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Abstract. Segmentation of dentomaxillofacial structures in Cone-Beam
Computed Tomography (CBCT) remains challenging, particularly for
fine details such as root apices and nerve canals, which are crucial for
evaluating root resorption in digital dentistry or to make surgical plan-
ning more precise. We present an approach that unifies instance detec-
tion and multi-class dentomaxillofacial structure segmentation in CBCT
scans, in the scope of the ToothFairy3 Challenge. We adapt a Deep
Watershed method, modeling each anatomical structure as a continu-
ous 3D energy basin encoding voxel distances to class boundaries. This
instance-aware representation ensures accurate segmentation of narrow,
complex dentomaxillofacial structures. We train and evaluate our so-
lution on the ToothFairy3 dataset, comprising 532 CBCT scans with
voxel-wise annotations. Our method achieved a mean Dice coefficient of
0.742 and HD95 of 111.13 on the test set. We provide implementation at
https://github.com/tomek1911/TF3.
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1 Introduction

In this report, we describe our solution for Task 1, "Multi-class segmentation"
of the ToothFairy3 challenge. Automatic tooth segmentation in dental CBCT
volumes is a critical step for various clinical applications, including orthodontic
planning, endodontics, and surgical guidance. Building upon previous efforts in
the ToothFairy challenges, we present a method adapted to the increased com-
plexity of ToothFairy3. Compared to ToothFairy2, the new dataset contains 52
additional CBCT volumes acquired with a different scanner, and annotations
have been substantially expanded to include 35 new labels, covering pulpy cav-
ities for all 32 teeth, left and right incisive canals, and the lingual canal. The
quality of annotations has also been improved, offering a richer resource for
developing robust segmentation algorithms.

The task requires accurate voxel-wise labeling of all tooth structures and
internal anatomical features within high-resolution CBCT volumes. It presents
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several challenges: the small size and variability of pulp cavities, the complex
shape of incisive and lingual canals, and the presence of noise and artifacts in
CBCT scans. Furthermore, inter-patient anatomical variations and differences
in scanner acquisition parameters increase the difficulty of generalizing segmen-
tation models.

Several methods have been proposed for tooth segmentation in previous
challenges and research field [4,1]. Classical approaches include atlas-based reg-
istration, graph-based techniques, or multi-stage approaches but the common
part is that all recent advances leverage deep learning for volumetric segmen-
tation. Notably, approaches such as SGANET [5], TSG-GCN [6], ToothSeg [3]
and GEPAR3D [9] have demonstrated the effectiveness of combining volumet-
ric convolutional networks with morphology-aware guidance. What is more, in-
corporating geometry-related features has been shown to enhance the model’s
generalization to external datasets [3].

Our approach extends the methodology proposed in GEPARS3D, incorpo-
rating a 3D Deep Watershed Transform guided by a direction map to enable
morphology-aware learning of more than 32 teeth classes. This design allows
the network to leverage both volumetric context and fine-grained morphologi-
cal cues, leading to precise delineation of teeth and internal structures such as
pulp cavities or nerve canals. To accommodate the high-resolution CBCT vol-
umes within challenge memory constraints, we adapt a sliding window inference
strategy, improving upon the MONAI-based sliding window used in the original
GEPARS3D implementation. By combining morphology-guided learning with ef-
ficient volumetric inference, our solution effectively addresses the increased label
complexity, variability, and inherent challenges of ToothFairy3.

2 Methods

An overview of our pipeline is presented in Fig. 1. The proposed solution builds
upon the GEPAR3D method [9], extending it to the multi-class setting required
by ToothFairy3. Our model jointly addresses multi-class semantic segmentation
and instance-level regression, enabling it to separate individual teeth while also
capturing their internal anatomical structures. To support both multi-class and
binary segmentation objectives, we integrate strategies such as majority voting
across classes and pulp fusion to ensure consistent labeling of internal cavi-
ties. During training, we introduce auxiliary objectives to enhance morphologi-
cal awareness: an Energy Direction loss to model complex apex geometries and
elongated nerve canals (see Fig. 2), and an instance regression task to generate
energy maps that guide the 3D Deep Watershed Transform. These components
together encourage the network to learn both local morphological details and
global structural consistency.

Deep Watershed Instance Regression. To produce the inputs required by
the Deep Watershed algorithm we train the network to solve two complemen-
tary volumetric regression tasks: (i) a continuous energy-basin regression that
encodes each pulp-free tooth instance as a smooth scalar field and (ii) a per-voxel
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Fig.1. An overview of the proposed solution, which unifies instance detection and
multi-class segmentation for dentomaxillofacial structures in CBCT scans. Our model
simultaneously performs multi-class segmentation and instance regression (gray). It
also handles both multi-class and binary segmentation, incorporating techniques like
majority voting and pulp fusion (blue). During training, we capture complex apex
geometries via an Energy Direction loss (yellow) and use an instance regression task
to generate energy maps for the Deep Watershed Algorithm (red).

direction (descent) estimate that refines boundary localization, especially in re-
gions with steep gradients such as root apices and elongated nerve canals (see
Fig. 3). We first create a secondary set of instance labels in which all pulp voxels
have been removed from tooth instances (this guarantees that tooth instances
are disjoint and suitable for watershed processing). Ground-truth energy basins
E¢r(r) are computed on these pulp-free instances using the Euclidean Distance
Transform (EDT) to the each instance boundary separately (based on semantic
classes of GT) and then normalized to [0, 1] for numerical stability. The network
regresses a continuous energy map E (r) (single-channel) using a mean squared
error objective:

LEDT = %Z(EGT(I‘)_E(I‘))Q-

For directional supervision we compute the gradient field of the ground truth
energy VEqr(r) (implemented via a 3D Sobel-Feldman operator along z,v, 2)
and form unit direction vectors

VEgr(r)
max{||VEgr(r)|2,e}’

UGT(I') =

with a small € to avoid division by zero. The model predicts a 3-channel direction
vector U(r) which we normalize voxelwise. We supervise the directions with an
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Fig. 2. We provide slices of the 3D Energy Direction Map (a) overlaid with semi-
transparent (opacity 0.5) segmentation labels, enabling visualization of structural
boundaries within spatial context. The direction map, derived by applying a 3D Sobel
kernel to the distance map, assists the model in segmenting elongated and thin struc-
tures. While the distance map (b) approaches zero at the nerve canal-bone boundary,
the direction map shows contrasting values, highlighting regions that are difficult to
segment. Boundary regions between individual teeth (c, d) are similarly marked by
abrupt vector changes, where regression errors are heavily penalized through the an-
gular loss L4, enforcing directional consistency.

angular loss:

N —1(/:,(0) =@ 2
1 cos ((uGT, u()>)
Ldlr - N ; ( . )

where N is the total number of voxels. We clip cos~! inputs to [—1, 1] for stability
and divide by 7 to scale the angular error to [0, 1]. To focus the direction learning
on anatomically relevant boundaries we mask N, see Fig. 2c to include voxels
belonging to tooth instances and to thin/elongated semantic classes (e.g. nerve
canals) but exclude pulp voxels.

Deep Watershed Instance Classification via Majority Voting. At in-
ference, we first obtain voxel-wise semantic predictions for all classes (i.a. teeth
without pulp, nerve canals, pulp binary map, jaw /skull bones) and the predicted
continuous energy map E. To isolate found instances we binarize the semantic
outputs into a objects mask. Seed points for watershed are extracted from pre-
dicted Energy Map basins by thresholding basin depth (empirically 5 = 0.5).
The Watershed Transform is then run on E constrained to objects mask and
using the extracted seeds. This yields disjoint 3D objects instances V;.
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Fig. 3. Slices of the 3D Energy Direction Map with the inferior alveolar nerve visualized
(a, b) show that the map clearly delineates the boundary between nerve and bone,
both in perpendicular cross-sections and along the canal. In (c), the nerve canal and
root apices are visible, with rapid angular transitions in the vector field highlighting
anatomically complex regions. These transitions are particularly pronounced at the
root apices, where fine, tapering structures curve sharply and diverge from surrounding
bone.

Each resulting instance is assigned a semantic class by majority voting on
the multi-class semantic branch:

class(V;) = argmax Z 1{S(r) =c},
reV;

where S(r) is the per-voxel semantic prediction and 1{-} is the indicator function.
Pulp fusion. During training, pulp voxels are optimized independently through
Lpuip. Pulp segmentation is trained separately as a binary segmentation prob-

lem. We optimize a composite loss Ly, = L.(BwC)'E + Lpice, where w, = 5 is
for positive voxels to counteract severe imbalance. Since ToothFairy3 provides
pulp annotations for all 32 teeth, but evaluation metrics treat pulp as a single
aggregated class, we collapse these labels into one fused pulp mask. The final
prediction is obtained by first running instance segmentation via deep water-
shed and majority voting for tooth and canal classes, followed by assigning pulp
voxels on top of the corresponding multi-class predictions. This ensures consis-
tency with the challenge evaluation protocol while still leveraging detailed pulp
annotations during learning.

Overall training objective. The final loss function combines the contribu-
tions from semantic segmentation, pulp segmentation, and instance regression.
Specifically, we use a weighted sum of four components: (i) multi-class seman-
tic segmentation loss Lgeq, implemented as a combination of cross-entropy and
Dice; (ii) binary pulp segmentation loss Lpyp, formulated as weighted BCE plus
Dice to address strong class imbalance; (iii) energy basin regression loss Lgpr,
which drives accurate continuous energy map prediction for watershed separa-
tion; and (iv) direction field loss Lg;,-, which regularizes geometric consistency by
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enforcing alignment between predicted and ground-truth descent directions. This
design balances voxel-level classification with morphology-aware instance regres-
sion, ensuring robust segmentation of both large structures (e.g., jaw bones) and
fine-scale anatomy (nerve canals, root apices).

Memory-efficient sliding-window inference. Large 3D volumes exceed GPU
memory limits during dense prediction, so inference is typically performed with
a sliding-window approach with overlapping patches. The default MONAI im-
plementation accumulates intermediate patch predictions in lists before merging,
which leads to high memory consumption proportional to the number of over-
lapping patches. To address this, we implemented a memory-efficient variant
that directly accumulates predictions into preallocated output tensors, avoiding
intermediate storage.

For each patch, we apply the model to obtain multi-class logits, energy dis-
tance maps, and pulp probabilities. Predictions are weighted by an importance
map (constant or Gaussian blending) and accumulated on the fly into global ten-
sors: voxel-wise probability sums on the CPU for multi-class segmentation, and
GPU-accumulated maps for distance and pulp outputs. A separate weight accu-
mulator ensures correct normalization. This design prevents redundant storage
of overlapping patches while retaining smooth blending across patch boundaries.
The memory-efficient approach reduces inference RAM memory usage substan-
tially while preserving identical prediction quality to the original MONAT sliding
window inferer.

3 Experimental design

3.1 Dataset

We train and evaluate our method on the novel ToothFairy3 dataset [7,1,2],
which consists of multi-center data from centers A, B, and C, comprising 417,
63, and 52 cases, respectively. For training, we randomly selected 10 cases from
each center for validation (30 in total), while the remaining 502 cases were used
for training.

3.2 Implementation details

All scans are resampled to an isotropic resolution of 0.3 x 0.3 x 0.3 mm?, with
Hounsfield Unit intensities clipped to [0,3000] and normalized to [0, 1]. During
training, we randomly crop 288 x 288 x 160 patches and pad with zeros if
necessary. The model is trained for 400 epochs with AdamW, batch size of 2,
and a cosine annealing scheduler. The loss function is defined as:

L =AM Lgpr+ AsLgeg + AsLaiy + AqLpuip, (1)

with empirically set weights A; = 10, A5 = 0.1, A3 = 1.0, A4 = 1.0 for balance.
The initial learning rate and weight decay are set to 1le~2 and le™4, respectively.
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Table 1. Official top 8 leaderboard test phase results for Task 1 - Multi-class segmen-
tation of ToothFairy3 challenge.

Position| Team |mDSC (%)/mHD95 (mm)

1. Black Myth| 79.81+6.4 88.72+32.33
TAIR Lab | 79.204+6.5 93.18+30.43
sjtu_eiee | 77.05£7.5 | 104.59+37.21

ring821 76.84+9.7 | 104.401+47.98

DLaBella29 | 73.86+7.1 97.71+£33.20

SMIR (ours)| 74.2248.1 | 111.13£39.40

LAVIA Lab | 69.70+9.4 | 144.97448.90

gagaha 55.1+17.6 | 172.49463.60

e B ol

Our implementation was developed with PyTorch 2.4.0 and MONAT 1.4.0.
Training was performed on a single NVIDIA A100 GPU (80 GB) using float32

precision, while inference employed mixed precision (float16) and was executed
on an NVIDIA T4 GPU (16 GB).

3.3 Evaluation metrics

The segmentation performance was quantitatively evaluated using two metrics:
the Dice Similarity Coefficient (DSC, %) to measure volumetric overlap and the
95th percentile Hausdorff Distance (HD95, mm) to assess boundary accuracy. A
third evaluation criterion, segmentation time, will be reported by the organizers
following publication of the final ranking board.

4 Results

This section presents the quantitative and qualitative results from the official
test phase leaderboard for "Task 1 - Multi-class Segmentation".

Quantitative results. Our solution participated in the "Task 1 - Multi-class
Segmentation" challenge. Table 1 shows the official test phase leaderboard of
the best eight submissions. Overall, we achieved a mDSC of 74.224-8.1% and a
mHD95 of 111.13+£39.40 mm across all 50 test cases. In the final leaderboard,
we ranked 6th overall, and 5th in terms of mDSC among the 12 teams.
Qualitative results As shown in Fig. 4, our method produces generally ac-
curate segmentations. Some errors remain, primarily undersegmentation of jaw
bone structures or omission of the lingual nerve. Nonetheless, the method suc-
cessfully delineated most of the challenging inferior alveolar nerve canal and
correctly classified individual tooth instances.

5 Conclusions

In this work, we presented our solution for the ToothFairy3 challenge, addressing
multi-class segmentation of CBCT scans including tooth instances, pulp cavities,
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Prediciton Ground Truth Prediciton Ground Truth

Fig. 4. Qualitative results of our method, proposed as a solution to the ToothFairy3
challenge. We visualize sample from validation set, center A. Ground truth is shown on
the right, with both a 3D rendering and a representative 2D slices, while corresponding
predictions are shown on the left. Our method yields precise nerve canal segmentation,
as shown in the top-row slices and 3D transparent volumes, but shows reduced accuracy
in matching the ground truth upper and lower jaw bone.

nerve canals, and jaw structures. Our method extends the GEPAR3D frame-
work with a 3D deep watershed transform guided by direction maps, enabling
morphology-aware learning and robust instance separation adapted to 45 den-
tomaxillofacial classes. Handling pulp as a separate binary task allowed effective
fusion with Deep Watershed-based instances while avoiding label overlap.

We further introduced a memory-efficient sliding-window inference to process
large CBCT volumes and optimized a combined loss comprising multi-class, pulp,
and instance regression components to balance geometric precision with fine-
structure accuracy. This design improved delineation of challenging anatomical
features, such as root apices, narrow nerve canals, and pulp cavities.

Unfortunately, our method achieved results inferior to those reported in
GEPARS3D. Unlike that approach, we did not leverage a geometrical prior to
regularize the loss function, as a Statistical Shape Model was not available for
the ToothFairy3 dentomaxillofacial labels. Furthermore, after submission we dis-
covered that our Direction Map labels had been discretized, which substantially
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reduced the information they carried. We plan to address this issue in future
iterations.

Future work will integrate pulp directly into the multi-class segmentation
branch and refine the direction-map auxiliary task to better capture narrow
pulp fragments and fine canal structures, aiming to further enhance segmentation
accuracy and anatomical fidelity.
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