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Abstract

Understanding black-box machine learning models is crucial for their widespread adoption.
Learning globally interpretable models is one approach, but achieving high performance
with them is challenging. An alternative approach is to explain individual predictions
using locally interpretable models. For locally interpretable modeling, various methods
have been proposed and indeed commonly used, but they suffer from low fidelity, i.e. their
explanations do not approximate the predictions well. In this paper, our goal is to push the
state-of-the-art in high-fidelity locally interpretable modeling. We propose a novel framework,
Locally Interpretable Modeling using Instance-wise Subsampling (LIMIS). LIMIS utilizes a
policy gradient to select a small number of instances and distills the black-box model into a
low-capacity locally interpretable model using those selected instances. Training is guided
with a reward obtained directly by measuring the fidelity of the locally interpretable models.
We show on multiple tabular datasets that LIMIS near-matches the prediction accuracy of
black-box models, significantly outperforming state-of-the-art locally interpretable models in
terms of fidelity and prediction accuracy.

1 Introduction

In many real-world applications, machine learning is required to be interpretable – doctors need to understand
why a particular treatment is recommended, banks need to understand why a loan is declined, and regulators
need to investigate systems against potential fallacies (Rudin, 2018). On the other hand, the machine learning
models that have made the most significant impact via predictive accuracy improvements, such as deep neural
networks (DNNs) and ensemble decision tree (DT) variants (Goodfellow et al., 2016; He et al., 2016; Chen
& Guestrin, 2016; Ke et al., 2017), are ‘black-box’ in nature – their decision making is based on complex
non-linear interactions between many parameters that are difficult to interpret. Many studies have suggested
a trade-off between performance and interpretability (Virág & Nyitrai, 2014; Johansson et al., 2011; Lipton,
2016). While globally interpretable models such as linear models or shallow Decision Trees (DTs) have
simple explanations for the entire model behaviors, they generally yield significantly worse performance than
black-box models.

One alternative approach is locally interpretable modeling – explaining a single prediction individually instead
of explaining the entire model (Ribeiro et al., 2016). A globally interpretable model fits a single interpretable
model to the entire data, while a locally interpretable model fits an interpretable model locally, i.e. for each
instance/sample individually, by distilling knowledge from a black-box model around the observed sample.
Locally interpretable models are useful for real-world AI deployments by providing succinct and human-like
explanations via locally fitted models. They can be utilized to identify systematic failure cases (e.g. by seeking
common trends in how failure cases depend on the inputs) (Mangalathu et al., 2020), detect biases (e.g. by
quantifying the importance of a particular feature) (ElShawi et al., 2021), provide actionable feedback to
improve a model (e.g. suggesting what training data to collect) (Ribeiro et al., 2016), and for counterfactual
analyses (e.g. by investigating the local model behavior around the observed data sample) (Grath et al.,
2018).
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Figure 1: LIMIS example for the income classification task. For each test sample, the most valuable training
samples are chosen to fit the locally-interpretable model (DT here), and it provides human-like explanations
to the decision. More use-cases for human-in-the-loop AI capabilities of LIMIS can be found in Sect. 6

Various methods have been proposed for locally interpretable modeling: Local Interpretable Model-agnostic
Explanations (LIME) (Ribeiro et al., 2016), Supervised Local modeling methods (SILO) (Bloniarz et al., 2016),
and Model Agnostic Supervised Local Explanations (MAPLE) (Plumb et al., 2018). LIME in particular has
gained significant popularity. Yet, the locally interpretable modeling problem is still far from as being solved.
To be useful in practice, a locally interpretable model should have high fidelity, i.e, it should approximate
the ‘black-box’ model well (Plumb et al., 2019; Lakkaraju et al., 2019). Recent studies have shown that
LIME indeed often yields low fidelity (Alvarez-Melis & Jaakkola, 2018; Zhang et al., 2019; Ribeiro et al.,
2018; Lakkaraju et al., 2017); indeed, as we show in Sec. 5, in some cases, LIME’s performance is even
worse than simple globally interpretable models. The performance of other methods such as SILO and
MAPLE are also far from the achievable limits. Overall, locally interpretable modeling while ensuring high
fidelity across a wide range of cases is an everlasting challenging problem, and we propose that it requires a
substantially-novel design for the fitting paradigm. A fundamental challenge to fit a locally interpretable
model is the representational capacity difference when applying distillation. Black-box models, such as DNNs
or ensemble DTs, have much larger capacity compared to interpretable models. This can result in underfitting
with conventional distillation techniques and consequently suboptimal performance (Hinton et al., 2015; Wang
et al., 2019).

To address the fundamental challenges aforementioned above, we propose a novel instance-wise subsampling
method to fit Locally Interpretable Models, named LIMIS, that is motivated by meta-learning (Ren et al.,
2018). Fig. 1 depicts LIMIS for the income classification task. LIMIS utilizes the instance-wise weight
estimator to identify the importance of the training samples to explain the test sample. Then, it trains a
locally-interpretable model with weighted optimization to return the accurate prediction and corresponding
local explanations. LIMIS efficiently tackles the distillation challenge by fitting the locally interpretable model
with a small number of instances/samples that are determined to be most valuable to maximize the fidelity.
Unlike alternative methods that apply some supervised learning approaches to determine valuable instances,
LIMIS learns an instance-wise weight estimator (modeled with a DNN) directly using the fidelity metric for
selection. Accurate determination of the most valuable instances allows the locally interpretable model to
more effectively utilize its small representational capacity. At various regression and classification tasks, we
demonstrate that LIMIS significantly outperforms alternatives. In most cases, the locally interpretable models
obtained by LIMIS near-match the performance of the complex black-box models that they are trained to
interpret. In addition, LIMIS offers the instance-based explainability via ranking of the most valuable training
instances. We also show that the high-fidelity explanations can open new horizons for reliable counterfactual
analysis, by understanding what input modification would change the outcome, which can be important for
human-in-the-loop AI deployments (see Sec. 6.2).

2 Related Work

Locally interpretable models: There are various approaches to interpret black-box models (Gilpin et al.,
2018). One is to directly decompose the prediction into feature attributions, e.g. Shapley values (Štrumbelj &
Kononenko, 2014) and their computationally-efficient variants (Lundberg & Lee, 2017). Others are based on
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activation differences, e.g. DeepLIFT (Shrikumar et al., 2017), or saliency maps using the gradient flows, e.g.
CAM (Zhou et al., 2016) and Grad-CAM (Selvaraju et al., 2017). In this paper, we focus on the direction of
locally interpretable modeling – distilling a black-box model into an interpretable model for each instance in
tabular domains. LIME (Ribeiro et al., 2016) is the most commonly used method for locally interpretable
modeling in tabular domains. LIME is based on modifying the input feature values and learning from the
impact of the modifications on the output. A fundamental challenge for LIME is the meaningful distance
metric to determine neighborhoods, as simple metrics like Euclidean distance may yield poor fidelity, and the
estimation is highly sensitive to normalization (Alvarez-Melis & Jaakkola, 2018). SILO (Bloniarz et al., 2016))
proposed a nonparametric regression based on fitting small-scale local models which can be utilized for locally
interpretable models similar to LIME. It determines the neighborhoods for each instance using tree-based
ensembles – it utilizes DT ensembles to determine the weights of training instances for each test instance and
uses the weights to optimize a locally interpretable model. Note that these weights are independent of the
locally interpretable models. MAPLE (Plumb et al., 2018) further adds feature selection on top of SILO.
SILO and MAPLE optimize the DT-based ensemble methods independently and this disjoint optimization
results in suboptimal performance. To fit a proper locally interpretable model, a key problem is the selection
of the appropriate training instances for each test instance. LIME uses Euclidean distances, whereas SILO
and MAPLE use DT-based ensemble methods. Our proposed method, LIMIS, takes a very different approach:
to efficiently explore the large search space, we directly optimize the instance-wise subsampler with the fidelity
as the reward.

Data-weighted training: Optimal weighting of training instances is a paramount problem in machine
learning. By upweighting/downweighting the high/low value instances, better performance can be obtained in
certain scenarios, such as with noisy labels (Jiang et al., 2018). One approach for data weighting is utilizing
influence functions (Koh & Liang, 2017), that are based on oracle access to gradients and Hessian-vector
products. Jointly-trained student-teacher method constitutes another approach (Jiang et al., 2018; Bengio
et al., 2009) to learn a data-driven curriculum. Using the feedback from the teacher, instance-wise weights are
learned by the student model. Aligned with our motivations, meta learning is considered for data weighting
in Ren et al. (2018). Their proposed method utilizes gradient descent-based meta learning, guided by a small
validation set, to maximize the target performance. LIMIS utilizes data-weighted training for a novel goal:
interpretability. Unlike gradient descent-based meta learning, LIMIS uses policy gradient and integrates the
fidelity metric as the reward. Aforementioned works (Jiang et al., 2018; Koh & Liang, 2017; Bengio et al.,
2009; Ren et al., 2018) estimate the same ranking of training data for all instances. Instead, LIMIS yields an
instance-wise ranking of training data, enabling efficient distillation of a black-box model prediction into
a locally interpretable model. Yeh et al. (2018) can also provide instance-wise ranking of training samples
but for sample-based explainability. Differently, LIMIS utilizes instance-wise ranking with the objective of
locally-interpretable modeling.

3 LIMIS Framework

Consider a training dataset D = {(xi, yi)}Ni=1 ∼ P for a black-box model f , where xi ∈ X are d-dimensional
feature vectors and yi ∈ Y are the corresponding labels. We also assume a probe dataset Dp = {(xpj , y

p
j )}Mj=1 ∼

P, to evaluate the model performance to guide meta-learning as in Ren et al. (2018). If there is no explicit
probe dataset, it can be randomly split from the training dataset (D).

3.1 Training and inference

LIMIS is composed of: (i) Black-box model f : X → Y – any machine learning model to be explained (e.g.
a DNN), (ii) Locally interpretable model gθ : X → Y – an inherently-interpretable model by design
(e.g. a shallow DT), (iii) Instance-wise weight estimation model hφ : X ×X ×Y → [0, 1] – a function
that outputs the instance-wise weights to fit the locally interpretable model, specifying for each instance how
valuable it is for training the locally interpretable model. It takes its input as the concatenation of a probe
instance’s feature, a training instance’s feature, and a corresponding black-box model prediction. It can be a
complex ML model – here a DNN.
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Figure 2: Block diagram of the proposed method. White blocks represent fixed (not learnable) models, and
grey blocks represent trainable (learnable) models. Stage 0: Black-box model training. Stage 1: Auxiliary
dataset construction. Stage 2: Instance-wise weight estimator training. Stage 3: Interpretable inference.

Our goal is to construct an accurate locally interpretable model gθ such that the prediction made by it is
similar to the prediction of the trained black-box model f∗ – i.e. the locally interpretable model has high
fidelity. We use a loss function, L : Y × Y → R to quantify the fidelity of the locally interpretable model
which measures the prediction differences between black-box model and locally interpretable model (e.g. in
terms of mean absolute error).

The locally interpretable model has a significantly lower representational capacity compared to the black-box
model. This is the bottleneck that LIMIS aims to address. Ideally, to avoid underfitting, such low-capacity
interpretable models should be learned with a minimal number of training instances that are most effective
in capturing the model behavior. We propose an instance-wise weight estimation model hφ to output the
likelihood of each training instance being used for fitting the locally interpretable model. Integrating this
with the goal of training an accurate locally interpretable model yields the following objective:

min
hφ

Exp∼PX
[
L(f∗(xp), g∗θ(xp)(xp))

]
+ λExp,x∼PX

[
hφ(xp,x, f∗(x))

]
s.t. g∗θ(xp) = arg mingθ Ex∼PX

[
hφ(xp,x, f∗(x)) · Lg(f∗(x), gθ(x))

]
,

(1)

where λ ≥ 0 is a hyper-parameter to control the number of training instances used to fit the locally interpretable
model, and hφ(xp,x, f∗(x)) is the weight for each training pair (x, f∗(x)) and for the probe data xp. Lg is the
loss function to fit the locally interpretable model (here to minimize the mean squared error) between the pre-
dicted values for regression and logits for classification. φ and θ are the trainable parameters, whereas f∗ (the
pre-trained black-box model) is fixed. The first term in the objective function Exp∼PX

[
L(f∗(xp), g∗θ(xp)(xp))

]
is the fidelity metric, representing the prediction differences between the black-box model and locally in-
terpretable models. The second term in the objective function Exp,x∼PX

[
hφ(xp,x, f∗(x))

]
represents the

expected number of selected training points to fit the locally interpretable model. Lastly, the constraint
ensures that the locally interpretable model is derived from weighted optimization, where weights are the
outputs of hφ. Our formulation does not assume any constraint on gθ – it can be any inherently interpretable
model. In experiments, we use simple decision tree or regression model (with closed-form solution) so that
the complexity of the constraint optimization is negligible. Note that we utilize a deep model for weight
optimization (hφ) but a simple interpretable model for explanation (gθ). LIMIS encompasses 4 stages:

• Stage 0 – Black-box model training: Given the training set D, the black-box model f is trained to
minimize a loss function Lf (e.g. mean squared error for regression or cross-entropy for classification), i.e.,
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f∗ = arg minf 1
N

∑N
i=1 Lf (f(xi), yi). If there exists a pre-trained black-box model, we can skip this stage

and retrieve the given pre-trained model as f∗.

• Stage 1 – Auxiliary dataset construction: Using the pre-trained black-box model f∗, we create
auxiliary training and probe datasets, as D̂ = {(xi, ŷi), i = 1, ..., N} (where ŷi = f∗(xi)) and D̂p =
{(xpj , ŷ

p
j ), j = 1, ...,M} (where ŷpj = f∗(xpj )), respectively. These auxiliary datasets (D̂, D̂p) are used for

training the instance-wise weight estimation model and locally interpretable model.

If we want to understand the black-box models that are trained on the given datasets, Stage 0 and Stage
1 are necessary because the main objective is to understand the local dynamics of the black-box models’
decision boundary. On the other hand, if we want to understand the local dynamics of the given datasets, we
can skip Stage 0 and 1 and directly utilize the given dataset for Stage 2 and 3.

• Stage 2 – Instance-wise weight estimator training: LIMIS employs an instance-wise weight estimator
to output selection probabilities that yield the selection weights, and the selection weights determine the
fitted local interpretable model via weighted optimization. We train the instance-wise weight estimator using
the auxiliary datasets (D̂, D̂p). The search space for all sample weights would be very large, and for efficient
search, proper exploration is crucial. To this end, we consider probabilistic selection with a sampler block
that is based on the output of the instance-wise weight estimator – hφ(xpj ,xi, ŷi) represents the probability
that (xi, ŷi) is selected to train a locally interpretable model for the probe instance xpj . Let the binary vector
c(xpj ) ∈ {0, 1}N represent the selection vector, such that (xi, ŷi) is selected for xpj when ci(xpj ) = 1.

Now, we convert the intractable optimization problem in Eq. (1) with the following approximations:

(i) The sample mean is used as an approximation of the first term of the objective function:

Exp∼PX
[
L(f∗(xp), g∗θ(xp)(xp))

]
' 1
M

M∑
j=1
L(f∗(xpj ), g

∗
θ(xp

j
)(x

p
j )))

(ii) The second term of the objective function, which represents the average selection probability, is approxi-
mated as the average number of selected instances:

Exp,x∼PX
[
hφ(xp,x, f∗(x))

]
' 1
MN

M∑
j=1

N∑
i=1
|ci(xpj )|

(iii) The objective of the constraint term is approximated using the sample mean of the training loss as

Ex∼PX
[
hφ(xp,x, f∗(x)) · Lg(f∗(x), gθ(x))

]
' 1
N

N∑
i=1

[
ci(xpj ) · Lg(f

∗(xi), gθ(xi))
]

The converted tractable optimization problem becomes:

min
hφ

1
M

∑M
j=1

[
L(f∗(xpj ), g∗θ(xp

j
)(x

p
j ))) + λ 1

N

∑N
i=1 |ci(x

p
j )|
]

s.t. g∗
θ(xp

j
) = arg mingθ 1

N

∑N
i=1

[
ci(xpj ) · Lg(f∗(xi), gθ(xi))

]
where ci(xpj ) ∼ Ber(hφ(xpj ,xi, f∗(xi))).

(2)
The sampler block yields a non-differential objective as the optimization is over c(xpj ) ∈ {0, 1}N - weighted
instances, and we cannot use conventional gradient descent-based optimization to solve the above optimization
problem. Motivated by its successful applications (Ranzato et al., 2015; Zaremba & Sutskever, 2015; Zhang
& Lapata, 2017), we adapt the policy-gradient based REINFORCE algorithm (Williams, 1992) such that the
selection action1 is rewarded by its impact on performance. We consider the loss function

l(φ) = 1
M

M∑
j=1

[
L(f∗(xpj ), g

∗
θ(xp

j
)(x

p
j ))) + λ

1
N

N∑
i=1
|ci(xpj )|

]
1States are the features of input instances, actions are the selection vectors from hφ (policy) that selects the most valuable

samples, and reward is the fidelity of the locally interpretable model compared to the black box model which depends on the
input features (state) and the selection vector (action).
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as the reward given the state and action for the selection policy2.

Correspondingly, ρφ(xpj , c(xpj )) is the probability mass function for c(xpj ) given hφ(·):

ρφ(xpj , c(xpj )) =
N∏
i=1

[
hφ(xpj ,xi, f

∗(xi))ci(xp
j

) · (1− hφ(xpj ,xi, f
∗(xi)))1−ci(xp

j
)
]
.

To apply the REINFORCE algorithm, we directly compute its gradient with respect to φ:

∇φ l̂(φ) = 1
M

M∑
j=1

[
L(f∗(xpj ), g

∗
θ(xp

j
)(x

p
j ))) + λ

1
N

N∑
i=1
|ci(xpj )|

]
∇φ log ρφ(xpj , c(xpj )).

Bringing all this together, we update the parameters of the instance-wise weight estimator φ with the following
steps (bi-level optimization) repeated until convergence:

(i) Estimate instance-wise weights wi(xpj ) = hφ(xpj ,xi, ŷi) and instance selection vector ci(xpj ) ∼ Ber(wi(xpj ))
for each training and probe instance in a mini-batch (Nmb is the number of samples in a mini batch).
(ii) Optimize the locally interpretable model with the selection for each probe instance:

g∗θ(xp
j

) = arg min
gθ

Nmb∑
i=1

[
ci(xpj ) · Lg(f

∗(xi), gθ(xi))
]

(3)

(iii) Update the instance-wise weight estimation model (where α > 0 is a learning rate):

φ←φ− α

M

M∑
j=1

[
L(f∗(xpj ), g

∗
θ(xp

j
)(x

p
j )) + λ

1
N

N∑
i=1
|ci(xpj )|

]
· ∇φ log ρφ(xpj , c(xpj )) (4)

Pseudo-code of the LIMIS training is in Algorithm. 1. We stop training LIMIS algorithm if there are no
fidelity improvements. Hyper-parameters are optimized to maximize the validation fidelity.

Algorithm 1 LIMIS Training

Input: Training data (D), probe data (Dp), black-box model (f∗)
1: Initialize hφ.
2: Construct auxiliary data (D̂, D̂p): D̂ = {(xi, f∗(xi))}Ni=1, D̂p = {(xpj , f∗(x

p
j ))}Mj=1

3: while hφ is not converged do
4: Estimate wi(xpj ) = hφ(xpj ,xi, ŷi)
5: Sample ci(xpj ) ∼ Ber(wi(xpj ))
6: Optimize locally interpretable models with ci(xpj ) using Eq. (3)
7: Update hφ using Eq. (4)
8: end while
Output: Trained instance-wise weight estimator (h∗φ)

• Stage 3 – Interpretable inference: Unlike training, we use a fixed instance-wise weight estimator
without the sampler. Note that we use the probabilistic selection for encouraging the exploration during the
training. At inference time, exploration is no longer needed; it would be better to minimize the randomness
to maximize the fidelity of the locally interpretable models. Given the test instance xt, we obtain the
selection probabilities from the instance-wise weight estimator, and using these as the weights, we fit the
locally interpretable model via weighted optimization. The outputs of the fitted model are the instance-wise
predictions and the corresponding explanations (e.g. coefficients for a linear model). Pseudo-code of the
LIMIS inference is in Algorithm. 2.

2Other desired properties, such as robustness of explanations against input perturbations, can be further added to the reward
– the flexibility constitutes one of the major advantages.
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Algorithm 2 LIMIS Inference

Input: Training data (D), test sample (xt), trained instance-wise weight estimator (h∗φ)

1: Estimate wi(xt) = h∗φ(xt,xi, ŷi)
2: Optimize locally interpretable model using instance-wise weights wi(xt) via weighted optimization:
3: g∗θ(xt) = arg mingθ

∑N
i=1 wi(xt) · Lg(f∗(xi), gθ(xi))

Output: Predictions (g∗θ(xt)(xt)), explanations (g∗θ(xt)), and instance-wise weights {wi(xt)}Ni=1

3.2 Computational cost

As a representative and commonly used example, consider a linear ridge regression (RR) model as the locally
interpretable model, which has a computational complexity of O(d2N) +O(d3) to fit, where d is the number
of features and N is the number of training instances. When N � d (which is often the case in practice), the
training computational complexity is approximated as O(d2N) (Tan, 2018).

Training: Given a pre-trained black-box model, Stage 1 involves running inference N times and the
total complexity is determined by the black-box model. Unless the black-box model is very complex, the
computational cost of Stage 1 is much smaller than Stage 2. At Stage 2, we iteratively train the instance-
wise weight estimator and fit the locally interpretable model using weighted optimization. Therefore, the
computational complexity is O(d2NNI) where NI is the number of iterations (typically NI < 10, 000 until
convergence). Thus, the training complexity scales roughly linearly with the number of training instances.

Interpretable inference: To infer with the locally interpretable model, we need to fit the locally interpretable
model after obtaining the instance-wise weights from the trained instance-wise weight estimator. For each
testing instance, the computational complexity is O(d2N).

Experimental results on the computational cost for both training and inference can be found in Sect 5.3.

4 Synthetic Data Experiments

Evaluations of explanation quality are challenging on real-world datasets due to the absence of ground-truth
explanations. Therefore, we initially perform experiments on synthetic datasets with known ground-truth
explanations to directly evaluate how well the locally interpretable models can recover the underlying reasoning
behind outputs.

We construct three synthetic datasets that have different local behaviors in different input regimes. The
11-dimensional input features X are sampled from N (0, I) and Y are determined as follows:

• Syn1: Y = X1 + 2X2 if X10 < 0 & Y = X3 + 2X4 if X10 ≥ 0,

• Syn2: Y = X1 + 2X2 if X10 + eX11 < 1 & Y = X3 + 2X4 if X10 + eX11 ≥ 1,

• Syn3: Y = X1 + 2X2 if X10 + (X11)3 < 0 & Y = X3 + 2X4 if X10 + (X11)3 ≥ 0.

Y is directly dependent to X1, ..., X4 and not directly dependent to X10, X11. However, X10, X11 determine
how Y are dependent on X1, ..., X4. For instance, in Syn1 dataset, Y is directly dependent with X1, X2 if X10
is negative. If X10 is positive, Y is directly dependent with X3, X4 but independent of X1, X2. Additional
results with non-linear feature-label relationships can be found in Appendix. H.7.

We directly use the ground truth function as the black-box model instead of a fitted nonlinear black-box model
to solely focus on LIMIS performance, decoupling from the nonlinear black-box model fitting performance.
We quantify how well locally interpretable modeling can capture the underlying local function behavior
using the Absolute Weight Difference (AWD) metric: AWD = ||w− ŵ||, where w is the ground truth linear
coefficients to generate Y given X and ŵ is the estimated coefficient from the linear locally interpretable
model (RR in our experiments). To make the experiments consistent and robust, we use the probe sample as
the criteria to determine the ground-truth local dynamics (w). We report the results over 10 independent
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runs with 2,000 samples per each synthetic dataset. Additional results can be found in the Appendix. E, F,
and G.

4.1 Recovering local function behavior

Figure 3: Mean AWD (aggregated per uniformly divided x-axis bin) with 95% confidence intervals (of 10
independent runs) on three synthetic datasets (y-axis) vs. the percentile distance from the boundary where
the local function behavior change (x-axis), e.g. X10 = 0 for Syn1. We exclude LIME due to its poor
performance (its AWD is higher than 1.6 in all cases distance regimes for all datasets). LIME results and the
scatter plots of LIMIS can be found in the appendix.

We compare LIMIS to LIME (Ribeiro et al., 2016), SILO (Bloniarz et al., 2016), and MAPLE (Plumb et al.,
2018). Fig. 3 shows that LIMIS significantly outperforms other methods in discovering the local function
behavior on all three datasets, in different regimes. Even the decision boundaries are non-linear (Syn2 and
Syn3), LIMIS can efficiently learn them, beyond the capabilities of the linear RR model. LIME fails to recover
the local function behavior as it uses the Euclidean distance and cannot distinguish the special properties of
the features. SILO and MAPLE only use the relevant variables for the predictions; thus, it is difficult for
them to discover the decision boundary that depends on other variables, independent of the predictions.

4.2 The impact of the number of selected instances

Figure 4: Fidelity (in LMAE) and average selection probability of training samples (y-axis) vs. λ (x-axis).

Optimal distillation in LIMIS is enabled by using a small subset of training instances to fit the low-capacity
locally interpretable model. The number of selected instances is controlled by λ – if λ is high/low, LIMIS
penalizes more/less, thus less/more instances are selected to fit the locally interpretable model. We analyze
the efficacy of λ in controlling the likelihood of selection and the fidelity. Fig. 4 (left and middle) demonstrates
the clear relationship between λ and the fidelity. If λ is too large, LIMIS selects insufficient number of
instances; thus, the fitted locally interpretable model is less accurate (due to underfitting). If λ is too small,
LIMIS is not sufficiently encouraged to select the most relevant instances related to the local dynamics to fit
the ridge regression model, thus is more prone to learning feature relationships that may generalize poorly.
To achieve the optimal λ, we conduct cross-validation and select λ with the best validation fidelity. Fig. 4
(right) shows the average selection probability of the training instances for each λ. As λ increases, the average
selection probabilities decrease due to the higher penalty on the number of selected instances. Even using a
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small portion of training instances, LIMIS can accurately distill the predictions into locally interpretable
models, which is crucial to understand the predictions using the most relevant instances.

4.3 Comparison to differentiable baselines

Table 1: AWD comparisons on three synthetic datasets with different number of train samples (N).

Number of train samples N = 500 N = 1000 N = 2000
Datasets Syn1 Syn2 Syn3 Avg. Syn1 Syn2 Syn3 Avg. Syn1 Syn2 Syn3 Avg.
LIMIS .5531 .5869 .6512 .5971 .2129 .4289 .5527 .3982 .1562 .3325 .3920 .2936

Gumbel-softmax .4177 .5017 .5953 .5049 .2712 .4511 .5405 .4209 .1698 .3655 .4217 .3190
STE .4281 .4941 .6001 .5074 .2688 .4407 .5372 .4156 .1717 .3601 .4307 .3208
L2R .6758 .6607 .6903 .6756 .6989 .6412 .6217 .6539 .7532 .7283 .7506 .7440

We compare LIMIS to three baselines that have differentiable objectives for data weighting in Table 1: (1)
Gumbel-softmax (Jang et al., 2016)3, (2) straight-through estimator (STE) (Bengio et al., 2013), (3) Learning
to Reweight (L2R) (Ren et al., 2018).

LIMIS utilizes the sampling procedure; thus, the objective (loss) function is non-differentiable. In that
case, we cannot train the model in an end-to-end way using the stochastic gradient descent (SGD). Instead,
there are multiple ways to train with non-differentiable objectives. In the LIMIS framework, we use the
REINFORCE algorithm to train the model with non-differentiable objective. Gumbel-softmax is another
approximation method to convert non-differentiable sampling procedure to the differentiable softmax outputs.
STE is replacing the sampling procedure with direct weighted optimization. Both STE and Gumbel-softmax
baselines are differentiable approaches and we can optimize the models in an end-to-end way via SGD.

We observe that Gumbel-softmax and STE converge faster but to a suboptimal solution, due to under-
exploration. L2R overfits to the fidelity metric and cannot guide weighting of the instances accurately,
yielding poor AWD. Because L2R learns the same weights across all instances, whereas LIMIS uses an
instance-wise weight estimator to learn instance-wise weights separately for each probe instance. In Table
1, Gumbel-softmax and STE models outperform LIMIS only if N = 500 (in the regime of extremely small
number of training instances), given their favorable inductive bias with gradient-descent based optimization
(that also yields faster convergence). However, with N = 1000, 2000, they underperform LIMIS due to the
under-exploration. More specifically, the average performance improvements with LIMIS is 4.2%, 6.4% (with
respect to N = 1000, 2000) in comparison with the best alternative. As seen in Fig. 9, the performance gap
between LIMIS and alternatives increases as the number of training samples increases.

5 Real-world Data Experiments

We next study LIMIS on 3 real-world regression datasets: (1) Blog Feedback, (2) Facebook Comment, (3)
News Popularity; and 2 real-world classification datasets: (4) Adult Income, (5) Weather. We use raw data
after normalizing each feature to be in [0, 1], using standard Min-Max scaler and apply one-hot encoding to
categorical features. We focus on black-box models that are shown to yield strong performance on target tasks.
We implement the instance-wise weight estimator as an MLP with tanh activation. Its hyperparameters
are optimized using cross-validation (5-layer MLP with 100 hidden units performs reasonably-well across all
datasets). Model details on the data and hyperparameters can be found in the Appendix. D and A.

5.1 Performance comparisons

We evaluate the performance on disjoint testing sets Dt = {(xtk, ytk)}Lk=1 ∼ P and report the results over
10 independent runs. For fidelity, we compare the outputs (predicted values for regression and logits for
classification) of the locally interpretable models and the black-box model, using Nash-Sutcliffe Efficiency
(NSE) (Nash & Sutcliffe, 1970) For the prediction performance, we use Mean Absolute Error (MAE) for

3We set Gumbel-softmax temperature as 0.5; we do not use temperature annealing due to the training instability.
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regression and Average Precision Recall (APR) for classification. Details on the metrics can be found in
Appendix. B.

Table 2: Fidelity (metric: NSE, higher is better) and prediction performance (metric: MAE, lower is better
/ APR, higher the better) on regression/classification datasets, using RR/DT as the locally interpretable
model while explaining the black box models: XGBoost (Chen & Guestrin, 2016), LightGBM (Ke et al.,
2017), Random Forests (RF) (Breiman, 2001) and Multi-layer Perceptron (MLP). ‘Original’ represents the
performance of the original black-box model that the locally-interpretable modeling is applied on. We also
show the performance of RR/ DT (in terms of MAE/APR) as a globally-interpretable model under the
data name. Red: performance worse than globally-interpretable RR/DT and the negative NSE. Bold: best
results.

Regression Datasets Models XGBoost LightGBM MLP RF
(Ridge Regression) Metrics MAE NSE MAE NSE MAE NSE MAE NSE

Original 5.131 1.0 4.965 1.0 4.893 1.0 5.203 1.0
LIMIS 5.289 .8679 4.971 .9069 4.994 .7177 4.993 .8573

Blog LIME 9.421 .3440 10.243 .3019 10.936 -.2723 19.222 -.2143
(8.420) SILO 6.261 .0005 6.040 .2839 5.413 .4274 6.610 .4500

MAPLE 5.307 .8248 4.981 .8972 5.012 .5624 5.058 .8471
Original 24.18 1.0 20.22 1.0 18.36 1.0 30.09 1.0
LIMIS 22.92 .7071 24.84 .4268 20.23 .5495 22.65 .4360

Facebook LIME 35.20 .2205 38.19 .2159 38.82 .2463 51.77 .1797
(24.64) SILO 31.41 -.4305 39.10 -1.994 22.35 .3307 42.05 -.7929

MAPLE 23.28 .6803 41.86 -3.233 24.77 -.1721 44.75 -1.078
Original 2995 1.0 3140 1.0 2255 1.0 3378 1.0
LIMIS 2958 .7534 2957 .5936 2260 .9761 2396 .6523

News LIME 5141 -.2467 6301 -2.008 2289 .5030 9435 -7.477
(.2989) SILO 3069 .4547 3006 .4025 2257 .9617 3251 .3816

MAPLE 2967 .7010 3005 .3963 2259 .9534 3060 .5901

Classification Datasets Models XGBoost LightGBM MLP RF
(Decision Tree) Metrics APR NSE APR NSE APR NSE APR NSE

Original .8096 1.0 .8254 1.0 .7678 1.0 .7621 1.0
LIMIS .8011 .9889 .8114 .9602 .7710 .9451 .7881 .8788

Adult LIME .6211 .5009 .6031 .3798 .4270 .2511 .6166 .3833
(.6388) SILO .8001 .9869 .8107 .9583 .7708 .9470 .7833 .8548

MAPLE .7928 .9794 .8034 .9405 .7719 .9410 .7861 .8622
Original .7133 1.0 .7299 1.0 .7205 1.0 .7274 1.0
LIMIS .7071 .9734 .7118 .9601 .7099 .9124 .7102 .9008

Weather LIME .6179 .7783 .6159 .6913 .5651 .3417 .6209 .3534
(.5838) SILO .6991 .9680 .7052 .9452 .6997 .8864 .7042 .8398

MAPLE .6973 .9675 .7056 .9446 .6983 .8856 .6983 .8856

Table 2 shows that for regression tasks, the performance of globally interpretable RR (trained on the entire
dataset from scratch) is much worse than complex black-box models, underlining the importance of non-linear
modeling. Locally interpretable modeling with LIME, SILO and MAPLE yield significant performance
degradation compared to the original black-box model. In some cases (e.g. on Facebook), the performance of
previous work is even worse than the globally interpretable RR, undermining the use of locally interpretable
modeling. In contrast, LIMIS achieves consistently high prediction performance and significantly outperforms
RR. Table 2 also compares the fidelity in terms of NSE. We observe that NSE is negative for some cases (e.g.
LIME on Facebook data), implying that output of the locally interpretable model is even worse than the
constant mean value estimator. On the other hand, LIMIS achieves high NSE consistently across all datasets
with all black-box models. Table 2 also shows the performance on classification tasks using shallow regression
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DTs as the locally interpretable model (Regression DTs model outputs logits for classification.). Among
the locally interpretable models, LIMIS often achieves the best APR and NSE, underlining its strength in
distilling the predictions of the black-box model accurately. In some cases, the benchmarks (especially LIME)
yield worse prediction performance than the globally interpretable model, DT. Additional results can be
found in the Appendix G.

5.2 Local generalization of explanations

For locally interpretability modeling, local generalization of explanations is very important, as one expect a
similar behavior around a meaningful vicinity of a sample. To quantify the local generalization of explanations,
we include evaluations with neighborhood metrics (Plumb et al., 2019), which give insights on the explanation
quality at nearby points. We show the results on two regression datasets (Blog and Facebook) with two
black-box models (XGBoost and LightGBM) and evaluate them in terms of neighborhood LMAE (Local
MAE) and pointwise LMAE. Here, the difference would be a measure of local generalization, i.e. how reliable
the explanations are against input changes. Neighborhood LMAE is defined as Ext∼PX ,n∼N (0,σI)||g∗θ(xt)(xt +
n)− f∗(xt + n)||1 where we set σ = 0.1 as the neighborhood vicinity (with standard normalization for the
inputs). Pointwise LMAE is defined as Ext∼PX ||g∗θ(xt)(xt)− f∗(xt)||1. Details on the metrics can be found in
Appendix. B. Additional results can be also found in Appendix. H.4.

Table 3: Prediction performance (metric: neighborhood LMAE and pointwise LMAE, lower is better) on
regression datasets, using RR as the locally interpretable model while explaining the black box models:
XGBoost (Chen & Guestrin, 2016) and LightGBM (Ke et al., 2017). Bold: best results.

Datasets Models XGBoost LightGBM
(RR) Metrics Neighbor LMAE Pointwise LMAE Diff Neighbor LMAE Pointwise LMAE Diff

LIMIS .8894 .8679 2.48% 1.217 1.135 7.22%
Blog LIME 6.872 6.534 5.17% 8.233 8.037 2.44%

SILO 2.368 2.220 6.68% 3.119 3.046 2.40%
MAPLE 1.007 .9690 3.96% 1.442 1.416 1.87%
LIMIS 6.533 6.394 2.18% 8.250 8.217 0.41%

Facebook LIME 32.82 32.57 0.77% 34.85 33.70 3.31%
SILO 19.82 19.51 1.60% 30.60 30.07 1.79%

MAPLE 8.189 7.664 6.86% 31.32 31.25 0.25%

As can be seen in Table 3, LIMIS’s superior performance is still apparent in neighborhood MAE. For instance,
LIMIS achieves 25.56 in neighborhood metric (with MAE) which is better than the results with MAPLE
(42.21) and LIME (39.51) using Facebook data and LightGBM model (over 10 independent runs). Note
that the differences between pointwise and neighborhood fidelity metrics with LIMIS are negligible across
other datasets and black-box models. This shows that the performance of LIMIS is locally generalizable and
reliable, which is the main objective of locally interpretable modeling.

5.3 Computational time

We quantify the computational time on the largest experimented dataset, Facebook Comments, that consists
∼ 600,000 samples. On a single NVIDIA V100 GPU (without any hardware optimizations), LIMIS yields a
training time of less than 5 hours (including Stage 1, 2 and 3) and an interpretable inference time of less than
10 seconds per testing instance. On the other hand, LIME results in much longer interpretable inference time,
around 30 seconds per a testing instance, due to acquiring a large number of black-box model predictions for
the input perturbations, while SILO and MAPLE show similar computational time with LIMIS.

6 LIMIS Explainability Use Cases

In this section, we showcase explainability use-cases of LIMIS for human-in-the-loop AI deployments. LIMIS
can distill complex black-box models into explainable surrogate models, such as shallow DTs or linear
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regression. These surrogate models are explainable and can bring significant value to many applications
where exact and concise input-output mapping would be needed. As the fidelity of LIMIS is very high, the
users would have high trust in the surrogate models. Still, the outputs of the LIMIS should not be treated as
the ground-truth interpretations (local dynamics).

6.1 Sample-wise feature importance

Discovering the importance of features for a prediction is one of the most commonly-used explanation tasks.
Locally interpretable modeling can enable this capability by using a linear model as the surrogate, since the
coefficients of linear models can directly tell how features are combined for a prediction.

To highlight this capability, we consider LIMIS with RR on UCI Adult Income, shown in Fig. 5. Here, we
use XGBoost as the black-box model along with the locally interpretable RR. We focus on visualizing the
feature importance (the absolute weights of the fitted locally interpretable RR model) for various important
subsets, to analyze common decision making drivers for them. Specifically, we focus on 5 subgroups, divided
based on (a) Age, (b) Gender, (c) Marital status, (d) Race, (e) Education.

Figure 5: Feature importance (denoted with the colors) discovered by LIMIS as the absolute weights of the
fitted locally interpretable RR model, on UCI Adult Income, for 5 types of subgroups: (a) Age, (b) Gender,
(c) Marital status, (d) Race, (e) Education.

We observe that for age-based subgroups, more importance is attributed to capital gain for older people (age
> 25) compared to young people (age ≤ 25), as intuitively expected given that older people often have more
savings (Wolff, 2015). For education-based subgroups, capital gain/loss, occupation, and native countries are
attributed to be more important for highly-educated people (Doctorate, Prof-school, and Masters graduates),
as also intuitively expected as the income gaps tend to get wider with education levels (Nordin et al., 2010;
Sullivan & Wolla, 2017). LIMIS can also be used for dependency assessments for black-box models by
analyzing the importance of sensitive attribute features locally to see whether any would play a significant
role in decision making. For this example, some attributes (such as gender, marital status and race) are not
observed to have high importance for most subgroups.

These exemplify how local explanations from LIMIS can bring value to users, particularly with a linear
interpretable model where the learned weights can readily provide insights on how features affect the
predictions. We provide more results in the Appendix. G.7.
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6.2 Suggesting actionable input modifications to alter decisions

In many applications, it is desired to understand what it would take to alter the decision of a model. For
example, after rejection of a loan application, the applications would want to understand what they can
change to get it accepted, or after a disease diagnosis, doctors and patients would want to understand the
suggestions on what can be changed about the patients health to reverse the diagnosis prediction.

The fundamental benefit of locally interpretable modeling is that it allows understanding the how features
are affecting the prediction for an instance, via an interpretable model that yields the precise relationship.
High fidelity of LIMIS with simple interpretable models enable this capability effectively.

No Key characteristics Prediction Suggestion for >$50K income
1 Education: High-school, No capital gain <$50K Get Masters & increase capital gains to 6K
2 No capital gain, Hours per week: 40 >$50K -
3 Age: 33, Education year: 13, Married >$50K -
4 Age: 44, Job: Craft-repair <$50K Increase capital gain by 6K
5 Job: Local-gov, Education: HS, Hours per week: 40 <$50K Change job to Federal-gov
6 Capital loss: 23K, Job: Sales, Education: College <$50K Decrease the capital loss to 9K
7 Hours per week: 26, Job: Sales <$50K Change job to Tech support
8 Capital gain: 15K, Masters, Age: 51 >$50K Increase the capital gain to 10K
9 Capital loss: 17K, Hours per week: 40 <$50K Reduce the capital loss to 11K
10 Age: 38, Occupation: Exec managerial <$50K -

Table 4: For ten individuals explanations given by LIMIS using shallow DT on UCI Adult dataset are shown.
The individual characteristics are based on the DT and the suggestions are obtained with the goal of making
the locally interpretable model prediction as >$50K, by inspecting the fitted DT.

For this demonstration, shown in Table. 4, we consider LIMIS with shallow DTs (with a depth of 3) as
interpretable models, on the UCI Adult Income dataset. LIMIS is first trained on the entire training data,
and then, for some test instance, LIMIS is used to extract local explanations on the predictions of black-box
model, XGBoost. In addition, we consider the question of ‘what’s the suggested minimum change to alter
the decision?’ and utilize the fitted shallow DT for this purpose. Essentially, our approach to find the
modification suggestion relies on traversing the DT upwards from the leaf, and finding the nearest (in terms
of being closest in edge distance) node condition that would yield the opposite prediction. We specifically
focus on suggestions to increase the income prediction from low (<$50K) to high income (>$50K)

In most cases, we observe that the suggestions are consistent with the expectations (Nordin et al., 2010;
Sullivan & Wolla, 2017; Wolff, 2015). For example, better investment outcomes, higher paying jobs and
additional education are among common suggestions. When the inputs are modified with these changes, the
black-box model predictions change from <$50K to >$50K, for all cases exemplified here, underlining the
accuracy of the suggestions.

7 Conclusions

We propose a novel method for locally interpretable modeling of pre-trained black-box models, called LIMIS.
LIMIS selects a small number of valuable instances and uses them to train a low-capacity locally interpretable
model. The selection mechanism is guided with a reward obtained from the similarity of predictions of the
locally interpretable model and the black-box model, defined as fidelity. LIMIS near-matches the performance
of black-box models, and significantly outperforms alternatives, consistently across various datasets and for
various black-box models. We demonstrate the high-fidelity explanations provided by LIMIS can be highly
useful to gain insights about the task and to understand what would modify the model’s outcome.
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8 Broader Impact

Interpretability is critical, to increase the reach of AI to many more use cases compared to its reach today,
in a reliable way, by showing rationale behind decisions, eliminating biases, improving fairness, enabling
detection of systematic failure cases, and providing actionable feedback to improve models (Rudin, 2018). We
introduce a novel method, LIMIS, that tackles interpretability via instance-wise weighted training to provide
local explanations. LIMIS provides highly faithful, and easy-to-digest explanations to humans. Applications
of LIMIS can span understanding instance-wise local dynamics, building trust by explaining the constituent
components behind the decisions and enabling actionable insights such as manipulating outcomes. For
scenarios such as medical treatment planning, where the input variables can be controlled based on the
feedback from the output responses, interpretable local dynamics can be highly valuable for manipulating
outcomes (Saria et al., 2018).

As one limitation, the proposed instance-wise weight estimator is indeed a black-box model and difficult to
interpret without post-hoc interpretable methods. However, the main value proposition of LIMIS is that the
final output from the locally interpretable model, is fully interpretable and the users can utilize the final
output for understanding the rationale behind the local decision making process of the black-box model.
With our experiments, we show that the fidelity metrics of the locally interpretable models of LIMIS are
high, in other words, for each sample, they approximate the black-box model functionality very well.

Broadly, there are many different forms of explainable AI approaches, from single interpretable models to
post-hoc methods for complex black-box models. LIMIS is not an alternative to all of them, but it specifically
provides the locally interpretable modeling capability, which has numerous impactful use cases in real-world
AI deployments, including Finance, Healthcare, Policy, Law, Recruiting, Physical Sciences, and Retail.

We demonstrate that LIMIS provides the local interpretability capabilities similar to other notable methods
like LIME, while achieving much higher fidelity, as a strong quantitative evidence for its utility. Still, the
outputs of the LIMIS framework should not be treated as the ground truth interpretation of the black-box
models. Large-scale human subject evaluations can further add confidence in the capabilities of LIMIS and
the quality of its explanations – we leave this important aspect to future work.
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A Hyper-parameters of the predictive models

In this paper, we use 8 different predictive models. For each predictive model, the corresponding hyper-
parameters used in the experiments are as follows:

• XGBoost (Chen & Guestrin, 2016): booster - gbtree, max depth - 6, learning rate - 0.3, number of
estimators - 1000, max depth - 6, reg alpha - 0

• LightGBM (Ke et al., 2017): booster - gbdt, max depth - None, learning rate - 0.1, number of
estimators - 1000, min data in leaf - 20

• Random Forests (RF) (Breiman, 2001): number of estimators - 1000, criterion - gini, max depth -
None, warm start - False

• Multi-layer Perceptron (MLP): Number of layers - 4, hidden units - [feature dimensions, feature
dimensions/2, feature dimensions/4, feature dimensions/8], activation function - ReLU, early stopping -
True with patience 10, batch size - 256, maximum number of epochs - 200, optimizer - Adam

• Ridge Regression: alpha - 1

• Regression DT: max depth - 3, criterion - gini

• Logistic Regression: solver - lbfgs, no regularization

• Classification DT: max depth - 3, criterion - gini

We follow the default settings for the other hyper-parameters that are not mentioned here.

B Performance metrics

• Mean Absolute Error (MAE):

MAE =E(xt,yt)∼P ||g∗θ(xt)(xt)− yt)||1 '
1
L

L∑
k=1
||g∗θ(xt

k
)(x

t
k)− ytk||1,

• Local MAE (LMAE):

LMAE =Ext∼PX ||g∗θ(xt)(xt)− f∗(xt)||1 '
1
L

L∑
k=1
||g∗θ(xt

k
)(x

t
k)− f∗(xtk))||1,

• NSE (Nash & Sutcliffe, 1970):

NSE =1−
Ext∼PX ||f∗(xt)− g∗θ(xt)(xt)||22

Ext∼PX ||f∗(xt)− Ex̂t∼PX [f∗(x̂t)]||22
' 1−

1
L

∑L
k=1 ||f∗(xtk)− g∗θ(xt

k
)(x

t
k)||22

1
L

∑L
k=1 ||f∗(xtk)− 1

L

∑L
k=1[f∗(xtk)]||22

.

If NSE = 1, the predictions of the locally interpretable model perfectly match the predictions of the black-box
model. On the other hand, if NSE = 0, the locally interpretable model performs as similar as the constant
mean value estimator. If NSE < 0, the locally interpretable model performs worse than the constant mean
value estimator.
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C Implementations of benchmark models

In this paper, we use 3 different benchmark models. Implementations of those models can be found in the
below links.

• LIME: https://github.com/marcotcr/lime (Ribeiro et al., 2016)

• SILO: https://github.com/GDPlumb/MAPLE (Bloniarz et al., 2016)

• MAPLE: https://github.com/GDPlumb/MAPLE (Plumb et al., 2018)

D Data statistics

Table 5: Data Statistics of 5 real-world datasets. Label distributions: Number of positive labels (positive
label ratio) for classification problem, and label mean (5%-50%-95% percentiles) for regression problem.

Problem Data name Number of samples Dimensions Label distribution

Regression
Blog Feedback 60,021 280 6.6 (0-0-22)

Facebook Comment 603,713 54 7.2 (0-0-30)
News Popularity 39,644 59 3395.4 (584-1400-10800)

Classification Adult Income 48,842 108 11,687 (23.9%)
Weather 112,925 61 25,019 (22.2%)

E Learning curves of LIMIS

Figure 6: Learning curves of LIMIS on three synthetic datasets. X-axis: The number of iterations on
instance-wise weight estimator training, Y-axis: Rewards (LMAE of baseline (globally interpretable model) -
LMAE of LIMIS), higher is better.

F Instance-wise weight distributions for synthetic datasets

Fig. 7 (a)-(c) show that the instance-wise weights have quite skewed distribution. Some samples (e.g. with
average instance-wise weights above 0.5) are much more critical to interpreting the probe sample than many
others (e.g. average instance-wise weights below 0.1).

Furthermore, we analyze the instance-wise weights of training samples, and Fig. 8 shows that the training
samples near the probe sample get higher weights – LIMIS learns the meaningful distance metrics to measure
the relevance while interpreting the probe samples.
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Figure 7: Instance-wise weight distributions for (a) Syn1, (b) Syn2, and (c) Syn3 datasets.

Figure 8: Average instance-wise weights vs. distance from the probe sample.

G Additional results

G.1 Sample complexity analyses with differentiable baselines

Figure 9: AWD performances in terms of the number of training samples used to train three models: LIMIS,
STE and Random.

G.2 Which training samples are selected by LIMIS, MAPLE and LIME?

LIMIS, MAPLE and LIME select a subset of training samples to construct locally-interpretable models. The
training samples selected by LIME are the ones closest to the point to explain. MAPLE utilizes random
forest model (trained to predict black-box model outputs) to select the subset of training samples. In this
subsection, we quantitatively analyze which samples are chosen by LIMIS, MAPLE and LIME.

Due to the lack of ground truth for ideal training sample selection in real-world datasets, we use synthetic
datasets to demonstrate this experiment. Note that for each synthetic data, ideal training sample selections are
explicitly determined by X10 and X11 (see the definitions of Syn1 to Syn3). Therefore, we can quantitatively
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evaluate the performances in terms of AUC comparing between selected training samples and ideal training
sample selection.

Table 6: Evaluation on correctly selected training samples by LIMIS, LIME, and MAPLE in terms of AUC.
Bold represents the best.

Models / Datasets Syn1 Syn2 Syn3
LIMIS 0.7837 0.6892 0.6935
LIME 0.5253 0.5017 0.5202

MAPLE 0.6723 0.5844 0.5452

As can be seen in Table 6, the average performance of correctly chosen samples on Syn1 to 3 are 0.7218,
0.5157, 0.6006 using LIMIS, LIME, and MAPLE, indicating the superiority of LIMIS.

G.3 Additional ablation study - Optimization

To better motivate our method, we perform ablation studies, demonstrating that the proposed complex
objective can be efficiently addressed with policy-gradient based RL where the gradient has a closed-form
expression. The inner optimization is used for fitting the surrogate explainable model. We explain that for
simple surrogate models such as ridge regression, the fitting has a closed form expression and the overall
computational complexity is negligible indeed, yielding similar training time compared to the alternative
methods. Note that policy-gradient is only utilized for the outer-optimization.

Table 7: Average Weight Difference (AWD) comparisons on three synthetic datasets with different number of
train samples (N). Training time is computed on a single K80 GPU until the model convergence (i.e., no
more validation fidelity improvements).

Optimization Training samples N = 1000 N = 2000
Average performance Training time Average performance Training time

Bi-level LIMIS 0.3982 49 mins 0.2936 92 mins

Single-level Gumbel-softmax 0.4209 38 mins 0.3190 71 mins
STE 0.4156 39 mins 0.3208 73 mins

Two-stage single-level
LIME 1.6372 17 mins 1.5633 21 mins
SILO 0.6983 30 mins 0.6561 44 mins

MAPLE 0.6217 55 mins 0.5890 104 mins

Table 12 compares our proposed method LIMIS to other methods (Gumbel-softmax and STE) which utilize
single-level optimization (i.e. direct back-propagation). LIMIS with bi-level optimization achieves better
performance (lower AWD) with small increase in computational complexity. In addition, compared to other
baselines (LIME, SILO, and MAPLE) which utilize two-stage optimization (where each stage is single-level),
the proposed bi-level optimization in LIMIS shows significantly better performance with similar complexity.

20



Published in Transactions on Machine Learning Research (09/2022)

G.4 Regression with shallow regression DT as the locally interpretable model

Table 8: Overall prediction performance (metric: MAE, lower is better) and fidelity (metric: NSE, higher is
better) on real-world regression datasets, using shallow Regression DT as the locally interpretable model while
explaining the black box models: XGBoost, LightGBM, MLP and RF. ‘Original’ represents the performance
of the original black-box model, that the locally-interpretable modeling is applied on. We also show the
performance of shallow regression RDT as a globally-interpretable model (reported the performance (in terms
of MAE) under the data name). Red represents performance that is worse than globally-interpretable shallow
regression DT and the negative NSE. Bold represents the best results.

Datasets Models XGBoost LightGBM MLP RF
(RDT) Metrics MAE NSE MAE NSE MAE NSE MAE NSE

Original 5.131 1.0 4.965 1.0 4.939 1.0 5.203 1.0
LIMIS 5.121 .8242 4.778 .8939 4.587 .6375 4.652 .8990

Blog LIME 11.80 .2658 13.22 .1483 7.396 -.6201 19.61 -.4116
(5.955) SILO 5.149 .8035 4.818 .8816 4.649 .6177 4.715 .8774

MAPLE 5.329 .7991 5.024 .8660 4.609 .6339 5.016 .8201
Original 24.18 1.0 20.22 1.0 18.36 1.0 30.09 1.0
LIMIS 21.82 .9307 21.35 .9194 18.56 .8832 22.44 .7236

Facebook LIME 36.69 .3278 44.21 .1809 40.85 -.1513 51.70 .2301
(22.28) SILO 22.42 .8655 22.33 .7235 19.57 .8566 24.41 .6917

MAPLE 22.15 .8824 23.43 .8581 20.32 .8035 27.12 .3134
Original 2995 1.0 3140 1.0 2255 1.0 3378 1.0
LIMIS 2938 .9382 2504 .4104 2226 .9016 2431 .2768

News LIME 6272 -.6267 7737 -2.960 2390 .0013 9637 -7.075
(3093) SILO 2910 .1020 2854 .3461 2274 .8201 2874 .2278

MAPLE 2968 .9288 2846 .3631 2284 .8021 2888 .1872

Table 9: Fidelity results (metric: LMAE, lower is better) on regression problems with shallow regression DT
as the locally interpretable model. Bold represents the best results.

Datasets Models XGBoost LightGBM MLP RF

Blog

LIMIS .7530 1.358 1.273 1.413
LIME 9.160 11.16 5.006 17.461
SILO .8325 1.379 1.178 1.934

MAPLE 1.029 1.598 1.359 2.158

Facebook

LIMIS 7.240 6.867 5.596 15.77
LIME 31.52 37.75 30.58 45.58
SILO 8.459 9.149 6.997 18.63

MAPLE 7.985 8.644 7.290 23.17

News

LIMIS 389.0 1072 116.6 957.1
LIME 4455 6243 504.0 9969
SILO 496.7 1214 160.6 1175

MAPLE 440.7 1201 163.6 1196
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G.5 Regression with RR as the locally interpretable model - Fidelity analysis in Local MAE

Table 10: Fidelity results (metric: LMAE, lower is better) on regression problems with ridge regression as the
locally interpretable model. Bold represents the best results.

Datasets Models XGBoost LightGBM MLP RF

Blog

LIMIS .8679 1.135 1.432 1.651
LIME 6.534 8.037 8.207 17.01
SILO 2.220 3.046 2.393 3.909

MAPLE .9690 1.416 1.550 1.984

Facebook

LIMIS 6.394 21.29 8.217 33.64
LIME 32.57 33.70 27.38 48.03
SILO 19.51 30.07 11.52 40.14

MAPLE 7.664 31.25 13.31 44.38

News

LIMIS 436.9 1049 74.11 905.8
LIME 3317 4766 327.4 8828
SILO 657.2 1253 79.85 1345

MAPLE 500.5 1261 88.19 1157
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G.6 Classification with RR as the locally interpretable model

Table 11: Overall prediction performance (metric: APR, higher is better) and fidelity (metric: NSE, higher is
better) on real-world classification datasets, using RR as the locally interpretable model while explaining the
black box models: XGBoost, LightGBM, MLP and RF. ‘Original’ represents the performance of the original
black-box model, that the locally-interpretable modeling is applied on. We also show the performance of
Logistic Regression (LR) as a globally-interpretable model (reported the performance (in terms of APR)
under the data name). Red represents performance that is worse than globally-interpretable model logistic
regression and the negative NSE. Bold represents the best results.

Datasets Models XGBoost LightGBM MLP RF
Metrics APR NSE APR NSE APR NSE APR NSE
Original .8096 1.0 .8254 1.0 .7678 1.0 .7621 1.0
LIMIS .7977 .9871 .8039 .9439 .7670 .9791 .7977 .9217

Adult LIME .6803 .7195 .6805 .6259 .6957 .8310 .7057 .6759
(.7553) SILO .7912 .9750 .7884 .9301 .7655 .9778 .7664 .9140

MAPLE .7947 .9840 .8011 .9386 .7683 .9636 .7958 .8961
Original .7133 1.0 .7299 1.0 .7205 1.0 .7274 1.0
LIMIS .7140 .9879 .7290 .9801 .7212 .9755 .7331 .9450

Weather LIME .6376 .7898 .6392 .6873 .6395 .5321 .6387 .4513
(.7009) SILO .7134 .9888 .7281 .9773 .7220 .9797 .7277 .9024

MAPLE .7134 .9897 .7273 .9778 .7213 .9702 .7308 .9323

G.7 Qualitative analysis: LIMIS interpretation

Figure 10: Discovered feature importance (denoted with the colors) by LIMIS on Weather dataset for 6
types of subgroups: (1) Rain, (2) Rain fall, (3) Wind speed 3pm, (4) Humidity 3pm, (5) Pressure 3pm, (6)
Temperature 3 pm.
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Figure 11: Discovered feature importance on Weather data for: rain fall ≤ 1, wind speed (at 3pm) ≤ 5, and
temperature (at 3pm) > 30 (left), and ‘rain fall > 15, wind speed (at 3pm) > 25, and temperature (3pm) <
10 (right).

In this section, we qualitatively analyze the explanations provided by LIMIS. Although LIMIS can provide
local explanations for each instance separately, we consider the explanations in subgroup granularity for better
visualization and understanding. On Weather dataset, Fig. 10 shows the feature importance (discovered by
LIMIS) for six subgroups in predicting whether it will rain tomorrow, using XGBoost as the black-box model.
We use RR as the locally interpretable model and the absolute value of fitted coefficients are used as the
estimated feature importance. For rain fall subgroups, humidity and wind gust speed seem more important for
heavy rain (rain fall ≥ 5) than light rain (rain fall < 5). For temperature subgroups, rainfall, wind gust speed
and humidity are more important for cold days (temperature (at 3pm) < 10) than warm day (temperature
(at 3pm) ≥ 20). In general, for heavy rain, fast wind speed, low pressure, and low temperature subgroups,
humidity, wind gust speed and rain fall variables are more important for prediction. Fig. 11 shows the
feature importance (discovered by LIMIS) for two subgroups. We observe the clear difference of the impact
of afternoon humidity and wind gust speed, on instances that clearly reflect different climate characteristics.
This underlines how LIMIS can shed light on the samples with distinct characteristics. Additional use cases
for human-in-the-loop AI capabilities can be found in the Sect. 6.
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H Additional Analyses

H.1 Synthetic data experiments with LIME

In Fig. 3, we exclude the performance of LIME baseline due to highlighting the performance improvements
from the best alternative methods. In Fig. 12, we include the results with LIME baselines for completeness of
the synthetic data experiments.

Figure 12: Mean AWD (aggregated per uniformly divided x-axis bin) with 95% confidence intervals (of 10
independent runs) on three synthetic datasets (y-axis) vs. the percentile distance from the boundary where
the local function behavior change (x-axis) with LIME as an additional baseline.

H.2 Scatter plots for synthetic data experiments

In Fig. 3, we report the average AWD performances after aggregating the AWD values per uniformly divided
x-axis bins. In this subsection, we report the scatter plots between distance from the boundary (x-axis) and
LIMIS’s AWD for each sample (y-axis) across 3 different synthetic datasets.

Figure 13: Scatter plots of LIMIS’s AWD across distance from the boundary in terms of percentiles.

H.3 Additional ablation study: Sampling at inference

As explained in Sect. 3, we only use the sampling at training time to encourage exploration. At inference time,
we use the weighted optimization using the outputs of the instance-wise weight estimator. In this subsection,
we analyze the impact of weighted optimization in comparison to the sampling at inference procedure.

We use XGBoost as the black-box model and RR as the locally interpretable models. As can be seen in
Table. 12, sampling at inference consistently shows worse performances than weighted optimization (that is
proposed in the LIMIS framework), but overall the differences are small.

H.4 Local generalization of explanations: Additional datasets

In Table. 3, we provide the results of local generalization of explanations via Neighbor LMAE with Blog and
Facebook datasets. In Table. 13, we also provide the Neighbor LMAE results for other 3 real-world datasets:
News, Adult, and Weather.
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Table 12: Additional ablation studies on 5 real-world datasets with weighted optimization vs. sampling at
inference. Metrics are LMAE for both regression and classification datasets.

Datasets (Metrics: LMAE) Regression datasets Classification datasets
Blog Facebook News Adult Weather

Weighted optimization at inference .8679 6.394 436.9 .1397 .1129
Sampling at inference .8821 6.671 455.2 .1465 .1157

Difference (%) 1.6% 4.3% 4.2% 4.9% 2.5%

Table 13: Prediction performance (metric: neighborhood LMAE and pointwise LMAE, lower is better) on
regression/classification datasets using RR as the locally interpretable model while explaining the black box
models: XGBoost (Chen & Guestrin, 2016) and LightGBM (Ke et al., 2017).

Datasets Models XGBoost LightGBM
(RR) Metrics Neighbor LMAE Pointwise LMAE Diff Neighbor LMAE Pointwise LMAE Diff

LIMIS 442.9 436.9 1.38% 1064 1049 1.47%
News LIME 3550 3317 7.05% 5161 4766 8.30%

SILO 667.5 657.2 1.57% 1258 1253 0.4%
MAPLE 501.5 500.5 0.19% 1310 1261 3.9%
LIMIS .1402 .1397 0.39% .1297 .1288 0.76%

Adult LIME .3162 .3117 1.46% .3152 .2975 5.96%
SILO .1664 .1622 2.59% .1474 .1432 2.95%

MAPLE .1717 .1599 7.42% .1428 .1407 1.50%
LIMIS .1216 .1129 7.7% .1357 .1291 5.14%

Weather LIME .3093 .2750 12.5% .3037 .2933 3.55%
SILO .1259 .1257 0.21% .1410 .1388 1.61%

MAPLE .1294 .1232 5.10% .1437 .1371 4.39%

H.5 Training / Inference time for real-world datasets

In this subsection, we demonstrate the training and inference times of LIMIS on 5 real-world datasets. For
training time, we exclude Stage 1, black-box model training, to solely focus on LIMIS-specific instance-wise
weight estimator training time. We use a single NVIDIA V100 GPU to train and infer the LIMIS framework.

Table 14: Runtime analyses on 5 real-world datasets. Inference time is computed per one testing sample.
Training time is computed until the model convergence (i.e., no more validation fidelity improvements)

Datasets Regression datasets Classification datasets
Blog Facebook News Adult Weather

Number of samples 60,021 603,713 39,644 48,842 112,925
Dimensions 380 54 59 108 61
Training time 56 mins 3 hours 27 mins 49 mins 21 mins 1 hour 17 mins
Inference time 1.7 secs 1.2 secs 1.1 secs 0.8 secs 0.7 secs

H.6 Convergence plots for real-world datasets

Fig. 6 shows the convergence plots for 3 synthetic datasets. In this subsection, we additionally show the
convergence plots for 3 real-world datasets (Adult, Weather, and Blog Feedback). In these experiments, we
use XGBoost as the black-box model and RR as the locally interpretable model.
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Fig. 14 shows that the convergence of LIMIS is stable for the 3 real-world datasets. The convergence is often
observed to be around 1000 iterations. Note that for LIMIS training, we use large batch sizes to reduce the
noise in the gradients which would be critical for fast and stable convergence (Stooke & Abbeel, 2018).

Figure 14: Learning curves of LIMIS on three real-world datasets. X-axis: The number of iterations on
instance-wise weight estimator training, Y-axis: Rewards (Fidelity improvements), higher is better.

We also include the convergence plots for STE and Gumbel-softmax variants in Fig. 15. The convergence of
the alternatives seems a bit faster but overall the convergence trends seem mostly similar across LIMIS, STE,
and Gumbel-softmax.

Figure 15: Learning curves of STE and Gumbel-softmax on three real-world datasets. X-axis: The number of
iterations on instance-wise weight estimator training, Y-axis: Rewards (Fidelity improvements).
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H.7 Synthetic data with non-linear feature-label relationships

Three synthetic datasets used in the main manuscript have piece-wise linear feature-label relationship. In this
subsection, we generalize the results to another synthetic data, with non-linear feature-label relationships.
More specifically, we construct Syn4 dataset as follows:

Y = f(X) = sin(X1) + 2cos(X2)− 0.5(X3)2 − exp(−X4).

X are sampled from Uniform(−1, 1) distribution (with 11 dimensions); we set the ground truth local dynamics
as the first order coefficients of the Taylor expansion:

f ′(x) = [cos(x1),−2sin(x2),−x3, exp(−x4), 0, ..., 0].

Then, we utilize LIMIS, LIME, SILO, and MAPLE to recover the ground truth local dynamics with ridge
regression as the locally interpretable model. We use the AWD (defined for the first-order coefficients of
Taylor expansions as the ground truth explanation) to evaluate the performances of the interpretations. As
can be seen in Table 15, the performance of LIMIS is significantly better than other alternatives.

Datasets / Methods LIMIS LIME SILO MAPLE
Syn4 0.2508 0.5549 0.3411 0.3254

Table 15: AWD values (the lower, the better) for synthetic data Syn4 whose feature-label relationships are
non-linear.
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