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ABSTRACT

We consider the problem of synthesis of binaural speech from mono audio in
arbitrary environments, which is important for modern telepresence and extended-
reality applications. We find that existing neural mono-to-binaural methods are
overfit to non-spatial acoustic properties, via analysis using a new benchmark (TUT
Mono-to-Binaural), the first introduced since the original dataset of Richard et al.
(2021). While these past methods focus on learning neural geometric transforms of
monaural audio, we propose BinauralZero, a strong initial baseline for universal
mono-to-binaural synthesis, which can subjectively match or outperform existing
state-of-the-art neural mono-to-binaural renderers trained in their target environ-
ment despite never seeing any binaural data. It leverages the surprising discovery
that an off-the-shelf mono audio denoising model can competently enhance the
initial binauralization given by simple parameter-free transforms. We perform com-
prehensive ablations to understand how BinauralZero bridges the representation
gap between mono and binaural audio, and analyze how current mono-to-binaural
automated metrics are decorrelated from human ratings.

1 INTRODUCTION

Humans possess a remarkable ability to localize sound sources and perceive the surrounding en-
vironment through auditory cues alone. This sensory ability, known as spatial hearing, plays a
critical role in numerous everyday tasks, including identifying speakers in crowded conversations and
navigating complex environments (Blauert, 1996). Hence, emulating a coherent sense of space via
listening devices like headphones is key to creating truly immersive artificial experiences. The case
of position-conditional binaural rendering of mono speech audio is of special interest, due to growing
reliance on remote real-time spoken interactions in professional settings, increased prevalence of
high-fidelity extended-reality (XR) technologies, and the socially cohesive benefits of spatial audio in
virtual spaces (Lawrence et al., 2021; Lieberman et al., 2022; Nowak et al., 2023). In particular, these
demands motivate speech spatialization schemes that are universal, accurately emulating the relative
position of the source speaker, appropriately conditioned on (or performing a generic imputation
of) room and binaural listener properties, all while being robust to the identity of the speaker, to the
content and language of the speech, and mitigating ambient noise.

Conventional digital signal processing approaches often involve linear time-invariant (LTI) systems
with explicit models for the head-related transfer function (HRTF), the room impulse response (RIR),
and ambient noise (Savioja et al., 1999; Zotkin et al., 2004; Sunder et al., 2015; Zhang et al., 2017). To
reduce explicit linearity assumptions and modeling choices, Richard et al. (2021) demonstrated that
for mono-to-binaural speech synthesis, direct deep supervised learning outperforms such approaches
on both loss-based and human evaluations on their introduced real-world dataset. Their choice of
architecture and training scheme has been refined by a body of subsequent work (Huang et al., 2022;
Leng et al., 2022; Lee & Lee, 2023; Liu et al., 2023; Kitamura & Itou, 2023; Li et al., 2024b).

However, we find that existing neural approaches significantly overfit to the non-spatial acoustic
properties of their data, representing a large gap from achieving universal mono-to-binaural synthesis.
Though overfitting is most directly resolved by large-scale data collection, supervised data involves
positional tracking of mono audio sources plus a binaural recording device atop a real or emulated
human torso. For example, the original two-hour dataset of Richard et al. (2021) has remained the
only dataset used by these works (except for an unreleased set that Huang et al., 2022 additionally
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use); it is recorded in a single non-anechoic room, with the same set of eight speakers in the train and
test data. Hence, we propose an alternate approach to mono-to-binaural synthesis that our experiments
suggest can scale to universal binaural rendering, or at least represents a strong environment-agnostic
baseline towards it. In particular, we discover the “(mono audio, source position)↦ binaural audio”
task can be precomposed with parameter-free transforms into mono audio enhancement tasks that
can be performed surprisingly well by off-the-shelf denoising audio models, such as those found in
text-to-speech vocoders. Finally, we analyze our approach’s design choices and the limitations of
automated metrics across systems revealed by our work. Explicitly, our contributions include:

• Showing that existing neural models highly overfit to non-spatial acoustic features. This includes
releasing the first new benchmark dataset for the task (TUT Mono-to-Binaural), using am-
bisonic recordings of anechoic speech (TUT Sound Events 2018 ANSYN; Adavanne et al., 2019)
that we reparameterize into binaural recordings, on which pretrained models degrade significantly.

• BinauralZero, a novel, state-of-the-art baseline for universal neural mono-to-binaural audio
synthesis, leveraging parameter-free transforms (geometric time warping, amplitude scaling),
and an off-the-shelf denoising vocoder (WaveFit; Koizumi et al., 2022a). Despite training on
zero binaural data, its syntheses are perceptually on-par or better than supervised methods
trained entirely Richard et al. (2021)’s dataset (similarity, spatialization, naturalness), while greatly
outperforming them on our new TUT Mono-to-Binaural benchmark.

• Ablations to BinauralZero to analyze how denoising and warping close the representational
gap of mono audio and its binaural perception. Based on the automated loss metrics attained by
our training-free method versus existing work, we find that current phase, amplitude, waveform,
and STFT metrics can mislead when comparing in-domain neural mono-to-binaural systems,
and mathematically derive properties of these metrics in high-error regimes.

2 REVISITING MONO-TO-BINAURAL SYNTHESIS

2.1 BACKGROUND

The reproduction of virtual acoustic environments has been modeled as room- and listener-based
transformations of directional source audio, as expressed as LTI systems in DSP via convolutional
application of RIRs and HRTFs, respectively (Savioja et al., 1999). However, the computational cost
of wave-based RIR simulation (Välimäki et al., 2012) and the collection cost of measuring HRTFs
(Li & Peissig, 2020) lead to the use of simplified geometric models and generic HRTFs in practice
(Sunder et al., 2015). Motivated by the difficulty of collecting HRTF and RIR data, Gebru et al.
(2021) showed that an implicit HRTF can be learned by a temporal CNN, Richard et al. (2022) and
Lee et al. (2022) showed that neural networks can estimate RIR filters from training data, and Luo
et al. (2022) learn an implicit neural representation of an acoustic field for spatial audio generation.
These works motivate using deep learning to supersede an explicit binaural reproduction pipeline.
Hence, Richard et al. (2021) proposed one of first uses of neural networks for mono-to-binaural
synthesis, composing a neural time-warping module (WarpNet) and a temporal (hyper-)convolutional
neural network (CNN) to directly map mono audio to binaural waveforms. BinauralGrad (Leng et al.,
2022) was the first to use a denoising diffusion probabilistic model (DDPM), composed of two stages:
the first denoises a channel-averaged waveform, then the second conditions on this, the original mono
audio, and their geometric warps to jointly denoise both channels.

Since then, better incorporation of the inductive biases from DSP have led to neural systems that
are more efficient or improve objective rendering metrics. Neural Fourier Shift (NFS; Lee & Lee,
2023) predicts delays and scaling from speaker locations and match the above methods’ perceptual
spatial similarity with a much smaller model. Huang et al. (2022) show that mono-to-binaural audio
synthesis can be combined with the use of discrete audio codes to improve spectral loss. Kitamura &
Itou (2023) used a structured state space sequence (S4) model for the mono-to-binaural task and attain
similar loss metrics to above works. To improve the phase loss of their chosen systems, DopplerBAS
(Liu et al., 2023) incorporated the Doppler effect in the conditioning of WarpNet and BinauralGrad,
and DIFFBAS (Li et al., 2024b) proposed an interaural phase difference loss atop WarpNet and NFS.

Finally, there is a broader body of work using different conditioning settings for multi-channel audio.
One line of work uses visual conditioning for the generation of binaural audio (Xu et al., 2021; Parida
et al., 2022; Chen et al., 2023a;b; Liang et al., 2023; Somayazulu et al., 2023; Garg et al., 2021;
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Yoshida et al., 2023; Xu et al., 2023; Li et al., 2024c;d; Liu et al., 2024). Also, for music applications
there is a generative task, where plausible and subjectively appealing binaural renderings are imputed
from a single-channel recording of multi-source audio (e.g., Chun et al., 2015; Serrà et al., 2023; Li
et al., 2024a; Zang et al., 2024; Zhu et al., 2024).

2.2 A NEW BENCHMARK: TUT MONO-TO-BINAURAL

Given the ongoing use of Richard et al. (2021)’s baseline Binaural Speech dataset1 by existing
works despite its small training set (two hours) and fixed acoustic properties (room, language, shared
bank of speakers in train and test, maximal distance of 1.5m), we set out to define a simple test-only
benchmark to assess whether mono-to-binaural models trained on Binaural Speech and future datasets
are retaining basic binaural rendering functionality in a relatively clean setting.

Hence we build TUT Mono-to-Binaural, a simple and analogous benchmark which we release at
[URL at camera-ready; see Supplementary Material for examples]. It demonstrates a new
approach to collecting task data by pairing reference mono audio with binaural projections from
their multi-channel ambisonic recordings. We start from the overlap-free audio (OV1) in the TUT
Sound Events 2018 ANSYN sound localization dataset2 (Adavanne et al., 2019), which takes real
monophonic recordings from the DCASE 2016 Task 2 dataset3 and spatializes at varying elevations,
azimuths, and distances into anechoic first-order Ambisonic (FOA) recordings, with four audio
channels to cover 3D space; see Adavanne et al. (2018) for more details. Overall, there are around 2
hours of recordings in the dataset. In particular, the original monophonic recordings include spoken
French sentences sampled at 44.1 kHz with an AT8035 shotgun microphone connected to a Zoom
H4n recorder (Mesaros et al., 2018). We then convert the FOA’s location annotations (elevation,
azimuth, distance) into a Cartesian coordinate system p

src
= (x, y, z) to match the format of Binaural

Speech. Next, ground-truth metadata was leveraged to cut out the speech segments from the FOA
recordings using their provided timestamps. Finally, the FOA recordings are rendered as binaural
audio using OmniTone,4 a well-established commercial DSP ambisonic decoder that projects the
highly spatial FOA recording down into a binaural rendering. This gives 1,174 binaural speech
segments, each about 2s, corresponding to each’s own 3D location. These become ground truths for
the original DCASE 2016 Task 2 mono audio with their converted Cartesian coordinates.

The key idea is that TUT is acoustically and spatially simpler (anechoic room, stationary speech)
while being out-of-domain in the speech itself (unseen speaker, unseen language, unseen microphone,
broader elevation coverage, distances up to 10m) so if supervised models have learned to model and
generalize spatial properties rather than acoustic confounders, we would expect them to still produce
reasonable renderings after training only on Binaural Speech or future mono-to-binaural corpora.

2.3 MEASURING GENERALIZATION VIA HUMAN EVALUATION

Prior work defines a number of automated and human evaluations to assess mono-to-binaural ren-
dering. Later in this work we find that automated metrics decorrelate with perceptual metrics
(Section 4.2), so for now we focus on the ultimate goal of matching the ground truth with regards
to human spatial hearing, under the existing benchmark and our proposed benchmark. Following
precedent from past work, for reference-free evaluations we use mean opinion score (MOS). For
reference-based evaluations we use the more sample efficient multiple stimuli with hidden refer-
ence and anchor (MUSHRA), especially as references are generally canonical in binaural audio
(unlike in text-to-speech). We categorize the human evaluations in literature into three broad axes:

• Naturalness: The overall naturalness and intelligibility of the synthesized audio content. We
capture this as naturalness MOS (N-MOS), which is analogous to (regular) MOS in Leng et al.
(2022), or to cleanliness plus part of realism MOS in Richard et al. (2021).

1
https://github.com/facebookresearch/BinauralSpeechSynthesis/releases/tag/v1.0

2
https://zenodo.org/records/1237703

3
https://archive.org/details/dcase2016_task2_train_dev

4
https://googlechrome.github.io/omnitone/#home

3

https://github.com/facebookresearch/BinauralSpeechSynthesis/releases/tag/v1.0
https://zenodo.org/records/1237703
https://archive.org/details/dcase2016_task2_train_dev
https://googlechrome.github.io/omnitone/#home
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• Spatialization: How realistic the synthesis is as a rendering of binaural audio. We capture this as
spatialization MOS (S-MOS), which is analogous to spatialization MOS in Leng et al. (2022), or
to spatialization MOS plus part of realism MOS in Richard et al. (2021).

• Similarity: How similar the synthesized audio is to the reference spatial audio. We capture this
as (similarity) MUSHRA, which is the MUSHRA analogue to the reference-provided similarity
MOS in Leng et al. (2022) and a generalization of spatial MUSHRA as in Lee & Lee (2023).

We consider the three primary neural models (WarpNet, BinauralGrad, NFS), each of which released
their pretrained Binaural Speech models. We take these models adapted on the Binaural Speech
dataset and test them on Binaural Speech and our new proposed TUT Mono-to-Binaural benchmark.
Finally, we include our proposed BinauralZero (Section 3), which has not seen either Binaural Speech
or TUT Mono-to-Binaural (or any binaural data at all). See Appendix B for formal evaluation and
implementation details. Our MOS results are in Table 1 and our MUSHRA results are in Figure 1:

Table 1: Reference-free human evaluations (naturalness and spatialization MOS) of neural methods.

BINAURAL SPEECH TUT MONO-TO-BINAURAL
TYPE MODEL N-MOS (↑) S-MOS (↑) N-MOS (↑) S-MOS (↑)

SUPERVISED WARPNET 3.86±0.16 3.73±0.27 3.60±0.26 2.99±0.22
(ON BINAURAL BINAURALGRAD 4.01±0.14 3.56±0.23 3.27±0.32 2.29±0.23
SPEECH) NFS 3.99±0.15 3.53±0.22 3.79±0.23 2.89±0.26

UNADAPTED BINAURALZERO (OURS) 4.07±0.17 3.76±0.25 3.98±0.15 3.73±0.21

GROUND TRUTH 4.30±0.12 3.99±0.20 4.08±0.11 4.03±0.26

Figure 1: MUSHRA scores for the Binaural Speech dataset and our TUT Mono-to-Binaural bench-
mark. Higher is better, with the upper bound determined by how the hidden reference was scored
(labeled GT, which should be close to 100). The specific numerical values are reported in Appendix B.

We see that models can fail to generalize within each axis. For example, we see that on the new
evaluation set, WarpNet and NFS remain generally performant on naturalness (considering the ground
truth’s N-MOS has also decreased) but degrade significantly on spatialization and partly on similarity.
Upon inspection, one hears two respective failure modes: (a) incorrect spatialization, manifesting as
generated binaural speech with unrealistic distance cues or spatial artifacts when beyond the training
range, and (b) dissimilarity from not retaining the original speaker’s voice characteristics in the
binaural output. We also see that despite having the highest score versus the other supervised methods
in spatiality MOS, and equal-to-highest naturalness MOS, NFS’s MUSHRA score is notably lower
than all other neural methods; reflecting their focus on parameter efficiency and the strong inductive
bias of rendering in Fourier space, which favors spatial performance and generalization but leaves less
capacity for e.g., speaker invariance. Furthermore, BinauralGrad degraded on all metrics, producing
outputs with substantial Gaussian noise, suggesting the diffusion process does not generalize outside
the specific acoustics of the training distribution. These failures can be heard in the binaural rendering
examples at [URL at camera-ready; see Supplementary Material for examples].

Though these three axes are entangled, our results make the case that future work in mono-to-
binaural synthesis should have a ‘basis’ of evaluations spanning all three aspects. We note that
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only Leng et al. (2022) covered all three axes in human evaluation; Richard et al. (2021) covers the
first two, Huang et al. (2022) and Lee & Lee (2023) focus on spatialization similarity, and Liu et al.
(2023); Kitamura & Itou (2023); Li et al. (2024b) do not perform human evaluations.

Stepping back, we see that models adapted to a room- and speaker-specific dataset like Binaural
Speech regress in perceptual naturalness, spatialization, and ground-truth similarity on even
the anechoic, stationary setup of TUT Mono-to-Binaural, suggesting these deep neural networks
of <10M parameters (Lee & Lee, 2023) are already not learning the appropriate features on these
small datasets. In contrast, our proposed BinauralZero (described next section), is perceptually on-par
or outperforms binaurally supervised methods on all three axis, despite not having seen any binaural
data, suggesting an alternate path towards ‘universal’ mono-to-binaural speech synthesis.

3 BINAURALZERO: TOWARDS UNIVERSAL MONO-TO-BINAURAL SYNTHESIS

3.1 MOTIVATION

As discussed in Section 1 and 2.2, it is difficult to collect real-world data, especially over the universe
of possible positions, source audio types, and acoustic conditions, to directly train strong supervised
models that generalize past the two-hour training set. We also note that other mitigations like
synthetic data generation, in-context prompting, or parameter-efficient finetuning exist; however, to
our knowledge there are no strong multi-channel and/or spatially-aware audio models to facilitate
quality pseudolabeling or a finetuning that does not involve learning representations for part of the
input/output space from scratch. We leave such approaches to future work.

For now, we note there are strong monophonic self-supervised speech models trained on large
data. A large class of these are denoising (diffusion) vocoders, which are able to output denoised
waveforms conditional on some semantic information (e.g., speech tokens). We also know that
denoising diffusion models are promising as an architecture, given BinauralGrad’s success on training
two position-conditional denoising diffusion models (though on requiring joint denoising of both
channels) to outperform WarpNet on Binaural Speech despite similar parameter counts (6.9M vs.
8.6M); the main downside of which was having to train only on the two-hour Binaural Speech dataset,
where its better in-distribution fitting made it more brittle out-of-domain.

The gap between using existing speech mono denoising models is (1) they only operate on individual
channels, and (2) they are not trained to explicitly condition on position. However, we argue that
(1) is not an inherent issue, as there is no strict reason to do multi-channel rendering jointly as in
BinauralGrad (other than for parameter efficiency / regularization) if enough conditioning information
is given; recall binaural hearing is observing the same underlying soundscape from two ear positions.

As for (2), we note that denoising waveform models learn to denoise at varying noise levels, which
means that we can implicitly perform conditioning by providing an almost-complete waveform. The
vocoder does not even have to be trained on content-diverse data, as the behavior we need is cleaning
up direction-related artifacts, which should vary (along with distances and recording conditions) if
pretrained on a large corpus. It is then plausible that the ‘denoising basin’ of a such a vocoder is
able to fix slight issues in a hypothesized spatial transformation. In this work we consider geometric
time-warping, whose parameter-free version was used in WarpNet and subsequent works; and
amplitude scaling, which we are the first to explicitly apply to neural mono-to-binaural synthesis.

Remarkably, this overall scheme requires zero binaural data, and thus we name it BinauralZero. It
is summarized in Figure 2; the algorithm is also formally described in Appendix D as Algorithm 1.
Note that our method does not take into account room effects nor the listener’s head shape. Thus, one
interpretation is that BinauralZero produces spatial audio which imputes both a generalized low RIR
room (regularized by all the data the vocoder was trained on) and an implicit generic HRTF.

3.2 GEOMETRIC TIME WARPING (GTW)

GTW estimates a warpfield that separates the left and right binaural signals by applying the interaural
time delay (ITD) based on the relative positions of the sound source and the listener’s ears. Richard
et al. (2021) proposed GTW as a method to generate an initial estimate of the perceived signals. This
approach offers a simple and parameter-free solution for warpfield which can be applied to the mono

5
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Mono
waveform

Binaural
waveforms

Conditioning

Source position;
listener's ear positions

ConditioningParameter-free Frozen parameters

Figure 2: Our proposed BinauralZero method, our state-of-the-art training-free baseline for universal
mono-to-binaural speech synthesis. Mono waveform is binauralized with geometric time warping,
conditional on the speaker’s position, then the two channels’ amplitudes are scaled to prime interaural
level differences. Each channel is then denoised N = 3 times by a low-noise-level step of a (mono)
denoising spectrogram-conditional text-to-speech vocoder.

signal. Let S denote the signal’s sample rate and νsound represent the speed of sound. The system
employs basic GTW on the monaural signal x. This warping is achieved by computing a warpfield
for both the left and right listening channels, denoted by ρ`(t), ρr(t). The values of this warpfield
are computed using on the source and listener ear positions psrc

t ,p
`
t,p

r
t :

ρ
`(t) ∶= t − S

νsound
∣∣psrc

t − p
`
t∣∣2, ρ

r(t) ∶= t − S
νsound

∣∣psrc
t − p

r
t ∣∣2 (1)

As this function takes non-integer values, we can define the warped left and right signals x̂`, x̂r with
respect to the original indexing t via linear interpolation:

x
`
t ∶= (⌈ρ`(t)⌉ − ρ`(t)) ⋅ x⌊ρ`(t)⌋ + (ρ`(t) − ⌊ρ`(t)⌋) ⋅ x⌈ρ`(t)⌉,

x
r
t ∶= (⌈ρr(t)⌉ − ρr(t)) ⋅ x⌊ρr(t)⌋ + (ρr(t) − ⌊ρr(t)⌋) ⋅ x⌈ρr(t)⌉.

3.3 AMPLITUDE SCALING (AS)

In addition to manipulating the time-delay of the signal, we also manipulate the amplitude of the
signal based on the position of the speaker. Human spatial perception of sound relies on various
factors, including the ITD, the interaural level difference (ILD), and spectral cues due to HRTFs.
While prior works (Wersényi, 2010; Baumgarte & Faller, 2003) suggest that the ILD is mostly caused
by scattering off of the head and is dominant in human spatial perception for sounds with high
frequencies, we find that amplitude scaling based on the inverse square law has a positive effect on
the perceived spatial accuracy of the processed signal.

Our approach aims to leverage this amplitude manipulation to enhance the spatial realism of the
generated binaural audio. Let D be the Euclidean distance from the origin of the sound waves.
Then by the inverse-square law, pressure drops at a 1/D2 ratio (Zahorik et al., 2005). In the case of
microphones, pressure manifests as amplitude. Acknowledging that the left-right microphone distance
of the KEMAR mannequin used in datasets like Richard et al. (2021)’s is only an approximation of
human heads, we define:

D
`
t = ∥psrc

− p
`
t∥2, D

r
t = ∥psrc

− p
r
t∥2. (2)

Then, at each time step we scale down the magnitude of the side furthest from the source, using the
ratio of the closer side’s distance versus the further side’s distance:

x̂
`
t ∶= min(1, (Dr

t /D`
t)2) ⋅ x`t, x̂

r
t ∶= min(1, (D`

t/Dr
t )2) ⋅ xrt . (3)

3.4 DENOISING VOCODER

GTW and AS are simple, parameter-free operations that only roughly approximate binaural audio;
using the warped and scaled speech signals x̂`, x̂r as-is results in acoustic artifacts and inconsistencies.
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Hence, there is a need for further refinement to generate natural-sounding binaural audio. To this
end, we propose that a sufficiently well-trained denoising vocoder could be used on each signal
independently. We use a WaveFit neural vocoder (Koizumi et al., 2022a) as our denoising vocoder
model. It is a fixed-point iteration vocoder that takes the denoising perspective of DDPMs (Ho et al.,
2020); and takes the discriminator of generative adversarial networks, specifically MelGAN’s (Kumar
et al., 2019), to learn a sampling-free iterable map that can generate natural speech from a degraded
input speech signal. As a vocoder, it takes log-mel spectrogram features and noise as input and
produces clean waveform output. In WaveFit’s notation, we perform the iterated application of

ŷi−1 ∶= Vθ(ŷi, c, k) ∶= G(ŷi − Fθ(ŷi, c, k), c), (4)

where c is the spectrogram to convert, ŷi−1 is a candidate waveform refined from ŷi, and k is the
time-step. G is a parameter-free gain adjustment operator and Fθ is the WaveGrad architecture (Chen
et al., 2021) trained for reconstruction under a discriminator.

WaveFit is pretrained such that the starting noise is given by ŷK ∼ N (0,Σc) where Σc is a covariance
matrix initialized as in SpecGrad (Koizumi et al., 2022b) to capture the spectral envelope of c; both
k, i iterate over K, . . . , 1. However, for BinauralZero, we express our “approximation” hypothesis
by iterating at the noise level of WaveFit’s final denoising step (k = 1). We then iteratively denoise
ŷ
`
N , ŷ

r
N ∶= x̂`, x̂r, conditioning on their initial log-mel spectrograms and the fixed low noise level for

steps i = N, . . . , 1.

4 RESULTS AND DISCUSSION

We use a WaveFit vocoder as described in Koizumi et al. (2022a), pretrained on the 60k-hour
LibriLight dataset, which is an untranscribed corpus of open-source English audiobooks derived from
the LibriVox project (Kahn et al., 2020). The pretraining hyperparameters used are as in Koizumi
et al. (2022a), giving 13.8M parameters.

4.1 HUMAN EVALUATIONS AND THEIR LIMITATIONS

We reported the human evaluation results of BinauralZero in Section 2.3 (Table 1 and Figure 1), but
now discuss them here. On Binaural Speech (which, unlike BinauralZero, all supervised methods
were trained on), our subjective evaluation results show that BinauralZero improves in N-MOS over
WarpNet, BinauralGrad and NFS by 0.21, 0.06 and 0.08, while attaining similar S-MOS. MUSHRA
results (Figure 1) show that human raters do not have a statistically significant preference for any of
the methods WarpNet, BinauralGrad, NFS or BinauralZero, similar to the spatial-specific MUSHRA
conclusions of Lee & Lee (2023).

On the simpler TUT Mono-to-Binaural dataset however, we see that BinauralZero is the only one
to maintain performance, whereas all other methods sharply degrade. For example, BinauralZero
maintains an average S-MOS of above 3.7, whereas other systems degrade to an average S-MOS of
3.0 or less. The smaller and disjoint error bars on MUSHRA for TUT Mono-to-Binaural (Section 2.3)
show their performances on it are easily distinguishable, with BinauralZero outperforming other
mono-to-binaural methods in a significant way and performing close to the ground truth.

Samples can be heard at [URL at camera-ready; see Supplementary Material for now]. Note
that as BinauralZero does not condition on room information (in particular, ours uses a vocoder
derived from studio audiobook recordings), its syntheses can lack distance or reverb versus the ground
truth, which may be underrated in a generic ‘similarity’ prompt. Future universal-type approaches
that optionally condition on room information should consider finer similarity tasks focusing on
closeness in position like in Huang et al. (2022), or coherence over different-positioned renderings.

4.2 AUTOMATED EVALUATIONS AND THEIR LIMITATIONS

For reference-based automated evaluations, we consider the same objective metrics as in prior work:

• Wave `2`2`2: mean squared error (MSE) between the ground truth and synthesized per-channel
waveforms. This metric is multiplied by 10

3.
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• Amplitude `2`2`2: MSE between the STFTs of the ground truth and synthesized audio, with respect
to amplitude.

• Phase `2`2`2: MSE between the left-right phase angle of the ground truth and synthesized audio. Phase
is computed from the STFT.

• Multi-resolution STFT (LSTFT) is the multi-resolution spectral loss on STFTs.

Unlike previous work, we do not report PESQ scores. Lee & Lee (2023) already found that large
deviations here (1.66 vs. 2.36, 2.76) did not indicate a significant difference in subjective spatial
similarity; furthermore, our investigation of open source code from previous work shows that these
were computed only on the left channel of the audio input. As with the human evaluations, we
evaluate on both the Binaural Speech test set as well as TUT Mono-to-Binaural. We also include a
DSP baseline on Binaural Speech; we use the open-source Resonance Audio package,5 which takes
speaker and listener locations, room size, and room materials as input. For each dataset, room size is
configured base on dataset definition and room materials are configured based on standard building
materials; exact configurations are presented in Appendix C. Our results are in Table 2 and Table 3,
with the (reference-based) MUSHRA human evaluations included for reference.

Table 2: Reference-based automated metrics of models on the Binaural Speech test set. Similarity
MUSHRA scores are included for reference.

TYPE MODEL WAVE `2 (↓) AMP `2 (↓) PHASE `2 (↓) LSTFT (↓) MUSHRA (↑)

ADAPTED DSP (OURS) 0.812 0.052 1.572 1.91 –
WARPNET 0.179 0.037 0.968 1.52 74.6±7.0
BINAURALGRAD 0.128 0.030 0.837 1.25 68.4±9.0
NFS 0.172 0.035 0.999 1.29 61.5±9.4

UNADAPTED BINAURALZERO (OURS) 0.440 0.053 1.508 1.91 70.5±7.1

In Table 2, we observe that BinauralZero achieves significant objective improvements over the
DSP baseline, despite not modeling additional interactions between the two generated channel
streams or the RIR and HRTF. However, BinauralZero underperforms the supervised neural methods
in all reference-based automated metrics. In terms of Wave `2, BinauralZero underperforms the
supervised methods WarpNet, BinauralGrad and NFS, with a 2-3x larger loss. On the remaining
losses, BinauralZero has a loss that is at least 25% above the next method’s. Despite uniformly
worse automated metrics, the perceptual similarity performance of BinauralZero method is at least
comparable to the other methods (if not better, e.g. versus NFS), even though BinauralZero has not
been trained on the Binaural Speech dataset. This does not even account for the better reference-free
N-MOS and comparable-to-better S-MOSes (Section 4.1), approaching that of the ground truth.

The Phase `2 is also close to π/2 for BinauralZero and DSP on Binaural Speech, which suggests a
high-error regime in a numerical sense (see Lemma 1 below). However, despite supervised models
attain ≤ 1 in Phase `2, this reduction in phase loss does not lead to measurable perceptual gains
over BinauralZero, even during explicit side-by-side evaluation via similarity MUSHRA. This is
notable as Richard et al. (2021) speculated on the importance of phase estimation in binaural audio
due to human sensitivity to ITDs as small as 10µs (Brown & Duda, 1998), leading to existing works’
addition of a phase term to the objective to induce this; however, they did not specifically ablate their
loss modification in human evaluations. In contrast, text-to-speech vocoders like WaveFit design their
loss functions to avoid such imperceptible improvements (see Section 4.2 of Koizumi et al., 2022a).
Our results show that, surprisingly, the failure of off-the-shelf mono vocoders to model phase is
not a notable issue for their use in channelwise binaural denoising. Future work could remedy this
by devising a phase-aware adaptation scheme for BinauralZero on binaural speech.

These results suggest that all current automated metrics in neural mono-to-binaural speech
synthesis are uninformative when in-domain. Notably, we find their uninformativeness happens
well before the loss values attained by the original baseline of WarpNet (Richard et al., 2021)
which first reported these metrics. They could even be misleading; for example, NFS outperforms

5
https://github.com/resonance-audio
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WarpNet on three of four objective metrics but is significantly worse than WarpNet on similarity
MUSHRA (61.5 vs. 74.6). This also qualifies results like Liu et al. (2023); Kitamura & Itou (2023);
Li et al. (2024b), which drop human metrics; it remains unclear whether their improvements are
perceptible versus entirely due to improved fitting of imperceptible environment-specific artifacts,
like high-frequency recording equipment noise.

Table 3: Reference-based automated metrics of models on the TUT Mono-to-Binaural benchmark.
Similarity MUSHRA scores are included for reference.

TYPE MODEL WAVE `2 (↓) AMP `2 (↓) PHASE `2 (↓) LSTFT (↓) MUSHRA (↑)

ADAPTED DSP (OURS) 1.134 0.075 1.572 2.93 –
(TO BINAURAL WARPNET 2.909 0.099 1.571 6.66 66.7±3.6
SPEECH) BINAURALGRAD 3.228 0.218 1.571 5.40 36.4±5.8

NFS 1.574 0.085 1.571 3.06 54.7±4.9

UNADAPTED BINAURALZERO (OURS) 0.293 0.045 1.572 2.93 79.3±2.7

In Table 3, we see that on our proposed anechoic, stationary TUT Mono-to-Binaural benchmark,
BinauralZero significantly outperforms all methods that were adapted towards Binaural Speech, in
both automated and perceptual metrics. Complementary to the previous observation, we see that the
systems that are perceptually distinguishable have far larger metric differences than anticipated in
previous work; e.g., WarpNet has 10x the Wave `2 loss of BinauralZero to give a 12.6 (out of 100)
absolute difference in MUSHRA. We also see that the Binaural Speech DSP baseline outperforms
all Binaural Speech neural baselines on TUT Mono-to-Binaural, suggesting that existing neural
adaptation schemes may come with a direct tradeoff away from handling TUT Mono-to-Binaural’s
baseline setting, making the current low-resource situation not tenable for achieving universal mono-
to-binaural speech synthesis and hence motivating approaches like BinauralZero.

That said, we make the caveat that understanding automated evaluations can still aid model develop-
ment, by deriving a relationship between phase + amplitude errors and the relative frequency-domain
distance, when the latter is large–a numerical “high-error” regime. Adopting the notation from
Richard et al. (2021), let Y represent the audio signal in the frequency domain, and Ŷ a model’s
prediction, with ε denoting the distance between them. Our analysis distinguishes between high- and
low-error regimes, defined by ε/∣Ŷ ∣≫ 1 and ε/∣Ŷ ∣≪ 1, respectively. For high error:

Lemma 1. Let Ŷ ∈ C, and let there be a sphere of complex numbers with distance ε from Ŷ such
that Y ∈ Sε = {Y ∈ C ∶ ∣Y − Ŷ ∣ = ε}. Assuming a high (relative) error regime ε

∣Ŷ ∣ ≫ 1, the
expected phase and amplitude error can be expressed as:

(a) EY (L(phase)(Y, Ŷ )) ≈ π

2
, (b) EY (L(amp)(Y, Ŷ )) ≈ ε. (5)

Proof. This follows from Lemma 1 of Richard et al. (2021) combined with first-order approximations
induced by large error; see Appendix E for derivations.

Figure 3 qualitatively shows that Lemma 1 holds, and empirically we see that in Table 3 all models
attain this π/2, consistent with them being unadapted or adapted away towards Binaural Speech’s e.g.
more constrained set of elevations. In Appendix F we give a complementary lemma for low error.

4.3 ABLATION STUDY OF BINAURALZERO

The significance of each core component within the proposed method (GTW, AS, and WaveFit) is
evaluated through ablation studies (Table 4). All three components demonstrably contribute to the
system’s overall success. First, AS is critical for BinauralZero performance. Its absence leads to
substantial degradation in both N-MOS and Wave `2 error. Amplitude scaling between left and right
channels creates a crucial perceptual difference, essential for accurate binaural audio modeling. GTW
is the second most important component. Without GTW, left-right channel time differences become
misaligned, resulting in increased Wave-`2 error and decreased MOS. Interestingly, removing both

9
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Figure 3: Expected errors from Richard et al. (2021) for reference, for amplitude and phase. We see
that in bottom-right regions (the high-error regimes), the error magnitudes (represented by color)
match our Lemma 1, being approximately ε or the fixed value π/2, respectively.

Table 4: Ablation of our BinauralZero method on the Binaural Speech dataset.

MODEL WAVE `2 (↓) AMPLITUDE `2 (↓) PHASE `2 (↓) N-MOS (↑)

BINAURALZERO 0.440 0.053 1.508 4.07±0.17

W/O AS 0.802 0.059 1.539 2.93±0.16
W/O GTW 0.627 0.053 1.569 3.64±0.15
W/O GTW, AS 0.816 0.051 1.567 4.13±0.18

DECODE FROM NOISE 0.495 0.065 1.534 2.50±0.16
W/O DENOISING (WAVEFIT) 0.539 0.044 1.572 3.52±0.16
DENOISING→ AS→ GTW 0.474 0.072 1.277 3.85±0.19
GTW→ DENOISING→ AS 0.441 0.055 1.497 3.25±0.25

1 ITERATION 0.459 0.069 1.393 3.62±0.20
2 ITERATIONS 0.450 0.061 1.492 3.83±0.24
4 ITERATIONS 0.445 0.053 1.502 3.94±0.18
5 ITERATIONS 0.449 0.053 1.494 4.05±0.15

AS and GTW while retaining WaveFit leads to improved N-MOS, albeit resulting in a monaural
waveform played identically in both channels (hence the degraded reference-based metrics).

In addition, we tested the effects of architectural modifications within the WaveFit inference process.
Initializing with Gaussian noise (rather than the differentiated transformed waveforms) and decoding
for five iterations, as in the original WaveFit implementation, resulted in poor audio quality. This is
because the two channels remain independent, and playing them as a binaural recording produces
an unaligned and noisy output. Also, any modification that does not conclude with denoising also
degrades N-MOS, highlighting the importance of generating a natural self-consistent waveform.
When removed in isolation, there is minimal impact on objective metrics but notable degradation.
Applying WaveFit to the mono input first, followed by AS and GTW, yielded improved performance
in terms of Phase `2 but compromised Amplitude `2 and N-MOS metrics. Likewise, applying AS at
the end degraded N-MOS. Finally, increasing the number of denoising steps improves the objective
metrics Wave `2, Amplitude `2 and Phase `2 and improves N-MOS, but only until N = 3 iterations.

5 CONCLUSION

We considered the problem of position-conditional synthesis of binaural speech from mono audio
across environments, which we term universal mono-to-binaural synthesis. We find that existing
supervised learning schemes lose generalization ability due the low-to-zero resource nature of the
task, by introducing a novel dataset specifically designed to test basic generalization ability of
mono-to-binaural synthesizers. To motivate progress, we also described BinauralZero, a strong room-
and listener-agnostic baseline that is generally performant. A universal model that can optionally
condition on room and listener specifications is the clear next step, as well as improved automated
metrics and finer-grained evaluations of coherence across syntheses in the same environment. Finally,
we also made various empirical and theoretical recommendations of relevance to practitioners and
system evaluators. Limitations and impacts are further discussed in Appendix A.
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condition on such information. Future work could also consider non-speech sources, though we
speculate that using a large-scale general-domain vocoder that has seen speech, music, and sound
events may be sufficient to progress towards universal mono-to-binaural audio synthesis.

The proposed method employs a novel approach for enhancing mono audio signals into binaural audio.
This technique has the potential to significantly improve the audio experience in augmented reality
(AR) and virtual reality (VR) applications by creating a more immersive and realistic soundscape.
The enhanced spatial audio cues generated by the proposed method can contribute to a heightened
sense of presence and immersion within virtual environments. Additionally, the proposed method
for transforming mono audio to binaural audio carries the potential for misuse in audio deepfake
applications, where it could be employed to enhance the perceived realism and naturalness of
manipulated audio through the introduction of artificially generated spatial cues.

B HUMAN EVALUATION DETAILS

For MOS, we collect mean opinion scores towards axes of naturalness. Human evaluators are tasked
with assigning a rating on a five-point scale to denote the perceived naturalness of a given speech
utterance, spanning from 1 (indicative of poor quality) to 5 (indicative of excellent quality). For every
experiment, we use 50 random samples from each method. Every example is rated 5 times by different
raters, with each experiment participated in by at least 30 raters. In the MUSHRA (multiple stimuli
with hidden reference and anchor) evaluation, each question first presents the binaural recordings
from the test set as a reference. The human raters are asked to rate how similar each model output is to
the reference on a scale from 0 to 100. The samples include a hidden reference as an anchor, and the
outputs of the models appear in random permutation order. For this test we used 50 random samples
from each method. Following the MUSHRA protocol6, we discard raters who gave >15% of hidden
references a score below 90. We used the model and code releases of WarpNet7, BinauralGrad8, and
NFS9 to synthesize audio for subjective evaluations of these systems.

Table 5: MUSHRA results for the Binaural Speech dataset.

SETTING MODEL MUSHRA (↑)

ADAPTED WARPNET 74.57±7.01
BINAURALGRAD 68.40±8.99
NFS 61.47±9.36

UNADAPTED BINAURALZERO (OURS) 70.46±7.14

GROUND TRUTH 95.37±3.53

Table 6: MUSHRA results for the TUT Mono-to-Binaural dataset.

TYPE MODEL MUSHRA (↑)

ADAPTED WARPNET 66.71±3.61
(TO BINAURAL BINAURALGRAD 36.35±5.84
SPEECH) NFS 54.73±4.88

UNADAPTED BINAURALZERO (OURS) 79.25±2.69

GROUND TRUTH 97.59±2.19

6
https://www.itu.int/dms_pubrec/itu-r/rec/bs/R-REC-BS.1534-3-201510-I!!PDF-E.pdf

7
https://github.com/facebookresearch/BinauralSpeechSynthesis

8
https://github.com/microsoft/NeuralSpeech/tree/master/BinauralGrad

9
https://github.com/jin-woo-lee/nfs-binaural
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C DSP CONFIGURATION

For room materials of both datasets, we used the configuration where left, right, front and back walls
of the room are "brick-painted". For the down configuration (floor) we used the "curtain-heavy"
configuration which simulates a rug. For the up (ceiling) configuration we used "acoustic-ceiling-
tiles", as these are common in most office rooms and recording environments. As for room sized, for
the binaural speech dataset, since it was recorded in a smaller room with a maximal distance of 1.5
meters from the microphone, we used a room configuration of width 4, height 3.5 and depth 4. For
the TUT-mono-to-binaural dataset, since the maximal distance is 10 meters, we used a larger room
with dimensions of width 12, height 3.5 and depth 12.

D ALGORITHM DEFINITION

Algorithm 1 BinauralZero, our zero-shot mono-to-binaural algorithm:

Require: Denoising vocoder Vθ, iteration count N , low noise level k, and the following temporal
sequences: mono waveform x, speaker position p

src, listener’s ear locations p`,pr.
x
`, xr = GeometricTimeWarping(x,psrc

,p
`
,p
r)

x̂
`, x̂r = AmplitudeScaling(x`, xr,psrc

,p
`
,p
r)

c
`
, c
r
= LogMel(x̂`), LogMel(x̂r)

ŷ
`
N , ŷ

r
N ∶= x̂`, x̂r

for i← N to 1 do
ŷ
`
i−1, ŷ

r
i−1 = Vθ(ŷri , cr, k), Vθ(ŷri , cr, k)

end for
return ŷ`, ŷr ∶= ŷ`0, ŷ

r
0 .
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E DERIVATIONS FOR LEMMA 1

E.1 PHASE ERROR:

Utilizing the definition of the phase error as presented Lemma 1 of (Richard et al., 2021):

EY (L(phase)(Y, Ŷ )) = 1

2π
∫
π

−π
arccos

Re ( ε

∣Ŷ ∣ ⋅ e
iϕ + 1)

»»»»»»
ε

∣Ŷ ∣ + e
iϕ
»»»»»»

dϕ (6)

The integral over the phase ϕ can be evaluated by the following steps:

EY (L(phase)(Y, Ŷ )) = (7)

=
1

2π
∫
π

−π
arccos

Re ( ε

∣Ŷ ∣ ⋅ e
iϕ + 1)

»»»»»»
ε

∣Ŷ ∣ + e
iϕ
»»»»»»

dϕ (8)

=
1

2π
∫
π

−π
arccos

Re ( ε

∣Ŷ ∣ ⋅ (cos(ϕ) + i ⋅ sin(ϕ)) + 1)
»»»»»»
ε

∣Ŷ ∣ + cos(ϕ) + i ⋅ sin(ϕ)»»»»»»
dϕ (9)

=
1

2π
∫
π

−π
arccos

ε⋅cos(ϕ)
∣Ŷ ∣ + 1

√
( ε

»»»»»Ŷ
»»»»»
+ cos(ϕ))

2

+ sin2(ϕ)
dϕ (10)

=
1

2π
∫
π

−π
arccos

ε⋅cos(ϕ)
∣Ŷ ∣ + 1

√
( ε

∣Ŷ ∣)
2

+ 2ε⋅cos(ϕ)
∣Ŷ ∣ + 1

dϕ (11)

=
1

2π
∫
π

−π
arccos

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(ε ⋅ cos(ϕ)
∣Ŷ ∣

+ 1) ⋅
⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

1√
( ε

∣Ŷ ∣)
2

+ 2ε⋅cos(ϕ)
∣Ŷ ∣ + 1

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠
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dϕ

(12)

Assume that we are in high error regime, i.e. ε
»»»»»Ŷ

»»»»»
≫ 1:

EY (L(phase)(Y, Ŷ )) ≈ 1

2π
∫
π

−π
arccos

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε

∣Ŷ ∣ cos(ϕ)√
( ε

∣Ŷ ∣)
2

+ 2ε⋅cos(ϕ)
∣Ŷ ∣ + 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

dϕ (13)

Since in the high-error regime where ε
»»»»»Ŷ

»»»»»
≫ 1 the constant term 1 in the numerator can be disregarded

as negligible. Then EY (L(phase)(Y, Ŷ )) can be written as:

1

2π
∫
π

−π
arccos

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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ε
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Since, in high error regime ( ∣Ŷ ∣
ε
)
2

≪ 1 and the Taylor series expansion employed is 1√
1+x

≈ 1 − x
2

where x = 2∣Ŷ ∣⋅cos(ϕ)
ε

. Thus, EY (L(phase)(Y, Ŷ )) can be expressed as:

1

2π
∫
π

−π
arccos [cos(ϕ) − ∣Ŷ ∣

ε ⋅ cos
2(ϕ)] dϕ (17)

=
1

2π
∫
π

−π
arccos [cos(ϕ) − ∣Ŷ ∣

ε ⋅ (cos(2ϕ) + 1

2
)] dϕ (18)

=
1

2π
∫
π

−π
arccos [cos(ϕ) − ∣Ŷ ∣

ε ⋅
cos(2ϕ)

2
−

∣Ŷ ∣
2ε

] dϕ (19)

≈
1

2π
∫
π

−π
arccos [cos(ϕ) − ∣Ŷ ∣

ε ⋅
cos(2ϕ)

2
] dϕ (20)

where ∣Ŷ ∣
ε

can be neglected as ∣Ŷ ∣
ε
≪ 1. The Taylor Series expansion arccos(x) ≈ π

2
− x is used,

where x = cos(ϕ) − ∣Ŷ ∣
ε
⋅ cos(2ϕ)

2
. Therefore, EY (L(phase)(Y, Ŷ )) is equal to:

1
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2
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2
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dϕ +

1

2π
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π

−π

∣Ŷ ∣
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cos(2ϕ)
2

dϕ (23)

=
π

2
+ 0 + 0 =

π

2
(24)

Overall, the phase error is expressed as:

EY (L(phase)(Y, Ŷ )) ≈ π

2
. (25)

�
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E.2 AMPLITUDE ERROR:

We can then start from the definition of the amplitude error from lemma 1 in (Richard et al., 2021)
and solve the integral:

EY (L(amp)(Y, Ŷ )) = ∣Ŷ ∣
2π
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»»»»»»»»»
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∣Ŷ ∣
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ε

∣Ŷ ∣

√
1 +

2∣Ŷ ∣ cosϕ
ε − 1

»»»»»»»»»»»
dϕ (31)

(∗∗)
≈

∣Ŷ ∣
2π

∫
π

−π

»»»»»»»»»
ε

∣Ŷ ∣
(1 + 1

2
⋅
2∣Ŷ ∣ cosϕ

ε ) − 1
»»»»»»»»»
dϕ (32)

=
∣Ŷ ∣
2π

∫
π

−π

»»»»»»»»»
ε

∣Ŷ ∣
+ cosϕ − 1

»»»»»»»»»
dϕ (33)

(∗∗∗)
≈

∣Ŷ ∣
2π

∫
π

−π
( ε

∣Ŷ ∣
+ cosϕ) dϕ (34)

=
∣Ŷ ∣
2π

⋅
ε

∣Ŷ ∣
⋅ 2π +

∣Ŷ ∣
2π

∫
π

−π
cosϕdϕ (35)

= ε + 0 = ε (36)

In the above derivation, the following approximations were employed, under the assumption that
ε

∣Ŷ ∣ ≫ 1:

1. (∗) Removing the term ( ∣ŷ∣
ε
)2 since by the assumption it is negligible.

2. (∗∗) Using the Taylor Series expansion:
√
1 + x ≈ 1 + x

2
where x = 2∣Ŷ ∣⋅cos(ϕ)

ε

3. (∗ ∗ ∗) Removing the term 1 and the ∣ ⋅ ∣ fucntion since the overall integrand is dominate
by the term ε

∣Ŷ ∣ .

Overall, the amplitude error is expressed as - EY (L(amp)(Y, Ŷ )) ≈ ε. �
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F LOW-ERROR REGIME (LEMMA 2)

Lemma 2. Let Ŷ ∈ C, and let there be a ball of complex numbers with distance ε from Ŷ such that
Y ∈ Bε = {Y ∈ C ∶ ∣Y − Ŷ ∣ = ε}. Assuming a low error regime where ε

∣Ŷ ∣ ≪ 1, then the expected
amplitude and phase errors are:

EY (L(phase)(Y, Ŷ )) ≈ (π
2
− 1) + ε

2

2∣Ŷ ∣2
, (37)

EY (L(amp)(Y, Ŷ )) ≈
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ε − π
2∣Ŷ ∣ε

3(2∣Ŷ ∣+ε) , ε

∣Ŷ ∣ ≥
π
2

2
− 1

π
2∣Ŷ ∣ε

3(2∣Ŷ ∣+ε) − ε +
4ε

√
2∣Ŷ ∣+ε
∣Ŷ ∣ε

3π
, ε

∣Ŷ ∣ ≤
π
2

2
− 1.

(38)

Proof. Angular phase error: We can then start from the definition of the phase error from lemma 1
in (Richard et al., 2021) and solve the integral:

EY (L(phase)(Y, Ŷ )) = 1

2π
∫
π

−π
arccos

Re ( ε

∣Ŷ ∣ ⋅ e
iϕ + 1)

»»»»»»
ε

∣Ŷ ∣ + e
iϕ
»»»»»»

dϕ (39)

=
1

2π
∫
π

−π
arccos

Re ( ε

∣Ŷ ∣ ⋅ (cos(ϕ) + i ⋅ sin(ϕ)) + 1)
»»»»»»
ε

∣Ŷ ∣ + cos(ϕ) + i ⋅ sin(ϕ)»»»»»»
dϕ (40)

=
1

2π
∫
π

−π
arccos

ε⋅cos(ϕ)
∣Ŷ ∣ + 1

√
( ε

»»»»»Ŷ
»»»»»
+ cos(ϕ))

2

+ sin2(ϕ)
dϕ (41)

Since cos
2(ϕ) + sin

2(ϕ) = 1, the phase error EY (L(phase)(Y, Ŷ )) can be expressed as:

=
1

2π
∫
π

−π
arccos

ε⋅cos(ϕ)
∣Ŷ ∣ + 1

√
( ε

∣Ŷ ∣)
2

+ 2ε⋅cos(ϕ)
∣Ŷ ∣ + 1

dϕ (42)

=
1

2π
∫
π

−π
arccos

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(ε ⋅ cos(ϕ)
∣Ŷ ∣

+ 1) ⋅
⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

1√
( ε

∣Ŷ ∣)
2

+ 2ε⋅cos(ϕ)
∣Ŷ ∣ + 1

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

dϕ (43)

≈
1

2π
∫
π

−π
arccos(ε ⋅ cos(ϕ)

∣Ŷ ∣
+ 1) ⋅

⎛
⎜
⎝
1 −

1

2
( ε

∣Ŷ ∣
)
2

−
ε ⋅ cos(ϕ)

∣Ŷ ∣
⎞
⎟
⎠
dϕ (44)

≈
1

2π
∫
π

−π
arccos(1 + ε ⋅ cos(ϕ)

∣Ŷ ∣
) ⋅ (1 − ε ⋅ cos(ϕ)

∣Ŷ ∣
)dϕ (45)

Utilizing Taylor expansion 1√
1+x

≈ 1 − x
2

when x = ( ε

∣Ŷ ∣)
2

+ 2ε⋅cos(ϕ)
∣Ŷ ∣ and removing the term

1
2
( ε
∣ŷ∣)

2

since by our assumption it is negligible. Therefore, the phase error EY (L(phase)(Y, Ŷ )) can
be written as:

=
1

2π
∫
π

−π
arccos(1 − ε

2 ⋅ cos2(ϕ)
∣Ŷ ∣2

) dϕ (46)

(∗∗∗)
≈

1

2π
∫
π

−π
(π
2
− 1 +

ε
2 ⋅ cos2(ϕ)

∣Ŷ ∣2
) dϕ (47)
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Since arccos(x) ≈ π
2
− x where x = 1− ε

2⋅cos2 ϕ

∣Ŷ ∣2 . Then, the phase error EY (L(phase)(Y, Ŷ )) can be
expressed as:

= (π
2
− 1) + 1

2π
∫
π

−π

ε
2 ⋅ cos2(ϕ)

∣Ŷ ∣2
dϕ (48)

= (π
2
− 1) + ε

2

2π∣Ŷ ∣2
∫
π

−π
cos

2(ϕ)dϕ (49)

= (π
2
− 1) + ε

2

2π∣Ŷ ∣2
∫
π

−π
cos

2(ϕ)dϕ (50)

= (π
2
− 1) + ε

2

2π∣Ŷ ∣2
[ϕ
2
+
sin(2ϕ)

4
]
»»»»»»»»

π

−π
(51)

= (π
2
− 1) + ε

2

2∣Ŷ ∣2
(52)
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Amplitude error: We can then start from the definition of the amplitude error from lemma 1 in
(Richard et al., 2021) and solve the integral:

EY (L(amp)(Y, Ŷ )) = ∣Ŷ ∣
2π

∫
π

−π

»»»»»»»»»
∣ ε

∣Ŷ ∣
+ e

iϕ∣ − 1
»»»»»»»»»
dϕ (53)

=
∣Ŷ ∣
2π

∫
π

−π

»»»»»»»»»»

√
( ε

∣Ŷ ∣
+ cosϕ)2 + sin2 ϕ − 1

»»»»»»»»»»
dϕ (54)

=
∣Ŷ ∣
2π

∫
π

−π

»»»»»»»»»»»»»

√
√√√√√√⎷( ε

∣Ŷ ∣
)
2

+
2ε cosϕ

∣Ŷ ∣
+ cos2 ϕ + sin2 ϕ − 1

»»»»»»»»»»»»»
dϕ (55)

=
∣Ŷ ∣
2π

∫
π

−π

»»»»»»»»»»»»»

√
√√√√√√⎷( ε

∣Ŷ ∣
)
2

+
2ε cosϕ

∣Ŷ ∣
+ 1 − 1

»»»»»»»»»»»»»
dϕ (56)

=
∣Ŷ ∣
2π

∫
π

−π

»»»»»»»»»»»»»

√
√√√√√√⎷( ε

∣Ŷ ∣
)
2

+ 1 +
2ε cosϕ

∣Ŷ ∣
− 1

»»»»»»»»»»»»»
dϕ (57)

∗
≈

∣Ŷ ∣
2π

∫
π

−π

»»»»»»»»»»»»»»»»»

√
√√√√√√⎷( ε

∣Ŷ ∣
)
2

+ 1 +
2ε

∣Ŷ ∣
−

2εϕ
2

∣Ŷ ∣

4

√
( ε

∣Ŷ ∣)
2

+ 1 + 2ε

∣Ŷ ∣

− 1

»»»»»»»»»»»»»»»»»

dϕ (58)

=
∣Ŷ ∣
2π

∫
π

−π

»»»»»»»»»»»»»
1 +

ε

∣Ŷ ∣
−

2εϕ
2

∣Ŷ ∣

4 (1 + ε

∣Ŷ ∣)
− 1

»»»»»»»»»»»»»
dϕ (59)

=
∣Ŷ ∣
2π

∫
π

−π

»»»»»»»»»»»»»

ε

∣Ŷ ∣
−

2εϕ
2

∣Ŷ ∣

4 (1 + ε

∣Ŷ ∣)

»»»»»»»»»»»»»
dϕ (60)

=
∣Ŷ ∣
2π

⋅
ε

∣Ŷ ∣
∫
π

−π

»»»»»»»»»»»»»
1 −

2ϕ
2

4 (1 + ε

∣Ŷ ∣)

»»»»»»»»»»»»»
dϕ (61)

=
ε

2π
∫
π

−π

»»»»»»»»»»»»»
1 −

ϕ
2

2 (1 + ε

∣Ŷ ∣)

»»»»»»»»»»»»»
dϕ (62)

=
ε

2π

1

2 (1 + ε

∣Ŷ ∣)
∫
π

−π

»»»»»»»»»
2(1 + ε

∣Ŷ ∣
) − ϕ2

»»»»»»»»»
dϕ (63)

We can then write

a = 2(1 + ε

2∣Ŷ ∣
) , ε

2aπ
∫
π

−π

»»»»»a − ϕ
2»»»»» dϕ (64)

And thus re-write the amplitude error as:

EY (L(amp)(Y, Ŷ )) = ε

2aπ
∫
π

−π

»»»»»a − ϕ
2»»»»» dϕ (65)
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The final error function will be a split function between a > π2 and a ≤ π2. For a > π2 we write:

EY (L(amp)(Y, Ŷ )) = ε

2aπ
∫
π

−π

»»»»»a − ϕ
2»»»»» dϕ (66)

=
ε

2aπ
(aε − ε

3

3
) »»»»»»

π

−π
=

ε

2aπ
(2πa − 2π

3

3
) (67)

= ε(1 − π
2

3a
) = ε − επ

2

3a
(68)

= ε −
επ

2

6 (1 + ε

2∣Ŷ ∣)
= ε −

π
2

6 ( 1
ε
+ 1

2∣Ŷ ∣)
(69)

= ε −
π
2

6 ( 2∣Ŷ ∣+ε
2∣Ŷ ∣ε )

= ε −
π
2∣Ŷ ∣ε

3(2∣Ŷ ∣ + ε)
(70)

For a ≤ π2 we can write:

EY (L(amp)(Y, Ŷ )) = ε

2aπ
∫
π

−π

»»»»»a − ϕ
2»»»»» dϕ (71)

=
ε

2aπ
[∫

−
√
a

−π
(ϕ2

− a) dϕ + ∫
√
a

−
√
a
(a − ϕ2) dϕ + ∫

π

√
a
(ϕ2

− a) dϕ] (72)

=
ε

2aπ
[∫

√
a

−
√
a
(a − ϕ2) dϕ + 2∫

π

√
a
(ϕ2

− a) dϕ] (73)

=
ε

2aπ
[(aϕ − ϕ

3

3
) »»»»»»

√
a

−
√
a
+ 2(ϕ

3

3
− aϕ) »»»»»»

π

√
a
] (74)

=
ε

2aπ
[2(a3/2 − a

3/2

3
) + 2(π

3 − a3/2

3
− a(π −

√
a))] (75)

=
ε

2aπ
[2(a3/2 − a

3/2

3
) + 2(π

3 − a3/2

3
− a(π −

√
a))] (76)

=
ε

2aπ
[2π

3

3
− 2πa +

8a
3/2

3
] (77)

= ε [π
2

3a
− 1 +

4a
1/2

3π
] (78)

=
επ

2

3a
− ε +

4a
1/2
ε

3π
(79)

=
επ

2

6 (1 + ε

2∣Ŷ ∣)
− ε +

4ε

√
2 (1 + ε

2∣Ŷ ∣)
3π

(80)

=
π
2

6 ( 2∣Ŷ ∣+ε
2∣Ŷ ∣ε )

− ε +
4ε

√
2 ( 2∣Ŷ ∣+ε

2∣Ŷ ∣ε )
3π

(81)

=
π
2∣Ŷ ∣ε

3(2∣Ŷ ∣ + ε)
− ε +

4ε

√
2∣Ŷ ∣+ε
∣Ŷ ∣ε

3π
(82)
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Finally, we can merge the results from both the phase and amplitude errors to get

EY (L(phase)(Y, Ŷ )) ≈ (π
2
− 1) + ε

2

2∣Ŷ ∣2
(83)

EY (L(amp)(Y, Ŷ )) ≈
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ε − π
2∣Ŷ ∣ε

3(2∣Ŷ ∣+ε) , 2 (1 + ε

∣Ŷ ∣) > π
2

π
2∣Ŷ ∣ε

3(2∣Ŷ ∣+ε) − ε +
4ε

√
2∣Ŷ ∣+ε
∣Ŷ ∣ε

3π
, 2 (1 + ε

∣Ŷ ∣) ≤ π
2

(84)
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