086 1.064 £ 0.067 3.311 £0.158 7 1.499 £ 0.000 1.108 £ 0.000 0.909 £ 0.000 2.321 £ 0.000 3.50 4
LP 3.758 £0.010 0.990 + 0.056 4.114 £ 0.042 8 2.025 £ 0.000 1.325 £ 0.000 0.917 £ 0.000 2.358 £ 0.000 7.50 8
SURGICAL-FT  3.429 4 0.139 0.990 + 0.054 3.195 + 0.306 5.25 6 1.675 £ 0.000 1.089 =+ 0.000 0.916 £0.000  2.271 £ 0.000 4.50 1
SIZE LP-FT 2, 80 1.102 £+ 0.018 2.500 + 0.045 4.00 4 1.540 £ 0.000 1.079 4 0.001 0.994 + 0.000 2.347 +0.001 5.75 7
3.527 £0.112 0.983 £+ 0.053 3.386 £ 0.142 5.00 5 1.536 £ 0.000 1.149 £ 0.000 0.911 £ 0.000 21 £ 0.000 4.50 5
2.111 £ 0.091 0.988 + 0.032 421 + 0.045 2.00 1 1.673 £ 0.030 L. =+ 0.002 0.948 £ 0.007 2.304 + 0.022 4.25 6
FEATURE-MAP 1.000 + 0.0: 2.439 + 0.024 4.00 3 1.594 4 0.010  1.070 +£0.012  0.915 4 0.001 06 + 0.008 3.25 3
BSS 1.01940.033  2.419 4+ 0.045 2.75 2 1.516 4 0.008 1.076 +0.043  0.907 + 0.000 13 £ 0.049 2.50 2
FEWSHOT-100
FULL-FT 1.842 £+ 0.208 1.289 +0.032 2.784 £0.110 6 1.121 £ 0.000 1.187 4 0.020 I.' 1.902 = 0.011 5.00 6
LP 2.391 £0.044 1.279 £ 0.007 3.176 £ 0.093 8 0.912 + 0.000 1.068 £ 0.000 1.920 £0.014 4.75 4
SURGICAL-FT  1.650 & 0.063 1.277 £0.012 2.777 £ 0.181 4 0.952 + 0.000 1.061 4 0.000 1 269 +£0.000  1.881+0.000 2.25 2
RANDOM LP-FT 1.350 £ 0.016 2.203 £ 0.030 7 1.061 £ 0.005 1.126 £ 0.000 1.290 +0.011 1.918 + 0.005 6.00 7
WISE-FT 1.282 4 0.017 2.842+0.123 5 1.064 £ 0.000 1.121 £ 0.050 1.258 + 0.000 1.905 £ 0.015 3.75 3
L2-SP 14S6i0105 1.267 £0.007  2.207 £ 0.046 1 1.109 £ 0.082 1.094 £ 0.007 1.276 £ 0.000 1916i002) 5.00 5
FEATURE-MAP  1.557 4 0.034 1.269 +£0.002  2.130 4+ 0.020 2 0.897 £0.009 1.053+0.007 1.273 £ 0.000 1.75 1
BSS 1.285 4 0.011 2.170 + 0.028 3 159 4+ 0.012 1.129 4 0.022 1.276 4 0.004 7.00 8
FULL-FT 2.036 £0.119 1.205 £ 0.050 2.942 +0.208 6 1.238 4 0.000 1.027 £ 0.000 1.187 £ 0.000 1.986 + 0.019 6.75 7
LP 2.906 + 0.093 1.180 £ 0.017 8 1.184 £ 0.013 0.998 + 0.000 . +0.000 1.935 + 0.000 3.25 3
SURGICAL-FT 1.956 £+ 0.170 1.183 £0.016 2.848 £0. lZ(] 5 1.121 £ 0.000 0.977 +£ 0.000 1.172£0.000  1.914 = 0.000 2.50 1
SCAFFOLD LP-FT 1.775 £ 0.178 1.288 £0.012 2.310 £ 0.034 7 1.210 £ 0.001 1.062 £ 0.003 1.206 £ 0.000 1.918 & 0.002 6.00 8
- WISE-FT 2.052 £ 0.082 1.188 £ 0.027 3.049 + 0.246 4 1.199 £ 0.000 1.002 £ 0.000 1.988 £ 0.028 4.50 5
L2 1.559 +0.047 1.166 + 0.004 2.227 £ 0.036 1 1.210 £ 0.030 0.999 £ 0.035 2.000 £ 0.009 5.75 6
FEATURE-MAP 1.576 & 0.028 1.181 £ 0.005 2.216 +£0.014 3 1.106 £ 0.025 0.957 + 0.008 1159i0003 2.047 = 0.008 2.75 2
BSS 1.680 £ 0.098 1.163 £0.004 2.212+0.018 2 1.169 £ 0.035 1.025 £ 0.000 1.170 £ 0.014 1.938 +0.030 4.25 4
FULL-FT 2.527 £0.152 1.022 £ 0.046 2.587 £ 0.100 7 1.675 4 0.003 1.132 4 0.000 0.909 + 0.000 2.317 + 0.000 525 6
LP 0.951 +0.011 3.408 + 0.041 8 1.740 £ 0.000 1.245 4 0.000 0. 7.75 8
SURGICAL-FT 0.970 £ 0.020 2.607 £ 0.040 6 1.501 £ 0.000 1.091 £ 0.000 0.902 £ 0.000 2.241 = D 000 2.50 1
SizE LP-FT 1.937 +0.120 1.045 £ 0.012 2.506 + 0.042 5 1.662 £ 0.009 1.228 £ 0.002 0.939 £ 0.003 2.310 &= 0.005 6.50 7
WISE-FT 2.580 £ 0.096 0.962 £ 0.043 2.556 £ 0.089 4 1.605 £ 0.001 1.159 £ 0.000 0.907 £ 0.000 2.300 = 0.000 4.00 5
L?-SP 1.860 4 0.1 0.931 + 0.007 1 1.047 4 0.097 0.915 + 0.008 2.256 i 0 20 2.75 3
FEATURE-MAP B .| 0.936 £ 0.009 2 1.085 £ 0.012 0.915 £ 0.000 0. 3.75 4
S 1.854 £0.109 0.962 £ 0.017 2.444 £0.014 3 1. 325 +0017 1.011£0.045  0.909 £ 0.002 1322+0002 3.00 2
FEWSHOT-500
FULL-FT 1.093 £ 0.085 1.874 4 0.042 5.00 6 0.702 + 0.006 0.849 + 0.006 1.217 4 0.000 1.801 +0.018 5.00 5
LP 1.542 4 0.011 2.435 £ 0.019 8.00 8 0.732 + 0.000 0.829 + 0.000 1.225 4 0.000 1.809 £ 0.011 6.25 7
SURGICAL-FT 1177 £0.043 1.948 £ 0.005 6.00 7 0.643 + 0.000 0.800 + 0.000 1.207 + 0.000 1.775 + 0.000 1.50 1
RANDOM LP-FT 1001+ 0.020 18500019 4.00 5 0.664+0.001 0. I 2040000 1809+0.019 375 2
WISE-FT 1 076i0074 1.898 £ 0.051 4.25 4 0.661 £ 0.009 0.848 £ 0.005 1.207 £ 0.000 1.802 £ 0.025 3.50 3
L?-SP 0. 1 839 + 0.0: 2.75 1 0.714 + 0.041 0.827 £ 0.011 1.223 4 0.006 5.75 8
FEATURE-MAP 216 + 0.002 +0.003 4.50 3 0.671 +0.014 0.791 + 0.007 1.210 £ 0.002 . 4.25 4
BS: 0. ‘)90 + O 045 1.231 £ 0.009 1 8’45 +0.023 1.50 2 0.715 £ 0.035 0.816 £ 0.015 1.228 4 0.003 1 808 +=0.009 5.50 6
FULL-FT 1.434 £ 0.044 1.186 £ 0.017 1.910 £ 0.022 5.00 6 1.025 £ 0.011 0.856 £ 0.016 1.125 £ 0.000 1.808 £ 0.023 5.50 6
LP 2.047 £0.020 1.168 £ 0.005 2572+ 0.018 7.25 8 0.929 + 0.003 0.841 + 0.000 1. 1.787 £ 0.000 4.50 3
SURGICAL-FT 1323L0053 159 £+ 0.014 1.920 £ 0.010 4.50 5 0.943 + 0.000 0.812 + 0.000 1 QQLGODD 2.00 2
SCAFFOLD LP-FT 1.204 £ 0.015 1.876 4 0.024 5.00 7 0.9 =+ 0.004 0.847 £ 0.001 4.75 4
WISE-FT 1170 £0.014 1.926 £ 0.035 5.5 4 0.995 £ 0.013 0.851 £ 0.010 l 123 + U Nl(l 1. 80/ i 0 020 5.50 5
L*-SP 1.139 £ 0.001 1 0.996 + 0.044 0.861 £0.014 1.122 £ 0.005 1.828 £ 0.004 5.75 7
FEATURE-MAP 1.154 £ 0.003 3 0.881+0.005 0.808+0.003 1.145+0.000 1.747+0.014 1.00 1
BSS 150 + 0.020 1 Sb() +0.018 2 0.976 + 0.029 0.859 + 0.009 1.158 4 0.010 1.817 £ 0.013 3.00 8
FULL-FT 1.797 £ 0.088 0.997 £ 0.019 2.353 £ 0.033 7 1.198 £ 0.000 0.863 £ 0.001 0.926 £ 0.000 2.235+0.011 6.00 7
LP 2.581 £ 0.049 0.943 £ 0.005 2.990 + 0.030 8 1.375 £ 0.000 0.934 + 0.000 0.938 + 0.000 2.300 £ 0.000 8.00 8
SURGICAL-FT  1.540 + 0.078 0.944 £0.010 2.403 £ 0.038 4 1.289 £ 0.000 DSZOiDOOO 0.917 £0.000  2.198 £ 0.000 3.75 4
SIZE LP-FT 1.717 £ 0.077 0. 956 +0.014 2.287 + 0.043 5 1.147 + 0.000 5 0.907 £ 0.005 2.220 +0.031 3.25 3
o WISE-FT 1.874 4 0.084 2.363 £ 0.035 6 1.189 + 0.000 0 873 L 0 001 0.908 + 0.000 2.233 +0.007 4.75 5
L*-SP 1.592 £ 0.089 2.297 £0.014 1 1.114+£0.038 0.805+0.030  0.903 £ 0.009 2.220 +£0.012 1.75 1
FEATURE-MAP 1580 £ 0.070 2.286 + 0.036 2 1.241£0.116 0.833 £0.010 0.917 £ 0.001 2.236 +0.024 5.50 6
BSS 1.617 £ 0.117 0951 10001 2.295 + 0.038 3 1.189 £ 0.029 0.829 £0.022  0.901 £0.007  2.219 £ 0.000 2.25 2
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Table 12: Robust fine-tuning performance on 8 Classification datasets (AUC metrics) in the
Non-Fewshot setting, evaluated across 3 dataset splits (RANDOM, SCAFFOLD, SIZE), over
GRAPHMAE and GRAPHGPS models. AVG, AVG-F, AvG-R denote the average AUC, aver-
age AUC without max and min values, and average rank over all the datasets for each method,
respectively. Standard deviations across five replicates are shown in parentheses. We bold and
underline the best and second-best performances in each scenario.

SpLIT METHODS CLINTOX BBBP BACE HIV MUV SIDER Tox21 TOXCAST AVG  AVG-F  AVG-R

SELF-SUPERVISED PRE-TRAINING (GRAPHMAE)
FULL-FT 83.22 £2.07 94.70 £ 0.32 89.26 £ 0.40 85.314+0.29 80.71 £0.58 61.53 +0.48 82.3540.15 73.01£0.16  81.26

LP 78.82£1.55 83.16 £ 0.58 77.65 £ 1.27 74.45+0.31 78.54 £ 1.16 61.51+0.35 73.57£0.16 66.96 £0.16  74.33
SURGICAL-FT ~ 83.85 £ 1.52 92.11 £ 0.35 86.77 £ 0.09 84.56 £0.30 82.71+0.81 61.79+0.19 79.90 £0.14 71.51£0.21  80.40
RANDOM LP-FT 88.09 +1.04 94.68 £+ 0.19 89.58 + 0.23 86.06 +£0.43  80.75+ 1.53 61.694+0.26 8250+0.21 73.66+0.07 82.13
WISE-FT 80.01 £ 4.00 93.04 £ 0.46 90.15 £+ 0.50 85.42 4 0.52 82.07 £2.10 62.18 + 0.49 81.55 4 0.43 7248 £0.26  80.86
L2-SP 83.39 £ 1.88 93.89 £0.28 88.70 £0.10 80.22+0.17 +1.54 62.36+0.43 77.45+0.47 68.71+£0.31 7851
FEATURE-MAP  73.08 £ 0.89 85.36 + 0.46 75.88 £0.75 77.04+0.26 79.53 £ 1.25 62.06 + 0.32 75.36 £0.13 65.69 £0.24  74.25
BSS 83.98 4 3.00 94.85 +0.31 89.31+0.21 86.05 4 0.40 80.55 + 0.75 61.92 4+ 0.21 73.2240.07  81.54
FULL-FT 74.74 £0.93 66.35 £ 0.65 80.33 £0.37 77.22£0.38 TT.47T+£1.33 60.98 +£0.19 76.18 £0.31 64.27+£0.36  72.19
LP 71.34 £1.48 64.36 £ 0.24 61.70 £ 7.34 70.62 + 0.64 79.13+1.20 58.23 £1.29 70.89 £0.10 60.03+0.13  67.04
SURGICAL-FT  71.88 +1.07 66.81 +0.29 80.24 + 0.90 76.90 £0.30 79.20+0.50 64.00+0.09 74.18 4+ 0.40 62.60 £0.27  71.98
SCAFFOLD LP-FT 74.88 £ 2.00 67.39 £+ 0.55 80.67 + 0.57 77.97+0.38 75.13+1.06 60.76 + 0.45 76.18 +£0.20 64.29+0.23 72.16
N WISE-FT 77.30+530 69.29+2.34 82.16 +£1.50 76.75 £ 0.69 77.76 £ 1.55 59.76 £ 0.86 63.61+0.34  72.70
L2-Sp 73.40 £ 0. 67.39 £ 0.90 80.36 £ 0.92 74.63 +0.44 73.20 £0.90 61.29+£0.38  70.85
FEATURE-MAP  64.74 + 0.62 62.46 + 0.26 69.22 + 2.06 34 £ 0.58 75.63 + 0.54 3+1.08 71.25+0.13 57.78 £0.26  66.32
BSS 7580 £ 1.11 67.46 + 1.35 80.82 + 0.62 77.10 £0.77 78.53 £ 1.03 62294051 76.45+0.24 64.03+0.09 72.81
FULL-FT 56.52 £0.81 80.05 £ 2.01 59.94 £ 1.83 77.21+0.94 53.04+0.74 70.87 +0.24 60.80 £0.50  66.63
LP 57.44 +0.94 73.52 + 1.68 51.46 +0.97 73.91+£0.89 51.84 £0.31 67.56 +0.10 57.49+0.11  62.40
SURGICAL-FT  57.47 +1.16 81.96 + 0.78 55.85 + 2.81 80.48 +£0.18 54.32 +0.43 71.19 £+ 59.45+0.18  67.07
SIZE LP-FT 56.35 £ 0.62 76.80 £2.24 61.61+1.01 77.14+£0.69 79.10+0.89 5269+0.35 71.33+0.26 60.98+0.27 67.00
. WISE-FT 59.25+3.49 82.99+1.91 61.16 +2.31 75.90 + 1.94 75.09+3.95 5574+1.28 70.94+042 61.53+0.56 67.83
L2-SP 59.11 +0.88 80.40 + 1.50 61.10 + 1.54 53.81+£0.72 68.96 £ 0.47 57.85+£0.36  65.38
FEATURE-MAP  59.02 £ 0.89 77.60 £ 0.45 43.17+£0.32 3 52.23 £0.32 68.74 4 0.09 53.39 £ 0.51 5
BSS 58.58 £1.31 80.86 + 1.92 61.96 + 2.00 79.14 £0.79 53.14 £0.63 70.76 £ 0.37 60.62+0.35  67.30
SUPERVISED PRE-TRAINING (GRAPHGPS)
FULL-FT 99.77 4+ 0.01 99.99 £ 0.01 100.00 £0.00  84.80 £0.33 57.06 + 0.00 87.13 £0.39 87.1740.48 86.90 £0.17  87.85  90.96 4.00
LP 99.48 £ 0.04 86.96 £ 0.40 80.94 £ 0.45 86.70 +0.42 63.97 £+ 0.80 84.77 £0.08 82.70 +0.14 83.93+0.04 83.68 84.33 5.50
SURGICAL-FT  99.65 £ 0.05 99.16 £ 0.00 98.14 £0.04 86.58 +0.03 47.74 4 0.95 51.53 +0.00 51.71£0.00 74.38  74.61 5.88
RANDOM LP-FT 54 +0.14 4 84.88 + 7.57 5 63.96 + 0.80 85.97 +2.43 83.98 4 2.45 8448 +£1.09 84.77  85.78 5.12
WISE-FT 97.04 £+ 1.00 68.29 £ 2.24 49.94 £ 0.01 80.52 £ 0.07 1+0.12 77.50£0.03  70.80  69.90 7.62
L*-sp 99.84+0.03 100.00 £ 0.00 100.00 £ 0.00 74.51+1.12 92.16+0.44 92.28+0.46 89.79+0.07 9329 9530 1.25
FEATURE-MAP  99.79 + 0.09 100.00 + 0.00 100.00 £0.00  99.42+0.01  53.07 + 0.82 91.64 + 0.06 91.61 4 0.16 89.39 £0.06 90.62  95.31 2.62
BSS 99.77 £0.00 100.00 £ 0.00 100.00 £ 0.00 84.87 4 0.02 58.93 £3.25 87.61 £0.05 87.524+0.10 86.75+0.05 88.18  91.09 4.00
FULL-FT 99.76 + 0.04 99.99 £ 0.01 100.00 £0.00  83.67 £ 1.61 57.08 £ 1.77 87.26 £0.15 87.16 £ 0.21 86.71+£0.12 87.70  90.76 4.12
LP 99.47 4+ 0.04 86.84 + 0.49 81.04 £ 0.53 86.66 4 0.44 6: +0.82 84.74 £0.08 82.70 +0.14 83.93£0.04 83.67 & 5.75
SURGICAL-FT ~ 99.64 + 0.08 99.33 £0.14 98.14 £ 0.06 6 +0.39 76.46 £ 1.75 72.53 £1.99 55.58 £0.35  81.38 5.75
SCAFFOLD LP-FT 99.54 +0.15 89.53 £5.24 84.35 £ 6.50 84.81 4 2.36 62.46 £ 1.48 85.96 £ 2.47 83.96 &+ 2.42 84.52+1.17  84.39 5.38
WISE-FT 97.324+0.16 64.59 £ 3.69 100.00 £ 0.00 67.98 +4.58 49.84 £0.72 80.53 £0.07 68.04 +£0.17 77.563+£0.02  75.73 7.00
L?-sp 99.8340.03  100.00 +0.00  100.00 = 0.00 98.35 + 74.63+095 9233+0.21 9243+034 8985+0.17 9343 1.50
FEATURE-MAP  99.85 +0.01 100.00 £ 0.00 100.00£0.00  99.26 £0.13  55.32+0.31 91.63 £ 0.04 91.61+0.11 89.30 £0.06  90.87 2.62
BSS 99.81 4 0.04 99.99 £ 0.01 100.00 £ 0.00 85.03 £ 0.57 60.82 + 4.94 89.80 +3.20 87.36 4 0.09 86.85+0.12  88.71 3.88
FULL-FT 99.76 £ 0.03 99.99 £ 0.01 100.00 £0.00 8342+ 1.75 56.61 £+ 1.51 87.41£0.51 87.06 +0.10 86.90 £0.13  87.64 4.12
LP 474 0.05 86.56 £ 0.34 80.81 £ 0.52 86.66 + 0.44 64.02 £0.78 84.74 £0.08 82.38 +£0.15 83.95+0.04  83.57 5.75
SURGICAL-FT 214 0.00 99.30 £0.15 98.09 £ 0.07 86.08 +0.07 60.69 £+ 0.81 76.45 £ 1.71 82,17+ 1.95 85.13+0.03  85.89 5.88
SIZE LP-FT 99.52 4 0.14 89.35 £ 5.33 84.80 £ 7.61 84.41 £2.92 63.79 £ 0.60 85.99 £ 2.52 83.71 £ 2.54 84.49 £ 1.07  84.51 5.38
WISE-FT 96.03 £1.22 57.52 £ 3.31 70.92 £2.97 66.52 +4.13 49.80 £ 0.26 80.55 £ 0.06 67.69 +0.21 77.52+£0.02 70.82 7.88
L*-SP 99.84 4 0.03 99.99 + 0.01 100.00 + 0.00 97.874+0.09 7536+0.79 92.22+£0.19 92.55+0.60 93.48 1.88
FEATURE-MAP  99.85+0.02 100.00+0.00 100.00£0.00 99.36 +0.08 6. +0.23 91.61 + 0.06 91.4340.15 92.18 1.75
BSS 99.79 4+ 0.05 100.00 £ 0.00 100.00 £ 0.00 98.714+0.03 59.16 £2.37 87.40 £0.33 88.34 +£0.15 90.04 3.38

Table 13: Robust fine-tuning performance on 4 Regression datasets (RMSE metrics) in the
Non-Fewshot setting, evaluated across 3 dataset splits (RANDOM, SCAFFOLD, SIZE) over
GRAPHMAE and GRAPHGPS models. AVG-R,AvG-R* denote the average rank and the rank
based on the average normalized performance over all the datasets for each method, respectively.
Standard deviations across five replicates are shown in parentheses. We bold and underline the best
and second-best performances in each scenario.

i . SELF-SUPERVISED PRE-TRAINING (GRAPHMAE) SUPERVISED PRE-TRAINING (GRAPHGPS)
SpLT METHODS
EsoL Lipo MALARIA Cep AVG-R  AVG-R" | EsoL Lipo MALARIA Cep AVG-R  AVG-R®
FULL-FT 0.987 +0.013 1.109+0.015  1.342£0.015  3.00 3 019140019 021140012  0.955+0.008  0.587+0.000  4.50 4
LP 1.394 4 0.012 126340002 3.079+£0.105  8.00 8 073740005 087740004  1.031£0.003  1.602+0.006 650 6
SURGICAL-FT  1.088 £ 0.011 1120£0.012 1697 £0.012 625 6 15650313 2284 £0.179  0.800 4 0.022 6.00 7
RANDOM LP-FT 0.953 + 0.009 109640009 1.322+£0025 175 1 0139£0.016 01970003  0.925+0.007 3.25 3
WISE-FT . 3 1.060+£0.008 1531£0.030 450 5 248840137 122440007 1187 +0.001 775 8
L2-SP 0.787+0.008  1.115+0.006 1 1.25 4 0.16940.009  0.194+0.010  0.559 £ 0.022 2.00 2
FEATURE-MAP 1.080+0.002  1.115+0.016 1.4 6.25 7 0187£0026 0.134+0008 0.243+0.009 0215+0026 175 1
BSS 07250011  1.100+0.004 133440004  2.00 2 017740013 021340005  0.921£0.013  0.651 £0.079 5
FULL-FT 1332+ 0.015 1104£0.007  1.327£0.017 350 3 021840054  0202+£0022  0.929+£0011  0.528+0.123 4
LP 1.703 +0.016 1150 £0.003 310240136  7.50 8 075240006 084940005  1.00S£0.000 1539+ 0.009 7
SURGICAL-FT  1.335 + 0.005 L11£0013  L669+£0.022 550 5 15740314 0.362+£0.013  0.818+0.007  0.917 = 0.000 6
SCARFOLD LP-FT 1.312 +0.024 L104+0.006 131840017  L75 1 0145+0.020 0.181£0.012  0.944+0.015  0.585+0.036 3
WISE-FT 1.617 4 0.031 1.077+0.004 14980034 500 7 840519 1.262 % 0. 122040017 2610+ 0.082 8
L2-SP 1.329 £ 0.030 11080011 1.325£0.021 350 4 1208 £0.037 0183 £ 0.0 073340151 0462+ 0.050 2
FEATURE-MAP 1551 £ 0.013 1.097£0.008 14150030  5.00 6 019440009 014240004 0327+:0034 0232+0026 150 1
BSS 1.326 4 0.029 110420009 1.302+£0012 200 2 018140008 020640016  0.899+£0.024 062240021 400 5
FULL-FT 0.908+0.005 172240016  3.25 3 019240022 022140013 0836+£0.044 04740042 375 3
3 092740010 381440175  7.75 8 0.752 + 0.006 004 0.996£0.005  1540£0.015  6.75 7
SURGICAL-FT  1.915 £ 0.036 092540003 213540038  6.00 5 1580 4 0.314 35340005  0.787£0.018  0.943£0.000 525 6
Size LP-FT 1.754 +0.075 09074002 1.7104£0.010 175 1 0.145 £ 0.007 5£0.007  0.902+0067 05750058  3.25 4
SIE WISE-FT 2.323+0.041 089540011 198240039 550 7 2.264 + 0.336 6+0.006  1.189 4 0.002 340151 8.00 8
L2-SP 1.849 & 0.041 09110006 174840041  4.50 4 019240014 019640009  0.787 £ 0.029 50100 3.00 2
FEATURE-MAP  2.136 + 0.030 5 089140012 1L947£0.013 475 6 020040014 0.15340.009 0.354£0.007 0227 +0.048 200 1
BSS 1808+ 0039  0818+£0.020  0.899+0.006 171240021 250 2 018840019 021140006  0.946£0.006  0.550 £0.000  4.00 5

36



Table 14: Robust fine-tuning performance on 5 Classification datasets (AUC metrics) in the Fewshot
setting (covering FEWSHOT-50, FEWSHOT-100, FEWSHOT-500), evaluated across 3 dataset splits
(RANDOM, SCAFFOLD, SIZE) over GRAPHMAE and GRAPHGPS models. We bold and underline
the best and second-best performances in each scenario.

Sour METHODS SELF-SUPERVISED PRE-TRAINING (GRAPHMAE) 'SUPERVISED PRE-TRAINING (GRAPHGPS)
CLNTOX BBBP Bace HIV SiDER AG_ AVG-F AVG-R | CLINTOX BBBP Back HIV SIvER WG AGF AR
FEWSHOT-50

FULLFT  50.674335 83014030 7497+130 6263+£092 52524019 6657 6576  4.20 5680197 50172203  7216£301 8501042 7212 380
57564409 TL69+089 72964091 48274406 55094022 6Ll 6145 620 56.07 +1.71 6326078 8277+£222 6748 6.40
SURGICAL-FT 59834264 7837106 75254092 53354081  5497£043 6435 6335 440 3 60.73 % 3.76 7263£0.13  86.59+0.75 7332 320
Ranbowt LP-FT 60.20£211 8454+041 7682034 (221058 5141+032 6764 6642 260 | 9737089  55.13+0.23 6168335 8352115 6716 7.20
WISE-FT 6350772 7077+142 7057+113 58.10%235 6283 6406 600 | 9750027 5355+ 1.95 6190£322 8360 £021 6738 6.80
L2-sP 610246203 83794060 7424096 6158+ 081 6719 6561 320 | 98744040 5895237 72904219 85154121 7308 220
FEATURE-MAP 5909 £350  73.57+112  TLIS£260 48244414 55855010 6177 6234 520 | 9810+033  5951+056 G165+ 088 G577 +281  5273+0.22 7105 420
ss 3 83814057 TABSE120 62064080 5446056 6671 6510 420 | 95432009 6368386 59824370  7310+£105  85.03+0.39 7394 220
FULL-FT 55614260 5853058 58214754 4589420 5462 5623 560 | 98.20+028 5289045 64904155  7207+245  8483+0.05 7393 3.80
62764366 5621+138 5667674 52124382 5623 5542 620 | 9798048  5621+218 63.27%0.78 6736 6.40
SURGICAL-FT 6353 +3.11 5033082  60.97£353 5262146 5828 5841 300 | 9772049  61.37+290 72,63+ 0.13 6683 4.60
ScarroLD LP-FT 60.62%283  5845+072 50514111 5L8T£3.30 5702 5751 520 | 9742081  55.14£0.44 G105 %335 6719 6.60
WISE-FT  5545£580 5033+074 67.39£269 5803+ 5879 57.60 420 | 98233005  50.43£0.95 6617 %5.35 6819 6.20
L2-SP 64764287 5999 +0.63 94+ 5850 5860 360 | 98724047  57.64+£270 72304210 84944016 7225 260
FEATURE-MAP  68.84 = 177  56.59 % 137 43.90 £ 0.98 5682 5712 520 | 98332007  5893£0.76 68715316 8275 =019 7037 380
BSS 60.27£3.40  60.16 +0.57 6217+ 1.89 5976 6075 300 | 98554013 5009 +238 73244136  8512+023 7257 200
FULL-FT 5386415 58435197  4583£842  5I30£897 52274060 5236 5251 540 | 98342026 5558+ 1.28 73.23 85.13+0.22 7302 320

LP 5246+347 AT60£731 5180061 4650=1195 5L79+075 5003 5040 660 | 97.59£058 5530 %206 63325078 8271022 6759 6.
SURGICAL-FT 53274382 4S97+811 52082945 52114011 5337+£031 5195 5247 440 | 07702051  G6L72+5.14 7265+0.15  86.48+0.70 7362 3.40
S LP-FT 5143319 50464182 40.76£204 57.05L185 5841019 5302 5496 340 | O737+085 5350016 5652016  6L75£320 8317075 6715 7.20
3 WISE-FT 64362091  60.62+342 5150+493 6693590 5096+120 5731 5621 300 | 98.07=031 5264165 5303264 6681377 8377034 6787 6.20
L*-sP 5309096 5843+443 45904925 5369419  5231+070 5268 5303 520 | 98.79+£045 5586280 61934345  TLSTELT3  8512+028 7297 280
FEATURE-MAP 53754101 60215722  46.65+161 5342482 5LSS£051 5318 5302 420 015040 59.55%0.79 6 6877328  82.85+0.21 7103 440
BSS 58804149 OI3LL12 46624869 5394411 SLSTL064 5407 5487 380 | 0856£033 62184381 74094308 85174045 7381 200

FEWSHOT-100

FULLFT 67654195 82804074 79734072 62474047 55034056  69.54 99235016 6892+3.05 T50T£222  9084+037 7815 7825 3.00
6403241  T219+110 75934112 1846379 58114051 6374 98432042 59.75+2.00 RASE127  8510£023 7241 6.60
SURGICAL-FT 6699 £208  SLOT£032 7905049 5193£064 5816060 G8.04 9803128 G8.12£3.40 7431011 6685=109 7314 5.00
RaNbOM LP-FT 66504129 84024063 8149+040 6260+£300 57204049 7039 0880054 6210394 63755180  BTS6£352 7303 5.80
WISE-FT 69925324 SL8S+316 7LOIEL00  50.41+£1.02 52124156 6687 9795061  5791£3.79 TLOA+244 84132105 7228 7.40
L*-SP 68.17+0.71  8352+097  8029+£0.64 61.40+£0.73 58.85+0.38 70.45 99.34+0.06  72.60 + 1.56 7420£2.12  90.59£0.50  79.20 2.60
FEATURE-MAP 6325114 7395104  7490£219 4820+411 58802021 63.81 99395015 6463 +3.52 T5ATE£226 8679067 7833 280
BSS 68224052 83554007 80324067 6224£18 5013071 7009 9944010 69.97£0.57 7286191 9080054 7817 2.80
FULL-FT 63224557  G0.6T£0.99 65724220 5423265 54934084 5975 99202019 6892+0.65 TAB9£3T5 9059019 7858 240
LP 6LG61£321  5387T£093 G 5399 £ 481  5302+035 5667 97912016 6128 = 182 G249£127 85055000 7245 7.00
SURGICAL-FT 6638+ 1.62  58.25 % 0.90 6220£1.88 55214047 6100 08015120 6690 +2.62 74,50 £ 0.70 5.20
ScamrOLD LP-FT 6508359  60.15+020 66 57034348 SLIZE052  60.50 08725046 6152216 6612 5.2 5.80
3 WISE-FT 53834278 64134164 7212£143 5764+440 5564215 60.67 98255008 5754522 68455291 8368+017 TLT4 7.00
- 66.91£1.79  G0TT+157 G 53 5431£225 5472+ 116 60.55 99332002 69144093  50.04=056  7273+403  90.92+£050 7823 T7.60 260
FEATURE-MAP  68.84 £1.56  55.05 £ 0.58 5087238 49554088 5788 0933+010 6501+ 181 6495051 74254163 8716006 7815 7547 340
BSS 670114210 6054+ 113 6074093 5506+ 114 6201 9945L008 6886435 5714+ 151 75444060 9053+0.05 7828 T8 260
FULL-FT 6652139 5L73+£247 5LI3£850 5393076 50.26 99.01=018 6831298 7519 £ 158 055 7775 T8I1 3.60
LP 4027599  AT224£600 4639£1L1S  5LT2E076 4947 08.41£043 5075 £2.07 62545128 85005021 7237 6912 640
SURGICAL-FT 52344618 49294593 51501255 5347071 5298 9800+ 131 67.07£556 E 74944041 68.72£109 7363 7024 560
Sz LP-FT 6T66+£1.06 5439+£227 5800+ 124 57.92 9871046 GLI5£261 5247357 65824488 ST35£328 7310 TIM 580
WISE-FT G610l 48324236 67T43+652 56.69 9824055 55854593 50.18£023  6731+£478  S363+£0.56 7L04 6893 720
s 66395308 5450+£314 5452760 56.75 99.33£015  GL17£316 6098 7454111 90.85+025 77.97 7652 320
FEATURE-MAP 5847057 618 52.40 % 5.5 5190 99354018 71244308 64041087 75864263 S6ISE070 7963 T7.96 2,00
B 58.71+144 67.67+291 5489317 5460£772 5433+ 118 5804 9931015 7234455 60223348 7541192 9076+035 7961 7950 220
FULL-FT 78632077 9108£135 85.62£030 7055+£032 5968+036 7711 99822002 10000£0.00 100.00£0.00 7994£083  9471£021 9818 340
LP 72314223  7979+123 7557104 54424251  6110+033 6864 9959£005  90.08£021  8216£033  76.72£0.97  8635%0.15 820 7.00
SURGICAL-FT  79.00£081 8522036 83774094  6578£056 6L10%£047 7499 99.68£009 10000 £ 0.00 7991£110 7982+ 110 9315 540
RANDOM LP-FT 80524176 91824025 86.02+020 69284065 61104038 7775 9968011 100.00 + 0.00 TT83E 154 89.77+5.03 9243 520
WISE-FT 78314382 9154 £0. 81494056 61154137 6377+1.03 75.86 9705038 T3A0£317 T5A2£ATI 8059+ 0.10 7954 760
- T856+£091  9138£046 85814040 873018 6134£000 7716 99.86£002 100.00+0.00 100.00£0.00 80.36£211 95124015 9833 2.60
FEATURE-MAP  69.96+ 165 8131048  7L65£061 5854+ 157 6LA0L019 G857 9988002 10000+000 10000000 S075+035 9233007 9450 9740  2.60
BSS 79174093 91.98+048 85854041 69744011  6032+051 7741 9983001 100004000 100.00+0.00 8079204 9531+0.12 9519 9838 220
FULLFT  G8.64£079 G865 £0.62 6632+ 181 57.55£033 G777 0983£002 100.00£0.00 100.00+0.00 7883+128 9475008 9469 9520 380
LP 67.38 + 2 60.02 % 0.77 6014414 587131 GLT9 99655003 9906 £021 006021 8216+ 8637£019 9L62 9199 550
SURGICAL-FT 65.27 +0.39 70524105 61994040 6859 99654007 10000 £000 99.86+0.07 7934+ 7971112 9LTL 9307 5.60
ScarrOLD LP-ET 69 T0.224 55.89+0.75  67.84 99.68+012  100.00+0.00 ST85=550 75984199  SS5T£339 9042 9203 570
WISE-FT 65,58 = 156 S890£263  HT28£075  66.60 9782047  6960£8.28 8247677 TTIEL59 82474007 8190 8069 T.60
s 68.81 & 0.65 65,12 111 073 68.33 9981001 100.00+0.00 100.00  0.00 95.05 & 0.01 9830 3.00
FEATURE-MAP 50424029 6 67016226 565 6388 99.894£0.03 100.0040.00 100.00 = 0.00 92.22 £ 0.01 9737 2.80
BSS 6359+ 1.15  69.09+£057 78854093 66054220 58734039 ] 99852004  100.00+0.00 100.00 +0.00 9577016 9912 9995 2.00
FULLFT G578+ 128 83114077 4915150 5835+9.96 5246+133 6177 9980£002 100.00£000 100.00£000 7970+081  9474£027 9485 9735 3.0
58594286 6074 £5.06 AT28+225 4639+ 1118 51724076 5294 99.59 £ 0.05 £027 82124035 7674097 8631015 8692 8630  6.80
SURGICAL-FT 65884123 7286129 47624158 57444955 5261051  59.28 99.66=0.10  100.00 = 0.00 7906008 TOT2£110 9168 9273 550
S LP-FT 6609+ 140 8296+052 50174069 G30T£0.97 5225£055 6291 99.69=0.14 100,00 +0.00 TT93£210 8690104 9047 9123 510
WISE-FT 5772258 7731+156 6042£245 6817£247 51524050 63.03 97362035 7691550 TATIEL58 8055013 SLA2 7901 T80
25 65914213 82224063 49404087 60244210 5279+072 6211 99.81£0.02  100.00 + 0.00 8057227 95024014 9509 9749 260
FEATURE-MAP 6084137 6360618  4407£077  4933+705 5180059 53.93 99.86+0.01  100.00 +0.00 S0TAEL061 92324007 9458 9669 250
BSS 66.64 £247 83604032 49734050  6263£127 52244098 6297 99.86+0.03 10000000 10000000  8026+075 9581017 9519 9771  2.30
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Table 15: Robust fine-tuning performance on 4 Regression datasets (RMSE metrics) in the Fewshot
setting (covering FEWSHOT-50, FEWSHOT-100, and FEWSHOT-500), evaluated across 3 dataset
splits (RANDOM, SCAFFOLD, S1ZE) over GRAPHMAE and GRAPHGPS models. AvG-R, AVG-
R* denote the average rank and the rank based on the average normalized performance over all
the datasets for each evavluated method, respectively. Standard deviations across five replicates
are shown in parentheses. We bold and underline the best and second-best performances in each
scenario.

SeLIT METHODS SELF-SUPERVISED PRE-TRAINING (GRAPHMAE) SUPERVISED PRE-TRAINING (GRAPHGPS)
EsoL Lipo MALARIA CEP AVG-R  AVG-R™ EsoL Liro MALARIA CEP AVG-R  AVG-R™
FEWSHOT-50
FULL-FT 1.432 + 0.019 1325i00\)1 1.297 +0.015 2.927 £ 0.226 4.25 6 0.896 4 0.015 1.221 £0.016 1.192 +0.017 2.072 050 4
P 1.646 £ 0.027 1.334 = 0.009 4.133 £ 0.3 7.50 8 1.183 £0.012 1.223 £ 0.007 1.193 £+ 0.009 2.249 £0.016 6
SURGICAL-FT 1.497 £0.017 1.309 £ 0.017 300 £0.406 5.0 7 3573+0.101  2.168+0.089  1.203+0.010 4 0.096 8
RANDOM = 1.386 + 0.022 1 2170021 139940033 284040226 375 5 1.037+£0.209  1199+£0.041 1.178+£0.014  2.156 £ 0.145 5
1.622 £ 0.053 l 343 £+ 0.010 1 248 +0.008  2.385 £ 0.026 3.75 2 7 1.224 £ 0.007 1.180 +0.019 2.574 £ 0.053 7
5 1.444 £ 0.027 2 2.315+0.106 3 1 1.203+£0.022  1.184+0.013  2.091 £0.049 3
FEATURE-MAP  1.655 % 0.027 2 +0.127 3 1.173 £0.013 £0.006  2.050 +0.029 2
1.439 £ 0.029 1 351 4 0.051 0115 4.00 4 0.822+0. 024 120440021 1189+0.011 2109+ 0.036 1
FULL-FT 1717 £0.028 1.214 £ 0.051 1.169 £ 0.005 2.612£0.178 6 0.859 +£0.065  1.219 +0.025 1.426 +0.243 21()0 0.031 3
2.2094+0.039  L183+0.045  L1T0+0.004  2.656 +0.048 8 1213+£0.015  1.223+£0.006  1.194+0.012 6
SURGICAL-FT  1.83440.031  1.198+0.049 36 + 0.001 142 £ 0.589 7 358940101 2168+0.089  1.204+0.010 H
SCAFFOLD LP-FT 1.64240.026 1.147+0.038  1.300 = 0.061 2.879 £ 0.264 4 4 1.053 £ 0. ISCJ 1198 +£0.043  1.174+0.019 4
WISE-FT 2.221 £ 0.047 1.175 £ 0.016 1.166 = 0.002  2.326 £ 0.031 4.00 3 1.020 £ 0.045 +259 £ 0.027 1.238 £0.012 7
2-SP 1.718 £ 0.053 1.200+0.053  1.202+£0.062  2.366£0.059  5.00 5 0.897+0.058  1.196+0.030  1.205 % 0.032 2
URE-MAP 2,197 + 0. 114840023  1.163+0.003 400 £0.175 1 0.898+0.040 120040013  1.229+0.014 5
BSS 1712 + 0.056 1.168 £ 0.050 1.168 + 0.002 2.551 £0.121 2 0.861 4 0.024 1.208 £ 0.016 1.186 +0.019 1
FULL-FT 2.654+0.075 1557 +0.093 +£0.026  2550£0.053 425 5 0.886+0.054  1.2094+0.011 L1 4
LP 2818+ 0.087  1676+0.115 £0.030  5414£0.036 7.0 B 1176 £0.011  1.2324£0.007  1.181 £0.009 7
SURGICAL-FT  2.658 + 0.088 1.641 £0.114 9 +0.027 3.423 £ 0.550 5.75 6 3.580 £ 0.101 2.168 £ 0.089 1.192 +£0.010 8
SIZE LP-FT 2.440+0.056 1.422+0.111 1.166+0.053 2.339+£0.049 275 1 1.049+£0.186  1.204+£0.047  1.174£0.016 6
WISE-FT 3.050+0.087 151340049  0.969 +0.001 7 1.045+0.054  1.230+£0.015 1171+ 0.025 5
L2-SP 2.606+0.085 T614E0112  0.914+0.016 2 0.85140.036 119440015 1.169 +0.005 1
FEATURE-MAP 2.630 4 0.036 1.697 £ 0.080 0.920 + 0.007 4 0.867 + 5 180+0.014  1.183 +0.007 3
BSS 2.579 £ 0.066 1.613 £0.110 0.926 +0.018 3 0.844 +£0.007  1.200 £ 0.028 1.171 £0.033 2
FULL-FT 1.304 £ 0.041 1.239 £ 0.032 1.289 + 0.003 3.028 £0.310 1 0.412 4 0.033 1.061 £0.017 1.140 £ 0.016 3
LP 1.609 + 0.03 1.285 +0.043 4+0.009  4.562 +0.047 8 0.902+0.037  1.1854+0.007  T.174 + 0.004 7
SURGICAL-FT 1.356 £0.022  1.219 £0.016 8 = 0.008 100 £ 0.805 5 337140120 192540045 11620013 H
RANDOM LP-FT 1.310 + 0.021 1.226 4 0.021 1.374 +0.045 3.241 £0.438 6 0.735 4 0.230 1.144 £ 0.049 1.153 £ 0.030 6
WISE-FT 1.600 + 0.051 324 £0.013  1.245£0.017  2.294 +£0.024 7 0.671 & 0.104 1.068 £ 0.049 1.159 £ 0.036 5
L2-SP 1.323 4 0.03 1.253 £ 0.029 +£0014  2.271+0.065 2 0.405+0.034  1.055+0.022  1.129+0.016 1
FEATURE-MAP  1.526 % 0. 1.243 4+ 0.027 276 £ 0.001 3 042240021  1.014£0.006 1.170+0.013 4
BSS 1.322 4 0.033 1.251 4 0.028 1.293 + 0.006 4 0.405 4 0.060 1.050 + 0.003 1.147 £ 0.014 2
FULL-FT 1.695+0.045 1168 +0.030  1.167 +0.003 2 0497 +0.045 112540034 1.215+0.015 +0.073 6
LP 204540044 1.211+0.064 1173 0.004 8 0.9714+0.036 118540008 11744 0.004 +0.005 5
SURGICAL-FT 1.693 £ 0.019 1.146 4+ 0.017 1.169 + 0.003 1 3.386 4 0.120 1.927 £ 0.041 62 +0.013 8
SCAFFOLD LP-FT 1.626 +£0.016 1.123 £0.011 1.312 +0.023 2.782 £ 0.364 5 0.730 £ 0.236 1.136 £ 0.029 1.1 JiOOQQ 3
WISE-FT 2.069+0.066  1.205+0.014  1.158+0.008 2.244 + 0.068 7 1.069+0.332 1124 0.023 28 +0.016 7
L2-SP L679£0.045 1201 £0.048  1168£0.003  2.327£0.030  3.50 4 0497 £0.060  1.098+0.015 1155 0.022 2
FEATURE-MAP  1.964 + 0.034 1.164 4+ 0.029 1.164 + 0.001 2.341 £ 0.095 3.50 6 0.480 4+ 0.040  1.039+0.014  1.185+0.010 4
BSS 1.681 £0.043 1.191 £ 0.046 1.169 = 0.004 2.566 £ 0.149 4.50 3 0.396 £0.010  1.05440.033  1.139 £ 0.005 1
FULL-FT 241440081 128340070  0911+0.008  2677+0.139  3.00 1 0.4314+0.059  1.0394+0.026 1.118+0.014 4
2859+ 0078 TA93E0.115  0.951+0.030 0 +0.033 50 8 0.9014+0.037  1.1924+0.007  1.163 0004 7
SURGICAL-FT  2.537 + 0.059 1.301 £ 0.074 0.909 + 0.003 3.707 £ 0.589 6 3.386 4 0.120 1.933 £ 0.038 1.151 +£0.012 8
SIZE LP-FT 2.217+0.047 1.146+0.022 1.065+0.020  2.562+0.076 2 0.7334+0.232  1.166+0.029  1.147 +0.022 6
WISE-FT 250740098 129740038 0.904+0.002 28230031 3 0.708+0.099 107940040 1147 +0.040 5
L2-SP 2 1.362£0.082  0.916 +0.009 451+0.093 450 5 0.4094+0.024 103740030  1.125+0.016 1
FEATURE-MAP 1.551 £ 0.085 0.912+0.003  2.424 £+ 0.039 5.00 7 0.4194+0.016  1.009 +£0.013  1.160 + 0.010 3
BSS 1358 +0.084  0.912+0.005  2.533+0.103 75 3 0.387+0.020  1.038+0.021  1.136 +0.013 2
FEWSHOT-500

FULL-FT 1.042 £0.017 1.023 £ 0.022 1.290 = 0.004 1.958 £ 0.038 4.00 5 0.135 £ 0.019 0.070 £ 0.005 O/Xr+UUD‘J 3
LP 1487 £0.011  1.233 £0.019 1+0.012 602£0.019  8.00 8 0.854 % 0.008 6
SURGICAL-FT  1.16440.010  1.127 +0.007 0 +0.011 57740498 500 7 0.806 + 0.037 7
RANDOM LP-FT 0.995+0.010 0.975+0.007  1.310 £ 0.019 2.004 £ 0.056 3.75 4 0.605 £ 0.352 07J3i0018 5
B WISE-FT 1.251 £0.029 0.976 £+ 0.010 12’;1+0016 1.975 £ 0.017 3. 2 .563 £ 0.200 1.197 £ 0.017 8
L2-SP 1.048 £0.014  1.036 £ 0.009 1.886 = 0.032 1 0.080+0.026  0.781 +0.010 2
FEATURE-MAP  1.340 £0.007  1.202 +0.014 1.9924£0.013 5. 6 0.155 % 0. 021 0.1044+0.005 0.778 £ 0.004 4
BSS 1.031 £0.013 1.020 £ 0.006 1.896 + 0.034 3.00 3 0.129+£0.018 0.018+0.004 0.779 £ 0.007 1
FULL-FT 1406 £0.016  0.945+£0.021  1.199£0.025  2.057£0.072  4.75 5 0.1454+0.023  0.072+0.005  0.776 + 0.006 3
1.849£0.028 110240019 1182 +0.007 607 £0.020  7.00 B 0.7714£0.018  0.8544+0.008  1.035+0.001 6
SURGICAL-FT 1.436 £ 0.010 1.020 £ 0.006 1.156 + 0.010 2.874 £ 0.652 5.00 6 2.377 4 0.207 0.805 £ 0.041 0.802 = 0.011 6
SCAFFOLD LP-FT 1.354+£0.011 0.940£0.012  1.278 £0.044 2.052 £ 0.053 3.75 4 0.546 £ 0.293 0.605 £ 0.352 0.949 £0.123 5
WISE-FT 1707 +£0.029  1.028+0.025 1.125+0.008 1.906 = 0.020 50 3 2476+0.626 1459 +0.258  1.207+0.030 8
L2-SP 1.413 £0.045 1943 £0.022 1156 +0.012  1.931 +0.054 5 2 740017 0.070£0.009  0.782 £ 0.005 2
FEATURE-MAP  1.880 + 0.021 1.081 £ 0.006 1.129 + 0.006 1.992 + 0.008 5.25 7 0.163 & 0.010 0.111 4 0.002 0.786 £ 0.005 4
BSS 1.404 + 0.042 0.941 £0.019 1.199 = 0.029 1.926 + 0.041 3.00 1 0.127 £0.015 0.068 £ 0.004  0.777 £ 0.008 1
FULL-FT 210240080 096840032  0.955+0.031  2283+0.060  3.50 4 014240049 0.0704+0.003  0.723 £ 0.008 3
LP 2.486 4 0.040 1.140 + 0.046 0.968 + 0.027 5.452 4+ 0.018 7.50 8 0.771 +0.018 0.855 4 0.009 1.008 + 0.004 6
SURGICAL-FT 2.142 £ 0.062 0.982 +0.014 0.949 +0.032 3.765 £ 0.499 4.50 7 2.384 +0.212 0.812 4 0.042 0.745 £ 0.011 3.070 £ 0033 7
Size P-F' 2.003+0.037 0.889+0.017  0.985+0.033 3394+0.049  3.75 3 055040287  0.81240.042  0.740£0.027  1.533+0.003 5
E 2302£0.057  1.040+0.015  0.906 + 0.003 70032 5.00 6 255940295 159940242 1196+ 0.027 B
L2-SP 2.030 4 0.059 1.012 £ 0.030 0.951 +0.030  2.208 + 0.030 3. 2 0.124+0.013  0.073 4+ 0.008 0.721 £ 0.008 1
FEATURE-MAP 2.253 +0.017 1.174 +0.023 0.908 £ 0.001 2.341 £0.027 5. 5 0.157 £ 0.020 0.103 £0.005  0.705 £ 0.008 3.50 4
BSS 1.980+0.051  0.989+0.025  0.956=0.041  2.237+0.058 3. 1 0.126+0.013 0.064+0.004 0.710+0.014 1551 +0.028 225 2

Table 16: DWiSE-FT performance on 4 Regression datasets (RMSE metrics) in the Fewshot setting
with 50,100, 500 samples, evaluated across 3 dataset splits (RANDOM, SCAFFOLD, SIZE) given
MOLE-BERT model. AVG-R denote the average rank. Standard deviations across five replicates
are shown in parentheses. We bold and underline the best and second-best performances in each
scenario.

FEWSHOT 50 FEWSHOT 100 FEWSHOT 500
seur METHODS EsoL Lo MALARIA cep EsOL Liro MALARIA cer EsoL Lo MALARIA cep
WISE-FT 13840047 121240020 12760007 2410+ 0.051 LISOE0030  LLZE00Z 125040006 221140028 099540010 0855+£0011 11930003 1893 +0021
Rawpon  LSP L3T2L0020 119640019 12770006 2250+ 0.031 116160016 114900007 1.260+0.004 087840026 080640007 119240004 1.89340.018
Top  1329£0021 11640010 1.271+0.007 +0.022 112040038 113950017 1256+ 0.006 0.878£0.026 0.806+0.007 11920004 1.862+0.010
DWISE-FT 137840055  1.189+£0.020 1273£0.009 2222£0.059 113260025 1138£0.028 12560004 2129 £0.020 091840012 081840013 119240004 186540030
WISE-FT 181240056  L177+0009 11620004 24540043 1541£0063  1L04A1£0017  LISLE0.007 2301 +0.042 138840023 0834+0012  1114£0002 1936+ 0.037
ScamoLp LSP 169940049 10860009 11620002 233140024 147300009 0961+£0.003 115340002 220140038 116360026 081340010 112640011 L885+0011
Tor L680£0.012 1036 £0007 1.159 % 0.000 2+ 0.026 1436 £0.054 09370008 1.1 218740, 0.015 08 3 1.114+0.002 18810010
DWISE-FT  1616+0.047 110£0013  1173£0.005  2.306+0.030 148560041 097940014 115840009 2149 £0. 126640021 082340010 112140004 1900 +0.019
WISEFT 261550072 1391£0012 092940001 2762 £0.053 221660056 112140031 09170001 2543 +0.027 207160078 090210016 0.912£0.003
Size L2-SP 130640037 091540002 2497 +0.019 LT31£0071 102540028 090540002  2.4240.024 16290084 082140011 0.9040.003
” Tor 1207£0.010  0.911+0.002 2497 +0.019 LT31L0. 1.025+0.028 0.898+0.003 21200, T62050051  0.803+0.006 0.895 % 0.002
DWISEFT TA8SI0T01 15 I00% COli0or w00 146950052 10310022 092040006 2390 +0.025 146650040 08160022 091540003 2322+ 0.031
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Table 17: DWiIiSE-FT performance on 2 Regression datasets (RMSE metrics) and 2 Classification
datasets (AUC) in the Fewshot setting with 50 samples, evaluated across dataset splits (SCAFFOLD,
S1ZE) given GRAPHGPS model. AvVG-R denote the average rank. Standard deviations across five
replicates are shown in parentheses. We bold and underline the best and second-best performances in

each scenario.

Method Few-Shot 50 (Scaffold Split)

Few-Shot 50 (Size Split)

BACE (AUC)  SIDER (AUC) Avg AUC | ESOL (RMSE) LIPO (RMSE) AvgR | BACE (AUC) SIDER (AUC) Avg AUC | ESOL (RMSE) LIPO (RMSE) AvgR
WiSE-FT 54.67 £ 0.12 83.73 £ 0.00 69.23 1.020 +0.045  1.259 £ 0.027 3 53.03 £ 2.64 83.77 4 0.34 68.40 1.045 + 0.054 1.230 +0.015 4
L2-SP 59.52 £ 3.80 84.94 +£0.16 72.23 0.897 £+ 0.058 1.196 £ 0.030 2 61.93 £3.45 85.12+0.28 73.53 0.851 £ 0.036 1.194 +£0.015 2.5
TOP 64.90 +1.55  85.12+0.23 75.01 0.859 £0.065  1.196 + 0.030 15 61.93+3.45 86.48 £ 0.70 74.21 0.844 +0.007  1.180 4+ 0.014 1.5
DWiSE-FT ~ 64.82+1.53  85.23 £ 0.02 75.03 0.859 £0.071  1.190 +0.016 1 61.46 +0.57 85.39 +0.23 73.43 0.868 £0.041  1.167 +0.016 2

Table 18: XGBoost performance on both regression and classification datasets in the Fewshot setting

across 3 dataset splits
Classification tasks

Regression tasks

#Shots ~ Split Dataset #Shots ~ Split Dataset
Clintox BBBP BACE  HIV ESOL LIPO Malaria  CEP
Random 5000 7525 7513 4775 Random 21118 13447 14396  2.3080
50 Scaffold 6821 5732 5804  50.00 S0 Scaffold 23763 12556 13096 2.6531
Size 50.00 6298  61.68 5248 Size 33287 15481 12063 23934
Random 6895 7039 8202 4751 Random 20708 12751 13917 22813
100 Scaffold 8253 5859 6559 5651 100 Scaffold 21859 12160 12721 2.2624
Size 6209 6360 6396 5231 Size 28140 13235 12349 24970
Random 8704 8614 8320 63.54 Random 13626 10906  1.3015 1.8142
500 Scaffold 8606 6443 6926 66.03 SO0 Scaffold 19525 11078 12221 1839
Size 7175 8051 5316 6541 Size 24934 10358 11975 21820

Table 19: LoRA Performance under few-shot and non-fewshot settings across classification and
regression datasets with pretrained model GraphGPS.

Scaffold Split clintox bbbp bace hiv sider \ esol lipo malaria cep

fewshot 50 97.77+£0.21  60.15+3.83 57.99+£3.48 67.95+4.21 83.024+0.24 | 0.796 +0.032 1.232+0.039 1.188 +£0.008 2.081 £ 0.082
fewshot 500 99.79 £0.02  100.00 £0.00 99.99 £0.02 80.19+1.52 92.16£0.25 | 0.354 £0.009 0.260 = 0.010 0.872 £0.006 1.569 & 0.040
non-fewshot 99.80 £0.02 99.84+£0.06 99.54+£0.21 94.98+0.66 90.844+0.11 | 0.375+0.033 0.318 £0.009 0.737 £0.015 0.632 £ 0.017
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