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ABSTRACT

We introduce Daguerro, a strategy for learning directed acyclic graphs (DAGs).
In contrast to previous methods, our problem formulation (i) guarantees to learn a
DAG, (ii) does not propagate errors over multiple stages, and (iii) can be trained
end-to-end without pre-processing steps. Our algorithm leverages advances in dif-
ferentiable sparse structured inference for learning a total ordering of the variables
in the simplex of permutation vectors (the permutahedron), allowing for a substan-
tial reduction in memory and time complexities w.r.t. existing permutation-based
continuous optimization methods.

1 INTRODUCTION

Learning a directed acyclic graph (DAG) from observational data is very challenging yet useful for
many applications, e.g., in biology (Sachs et al., 2005), genetics (Zhang et al., 2013), or finance
(Sanford & Moosa, 2012). The challenge comes from the combinatorial nature of the solution
space, whose size grows super-exponentially with the number of variables d. While exact scored-
based algorithms exist for small d (Singh & Moore, 2005; Xiang & Kim, 2013; Cussens, 2011),
approximate methods (Scanagatta et al., 2015; Aragam & Zhou, 2015; Ramsey et al., 2017) rely
on global or local search heuristics in order to scale to problems with thousands of nodes. For
instance, a large body of recent works (Zheng et al., 2018; Yu et al., 2019; Zheng et al., 2020;
Ng et al., 2020; Brouillard et al., 2020; He et al., 2021) formulate DAG learning as a continuous
optimization problem, where the acyclicity constraint is expressed as a smooth function and relaxed
to allow efficient optimization with multi-purpose solvers. As such, the absence of cycles is no
longer guaranteed and solutions often require post-processing.

Assuming identifiability of the underlying graph structure, another prominent line of works (Fried-
man & Koller, 2003; Gao et al., 2020; Reisach et al., 2021; Cundy et al., 2021; Charpentier et al.,
2022) learns DAGs by (i) finding an ordering of the variables, and (ii) selecting the best scoring
graph among (or marginalizing over) the structures that are consistent with the found ordering.
Their benefit is to work on the space of orderings which is smaller and more regular than the space
of DAGs (Friedman & Koller, 2003) while guaranteeing acyclicity. Existing works, however, are
based either on two-steps procedures (Gao et al., 2020; Reisach et al., 2021) that do not guarantee
optimality of the solution, or on end-to-end ones that involve higher computational costs (Friedman
& Koller, 2003; Cundy et al., 2021; Charpentier et al., 2022). In particular, the recent work of Cundy
et al. (2021) models a total ordering distribution on the Birkhoff polytope (the convex hull of per-
mutation matrices) to obtain a differentiable operator, which has O(d3) time and O(d2) memory
complexities. Charpentier et al. (2022) proposes using another operator with improved time com-
plexity (O(d2)) by constraining the permutation matrix to be row-stochastic (and not bistochastic).

In this work, we propose Daguerro, an end-to-end score-based strategy that belongs to the
permutation-based family of works. Contrary to Cundy et al. (2021); Charpentier et al. (2022), we
build our method on the SparseMAP operator (Niculae et al., 2018) for learning the total ordering of
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Figure 1: Overview of Daguerro: Our method learns the adjacency matrix A(θ) = S ◦ Mσ(θ),
where we denote an observed data point by x, node utility scores by θ, a full and unconstrainted
weighted adjacency matrix by S, parameterized permutations by σ(θ), and an upper strictly trian-
gular masking matrix by M.

the variables. This choice of differentiable operator allows us to work in the simplex of permutation
vectors (a.k.a. Permutahedron) with significant gains in time (O(d log d)) and space (O(d)) com-
plexities (Blondel et al., 2020). Preliminary results on synthetic data show that Daguerro generally
recovers the topological sort of the nodes but tends to return overly dense graphs.

2 METHOD

Let X ∈ Rn×d be a data matrix consisting of n i.i.d. observations for d nodes, where we denote the
j-th column of X by xj ∈ Rn, and G ∈ D a DAG, where D denotes the discrete space of DAGs
G = (V, E) on d nodes. We represent G by its adjacency matrix A ∈ Rd×d, where an element
Aij ̸= 0 iff a directed edge exists from node i to node j.

Learning DAGs via ranking and masking We formulate our score-based problem as follows

min
θ,ϕ

d∑
j=1

ℓ
(
xj , f

ϕ
j (X,A(θ)j)

)
(1)

s.t. A(θ) ∈ D,

where ℓ : Rn × Rn → R is a point-wise loss function, {fϕ}dj=1 is a set of functions parameterized
by ϕ ∈ Rdϕ that computes xj given its parents pa(j) = {i ∈ [d] | A(θ)ij ̸= 0}, and θ ∈ Rd is an
utility vector whose role will be clarified later.

To enforce the constraint A(θ) ∈ D, we learn a total ordering of the variables and mask out all edges
that are not consistent with it: if xj ≺ xi no edge can be drawn from i to j. As this procedure returns
only transitive closures, we further encourage the removal of unnecessary edges via l1 regularization
(as later defined in eq. (7)).

We decompose A(θ) as follows:

A(θ) = S ◦Mσ(θ) , (2)

where S ∈ Rd×d is a full and unconstrained weighted adjacency matrix, σ(θ) ∈ Σd is a
parametrized permutation with Σd being the set of all d-permutations, and M ∈ {0, 1}d×d is an
upper strictly triangular masking matrix such that Mij = 1 if i < j and 0 otherwise. Further, ◦
denotes the Hadamard product, and Mσ(θ) indicates that the rows and columns of M have been
permuted according to σ(θ).
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Soft ranking on the permutahedron. In contrast to Cundy et al. (2021) that operates in the Birkhoff
polytope, to learn the optimal permutation we turn to an efficient formulation of ranking as con-
strained optimization on the permutahedron, following Blondel et al. (2020). The ranking of a
vector θ ∈ Rd, i.e., the permutation σ ∈ Σd that arranges the elements of θ in decreasing order, can
be written as (Blondel et al., 2020, Lemma 1)

σ(θ) = argmax
σ∈Σd

⟨θ,ρσ⟩ , where ρ = (d, d− 1, . . . , 1) . (3)

The permutahedron of a vector w ∈ Rd is the convex hull of all possible permutations of w:

P(w) = conv{wσ : σ ∈ Σd} . (4)

Blondel et al. (2020) show that projection onto P(ρ) yields a soft ranking operator:

στ (θ) := argmin
µ∈P(ρ)

τ

2
∥µ− (−θ)∥2 = argmin

µ∈P(ρ)

1

2
∥µ− (−θ/τ) ∥2 . (5)

This mapping is differentiable w.r.t. θ and, in the absence of ties, as the regularization parameter τ
goes to zero, στ (θ) → σ(θ) (Blondel et al., 2020, Proposition 2). An algorithm based on isotonic
regression permits O(d log d) computation of στ (θ). However, soft rankings are not suitable for our
goal, since we cannot replace Mσ(θ) by Mστ (θ). In fact, the latter is only defined for the vertices of
the permutahedron, i.e., discrete permutations ρ ∈ Σd.

The same problem arises when working with soft permutation matrices, as done in Cundy et al.
(2021) and Charpentier et al. (2022). When leveraging Mena et al. (2018)’s work, the authors resort
to the straight-through gradient estimator (Bengio et al., 2013), which boils down to (i) finding a hard
permutation matrix in the forward pass by solving an optimal matching program via the Hungarian
algorithm (Kuhn, 2010), and (ii) computing the gradients of its continuous approximation obtained
through the Sinkhorn operator (Sinkhorn, 1964) for the backward pass. The straight-through gradi-
ent estimator is also deployed when leveraging the SoftSort operator (Prillo & Eisenschlos, 2020),
as done in (Charpentier et al., 2022) where the one-hot encoded argsort is used for the forward pass.
This strategy however induces additional bias in the training procedure.

SparseMAP distributions over permutations. To handle the issue that our loss can only be eval-
uated meaningfully at discrete permutations, we note that any µ ∈ P(ρ) can be written as a convex
combination of vertices,

µ =
∑
σ∈Σd

α(σ)ρσ = Eσ∼α[ρσ] , where α(·) ≥ 0, and
∑
σ∈Σd

α(σ) = 1 . (6)

SparseMAP (Niculae et al., 2018) is a strategy for differentiable structured inference that solves
problems of the form of eq. (5), yielding not only the optimal solution στ (θ) = µ∗, but also a sparse
decomposition α∗(θ), such that µ∗ = Eσ∼α∗ [ρσ]. This is achieved via an active set algorithm,
which maintains a sparse decomposition, and iteratively adds or removes permutations based on
linear oracles of the form (3), implemented by a sorting algorithm. This iterative algorithm is more
costly than the direct isotonic regression one, but provides the decomposition α∗, which allows us to
compute exact marginalizations of the form Eσ∼α∗(θ)[f(σ)] by explicitly summing over the sparse
set of permutations found by SparseMAP, as proposed for structured latent variable learning by
Correia et al. (2020).

DAG learning on the permutahedron. Our final bi-level optimization problem is:

min
θ,S,ϕ

Eσ∼α∗(θ)

 d∑
j=1

ℓ
(
xj , f

ϕ
j (X,S ◦Mσ)

)+ λ∥S∥1 (7)

s.t. Eσ∼α∗(θ)[ρσ] = argmin
µ∈P(ρ)

1

2
∥µ− (−θ/τ) ∥2 (8)

The inner problem eq. (8) is optimized via SparseMAP, which returns a sparse categorical distribu-
tion α∗ and its gradients w.r.t. θ. We can solve the outer optimization via proximal adaptive gradient
methods (Parikh & Boyd, 2014). A schematic of the overall approach is presented in Figure 1.

3



Published at the ICLR 2022 workshop on Objects, Structure and Causality

0

25

50

75

100

125

150

SH
D

Gaussian

0

25

50

75

100

125

Gumbel

0

25

50

75

100

125

150
Exponential

0

50

100

150

200

250

300

Gaussian-Heterogenous

20 40 60 80 100
d

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

TO
PC

20 40 60 80 100
d

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

20 40 60 80 100
d

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

20 40 60 80 100
d

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Daguerro
NoTears
sortnregress
Golem
NPVAR

Figure 2: Structural Hamming Distance (SHD, the lower the better) and Topological Ordering Pear-
son Correlation (TOPC, the higher the better) as a function of the number of nodes d and for three
different noise models (in column) and n = 1000 training points (which are not enough to run
NPVAR with d = 100). We average results over the three graph models, where for each setting we
ran the methods on 5 different datasets. Detailed results in Appendix A.

Computational details. Each SparseMAP iteration involves a length-d argsort and a Cholesky
update of a s-by-s matrix, where s is the size of the active set, bounded by the iteration number. With
a constant number of iterations (as in our implementation), this leads to an overall time complexity
of O(sd log d + s2) and space complexity O(sd). If run until exact convergence, Carathéodory’s
convex hull theorem guarantees s ≤ d + 1 leading to cubic worst-case complexity; however, in
practice, we almost always reach convergence within 100 iterations. In addition, we warm-start the
sorting algorithm with the last selected permutation. This is better both in theory and in practice than
the O(d3) complexity of maximization over the Birkhoff polytope. A tighter analysis or specialized
algorithm based on isotonic regression is a promising direction for future work.

3 EXPERIMENTS

We report a set of preliminary experiments to validate the proposed method for learning DAGs from
observational data. We consider synthetic settings with simulated linear additive noise models. Fol-
lowing common practices from the literature (Zheng et al., 2018; Gao et al., 2020), we generate a
random graph with 2∗d expected edges according to the Erdös-Rényi, Scale-Free or BiPartite models
and assign to each edge a weight uniformly drawn in [−2,−0.5]∪ [0.5, 2]. We then sample data ac-
cording to the linear model XA+ε, where ε ∈ Rd is an exogenous random variable whose elements
are independently distributed as Normal(0, 0.5) (Gaussian), Normal(0, σj) with σj ∈ [0, 0.5]
(Gaussian-Heterogeneous), Exponential(0.5) (Exponential) or Gumbel(0, 0.5) (Gumbel).

As baselines, we consider state-of-the-art approximate score-based methods: NoTears (Zheng et al.,
2018), the first continuous optimization method, which optimizes the Frobenius reconstruction loss
and where the DAG constrain is enforced via the Augmented Lagrangian approach; Golem (Ng
et al., 2020), another continuous optimization method which optimizes the data likelihood (under
Gaussian equal variance error assumptions) regularized by NoTears’s DAG penalty; NPVAR (Gao
et al., 2020), an iterative algorithm that learns topological layers and then prunes edges based on
node residual variance (with Generalized Additive Models regressor backend to estimate condi-
tional variance); sortnregress (Reisach et al., 2021), another two-steps strategy that orders nodes by
increasing variance and selects the parents of a node among all its predecessors using the Least An-
gle Regressor (Efron et al., 2004). Before evaluation, we post-process the graphs found by NoTears
and Golem by iteratively removing edges ordered by increasing weight until obtaining a DAG, as
they often contain cycles. For our method, we instantiate fϕ

j (X,A(θ)j) = XA(θ)j and optimize
the data likelihood (under Gaussian equal variance error assumptions).

We set the hyper-parameters of all methods to their default values, apart from sortnregress that uses
the Bayesian Information Criterion for model selection. In particular, for Daguerro we set λ = 0.1,
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τ = 1 and remove all edges with weights ≤ 0.3 as commonly done in the literature. We additionally
apply a l2 regularization to all learned parameters (and set its hyper-parameter to 0.01) as we find it
stabilizes training.

In Figure 2, we compare the methods by two metrics: the Structural Hamming Distance (SHD) be-
tween true and estimated graphs, as standard in the literature; and the Topological Ordering Pearson
Correlation (TOPC) that we introduce to measure how well a method is able to estimate the true
topological layers of the nodes. We believe it is essential to study both metrics because the SHD
alone does not distinguish between wrong edges that are consistent with the variable ordering from
wrong edges that are not. For instance, the transitive closure of a sparse graph has high SHD even
though it preserves the true ordering of the nodes.

TOPC computes the Pearson’s correlation coefficient between the true topological layers and the
learned ones. Formally, given a DAG G = (V, E) and its adjacency matrix A we define the topo-
logical layers ( or layer decomposition) L(G) = (L1, . . . , LR) following Gao et al. (2020), where
LA = {xj | pa(j) ∈ (∪r−1

r′=1Lr′) ∧ xj ∈ (V \∪r−1
r′=1Lr′)} is the set of nodes that are sources of the

DAG G[V \ ∪r
r′=1Lr′ ] and 1 ≤ R ≤ d is the depth of the graph. Note that this layer decomposition

is unique, as any node xj belongs to a single layer. We can then assign to each node xj the index of
the layer it belongs to, obtaining the assignment vectors rA. TOPC between estimated Â and true
A adjacency matrices is computed as

TOPC(Â,A) =
Cov(rÂ, rA)√

Var(rÂ)
√

Var(rA)

with Cov(·) denoting the covariance and Var(·) denoting the variance.

In terms of TOPC, we observe that Daguerro provides better orderings than those of NoTears and
NPVAR; it sightly improves over sortnregress and it is on-par with Golem on the equal-variance
noise models, while clearly improving on Golem in the Gaussian-Heterogeneous setting. In terms
of SHD, we find that Daguerro never provides the best performance, although it still improves over
NoTears and NPVAR. Given these results, we believe that a better strategy for pruning edges is key
to improve our method. Additional improvement may come from tuning our hyper-parameters.

4 CONCLUSION AND FUTURE WORK

In this work, we presented Daguerro, an efficient score-based method for end-to-end learning of
directed acyclic graphs and structural equation models. Daguerro reliably finds correct total or-
dering, yet tends to yield too dense graphs. We anticipate that incorporating a l0 regularization
term (Louizos et al., 2018) could help mitigate this latter issue. Future directions include adapting
our strategy to non-linear SEMs (less amenable to continuous optimization approaches) and exper-
imenting with interventional data. While our current implementation uses SparseMAP, other recent
strategies for structured discrete distributions such as SST (Paulus et al., 2020) or I-MLE (Niepert
et al., 2021) could offer compelling alternatives to optimize the structure parameters.
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Figure 3: Detailed results with Gaussian noise model.
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Figure 4: Detailed results with Exponential noise model.

0

50

100

150

SH
D

Scale Free

0

20

40

60

80

100

Bipartite

0

25

50

75

100

125
Erdos-Renyi

20 40 60 80 100
d

0.4

0.5

0.6

0.7

0.8

0.9

1.0

TO
PC

20 40 60 80 100
d

0.4

0.5

0.6

0.7

0.8

0.9

1.0

20 40 60 80 100
d

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Daguerro
NoTears
sortnregress
Golem
NPVAR

Figure 5: Detailed results with Gumbel noise model.
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Figure 6: Detailed results with Gaussian-Heterogeneous noise model.
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