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Abstract

We propose to explore an interesting and promising problem, Cloud Object Detec-
tor Adaptation (CODA), where the target domain leverages detections provided
by a large cloud model to build a target detector. Despite with powerful general-
ization capability, the cloud model still cannot achieve error-free detection in a
specific target domain. In this work, we present a novel Cloud Object detector
adaptation method by Integrating different source kNowledge (COIN). The key
idea is to incorporate a public vision-language model (CLIP) to distill positive
knowledge while refining negative knowledge for adaptation by self-promotion
gradient direction alignment. To that end, knowledge dissemination, separation,
and distillation are carried out successively. Knowledge dissemination combines
knowledge from cloud detector and CLIP model to initialize a target detector and
a CLIP detector in target domain. By matching CLIP detector with the cloud
detector, knowledge separation categorizes detections into three parts: consistent,
inconsistent and private detections such that divide-and-conquer strategy can be
used for knowledge distillation. Consistent and private detections are directly used
to train target detector; while inconsistent detections are fused based on a consistent
knowledge generation network, which is trained by aligning the gradient direction
of inconsistent detections to that of consistent detections, because it provides a
direction toward an optimal target detector. Experiment results demonstrate that
the proposed COIN method achieves the state-of-the-art performance.

1 Introduction

The emergence of large language models like GPT-4 [45] heralds a future in which cloud model
possesses remarkable capabilities tailored to specific tasks. But the performance always will be
degraded for special target domain. Naturally, the problem of Cloud Domain Adaptation (CDA)
emerges, where the knowledge from cloud model is transferred to the target domain by cloud API
requests. This work focuses on Cloud Object Detector Adaptation (CODA), a new problem setting
in domain adaptation. This problem is training a detector for any target domain under the conditions
that there exists a large cloud detector offering API service while target domain samples have not any
labels. As shown in Fig.1(a), compared with previous settings, there are two main advantages: (1)
open target scenarios and object categories; (2) without high domain similarity between domains.

There have been some advances in related fields. Source-free Object Detection (SFOD) [35, 33]
transfers a pre-trained model from the source domain to the target domain without considering the
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Figure 1: (a) Setting comparison: Our CODA (Cloud Object Detector Adaptation), UDAOD (Unsu-
pervised Domain Adaptive Object Detection), SFOD (Source-free Object Detection) and Black-box
DAOD (Black-box Domain Adaptive Object Detection). (b) Knowledge dissemination initializes
cloud detector and target detector. Then, detections are categorized to three parts: consistent, incon-
sistent, private (cloud and CLIP) detections (c). (d) The gradients on consistent detections are used to
guide decision fusion for inconsistent detections. Zoom in for best view.

model privacy issue. The existing methods usually resort to three routes: pseudo label refinement
[35, 9, 62, 71, 38], where more reliable labels are refined for self-training; knowledge distillation
[33, 39, 13, 18, 28, 51], where the Mean Teacher framework is used to distill knowledge; domain
alignment [33, 53, 10, 61], where distribution alignment methods are used to learn domain-invariant
feature. Despite notable success has been achieved, these methods are not suited for CODA because
cloud model is not accessible, and any target domain cannot be transferred because of category
limitations.

Another related field is Black-box Domain Adaptive Object Detection (Black-box DAOD), which
only offers detection results of several predefined categories without accessing source model and
data [67]. There exists one work for Black-box DAOD, where three types of memory are used for
label calibration [67]. More Black-box DA methods [36, 64, 60, 46, 68, 58] focus on classification
and fall into two categories. The first uses knowledge distillation [36, 46, 58] to distill source domain
knowledge, while the second uses sample selection [64, 60, 68, 57] to select representative samples
for training. They also can not be applied to CODA. Unlike Black-box DAOD, CODA benefits from
large training data and language modality, thus eliminating the trouble of finding a tailored source
domain containing all target categories and facilitating unrestricted target domain adaptation.

Despite being trained on large data, the powerful cloud model also cannot achieve error-free detection.
So leveraging public auxiliary models with enough object categories to correct the error detections is
a natural choice. The public vision-language model such as CLIP [47], pre-trained on millions of
image-text pairs, is a good model to help adaptation. Due to the lack of detection ability and domain
shift, CLIP is first extended as a detector, abbreviated as CLIP detector, to inherit and further adapt
the knowledge from CLIP, as shown in Fig.1(b). However, the CLIP detector also has error detections.
As shown in Fig.1(c), the detections of CLIP detector and cloud detector can be classified into three
categories: consistent, inconsistent and private detections. Now, the problem is how to distill these
detections to the target detector. The consistent and private detections can be easily distilled to the
target detector as the supervision signals. While for inconsistent detections, one potential route is to
use consistent detections to help inconsistent detections, as shown in Fig.1(d).

Based on the above analysis, we propose a novel adaptation method in a divide-and-conquer manner,
dubbed as COIN, where knowledge dissemination, separation, and distillation stages are carried out
successively. Knowledge dissemination combines the knowledge from CLIP model and cloud model
to initialize a CLIP detector and a target detector based on Faster R-CNN [48] architecture. At the
same time, prompt learning is performed to align the target domain for CLIP detector. Knowledge
separation matches the detections from cloud detector and CLIP detector, categorizing three parts
as consistent, inconsistent and private detections. Based on Mean-Teacher framework, knowledge
distillation regards CLIP detector and cloud detector as teachers while the target detector as a student.
Consistent and private detections are used as supervision; prompt learning is performed again to adapt
CLIP model for target detector. A Consistent Knowledge Generation network (CKG) is proposed
to fuse inconsistent detections. Since the gradient direction for optimizing target detector based
on consistent detections offers an optimization direction, for inconsistent detections, a gradient
direction alignment loss is proposed to learn CKG under the situation without supervision labels. The
Mean-Teacher framework also updates CLIP detector based on target detector, thereby achieving
better knowledge integration.
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Our contributions can be summarized as follows. (1) We propose to explore a promising problem
CODA suited for real-world scenarios with large cloud models. A novel method COIN is proposed
in a divide-and-conquer manner. An open auxiliary model (CLIP) is introduced to help adaptation.
By carefully combining different source knowledge, the effect of one plus one being greater than two
has been achieved. (2) A novel decision-level fusion strategy is proposed. The gradient direction
alignment loss is proposed which fuses the conflicts by using consistence detections in a rational
and self-promotion way. (3) Different prompt learning are performed for CLIP detector and target
detector. For CLIP detector, the class text embeddings are aligned to CLIP visual feature class
prototypes; while for target detector, the prototypes based on consistent detections are used since
target detector combines different source knowledge.

2 Related Work

Domain adaptive object detection. Unsupervised Domain Adaptive Object Detection (UDAOD)
assumes that source samples are freely accessible and labeled but target samples have no labels.
Existing methods can be roughly classified into three categories. The first approach is based on
domain alignment [8, 49, 50, 59, 6, 75, 70, 4, 31, 27], where the source and target domains are aligned
by adversarial learning, contrastive learning, etc. The second approach is the popular knowledge
distillation [12, 7, 3, 22, 14, 4, 20], where the Mean-Teacher framework is used to distill knowledge
from teacher to student. The third approach is based on graph learning [5, 34, 41, 15], where graphs
are constructed to achieve better adaptation. Source-free Object Detection (SFOD) assumes that only
the pre-trained source domain model is accessible. Existing SFOD methods usually resort to three
technical routes. The first is pseudo label refinement based method [35, 9, 62, 71, 38], e.g., SED [35]
seeks a confident threshold for filtering pseudo labels according to self-entropy descent. The second
is knowledge distillation based approach [33, 39, 13, 18, 28, 51]. For example, LODS [33] enhances
target domain style and then overlooks target domain style, resulting in an impressive two-way
knowledge distillation. The third is based on domain alignment [53, 10, 33, 61]. For instance, IRG
[53] uses a contrastive loss to enhance the target representations by exploiting the object relations.

Black-box domain adaptation. Recently, black-box domain adaptation for image classification
receives major attention. There are two routes. The first is knowledge distillation [36, 46, 58].
For example, DINE [36] starts by training a model using knowledge distillation and structural
regularization, then further refines it for better adaptation; RAIN [46] introduces phase mixup and
subnetwork distillation to learn from both regularized data and subnetworks; AEM [58] first proposes
to explore CLIP for Black-box DA by introducing an adversarial experts model. The second is based
on sample selection [64, 60, 68, 57]. For instance, IterLNL [64] follows learning with noisy labels
technique and estimates a noise rate to select confident target samples for training; BETA [60] divides
the target domain into two subdomains and leverages synergistic twin networks and subdomain
augmentation for robust model learning; RFC [68] introduces selection training to pick samples
from minority classes for reviewing forgotten classes, and employs neighborhood clustering for
more balanced learning. There exists only one work for Black-box DAOD task, BiMem [67] refines
the pseudo labels by constructing sensory, short-term and long-term memories, where a forward
memory construction and a backward label calibration are performed iteratively. Despite the great
performance achieved, the source model cannot be transferred to arbitrary target domains due to
category restrictions and domain similarity, and require customizing the source domain model for a
specific target domain.

3 Methodology

Problem statements. Cloud Object Detector Adaptation (CODA) assumes the unlabeled target
domain D = {xi}Nt

i=1 and C = {ci}Nc
i=1 is a set of classes that need to be detected, where Nt is the

total number of target images, ci is the i-th class name and Nc is the number of classes. There exists
a powerful cloud detector Fθcld , and the goal of CODA is to train a target detector by the detection
results yi

cld via a cloud API. yi
cld consists of boxes bicld and class probabilities pi

cld for any target
domain image xi, where class probabilities pi

cld are derived from class predictions, which can be in
the form of class-only, confidence score, or probability, depending on the cloud detector. Moreover,
with the powerful cloud detector trained on large-scale image caption datasets, open target scenarios
and even categories become accessible, making open-set adaptation no longer a problem.
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Figure 2: Overview of the proposed method COIN. (a) Knowledge dissemination stage. The
architecture for CLIP detector and target detector is presented. (b) Knowledge separation stage splits
detections from two detectors into three kinds. (c) Knowledge distillation stage trains target detector.
A gradient direction alignment loss is proposed to fuse inconsistent detections in decision-level.

Overview. The proposed COIN method introduces a vision-language model CLIP [47] to assist
in domain adaptation of a freely chosen large-scale pre-trained cloud detector, like GDINO [40].
It consists of three stages, i.e., knowledge dissemination, knowledge separation and knowledge
distillation, as illustrated in Fig.2. (a) Knowledge dissemination stage first collects results from cloud
detector and CLIP respectively, where the detection boxes from cloud and the classification results
from CLIP are used to initialize a CLIP detector and a target detector. Meanwhile, prompt learning is
performed for CLIP detector. (b) Knowledge separation stage initially obtains and then matches the
detections from cloud and CLIP detectors, resulting in the categorization of consistent, inconsistent
and private detections. (c) Knowledge distillation stage updates target detector. The Mean-Teacher
framework is employed which regards cloud detector and CLIP detector as two teachers while the
target detector is a student. To enhance robustness, the student is fed into a strong augmentation
version of target image, and consistent and private detections are directly used as pseudo labels. For
inconsistent detections, a Consistent Knowledge Generation network (CKG) is designed to fuse them
in decision-level; a gradient direction alignment loss is proposed to optimize CKG; the target detector
and CKG are updated mutually. Better knowledge integration is achieved by updating CLIP detector.

3.1 Knowledge Dissemination

In this section, the knowledge from cloud detector and auxiliary model (CLIP) are combined to
get two object detectors in target domain, i.e., CLIP detector Fθclip and target detector FθT . An
intuitive idea is to train a Faster R-CNN based detector [48] using the predicted boxes from cloud
detector and its corresponding labels from CLIP. However, there are two deficiencies. The first is
that the knowledge from the auxiliary model has not been fully utilized; here the auxiliary model
CLIP is supposed to be open-source and known. Another is domain shift existed between CLIP and
target domain; the auxiliary model CLIP should be aligned with target domain. So the pre-trained
CLIP visual encoder is used to build two detectors Fθclip and FθT ; then domain-specific prompts
are learned to align CLIP model to target domain for CLIP detector; in the end, the detections are
collected to train CLIP detector. They are detailed as follows.

Detector architecture is based on Faster R-CNN framework as shown in Fig.2(a). The pre-trained
CLIP visual encoder G is split into G1 and G2 (the last block), which are used as backbone and
ROI head feature extractor respectively. Because CLIP is pre-trained for classification task, the
region feature of proposal r for a target image x, fr = G2(ROI(G1(x), r)), can not be used for box
regression. So, a transformation network Trans, composed of mean pooling and three dense layers,
is used to endow the localization ability. Finally, a linear layer lc and a linear layer lb are used to get
the box feature and locations respectively, i.e, f = lc(Trans(fr))) and b = lb(Trans(fr)). The
class probability pi for the i-th category is calculated by computing the similarity with the i-th class
embedding ei. The background is also considered to be a class. It can be written as

pi =
exp(sim(f , ei)/τ)∑Nc+1

i=1 exp(sim(f , ei)/τ)
, (1)
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where sim(·, ·) is the cosine similarity function and τ = 0.01 is the fixed temperature following
CLIP. The class embedding ei = E(Pi) is obtained based on the frozen CLIP text encoder E and the
prompt Pi wrapping the i-th class name into a later introduced prompt template PT .

Both Fθclip and FθT are based on this architecture and are randomly initialized except that the back-
bone and ROI head feature extractor are initialized by CLIP visual encoder G1 and G2 respectively.

Prompt learning for CLIP detector. Since the simple prompt template, like “a photo of a [CLS].”,
has not target domain information, we use a trainable prompt template PT , like “a photo of a {ti}Mi=1
[CLS].”, where M is fixed to 4 and ti is a placeholder whose word embedding is randomly initialized.
Prompt learning methods [74, 73, 29, 69] adapt the class embeddings e = {ei}Nc+1

i=1 with ground
truths. To further adapt CLIP model to target domain, we propose to use visual features to align e.
Specifically, the visual feature class prototypes are used to learn prompt instead of matching all visual
features with the prompt embeddings. The prototypes ep = {eip}

Nc+1
i=1 are updated by exponential

moving average (EMA) as

eip = η · eip + (1− η) · Ex∈D
1

|R|
∑

1(l = i)f , (2)

where R is the set of proposals for image x, l is the label for the box feature f , and 1(a = b) an
indicator function. η = 0.9996 is a fixed hyperparameter and ep are initialized as the original CLIP
per-class embeddings ec for accelerating training. The following L1 loss is used to learn the prompt,

L1
align = ||ep − e||1. (3)

Pre-training CLIP detector. Since CLIP do not predict boxes for target domain images, to train CLIP
detector, we need to prepare supervision labels based on CLIP and cloud detector knowledge. For
any target image x, the detection boxes bcld are borrowed from cloud detector and the corresponding
labels are obtained based on the CLIP model; they can be used as supervision signals. The detection
boxes are easy to obtain, while obtaining the labels needs some specific operations. Suppose a box
feature f is obtained by ROI pooling on the feature map output by CLIP visual encoder G. To
obtain more accurate pseudo labels, as RegionCLIP [72], 81 kinds of prompt templates are used.
If the j-th kind of prompt template is “a [target domain name] style rendering of the [CLS]”, the
j-th kind of class embedding for the i-th object class is ei,jc through CLIP text encoder E. The final
i-th class embedding is eic =

∑
j e

i,j
c /81. The class probability pc of f is obtained by computing

the similarity like Eq.(1) using ec. The boxes predicted as “background” are removed. After the
preparation of supervision signals, the CLIP detector is pre-trained via the following losses:

min
θclip

LRPN + LROI + λL1
align, (4)

where LRPN and LROI are the standard detection losses. λ is a hyperparameter fixed as 10.

Remark. To inherit knowledge for better knowledge dissemination and accelerate training, the
visual encoder of the original CLIP model is directly used as the backbone and ROI Head feature
extractor. Compared to the previous CLIP based detector F-VLM [30], our backbone and ROI Head
feature extractor are trainable with supervisions from CLIP and cloud detector to facilitate knowledge
dissemination process. Moreover, in contrast to PromptSRC [29] and CLIP-GAP [52], which align
the features to CLIP semantic space, our dynamically updated class prototypes align CLIP semantic
space to target domain in an opposite way, thus capturing more target domain-specific attributes.

3.2 Knowledge Separation

Just like flipping two coins at the same time, the detections from cloud detector and CLIP detector
exhibit both consistency and conflicts due to different pretraining sources. It is obvious that consistent
detection results can be used as ground truths, while inconsistent results pose obstacles to knowledge
fusion. To integrate their knowledge into the target detector sensibly, we adopt a divide-and-conquer
strategy. Specifically, box matching is utilized to achieve knowledge separation by categorizing them
into consistent, inconsistent, and private detections.

Given a target image x, suppose the detections based on cloud detector are ycld = {bcld,pcld}
containing R1 detected boxes and similarly the detections based on CLIP detector after NMS (Non-
Maximum Suppression) are yclip = {bclip,pclip} containing R2 detected boxes. To find the matched
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boxes, an identification matrix Γ is defined as follows, Γi,j = 1 if the IoU ≥ κ between the i-th
box from cloud detector and the j-th box from CLIP detector, otherwise Γi,j = 0. κ is a fixed
threshold set to 0.5 according to popular settings. For the i-th box of cloud detector, the label
licld = argmaxc p

i
cld,c, while ljclip = argmaxc p

j
clip,c is the label of j-th box of CLIP detector.

Then, as shown in Fig.2(b) the consistent detection set P̂ and inconsistent detection set P̃ are defined
as follows,

P̂ = {(yi
cld,y

j
clip) |Γi,j = 1, licld = ljclip}, P̃ = {(yi

cld,y
j
clip) |Γi,j = 1, licld ̸= ljclip}. (5)

The unmatched detection set Q, also called private detections, is defined as

Q = {yi
cld |Γi,∗ = 0} ∪ {yj

clip |Γ∗,j = 0}. (6)

Γi,∗ means the number of CLIP detector boxes that match the i-th cloud detector box; so does Γ∗,j .

For one pair of matched boxes bicld and bjclip from the consistent or inconsistent detections, an object
is located. Typically, the box with a higher score has more precise localization. Therefore, we merge
them in a probability-weighted manner to facilitate subsequent distillation, as the features extracted
from two matched boxes exhibit slight inconsistencies. So the fused box btm is

btm =
max

c
pi
cld,c ∗ bicld +max

c
pj
clip,c ∗ b

j
clip

max
c

pi
cld,c +max

c
pj
clip,c

. (7)

After box refinements, the consistent detection set P̂ and inconsistent detection set P̃ can be
denoted as P̂ = {ŷ} and P̃ = {ỹ} respectively, where ŷ = (b̂m , p̂cld , p̂clip , l̂m) and ỹ =

(b̃m , p̃cld , p̃clip , l̃cld , l̃clip) is the inconsistent detections.

Remark. Detection conflicts is a core challenge here. Previous UDAOD method SSAL [44] performs
sample selection within the same class, so boxes in the same region that are predicted as different
classes may be selected for self-training, resulting in conflicts. While we address this issue by
adopting a divide-and-conquer strategy to separate conflicts here and solve them in the following text.

3.3 Knowledge Distillation

Mean-Teacher framework is utilized to distill the above three kinds of detections into target domain
detector. The cloud detector and CLIP detector are two teachers while the target detector is student.

Consistent and private detections knowledge distillation. For the consistent detections P̂ , they
are directly used as ground truths to train target domain detector. The consistency distillation
loss is defined as Lcon = LRPN + LROI . For the private detections Q, because the prediction
of private boxes is not accurate, only classification loss is calculated. By regarding the private
boxes bq ∈ R|Q|×4 as proposal boxes and feeding them into ROI Head, we obtain the classification
probabilities pstu

q for student. Then standard distillation loss is employed to distill all private
knowledge from both teachers to the target detector as Lpri = Lkl(p

stu
q ,pq), where Lkl(·, ·) is the

Kullback-Leibler divergence and pq are prediction results from cloud detector or CLIP detector.

By integrating different source knowledge, the class embedding should be different from CLIP
detector. Similar as previous prompt learning method, we also align per-class embeddings estu to
visual class prototypes êp based on consistent detections computed as Eq.(2): L2

align = ||êp−estu||1.

Inconsistent detections knowledge distillation. As shown in Fig.3, a Consistent Knowledge
Generation network (CKG), noted as Fθckg

, is proposed to do decision-level fusion which refines
inconsistent detections to consistent ones. Specifically, CKG takes the inconsistent box features
f̃stu ∈ R|P̃|×C from target detector, inconsistent visual feature class prototypes ẽcldp and ẽclipp ,
inconsistent probabilities p̃cld and p̃clip as input. It outputs the consistent probabilities p̃ckg as
follows,

p̃ckg = δ(wcld ⊙ p̃cld +wclip ⊙ p̃clip), (8)

where wcld = CA1(f̃stu, ẽ
cld
p ) and wclip = CA2(f̃stu, ẽ

clip
p ) are two adaptive weights generated

by two cross-attention modules [19]. ⊙ represents the element-wise multiplication and δ(·) represents
the softmax function. The architecture of cross-attention module is represented as CA(f̃stu, X) =
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δ(Q(f̃stu) ⊗ K(X)T ) ⊗ V (X), where Q(·), K(·) and V (·) are the mapping functions, and ⊗
represents the matrix multiplication. With the cross-attention module, the features f̃stu are compared
with the class prototypes through query and key, making the weights generation process more reliable.

Since there do not exist labels in the target domain, a gradient direction alignment is proposed to
train CKG network in a self-promotion way, which is also our key contribution. The idea is based
on the following observation. Since the consistent detections can be regarded as ground truths in
the target domain, they provide an optimization direction toward an optimal target detector. So the
gradient direction from consistent detections is used as the supervised signal to train CKG network.
Specifically, the gradients of consistent detections and inconsistent detections are computed using L2

loss as follows,
ĝ = ∇θT ∥p̂stu − I(l̂m)∥2, g̃ = ∇θT ∥p̃stu − p̃ckg∥2, (9)

where I(·) is the one-hot vector function, p̂stu are the predicted probabilities corresponding to the
target detector features f̂stu on consistent detections; p̃stu are the predicted probabilities correspond-
ing to f̃stu on inconsistent detections. Then, the CKG network is optimized by aligning g̃ to ĝ
by cosine similarity. Meanwhile, CKG should also be consistent on consistence detections, i.e.,
p̂ckg = δ(CA1(f̂stu, êp)⊙ p̂cld + CA2(f̂stu, êp)⊙ p̂clip), is consistent with the label l̂m. So the
total loss for training CKG network is

min
θckg

Lckg = (1− sim(ĝ, g̃)) + Lkl(p̂ckg, I(l̂m)). (10)

The CKG network and target detector are updated mutually. First, CKG is optimized based on
target detector, then the output p̃ckg is used in turn to update target detector. In order to avoid the
interference of low-confidence predictions, we use a threshold π to filter out those low-confidence
predictions, resulting in p̃π

stu and p̃π
ckg , so target detector is optimized as follows:

Linc = Lkl(p̃
π
stu, p̃

π
ckg). (11)

Remark. Traditional decision-level fusion method [55] employs simple averaging to merge knowledge
from various sources, where different sources share one RPN network to generate fully matched
detections. In contrast, we achieve decision-level fusion for two unrelated models based on a divide-
and-conquer strategy without ground truth. For inconsistent detections, our method uses a gradient
direction alignment to optimize the fusion network in a self-promotion manner.

Overall optimization. In each iteration, the CKG network is first updated via Eq.(10). Then we
update target detector via the following objective function:

min
θT

Lcon + γ1Linc + γ2Lpri + λL2
align, (12)

where γ1 and γ2 are two hyperparameters. λ is fixed as 10 as in Eq.(4). The CLIP detector is updated
by θclip = η ·θclip+(1−η) ·θT , where η = 0.9996 as in Eq.(2), enabling the integrated knowledge in
the target detector flows into the CLIP detector gradually, thus achieving better knowledge integration.

4 Experiments

Datasets. The problem CODA enables versatile target domain adaptation based on cloud detector,
so there are no limitation to transfer scenarios, unlike the problem settings of UDAOD, SFOD and
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Table 1: Results on Foggy-Cityscapes and BDD100K under GDINO. Object detection adaptation
settings: U – Unsupervised, SF – Source-free, BB – Black-Box, C – Cloud. det: detector.

Foggy-Cityscapes BDD100K

Methods Type Tuck Car Rder Pson Tain Mcle Bcle Bus mAP Methods Type Tuck Car Rder Pson Mcle Bcle Bus mAP

MTOR [3] U 21.9 44.0 41.4 30.6 40.6 28.3 35.6 38.6 35.1 SIGMA++ [34] U 21.1 65.6 30.4 47.5 17.8 27.1 26.3 33.7
ICR-CCR[59] U 27.2 49.2 43.8 32.9 36.4 30.3 34.6 45.1 37.4 PT [7] U 25.8 52.7 39.9 40.5 23.0 28.8 33.8 34.9

SED [35] SF 25.5 44.5 40.7 33.2 22.2 28.4 34.1 39.0 33.5 SED [35] SF 20.6 50.4 32.6 32.4 18.9 25.0 23.4 29.0
LODS [33] SF 27.3 48.8 45.7 34.0 19.6 33.2 37.8 39.7 35.8 PETS [39] SF 19.3 62.4 34.5 42.6 17.0 26.3 16.9 31.3
A2SFOD [10] SF 28.1 44.6 44.1 32.3 29.0 31.8 38.9 34.3 35.4 A2SFOD [10] SF 33.2 36.3 50.2 26.6 28.2 24.4 22.5 31.6
IRG [53] SF 24.4 51.9 45.2 37.4 25.2 31.5 41.6 39.6 37.1 BT [13] SF 24.2 50.4 34.6 32.7 24.7 28.5 24.9 31.4
LPU [9] SF 24.0 55.4 50.3 39.0 21.2 30.3 44.2 46.0 38.8 LPU [9] SF 24.5 55.2 38.9 41.4 20.9 30.4 23.2 33.5
BiMem [67] BB 23.4 56.9 42.5 42.2 28.5 32.4 41.3 39.7 38.4 DRU [28] SF 27.1 62.7 36.9 45.8 22.7 32.5 28.1 36.6

Cloud det [40] C 30.8 47.5 18.6 34.3 21.0 34.6 41.1 47.4 34.4 Cloud det [40] C 38.7 46.0 11.4 49.2 37.8 33.5 47.4 37.7
CLIP [47] C 9.7 28.6 11.5 19.5 1.1 12.8 17.9 21.9 15.4 CLIP [47] C 23.6 31.1 4.4 6.7 18.0 11.4 27.7 17.5
CLIP det C 8.2 46.9 27.5 34.1 16.5 24.9 31.5 36.2 28.2 CLIP det C 34.3 53.4 14.1 31.7 28.7 24.6 36.7 31.9
COIN C 27.4 57.9 42.3 41.6 25.9 32.7 41.2 43.1 39.0 COIN C 46.6 56.8 23.5 45.5 32.0 33.0 40.6 39.7

Oracle - 32.5 67.1 50.8 46.7 43.1 34.4 43.2 54.4 46.5 Oracle - 54.0 70.6 42.3 51.4 35.8 41.5 53.2 49.8

Table 2: Results on Clipart under GDINO. Object detection adaptation settings: SF – Source-free, U
– Unsupervised, C – Cloud. det: detector.

Methods Type Aero Bcle Bird Boat Botl Bus Car Cat Chair Cow Tble Dog Hrs Bike Pson Plnt Shep Sofa Tain Tv mAP

MGADA [75] U 35.5 64.6 27.8 34.5 41.6 66.4 49.8 26.8 43.6 56.7 24.3 20.9 43.2 84.3 74.2 41.1 17.4 27.6 56.5 57.6 44.8
SIGMA++ [34] U 36.3 54.6 40.1 31.6 58.0 60.4 46.2 33.6 44.4 66.2 25.7 25.3 44.4 58.8 64.8 55.4 36.2 38.6 54.1 59.3 46.7
CIGAR [41] U 35.2 55.0 39.2 30.7 60.1 58.1 46.9 31.8 47.0 61.0 21.8 26.7 44.6 52.4 68.5 54.4 31.3 38.8 56.5 63.5 46.2
TFD [54] U 27.9 64.8 28.4 29.5 25.7 64.2 47.7 13.5 47.5 50.9 50.8 21.3 33.9 60.2 65.6 42.5 15.1 40.5 45.5 48.6 41.2

LODS [33] SF 43.1 61.4 40.1 36.8 48.2 45.8 48.3 20.4 44.8 53.3 32.5 26.1 40.6 86.3 68.5 48.9 25.4 33.2 44.0 56.5 45.2
IRG [53] SF 20.3 47.3 27.3 19.7 30.5 54.2 36.2 10.3 35.1 20.6 20.2 12.3 28.7 53.1 47.5 42.4 9.1 21.1 42.3 50.3 31.5
WSCoL [61] SF 42.8 57.2 34.9 43.2 41.5 78.9 44.7 3.0 50.8 54.0 40.1 19.6 48.7 88.2 61.2 46.5 30.3 43.0 52.6 46.2 46.4

Cloud det [40] C 76.2 91.8 67.4 62.7 60.2 82.2 68.4 43.7 77.9 52.9 69.8 39.3 64.4 85.6 88.1 78.9 30.8 56.9 72.9 66.5 66.8
CLIP [47] C 62.3 70.1 42.5 42.7 50.9 50.0 44.8 47.8 22.8 59.5 28.6 34.2 43.7 51.4 61.1 59.8 24.1 28.1 50.4 50.5 46.3
CLIP det C 61.4 56.5 46.9 48.8 57.4 54.1 49.7 40.2 32.7 48.7 16.6 33.8 51.4 50.4 62.8 60.6 25.7 28.8 43.9 52.6 46.2
COIN C 82.0 87.6 70.1 58.1 63.7 63.8 68.7 55.2 70.5 76.3 59.0 58.8 68.6 82.9 88.0 67.3 43.1 53.3 78.7 73.4 68.5

Oracle - 100 99.1 98.7 96.5 96.3 100 99.5 99.7 100 99.9 99.4 100 99.4 100 99.8 99.4 100 100 100 100 99.4

Black-box DAOD. Specifically, we validate the effectiveness of the proposed COIN method on six
object detection datasets, e.g., Cityscapes [11], Foggy-Cityscapes [11], Clipart [25], BDD100K
[63], KITTI [16] and Sim10K [26].

Implementation details. By default, we use the Swin-B [42] version of GDINO [40] as our cloud
detector, where class predictions are provided in probability format. Additionally, in Appendix, we
present results using the Swin-L [42] version of GLIP [32] as an optional alternative, which offers
class predictions in the form of confidence score. SAM is not chosen here due to its need for weak
supervision [65]. For each dataset, both CLIP detector and target detector are based on the same
version of CLIP visual encoder. Specifically, for Clipart, to be consistent with the compared methods
[49, 33], ResNet101 [21] is used. While for others, ResNet50 [21] is used. The hyperparameters γ1,
γ2 and π are set to 0.1, 0.1 and 0.7 by default. The shorter side of the image is resized to 600 during
training and testing, and the reported mean average precision (mAP) is based on an IoU threshold of
0.5. For more details about datasets, network architectures, algorithm et al, please refer to Appendix.

4.1 Comparison with State-of-the-arts

Since these do not exist any works on the CODA problem, we compare our method COIN with
UDAOD, SFOD and Black-box DAOD methods, since their settings are closest to ours and the target
domain is consistent. The performances of CLIP detector and cloud detector are also compared,
which shows our method is better than both of them. UDAOD methods are DA-Faster [8], MTOR [3],
SCL [50], ICR-CCR[59], SIGMA++ [34], PT [7], MGADA [75], CIGAR [41], TFD [54], MAF [23],
ATF [24]. SFOD methods are SED [35], LODS [33], A2SFOD [10], IRG [53], PETS [39], LPU [9],
BT [13], DRU [28] and WSCoL [61]. Black-box DAOD method is BiMem [67]. CLIP represents the
original CLIP predictions with boxes from cloud detector. CLIP detector represents the detector after
pre-training. Oracle represents target detector under supervision from ground truth. The results of
compared methods in the tables are cited from their papers.
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Table 3: Quantitative results on KITTI under GDINO. U – Unsupervised, C – Cloud. det: detector.

Type Methods AP of Car Methods AP of Car Methods AP of Car Methods AP of Car

U DA-Faster [8] 64.1 MAF [23] 72.1 SCL [50] 72.7 ATF [24] 73.5
C Cloud det [40] 45.2 CLIP [47] 62.1 CLIP det 79.9 COIN 80.8

Table 4: Quantitative results on Cityscapes and Sim10K under GDINO. C – Cloud. det: detector.

Cityscapes Sim10K

Methods Type Truck Car Rider Person Train Mcycle Bcycle Bus mAP Car

Cloud det [40] C 37.5 59.9 16.4 43.4 26.1 42.7 48.4 62.6 42.1 46.5
CLIP [47] C 15.9 36.9 15.5 27.8 0.9 15.7 20.5 31.8 20.6 46.4
CLIP det C 11.3 55.8 35.1 39.1 33.8 32.0 33.7 44.7 35.7 60.0
COIN C 26.9 64.3 47.5 47.0 26.4 44.4 46.9 52.8 44.5 62.4

Oracle - 34.7 70.4 56.4 50.5 43.0 38.7 46.9 58.9 49.9 79.2

Figure 4: Hyperparameter analysis with respect to π, γ1 and γ2 on Foggy-Cityscapes under GDINO.

Quantitative results for GDINO [40] are shown in Table 1-4, and results for GLIP [32] are shown
in Appendix. First, the existing methods are compared across four commonly used target domain
datasets: Foggy-Cityscapes, BDD100K, Clipart, and KITTI. Specifically, our method COIN sig-
nificantly outperforms cloud detector by +4.6% (from 34.4% to 39.0%) on Foggy-Cityscapes and
CLIP by +18.7% (from 62.1% to 80.8%) on KITTI. This demonstrates that our COIN can identify
valuable knowledge for adaptation, regardless of the performance of CLIP (bad on Foggy-Cityscapes
while good on KITTI). And CLIP detector improves the mAP by a large margin of +12.8% on
Foggy-Cityscapes, +14.4% on BDD100K, and +17.8% on KITTI compared with CLIP, strongly
demonstrating the effectiveness of the knowledge dissemination stage. Moreover, GDINO and CLIP
already achieve surprising performance of 66.8% and 46.3% on Clipart, proving the superiority of
CODA compared to traditional adaptation settings.

Second, since CODA enables versatile target domain adaptation with open categories and scenarios,
experiments on Cityscapes for all 8 categories and Sim10K are conducted. Existing methods are not
compared, as for Cityscapes they can only detect the car category while Sim10K is usually used as
the source domain. From Table 4, we see that the proposed COIN achieves the best performance.
Specifically, for Sim10K, when cloud detector and CLIP perform similarly, COIN still brings a
significant improvement of +15.9% compared with cloud detector. The extensive quantitative results
above not only demonstrate the wide applicability of CODA but also validate the effectiveness and
robustness of our proposed method COIN.

4.2 Further Analysis.

Ablation study. As shown in Table 5, ablation studies are conducted on Foggy-Cityscapes and
Cityscapes. Specifically, Lalign+ CLIP detector or Lalign+ COIN represent prompt learning for
CLIP detector or target detector respectively; Lcon, Linc and Lpri represent the distillation losses of
consistent, inconsistent and private detection respectively. (1) For CLIP detector, prompt learning
improves the performances from 27.4% and 35.1% to 28.2% and 35.7% on Foggy-Cityscapes and
Cityscapes respectively. (2) For the proposed COIN method, all proposed components are effective
which demonstrates that our method is able to achieve judicious knowledge integration.

Ablation study for decision-level fusion. To further validate the effectiveness of decision-level
fusion, our proposed COIN is compared with four experimental groups, as shown in Table 6. Using
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Table 5: Ablation study on Foggy-Cityscapes and Cityscapes under GDINO. det: detector.

Losses mAP

Methods Lalign Lcon Linc Lpri Foggy-Cityscapes Cityscapes

Cloud det [40] × × × × 34.4 42.1
CLIP [47] × × × × 15.4 20.6

× × × × 27.4 35.1
CLIP det

√
× × × 28.2 35.7

×
√

× × 36.7 41.7√ √
× × 37.1 42.4√ √
×

√
37.5 42.9√ √ √

× 38.4 43.8
COIN

√ √ √ √
39.0 44.5

Table 6: Ablation study for decision-level fusion of inconsistent detections on Foggy-Cityscapes
under GDINO. Detections are filtered by π = 0.7 for fair comparison. det: detector. probs:
probabilities. avg: average. s-avg: score-weighted average.

Methods Truck Car Rider Person Train Mcycle Bcycle Bus mAP

COIN w/ cloud det probs 25.1 56.1 45.3 40.1 20.5 33.7 41.3 39.3 37.7
COIN w/ CLIP det probs 22.1 56.4 44.5 39.5 26.8 32.4 40.4 42.4 38.1
COIN w/ avg 24.8 55.8 44.1 39.9 21.7 32.8 40.9 43.7 38.0
COIN w/ s-avg 24.2 56.4 45.9 40.7 24.1 31.3 40.4 41.7 38.1

COIN w/ CKG 27.4 57.9 42.3 41.6 25.9 32.7 41.2 43.1 39.0

the cloud detector alone achieves a mAP of 37.7%. Surprisingly, using the CLIP detector alone
achieves an even higher mAP of 38.1%, attributed to the gradual parameter updates of the CLIP
detector during training, allowing integrated knowledge to flow into it. Additionally, using both
probabilities simultaneously with avg or s-avg approaches yield similar results. While our proposed
CKG unsurprisingly achieves the best results, with a mAP improvement of +0.9% (from 38.1% to
39.0%). This strongly demonstrates the effectiveness of our proposed decision-level fusion.

Hyperparameters sensitivity analysis. We conduct sensitivity analysis on π, γ1 and γ2 on Foggy-
Cityscapes, as shown in Fig.4. For parameter π, our method achieves relatively stable results over a
wide range. For parameters γ1 and γ2, we first set γ2 to 0.1 and vary γ1 across six distinct values
ranging from 0.1 to 1.0. Then, we reciprocate the process for γ2. The outcomes are stable, with a
mAP oscillating within a band between 38.0% and 39.0%. This confirms the robustness of COIN.

5 Conclusion

We proposed a novel method termed COIN for the proposed cloud object detector adaptation (CODA).
The open source CLIP model is adapted to help distill knowledge in a divide-and-conquer manner.
To efficiently disseminate knowledge from CLIP and cloud detector, a CLIP detector is designed and
adapted to the target domain by prompt learning. Then, three kinds of detections are split and distilled
to target detector respectively. Consistent and private detections are used as supervision signals
without loss of generality. Prompt leaning is applied again for target detector to fit target domain. To
eliminate conflicts, a consistent knowledge generation network (CKG) is proposed for decision-level
fusion. A gradient direction alignment loss is proposed to learn this network in a self-promotion way.
Experimental results validated the effectiveness of our method. COIN is not limited to detection task;
it can also be utilized to other tasks, e.g., classification or semantic segmentation.
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A Appendix

A.1 More Related Works

CLIP based detector. Integrating large language-visual models (e.g., CLIP) into object detectors
becomes popular. Existing methods usually use the text encoder of CLIP as the classifier, which can be
broadly classified into two routes. The first route is based on knowledge distillation [17, 43, 1], which
aims to distill the knowledge of the CLIP model into closed-set detectors. For example, ViLD [17]
utilizes instance-level visual-to-visual knowledge distillation; HierKD [43] proposes a hierarchical
distillation method with global-level language-to-visual and instance-level visual-to-visual distillation.
Since CLIP is trained on images rather than object regions, the second route, region-text alignment
[30, 37, 56], aims to align image region features to the fixed text region features. For instance,
RegionCLIP [72] aligns image regions with region-level descriptions using a contrastive loss; VLDet
[37] formulates the alignment as a set matching problem where a set of regions and a set of words
are aligned. F-VLM [30] uses the CLIP vision encoder as the frozen backbone and combines the
detection scores and CLIP predictions as the final output. Unlike these methods, our work combines
the knowledge of CLIP to help adaptation of cloud detector. To fully explore the knowledge from
CLIP, we also utilize CLIP vision encoder as backbone and ROI Head feature extractor. Moreover,
prompt learning technique is embedded for adapting CLIP knowledge to target domain.

Large detection model. In order to achieve success in open-set detection, large detection models
leverage massive image-text pairs for training, breaking the constraints of categories and scenes while
attaining robust detection capabilities. GLIP [32], CLIPv2 [66], and GDINO [40] are representative
advances. Specifically, GDINO [40] integrates detection and grounding into a unified framework. By
leveraging a powerful detector pre-trained on multiple datasets, it delivers impressive performance
across various downstream tasks. Without loss of generality, we choose GDINO and GLIP as the
cloud detector in this work.

A.2 Methodological supplements

A.2.1 Network details

Due to the space constraints in the main text, we provide a detailed description here for the two
designed networks: object detector and Consistent Knowledge Generation network (CKG).

Detector architecture is based on the two-stage Faster R-CNN [48] framework. Specifically, the
ResNet50 [21] or ResNet101 [21] version of CLIP visual encoder G is split into G1 and G2 to be
the backbone and feature extractor for ROI head following Faster R-CNN, where G2 is the last
residual block. With an input target image x, the backbone G1 firstly produces output feature map
g ∈ RH×W×C1 , where H , W and C1 represent the height, width and dimension of the feature
map. Then, based on g, RPN generates a set of region proposals R = RPN(g). For a proposal
r ∈ R, ROI pooling and G2 are utilized to extract a region feature fr = G2(ROI(g, r)), where
fr ∈ R7×7×C2 and C2 is the feature dimension. Since CLIP is pre-trained for classification task,
fr can not be used for box regression, thus a transformation network Trans, composed of mean
pooling and three linear layers (with two Leaky ReLUs), is used to endow the localization ability.
To project feature into semantic space for final classification, a linear layer lc is used to obtain
the box feature f = lc(Trans(fr))), where f ∈ RC and C is the dimension of semantic space.
While a linear layer lb is used to get the box prediction b = lb(Trans(fr)), where b ∈ R4. Finally,
the class probability p ∈ RNc+1 of the box feature f is calculated by computing the similarity
with the per-class embeddings e ∈ R(Nc+1)×C , where background is also considered to be a class.
Specifically, the i-th class probability pi ∈ R is calculated by

pi =
exp(sim(f , ei)/τ)∑Nc+1

i=1 exp(sim(f , ei)/τ)
, (13)

where sim(·, ·) is the cosine similarity function and τ = 0.01 is the fixed temperature.

The i-th class embedding ei is obtained as follows. Since no target domain information is wrapped in
the simple prompt template, like “a photo of a [CLS].”, the embedding generated with it does not fit
the target domain. So, a trainable prompt template PT , “a photo of a {ti}Mi=1 [CLS].”, is designed
to capture target specific attributes, where ti is a placeholder and M is fixed to 4. By wrapping the
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Table 7: The detailed 81 prompt templates for CLIP model. They are used to collect the classification
probabilities to pre-train CLIP detector. zoom in for best view.

Number Templates

1-2 “[target domain name] style [CLS].” “a [target domain name] style photo of a [CLS].”
3-4 “a [target domain name] style bad photo of a [CLS].” “a [target domain name] style photo of many [CLS].”
5-6 “a [target domain name] style sculpture of a [CLS].” “a [target domain name] style photo of the hard to see [CLS].”
7-8 “a [target domain name] style low resolution photo of the [CLS].”“a [target domain name] style rendering of a [CLS].”
9-10 “[target domain name] style graffiti of a [CLS].” “a [target domain name] style bad photo of the [CLS].”
11-12 “a [target domain name] style cropped photo of the [CLS].” “a [target domain name] style tattoo of a [CLS].”
13-14 “the [target domain name] style embroidered [CLS].” “a [target domain name] style photo of a hard to see [CLS].”
15-16 “a [target domain name] style bright photo of a [CLS].” “a [target domain name] style photo of a clean [CLS].”
17-18 “a [target domain name] style photo of a dirty [CLS].” “a [target domain name] style dark photo of the [CLS].”
19-20 “a [target domain name] style drawing of a [CLS].” “a [target domain name] style photo of my [CLS].”
21-22 “the [target domain name] style plastic [CLS].” “a [target domain name] style photo of the cool [CLS].”
23-24 “a [target domain name] style close-up photo of a [CLS].” “a [target domain name] style black and white photo of the [CLS].”
25-26 “a [target domain name] style painting of the [CLS].” “a [target domain name] style painting of a [CLS].”
27-28 “a [target domain name] style pixelated photo of the [CLS].” “a [target domain name] style sculpture of the [CLS].”
29-30 “a [target domain name] style bright photo of the [CLS].” “a [target domain name] style cropped photo of a [CLS].”
31-32 “a [target domain name] style plastic [CLS].” “a [target domain name] style photo of the dirty [CLS].”
33-34 “a [target domain name] style jpeg corrupted photo of a [CLS].” “a [target domain name] style blurry photo of the [CLS].”
35-36 “a [target domain name] style photo of the [CLS].” “a [target domain name] style good photo of the [CLS].”
37-38 “a [target domain name] style rendering of the [CLS].” “a [target domain name] style [CLS] in a video game.”
39-40 “a [target domain name] style photo of one [CLS].” “a [target domain name] style doodle of a [CLS].”
41-42 “a [target domain name] style close-up photo of the [CLS].” “the [target domain name] style origami [CLS].”
43-44 “the [target domain name] style [CLS] in a video game.” “a [target domain name] style sketch of a [CLS].”
45-46 “a [target domain name] style doodle of the [CLS].” “a [target domain name] style origami [CLS].”
47-48 “a [target domain name] style low resolution photo of a [CLS].” “the [target domain name] style toy [CLS].”
49-50 “a [target domain name] style rendition of the [CLS].” “a [target domain name] style photo of the clean [CLS].”
51-52 “a [target domain name] style photo of a large [CLS].” “a [target domain name] style rendition of a [CLS].”
53-54 “a [target domain name] style photo of a nice [CLS].” “a [target domain name] style photo of a weird [CLS].”
55-56 “a [target domain name] style blurry photo of a [CLS].” “a [target domain name] style cartoon [CLS].”
57-58 “[target domain name] style art of a [CLS].” “a [target domain name] style sketch of the [CLS].”
59-60 “a [target domain name] style embroidered [CLS].” “a [target domain name] style pixelated photo of a [CLS].”
61-62 “[target domain name] style itap of the [CLS].” “a [target domain name] style jpeg corrupted photo of the [CLS].”
63-64 “a [target domain name] style good photo of a [CLS].” “a [target domain name] style plushie [CLS].”
65-66 “a [target domain name] style photo of the nice [CLS].” “a [target domain name] style photo of the small [CLS].”
67-68 “a [target domain name] style photo of the weird [CLS].” “the [target domain name] style cartoon [CLS].”
69-70 “[target domain name] style art of the [CLS].” “a [target domain name] style drawing of the [CLS].”
71-72 “a [target domain name] style photo of the large [CLS].” “a [target domain name] style black and white photo of a [CLS].”
73-74 “the [target domain name] style plushie [CLS].” “a [target domain name] style dark photo of a [CLS].”
75-76 “[target domain name] style itap of a [CLS].” “[target domain name] style graffiti of the [CLS].”
77-78 “a [target domain name] style toy [CLS].” “[target domain name] style itap of my [CLS].”
79-80 “a [target domain name] style photo of a cool [CLS].” “a [target domain name] style photo of a small [CLS].”
81 “a [target domain name] style close-up photo of the [CLS].”

i-th class name like “car”, a prompt Pi, e.g., “a photo of a t1 t2 t3 t4 car.” is obtained using PT .
Then, the tokens Ti for the i-th class are obtained by projecting Pi into word embeddings, and the
embedding of ti is randomly initialized. Finally, the class embedding ei = E(Ti) is obtained based
on the frozen CLIP text encoder E.

Consistent Knowledge Generation network. As shown in Fig.3, a Consistent Knowledge Genera-
tion network (CKG), noted as Fθckg

, takes the inconsistent box features f̃stu ∈ R|P̃|×C from target
detector as input and output the consistent probabilities p̃ckg ∈ R|P̃|×(Nc+1), where |P̃| represent
the number of inconsistent boxes b̃m from image x. A simple description is used here since features
f̃stu come from those proposals that matched to b̃m in practice.

Specifically, to facilitate the generation process, features f̃stu are compared with the inconsistent vi-
sual feature class prototypes ẽcldp ∈ R(Nc+1)×C and ẽclipp ∈ R(Nc+1)×C for cloud and CLIP detectors
respectively, resulting in two adaptive weights wcld ∈ R|P̃|×(Nc+1) and wclip ∈ R|P̃|×(Nc+1):

wcld = CA1(f̃stu, ẽ
cld
p ), wclip = CA2(f̃stu, ẽ

clip
p ), (14)

where CA1 and CA2 are two randomly initialized cross-attention modules [19] with the same archi-
tecture. Finally, the adaptive weights wcld and wclip are multiplied with inconsistent probabilities
p̃cld and p̃clip, resulting the consistent probabilities p̃ckg as follows,

p̃ckg = δ(wcld ⊙ p̃cld +wclip ⊙ p̃clip), (15)
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Algorithm 1 Our proposed COIN method.
Input: Unlabeled target domain D, class names C, cloud detector Fθcld , CLIP model Fθc , hyperpa-

rameters π, γ1 and γ2.
Output: Optimized target detector FθT .
1: function COIN(D, C, Fθcld , Fθc , π, γ1, γ2)
2: Build and randomly initialize CLIP detector Fθclip , target detector FθT and CKG Fθckg

;
3: for t = 0 → IterNum do
4: Sample a target image x from D;
5: Knowledge Dissemination:
6: Obtain detections ycld = (bcld,pcld) through cloud detector Fθcld ;
7: Obtain CLIP model probabilities pc and boxes bc through Fθc with cloud boxes bcld;
8: Update visual feature class prototypes ep; ▷ Eq.(2)
9: Optimize CLIP detector Fθclip with pc, bc and ep; ▷ Eq.(4)

10: end for
11: for t = 0 → IterNum′ do
12: Sample a target image x from D;
13: Knowledge Separation:
14: Obtain detections ycld through cloud detector Fθcld ;
15: Obtain detections yclip through CLIP detector Fθclip ; ▷ Eq.(1)
16: Separate ycld and yclip into P̂ , P̃ and Q. ▷ Eq.(5) and Eq.(6)
17: Knowledge Distillation:
18: Update consistent feature prototypes êp, inconsistent feature prototypes ẽcldp and ẽclipp ;

▷ Similar to Eq.(2)
19: if t ≤ WarmUpNum then
20: Optimize CKG Fθckg

and target detector FθT ; ▷ Eq.(17)
21: else
22: Optimize CKG Fθckg

, target detector FθT and CLIP detector Fθclip ; ▷ Eq.(18)
23: end if
24: end for
25: return FθT
26: end function

where ⊙ represents the element-wise multiplication and δ(·) represents the softmax function. The
architecture of the cross-attention module is represented as

CA(f̃stu, X) = A(f̃stu, X)⊗ V (X),

A(f̃stu, X) = δ(Q(f̃stu)⊗K(X)T ),
(16)

where ⊗ represents the matrix multiplication, A(f̃stu, X) is the attention map and X represents
class prototypes ẽcldp or ẽclipp . Q(·) and K(·) are the linear mapping functions that map the input of
dimension C to dimension C ′ according to standard cross-attention, and V (·) is the linear mapping
function that maps the class prototypes of dimension C to weights of dimension Nc + 1. Thus, the
generation of final weights wcld and wclip are supported by the attention map between inconsistent
features and class prototypes, making it more reliable.

A.2.2 Prompt templates for CLIP model.

Naturally, target tailored prompt templates encapsulate the relevant attributes of the target domain, and
the integration of multiple prompt templates can yield more precise results. Therefore, as RegionCLIP
[72], we design 81 prompt templates to collect class predictions from the CLIP model, as shown in
Table 7. For example, the first prompt “Cityscapes style car.” for a class “car” and the target domain
name “Cityscapes” is easily obtained by filling the first template “[target domain name] style [CLS].”.
With these prompts, a class embedding ei,jc for the i-th class and j-th template is similarly calculated,
just like calculating the i-th class embedding for CLIP detector from above. Then ensemble is used
to compute the mean of these 81 embeddings, resulting in the final class embedding for the i-th class
eic =

∑
j e

i,j
c /81.
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Table 8: Results on Foggy-Cityscapes and BDD100K under GLIP. det: detector.

Foggy-Cityscapes BDD100K

Methods Tuck Car Rder Pson Tain Mcle Bcle Bus mAP Methods Tuck Car Rder Pson Mcle Bcle Bus mAP

Cloud det [32] 23.9 23.9 14.3 13.9 6.1 21.0 22.1 39.8 20.6 Cloud det [32] 33.1 24.3 13.5 21.0 30.0 29.8 40.1 27.4
CLIP [47] 13.1 19.3 10.9 11.6 4.3 15.2 12.3 27.9 14.3 CLIP [47] 25.4 19.9 4.9 5.4 20.1 11.4 28.9 16.6
CLIP det 10.0 33.7 28.2 26.0 14.1 25.0 24.9 38.1 25.0 CLIP det 38.5 39.2 16.7 27.1 26.3 20.7 34.9 29.1
COIN-GLIP 10.7 35.7 38.1 28.9 10.3 28.5 30.4 39.3 27.7 COIN-GLIP 39.3 41.3 22.9 36.4 26.8 29.9 37.9 33.5

Oracle 32.5 67.1 50.8 46.7 43.1 34.4 43.2 54.4 46.5 Oracle 54.0 70.6 42.3 51.4 35.8 41.5 53.2 49.8

Table 9: Quantitative results on Cityscapes, KITTI and Sim10K under GLIP. det: detector.

Cityscapes KITTI Sim10K

Methods Truck Car Rider Person Train Mcycle Bcycle Bus mAP Car Car

Cloud det [32] 31.5 24.0 8.8 13.2 8.2 27.2 23.0 55.7 24.0 26.6 17.1
CLIP [47] 18.3 20.6 14.5 13.1 1.4 17.4 12.7 36.9 16.9 26.8 16.6
CLIP det 13.8 37.6 36.9 29.5 29.6 29.6 27.2 43.2 30.9 55.9 35.8
COIN-GLIP 23.3 40.3 29.4 33.0 17.0 35.0 33.1 56.6 33.5 56.8 37.1

Oracle 34.7 70.4 56.4 50.5 43.0 38.7 46.9 58.9 49.9 95.8 79.2

A.2.3 Optimization and algorithm

Due to the risk of disruption caused by the randomly initialized target detector on the parameters of
the CLIP detector through exponential moving average (EMA), we divide the training process into
two stages. In the first stage, the CLIP detector is fixed, and updates are applied to the CKG and
target detector as follows,

min
θckg

Lckg,

min
θT

Lcon + γ2Lpri + λL2
align,

(17)

which allows the CKG to receive effective training before distilling inconsistent detections. In the
second stage, as described in the main text, updates are applied to the CKG, target detector, and CLIP
detector as follows,

min
θckg

Lckg,

min
θT

Lcon + γ1Linc + γ2Lpri + λL2
align,

θclip = η · θclip + (1− η) · θT .

(18)

where γ1 and γ2 are two hyperparameters. λ is fixed as 10 and η is set to 0.9996. The update of CLIP
detector enables the integrated knowledge in the target detector flows into the CLIP detector gradually,
thus achieving better knowledge integration. The training process is summarized in Algorithm 1.

A.3 More Experiments

Detailed datasets. Cityscapes [11] consists of 2,975 training images and 500 testing images captured
under normal weather with a total of 8 classes. Foggy-Cityscapes [11] contains three levels of foggy
images simulated by the images of Cityscapes. 2,975 training images and 500 testing images with a
foggy level of 0.02 are utilized for training and testing. Clipart [25] includes 1K clipart-style images
with 20 classes. Following [49, 33], all 1K images are used for both training and testing. BDD100K
[63] contains 100K videos of the scenes from New York, Berkeley, San Francisco and Bay Area. For
comparison with existing methods, we follow [35, 14], and use 36,728 training images and 5,258
testing images with 7 classes for training and testing respectively. KITTI [16] contains 7,481 urban
images with the car category. We use all the images for training and testing. Sim10K [26] contains
10K images collected from the computer game Grand Theft Auto V with the car category. All images
are used for training and testing.

More implementation details. One 3090 GPU, a batch-size 3 and a random seed 2024 are used
for all experiments. SGD [2] is used as the optimizer where the initial learning rate is 0.001 and
the weight decay is 0.0001. For pre-training CLIP detector, we iterate 50K steps. For knowledge
distillation, we generally iterate 45K steps using Eq.17, and then iterate 20K steps using Eq.18. The
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Table 10: Effectiveness of COIN under different cloud detector output types on Foggy-Cityscapes.
Class-only and probability are compared. det: detector.

GDINO with class-only output type

Methods Truck Car Rider Person Train Mcycle Bcycle Bus mAP

Cloud det [40] 6.5 41.1 16.0 29.7 20.3 24.2 29.3 22.8 23.7
CLIP [47] 9.7 28.6 11.5 19.5 1.1 12.8 17.9 21.9 15.4
CLIP det 8.2 46.9 27.5 34.1 16.5 24.9 31.5 36.2 28.2
COIN 21.9 54.7 46.1 41.3 19.4 37.9 43.0 39.5 38.0

GDINO with probability output type (default)

Methods Truck Car Rider Person Train Mcycle Bcycle Bus mAP

Cloud det [40] 30.8 47.5 18.6 34.3 21.0 34.6 41.1 47.4 34.4
CLIP [47] 9.7 28.6 11.5 19.5 1.1 12.8 17.9 21.9 15.4
CLIP det 8.2 46.9 27.5 34.1 16.5 24.9 31.5 36.2 28.2
COIN 27.4 57.9 42.3 41.6 25.9 32.7 41.2 43.1 39.0

Table 11: Ablation study for different prompt templates of CLIP model (boxes are borrowed from
cloud detector). A simple template represents “a photo of a [CLS].”; A simple template w/ style
represents “a [target domain name] style photo of a [CLS].”; 81 templates w/o style represents 81
templates where “[target domain name] style” is not added.

mAP

Templates Foggy-Cityscapes Cityscapes Clipart BDD100K KITTI Sim10K Mean

A simple template 11.5 15.0 40.7 16.0 52.4 45.9 30.3
A simple template w/ style 13.8 18.5 45.2 16.7 61.0 42.1 32.9

81 templates w/o style 13.6 17.5 43.3 17.2 58.3 47.2 32.9
81 templates 15.4 20.6 46.3 17.5 62.1 46.4 34.7

training requires 18GB to 20GB of memory. Following [33, 7], the target detector is used for final
testing. For Eq.(9) of the main text, we use L2 loss since we find that other losses like L1 loss or Lkl

loss cannot backpropagate gradients for CKG. Additionally, to reduce computation, the gradients of
the transformation network are calculate rather than the entire target detector in Eq.(9).

Licenses. The models employed in this paper are available under open licenses: CLIP [47] and
GLIP [32] are released under the MIT License, and GDINO [40] is under the Apache License 2.0.
The datasets employed in this research are released under various licenses: Cityscapes [11] and
Foggy-Cityscapes [11] are available under a non-commercial license; BDD100K [63] is provided
under the BSD 3-Clause License for non-commercial use; KITTI [16] is published under the CC
BY-NC-SA 3.0 License; Sim10K [26] is available under a custom non-commercial license; and the
Clipart [25] is intended for academic use, with specific licensing details to be confirmed with the
authors.

A.3.1 More quantitative results.

Quantitative results under GLIP. In order to comprehensively evaluate the effectiveness of the
proposed COIN across different cloud detectors, we conduct experiments under GLIP [32]. Since
GLIP offers class predictions in the form of confidence score, we convert confidence score into
probability by label smoothing. The results are shown in Tables 8 - 9. Compared to GDINO [40],
GLIP produces lower performance. However, our COIN still achieves significant improvements, such
as +7.1% (from 20.6% to 27.7%) on Foggy-Cityscapes, +6.1% (from 27.4% to 33.5%) on BDD100K,
+9.5% (from 24.0% to 33.5%) on Cityscapes, +30.0% (from 26.8% to 56.8%) on KITTI, +20.0%
(from 17.1% to 37.1%) on Sim10K. The above results demonstrate the broad applicability of COIN
across different cloud detectors.
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Table 12: Ablation study for dual prompt learning on Foggy-Cityscapes. Tempate w/ ti represents “a
photo of a t1 t2 t3 t4 [CLS].”. Tempate w/o ti represents “a photo of a [CLS].”. Prototypes update
represents the exponential moving average of them. COIN w/ CLIP det prototypes represents aligning
to pre-trained CLIP detector prototypes, rather than collecting them with consistent detection. det:
detector.

Components Foggy-Cityscapes

Methods Template Lalign
CLIP det Prototypes Tuk Car Rdr Psn Tan Mcl Bcl Bus mAP

w/ ti prototypes update

Cloud det [40] - × × × 30.8 47.5 18.6 34.3 21.0 34.6 41.1 47.4 34.4
CLIP [47] - × × × 9.7 28.6 11.5 19.5 1.1 12.8 17.9 21.9 15.4

× × × × 4.8 46.3 23.1 33.9 13.6 25.4 30.2 38.5 27.0√
× × × 7.3 48.6 26.2 32.2 8.8 27.0 30.7 38.4 27.4√ √ √

× 5.9 44.8 25.2 32.9 20.7 24.9 29.9 37.6 27.7
CLIP det

√ √ √ √
8.2 46.9 27.5 34.1 16.5 24.9 31.5 36.2 28.2

√ √ √
× 29.7 57.5 37.9 40.8 22.0 33.9 42.0 42.5 38.3

COIN
√ √

×
√

27.4 57.9 42.3 41.6 25.9 32.7 41.2 43.1 39.0

A.3.2 More quantitative analysis.

Effectiveness under different cloud detector output types. To verify the effectiveness of our COIN
under different cloud detector output types, we convert the probability outputs of GDINO to class-only
format (converting probability to one-hot format) and conduct experiments on Foggy-Cityscapes,
as shown in Table 10. Since confidence score is crucial for evaluating detector’s performance, we
observe a performance deterioration of GDINO when the output type is class-only. In addition, COIN
increases the mAP by +14.3% (from 23.7% to 38.0%) – that is only a 1.0% decrease compared to
the probability format. This proves that our COIN is compatible with various cloud detector outputs,
making it generally applicable.

Ablation study for prompt templates of CLIP model. As shown in Table 11, we investigate the
effectiveness of the proposed 81 prompt templates for CLIP model across six datasets. Experiments
are categorized into four groups based on the number of templates and whether style is incorporated.
The reported mAPs are calculated by the classification probabilities from CLIP model and the boxes
from cloud detector. Not surprisingly, our proposed 81 templates achieve a satisfactory victory.
Furthermore, one simple template with style outperforms 81 templates without style on four datasets.
This not only demonstrates the importance of target customized prompt templates for the classification
of CLIP model but also proves the necessity of adapting CLIP to target domain.

Ablation study for dual prompt learning. As shown in Table 12, to validate the proposed prompt
learning, ablation studies are conducted on four main components. (1) For CLIP detector, training
based solely on a simple template “a photo of a [CLS].” achieves the mAP of 27.0%. While
utilizing four randomly initialized placeholders improves results by +0.4% (from 27.0% to 27.4%),
which suggests that our designed template can assist the CLIP detector in capturing more target
domain-specific attributes. (2) When L1

align is introduced to align the initial class prototypes – class
embeddings ec from CLIP, the mAP is further enhanced by +0.3% (from 27.4% to 27.7%), and
when aligning the continuously updated prototypes based on EMA and visual features, the mAP is
increased by +0.8% (from 27.4% to 28.2%). As anticipated, the experimental results demonstrate
that prototypes updated based on visual features capture more domain-specific attributes compared
to class embeddings ec calculated by the manually customized 81 CLIP prompt templates. These
findings strongly support the effectiveness of our proposed prompt learning. (3) In the knowledge
distillation stage, the target detector aligns to visual class prototypes collected based on consistent
detections by L2

align instead of visual prototypes trained in CLIP detector. This alignment ensures that
the target detector aligns with the shared knowledge between the cloud detector and CLIP detector. In
the last two rows of Table 12, these two scenarios are compared, and as expected, aligning the shared
knowledge results in a mAP improvement of +0.7% (from 38.3% to 39.0%) compared to aligning the
knowledge of the CLIP detector. This confirms the effectiveness of our second prompt learning.
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Table 13: Ablation study for knowledge separation on Foggy-Cityscapes. Filter and distill represents
the use of a fixed threshold to achieve knowledge separation, resulting in only two kinds of detections
for distillation. det: detector.

Foggy-Cityscapes

Methods Threshold Truck Car Rider Person Train Mcycle Bcycle Bus mAP

Cloud det [40] - 30.8 47.5 18.6 34.3 21.0 34.6 41.1 47.4 34.4
CLIP [47] - 9.7 28.6 11.5 19.5 1.1 12.8 17.9 21.9 15.4
CLIP det - 8.2 46.9 27.5 34.1 16.5 24.9 31.5 36.2 28.2

0.1 17.7 46.4 23.1 31.0 19.1 25.4 31.7 34.9 28.7
0.3 18.8 49.4 31.3 35.2 14.8 26.8 33.3 39.4 31.1
0.5 20.6 50.1 33.8 35.1 12.1 32.7 34.6 41.0 32.5
0.7 10.5 52.4 36.8 35.7 22.3 27.9 36.2 39.3 32.6

Filter and distill 0.9 11.3 51.8 37.5 33.0 10.7 27.3 29.2 36.8 29.7

COIN - 27.4 57.9 42.3 41.6 25.9 32.7 41.2 43.1 39.0

Table 14: Ablation study for knowledge dissemination on Foggy-Cityscapes. COIN w/o dissemina-
tion represents directly utilizing detections from cloud detector and CLIP (not CLIP detector) for
knowledge separation and distillation stages. det: detector.

Foggy-Cityscapes

Methods Truck Car Rider Person Train Mcycle Bcycle Bus mAP

Cloud det [40] 30.8 47.5 18.6 34.3 21.0 34.6 41.1 47.4 34.4
CLIP [47] 9.7 28.6 11.5 19.5 1.1 12.8 17.9 21.9 15.4
COIN w/o dissemination 15.7 54.4 45.5 40.7 22.0 36.1 39.4 37.9 36.5

CLIP det 8.2 46.9 27.5 34.1 16.5 24.9 31.5 36.2 28.2
COIN 27.4 57.9 42.3 41.6 25.9 32.7 41.2 43.1 39.0

Ablation study for knowledge separation. To verify the effectiveness of the knowledge separation
stage, we design a simple comparative experiment called "Filter and distill" as shown in Table 13. A
fixed threshold is used to filter detections. High-confidence detections from any detector are viewed
as consistent detections (box fusion is no longer used), while low-confidence detections are viewed as
private detections. To avoid the unfair comparison from a specific threshold, we vary five thresholds
between 0 and 1. As expected, the overall results are not optimistic. The best performance of 32.6%
is achieved when the threshold is set to 0.7, which means our COIN surpasses it by a large margin
of +6.4% (from 32.6% to 39.0%). This ablation study strongly demonstrates the effectiveness of
our proposed knowledge separation stage and meanwhile validates the power of box matching for
separating knowledge from different detectors.

Ablation study for knowledge dissemination. To demonstrate the significance of the knowledge
dissemination stage, we conduct an ablation study as shown in Table 14. (1) When directly using
CLIP instead of training a CLIP detector through knowledge dissemination, a mAP of 36.5% is
achieved. This represents an improvement of +2.1% (from 34.4% to 36.5%) over the cloud detector
and +21.1% (from 15.4% to 36.5%) over CLIP. This indicates that COIN can organically integrate the
knowledge from both sources even without the knowledge dissemination stage. (2) When knowledge
dissemination is included to train a CLIP detector, the performance is improved by +12.8% (from
15.4% to 28.2%) compared to CLIP. With the CLIP detector, COIN further increases the mAP by
+2.5% (from 36.5% to 39.0%). This highlights the effectiveness of the knowledge dissemination
stage – our designed detector fully utilizes the knowledge from CLIP, and prompt learning mitigates
domain shifts, adapting CLIP to the target domain.

Analysis for knowledge dissemination of both CLIP and cloud detector. Since knowledge
dissemination for CLIP mitigates domain shift and enhances performance, we consider whether
applying knowledge dissemination to the cloud detector brings further improvements. To explore this,
we analyze the method of applying knowledge dissemination to both the cloud detector and CLIP.
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Table 15: Analysis for knowledge dissemination of both cloud detector and CLIP. Cloud det*
represents the pre-trained detector by knowledge dissemination of cloud detector, where detections
from cloud detector are used as supervision. COIN w/ dual dissemination represents COIN, but
separates and distills knowledge from cloud det* and CLIP det. det: detector.

Foggy-Cityscapes

Methods EMA role Truck Car Rider Person Train Mcycle Bcycle Bus mAP

Cloud det [40] - 30.8 47.5 18.6 34.3 21.0 34.6 41.1 47.4 34.4
CLIP [47] - 9.7 28.6 11.5 19.5 1.1 12.8 17.9 21.9 15.4
Cloud det* - 18.8 56.5 39.9 41.1 22.1 37.4 43.7 42.7 37.8
CLIP det - 8.2 46.9 27.5 34.1 16.5 24.9 31.5 36.2 28.2

Both 3.2 26.4 22.5 11.8 12.1 22.6 18.9 22.7 17.5
CLIP det 10.8 54.0 42.3 35.1 18.1 33.3 37.4 27.0 32.3

COIN w/ dual dissemination Cloud det* 10.1 38.9 30.8 24.1 15.8 27.6 26.5 31.0 25.6

COIN - 27.4 57.9 42.3 41.6 25.9 32.7 41.2 43.1 39.0

Table 16: Detection consistence of cloud detector GDINO and CLIP detector on BDD100K. The
average results over 1000 iterations are reported. Cloud(P)/CLIP(N) means cloud detector is right
while CLIP detector is wrong. So does Cloud(N)/CLIP(P).

Inconsistent Cloud(P)/CLIP(N) Cloud(N)/CLIP(P) CKG(P)

99.5 67.2 32.8 80.6

The results are shown in Table 15. (1) Unsurprisingly, knowledge dissemination for the cloud detector
results in a +3.4% improvement (from 34.4% to 37.8%), further demonstrating the broad applicability
of the knowledge dissemination stage. (2) For the knowledge separation and distillation stages,
since both the cloud detector* and CLIP detector can update parameters through EMA, we list three
settings in Table 15. However, the results in all three settings are not ideal. This is because both cloud
detector* and CLIP detector are trained based on the same boxes (from the cloud detector), making
them prone to similar false positives. This introduces significant noise into the consistent detections,
leading to many incorrect predictions by the target detector. Nevertheless, our strategy of updating
CLIP detector achieves the best results because updating its parameters improves its performance.
In contrast, updating the cloud detector* results in performance degradation. While, when both are
updated, EMA causes their parameters to gradually become similar, leading the target detector to get
lost in the noise. We think these issues may be mitigated if CLIP is replaced with a model inherently
capable of detection ability. (3) Compared to the best result in dual knowledge dissemination, COIN
improves performance by +6.7% (from 32.3% to 39.0%), indicating the correctness and superiority
of performing knowledge dissemination exclusively for CLIP.

Experimental analysis of the mechanism for gradient alignment. To demonstrate the rationality of
the gradient alignment mechanism, we use the gradients generated by the ground truths of inconsistent
detections as proxies to represent the direction for inconsistent detections towards the optimal target
detector. Thus, we can verify the rationality of this mechanism by calculating the cosine similarity
between the above gradients and the gradients of consistent detections. To this end, we compute
the aforementioned similarity for each iteration, obtaining an average similarity of 0.527 across
1000 iterations on BDD100K. The corresponding vector angle for this similarity is 58.2 degrees,
indicating that the gradient direction of consistent detections has a relatively small angle with respect
to the direction of inconsistent detections towards the optimal target detector. This demonstrates the
rationality of our gradient alignment mechanism.

Detection consistence of cloud detector and CLIP detector. We analyze the consistence frequency
between cloud detector GDINO and CLIP detector. For each iteration, we keep track of whether
inconsistent detections occur and calculate the frequency of instances where the CLIP detector makes
correct detections but the cloud detector does not, denoted as Cloud(N)/CLIP(P), as well as the
frequency of Cloud(P)/CLIP(N) and the frequency of correct detections by CKG, denoted as CKG(P).
We then convert the frequencies into the probabilities and calculate the average results over 1000
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Table 17: Model size and speed of target detector (ResNet50) and cloud detector on a 3090 GPU.

Model size Speed

Models Proposal num Params Space Time FPS

Target detector (testing) 1000 104M 325MB 0.081s 12.3

In testing (⇈); In real world deployment (⇊)

Target detector (deployment) 1000 40M 155MB 0.077s 13.0
Target detector (deployment) 500 40M 155MB 0.047s 21.3
Target detector (deployment) 300 40M 155MB 0.034s 29.4
Target detector (deployment) 100 40M 155MB 0.023s 43.5

Cloud detector (Swin-B) [40] - 232M 895MB 0.109s 9.2

iterations. The findings are presented in Table 16. We find that inconsistent detections occur in almost
every iteration (99.5%), with the probability of Cloud(N)/CLIP(P) being 32.8% and CKG(P) being
80.6%. The above experimental results show that CLIP can indeed benefit knowledge distillation
from cloud detector. Moreover, it also proves that CKG works in our knowledge integration process,
as it achieves the best results.

Detection speed. In practical applications, the well-trained target detector is utilized in edge devices
with relatively low computational power. As a result, the model size and detection speed significantly
impact its practicality. As shown in Table 17, we analyze the above two terms on Foggy-Cityscapes
with an input size of 600 × 1200, where the ResNet50 version of target detector is compared.
(1) As for params, compared to testing, target detector can directly employ the well-trained class
embeddings for classification during deployment. So the text encoder utilized during testing is
discarded at deployment, reducing target detector to 40M params, which is just 1/6 of the cloud
detector. (2) As for detection speed, target detector can also reduce the number of proposals to
accelerate detection during deployment (with negligible impact on accuracy). Compared to the 9.5
FPS of cloud detector, target detector reaches a speed of 43.5 FPS, which further underscores the
significance of our proposed CODA for real-world applications.

Effectiveness across different versions of cloud detector. To verify the effectiveness of our COIN
across different versions of cloud detector, the Swin-T version of GDINO [40] is selected as an
alternative to compare with our default selected Swin-B version, as shown in Table 18. Compared to
the Swin-B version, the Swin-T version of the cloud detector performs slightly weaker, achieving
26.9% and 36.4% on Foggy-Cityscapes and Cityscapes respectively. Interestingly, the performance
of CLIP (using boxes from cloud detector) is not significantly affected, suggesting that the Swin-T
version of the cloud detector may not classify correctly due to fewer parameters compared to the
Swin-B version. Moreover, our COIN still achieves the best results on both datasets – 33.6% on
Foggy-Cityscapes and 39.7% on Cityscapes. This demonstrates the robustness and versatility of our
COIN across different versions of cloud detector.

Error bar. To facilitate the reproduction of experimental results, we use a fixed random seed of
2024 in all our experiments. To analyze the error bars introduced thereby, COIN is ran under four
randomly generated seeds, and the mean and standard deviation of the results from all five seeds
are calculated, as shown in Table 19. Since cloud detector and CLIP are not retrained, they produce
the same results under different seeds. For the CLIP detector and COIN, statistical results indicate
that their performance conforms to the presupposed Gaussian distribution. This is evidenced by the
1-sigma error bars covering 60% and 80% of the data points, respectively. The above shows that our
method can achieve stable results under different random seeds.

A.3.3 More Qualitative analysis.

Qualitative Comparison. To qualitatively verify our methods, we visualize the detection results on
six datasets, as shown in Figure 5, where cloud detector, CLIP (using boxes from cloud detector),
CLIP detector and COIN are compared. (1) It is clear that COIN produces more true positives
compared to the other three, indicating that our method achieves the best results. (2) By comparing
the CLIP detector and CLIP, more ground truths are detected, which proves the effectiveness of the
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Table 18: Effectiveness across different versions of cloud detector on Foggy-Cityscapes and
Cityscapes. Swin-T version of GDINO is compared with Swin-B version. det: detector.

Cloud detector GDINO [40] of Swin-B version (default)

Methods Truck Car Rider Person Train Mcycle Bcycle Bus mAP

Cloud det [40] 30.8 47.5 18.6 34.3 21.0 34.6 41.1 47.4 34.4
CLIP [47] 9.7 28.6 11.5 19.5 1.1 12.8 17.9 21.9 15.4
CLIP det 8.2 46.9 27.5 34.1 16.5 24.9 31.5 36.2 28.2
COIN 27.4 57.9 42.3 41.6 25.9 32.7 41.2 43.1 39.0

Cloud detector GDINO [40] of Swin-T version

Methods Truck Car Rider Person Train Mcycle Bcycle Bus mAP

Cloud det [40] 24.9 46.0 2.6 36.5 1.4 30.9 36.7 36.5 26.9
CLIP [47] 12.0 29.6 10.8 18.1 0.9 13.4 16.1 23.5 15.6
CLIP det 10.9 49.1 22.8 31.1 5.3 29.1 29.6 34.5 26.6
COIN 16.8 56.6 29.8 39.9 13.4 36.3 34.5 41.3 33.6

Foggy-Cityscapes (⇈) Cityscapes (⇊)

Cloud detector GDINO [40] of Swin-B version (default)

Methods Truck Car Rider Person Train Mcycle Bcycle Bus mAP

Cloud det [40] 37.5 59.9 16.4 43.4 26.1 42.7 48.4 62.6 42.1
CLIP [47] 15.9 36.9 15.5 27.8 0.9 15.7 20.5 31.8 20.6
CLIP det 11.3 55.8 35.1 39.1 33.8 32.0 33.7 44.7 35.7
COIN 26.9 64.3 47.5 47.0 26.4 44.4 46.9 52.8 44.5

Cloud detector GDINO [40] of Swin-T version

Methods Truck Car Rider Person Train Mcycle Bcycle Bus mAP

Cloud det [40] 30.6 60.2 3.1 47.6 7.2 42.3 45.6 54.9 36.4
CLIP [47] 16.4 40.1 14.7 24.4 0.7 16.5 20.1 33.1 20.8
CLIP det 11.2 57.4 28.9 37.7 26.1 33.1 31.4 44.8 33.8
COIN 18.8 64.2 36.3 44.6 21.2 37.8 45.8 49.0 39.7

Table 19: Error bars on Foggy-Cityscapes. Five quantitative results from one default seed 2024 and
other four randomly generated seeds are displayed. det: detector.

mAP

Methods 2024 (default) 36328971 59655772 26829060 4861658 Mean Standard deviation

Cloud det [40] 34.4 34.4 34.4 34.4 34.4 34.4 0.0
CLIP [47] 15.4 15.4 15.4 15.4 15.4 15.4 0.0
CLIP det 28.2 28.5 28.1 28.2 28.3 28.26 0.15
COIN 39.0 39.1 38.8 38.8 38.9 38.92 0.13

knowledge dissemination stage. (3) Furthermore, by comparing cloud detector, CLIP detector, and
COIN, we find that COIN achieves ideal knowledge integration while also detecting some novel
boxes, demonstrating the positive impact of our knowledge integration. (4) There are a large number
of false positives in the KITTI raw, but when upon magnifying the images for closer inspection, we
find that they are not incorrect detections but actual existing objects with the car category. This means
that our COIN even detects real objects that are not included in the annotation files! This not only
proves the power of COIN but also once again highlights the significance of the proposed problem
CODA.
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Figure 5: Qualitative results on Clipart, Foggy-Cityscapes, Cityscapes, SIM, KITTI and BDD100K.
Green , red and blue boxes represent true positives (TP), false negatives (FN) and false positives (FP),
respectively. Zoom in for best view.

A.4 Limitations

Although knowledge dissemination stage grounds detection capability to CLIP and mitigates domain
shift, pre-training a CLIP detector introduces additional training time overhead. Fortunately, our
COIN is a general method which is not limited to CLIP. When another auxiliary model with inherent
detection capability is used, the domain shift can be alleviated with a few steps of fine-tuning, thus
the issue of training time overhead is eliminated.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: As shown in abstract, introduction and contribution. The abstract and introduc-
tion accurately outline the main claims, which are substantiated by the results presented in
the paper, ensuring that the contributions and scope are clearly communicated.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provide limitations at the end of appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: The paper does not present any theoretical results; hence, the criteria for
providing assumptions and proofs are not applicable.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide detailed model architecture, algorithm and dataset usage in ap-
pendix. Moreover, detailed implementation details are provided in main text and appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The test code is provided in supplementary material. The link to the full code
will be provided upon the publication of this paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide dataset usage such as training and testing splits in detailed datasets
of appendix. Moreover, detailed implementation details are provided in main text and
appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report error bar at the end of appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The computer resources, including the GPU model and memory usage, are
detailed in the implementation details of appendix. Detection speed (time and FPS) and
model size (number of parameters and space occupied) are analyzed in one table from
appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research adheres to the NeurIPS Code of Ethics in all aspects, ensuring
that ethical considerations are thoroughly addressed and integrated into the study.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
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Justification: Given the purely academic nature of the research, which does not entail
direct application or deployment, the discussion of broader societal impacts is deemed not
applicable.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not involve the release of data or models that are at high risk
for misuse; therefore, the discussion of safeguards is not applicable.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We provide the licenses for all used models and datasets in appendix. The
version of models are introduced in implementation details of main text and appendix.
Guidelines:

• The answer NA means that the paper does not use existing assets.
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• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The paper introduces new assets, including test code and detection results,
which are well documented as shown in supplementary material. The link to the full assets,
including full code and trained models with detailed document and license will be provided
upon the publication of this paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing experiments or research with
human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification: This paper does not involve crowdsourcing experiments or research with
human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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