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ABSTRACT

Small molecules are vital to modern medicine, and accurately predicting their bioac-
tivity against protein targets is crucial for therapeutic discovery and development.
However, current machine learning models often rely on spurious features, leading
to biased outcomes. Notably, a simple pocket-only baseline can achieve results
comparable to, and sometimes better than, more complex models that incorporate
both the protein pockets and the small molecules. This phenomenon arises from
insufficient training data and an improper evaluation process, which is typically
conducted at the pocket level rather than the small molecule level. To address these
issues, we redefine the bioactivity prediction task by introducing the SIU dataset-a
million-scale Structural small molecule-protein Interaction dataset for Unbiased
bioactivity prediction task, which is 50 times larger than the widely used PDBbind.
The bioactivity labels in SIU are derived from wet experiments and organized by
label types, ensuring greater accuracy and comparability. The complexes in STU
are constructed using a majority vote from three commonly used docking software
programs, enhancing their reliability. Additionally, the structure of SIU allows for
multiple small molecules to be associated with each protein pocket, enabling the
redefinition of evaluation metrics like Pearson and Spearman correlations across
different small molecules targeting the same protein pocket. Experimental results
demonstrate that this new task provides a more challenging and meaningful bench-
mark for training and evaluating bioactivity prediction models, ultimately offering
a more robust assessment of model performance. Dataset and Code are available
at: https://github.com/bowen—-gao/SIU

1 INTRODUCTION

Small molecules are essential active components in life-saving therapeutic drugs, with their safety
and efficacy intricately linked to interactions with various protein targets within the human body.
Consequently, bioactivity prediction is a critical task in the drug discovery process (Tropsha et al.,
2024;|Gaulton & Overington, [2010), driven by the rapid advancement of machine learning methods.
In this context, “bioactivity” encompasses the diverse biological effects resulting from small molecule-
protein interactions, including binding responses-commonly quantified by the dissociation constant
(Ky) and the inhibition constant (K;)-as well as functional responses, typically assessed through the
half-maximal inhibitory concentration (IC5¢) and the half-maximal effective concentration (ECsg).

Recently, various 3D machine learning models have been proposed in this direction (Townshend et al.,
2020; |Zhou et al. 2022} |Gao et al.,[2023a} |Luo et al., 2023)), achieving significant advancements.
These methods utilize the structural information of small molecules and protein targets as inputs
to learn a mapping function between these inputs and bioactivity labels. This methodology is
inherently sound and explainable, as biological insights suggest that the biological effect of a small
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molecule largely depends on its 3D shape complementarity with its protein targets (Verma et all,
[2010), a principle known as the key-lock modulation theory (Koshland Jr, [1995; [Eschenmoser, [1995).
Nevertheless, the applications of these methods have not yielded satisfactory results regarding drug
discovery capabilities. For instance, when using predicted biological labels to differentiate between
active and inactive molecules-an essential task in virtual screening-these predictive models often fail
to compete with widely used docking methods, as noted in|Shen et al.[(2021) and Gao et al.| (2023b).

Our analysis reveals that these models can be easily biased to some spurious features, leading to
inaccurate predictions based on shortcuts. We propose a pocket-only baseline to diagnose the current
bioactivity prediction task. While previous works assume that the bioactivity labels are determined
by the interaction between small molecules and protein targets, they tend to assess only the protein
target while ignoring the provided small molecules, representing a degenerate solution. As shown in
Figure[TIA and[IB, experiments on the widely used Atom3D ligand binding affinity (LBA) prediction
dataset (Townshend et al., [2020) demonstrate that this pocket-only approach achieves, or can even
outperforms, models utilizing the complex information across both 30% and 60% sequence identity
splits. These results support our claim by suggesting that statistical irregularities in the data enable a
model to achieve bioactivity predictions beyond what should be possible without access to the small
molecule information.
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Figure 1: Analysis of Atom3D bioactivity prediction task. The evaluation metrics include (A)
Root Mean Squared Error (RMSE) and (B) Pearson correlation. The models tested include: a GNN
model using the full protein-ligand complexes as inputs, a Uni-Mol model with both a small molecule
encoder and a protein encoder, and a Uni-Mol model with only a protein encoder which only takes
pocket side information. Performance is evaluated across different sequence identity splits (30%
and 60%). It shows that Pocket-only model can overfit Atom3D bioactivity prediction task. (C)
Predicted versus actual label values for various small molecules within a single protein target.

Upon further analysis, we find that the key issue stems from the improper definition of the current
bioactivity prediction task, particularly in terms of both data construction and evaluation metrics.

From a data perspective, the constructed training data is not sufficient for developing a robust
bioactivity predictor. Although previous works have utilized different training data, they are all
derived form PDBbind (Wang et al} 2004} [2003), which contains only about 20,000 small molecule-
protein target pairs. More importantly, for each protein target, these datasets typically feature only a
single small-molecule ligand. This introduces bias into the training data, causing models to primarily
learn the bioactivity range for each protein target rather than differentiating between various small
molecules interacting with the same target. As demonstrated in Figure[T[C, when testing a model with
different small molecules for the same target, even with both protein and small molecule information
provided, the model generates predictions that cluster around the mean bioactivity value of the target,
while the actual label values vary across a much wider range. This behavior suggests that the model
trained on the current dataset fails to differentiate between different small molecules. This also helps
to explain why pocket-only baselines can achieve unexpectedly good metric values.

From an evaluation perspective, the current metrics fail to accurately reflect how well models capture
the interactions between a protein target and diverse small molecules. Specifically, established metrics
like Pearson and Spearman correlations are computed across different protein targets rather than
across multiple small molecules for the same target. This approach primarily measures differences
between various protein targets. Consequently, models can overfit by relying predominantly on
pocket information without truly learning the nuances of small molecule binding.
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To address these issues, we propose rede ning the bioactivity prediction task in this paper. Our strategy
involves constructing a novel, large-scale structural dataset of small molecule-protein interactions,
featuring multiple small molecules for each protein target, and evaluating metrics across these
different small molecules. A signi cant challenge lies in constructing a large-scale dataset of reliable
small molecule-protein complexes, as high-quality structural data depends on labor-intensive and
time-consuming wet-lab experiments. To tackle this, we rst sourced, cleaned, and deduplicated
small molecules and protein targets from relevant databases containing high-quality bioactivity labels.
For each protein and its various pockets, we utilized multiple docking software programs, such as
Vina (Trott & Olson, 2010), to dock associated molecules, generating primary interaction complex
structures. Subsequently, a majority vote mechanism was employed to obtain high-quality interaction
poses. Furthermore, we differentiated between various label types, sughlas KCso, and EGo,

to mitigate potential biases associated with label types during training and evaluation. This resulted
in a large-scalé&tructural dataset of small molecule-protéiteractions fotJnbiased bioactivity
prediction, namehsIU.

The SIU dataset comprises over 5.34 million conformations and features 1.38 million rigorously
curated bioactivity annotations, each clearly designated by label types. This extensive dataset provides
comprehensive coverage of diverse small molecules, surpassing the limitations of datasets restricted
to molecules structurally similar to co-crystal ligands. It also includes a wide array of protein targets
across all major protein classes, with each protein linked to multiple PDB IDs that re ect distinct
pocket conformations (not necessarily different binding sites). Notably, SIU differs from existing
datasets that often overlook critical distinctions between label types, making it more suitable for fair
bioactivity prediction and comparison.

With the availability of multiple small molecules with bioactivity labels for each protein target in

SIU, we rede ne the evaluation metrics by calculating values among different small-molecule ligands
with the same target, rather than across different targets. The results are then averaged across targets
using mean pooling. This approach ensures that the evaluation metrics accurately re ect the biactivity
difference between small molecules within the same targets, thereby mitigating the aforementioned
evaluation bias.

We compare the experimental results of training several classical baseline models on PDBbind and
SIU. Two key ndings highlight the outperformance of SIU over PDBbind. First, when evaluated
using traditional metrics like RMSE, Pearson, and Spearman correlations across different targets,
models trained on SIU demonstrate signi cant improvements compared to those trained on PDBbind,
re ecting the value of the inclusion of more structural data. Notably, this performance enhancement
persists even after removing data with high sequence identity from the test set, while models trained
on PDBbind do not undergo the same removal. Second, our rede ned metrics reveal a substantial
drop in performance when evaluating small molecules within the same target. For instance, the
Pearson correlation for;kcan decrease from 0.485 to 0.036. This indicates that the new task is more
challenging and that the bioactivity prediction abilities of the previous models may be overestimated
due to improper task de nitions. These results underscores the importance of the unbiased bioactivity
prediction task we introduced, which we believe will advance the development of machine learning
models that are truly bene cial for drug discovery.

2 RELATED WORK

Commonly used bioactivity prediction tasks include the Comparative Assessment of Scoring Func-
tions (CASF) task (Cheng et al., 2009; Li et al., 2014b;a; Su et al., 2018) and the Atom3D LBA task
(Townshend et al., 2020). Both tasks are derived from the PDBbind dataset (Wang et al., 2004; 2005),
which is widely used and contains complex structures of small molecule-protein interactions along
with their corresponding bioactivity labels. However, the data cleaning and splitting methods differ
between these tasks. The CASF-2016 task (Su et al., 2018) consists of 285 protein-ligand complexes,
each labeled with an experimentally measured binding af nity. Since it does not provide a dedicated
training set, prior research typically relies on self-de ned training datasets derived from PDBbind. In
contrast, the LBA task in Atom3D (Townshend et al., 2020) provides prede ned training and testing
splits, using sequence identity-based splits on 30% and 60% to ensure that test results re ect the
model's generalization ability. This task combines different label types, includigg G, and Ky,

into a uni ed prediction variable, with a total of 4,463 complexes in the dataset.
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In this work, we introduce the SIU dataset to address speci c challenges in bioactivity prediction
tasks. Similarly, large-scale, high-quality datasets like PapyragBnon et al., 2023), curated from
diverse sources, address other critical aspects and contribute valuable resources to the eld.

Atom3D also introduced two widely adopted baseline models: a voxel-grid-based 3D convolutional
neural network (3D-CNN) and a graph neural network (GNN) (Townshend et al., 2020). Recent
advances in bioactivity prediction have been driven by the application of pretrained models, such
as Uni-Mol (Zhou et al., 2022) and ProFSA (Gao et al., 2023a). These models utilize large-scale
pretraining on molecular and structural data to achieve state-of-the-art performance across various
bioactivity prediction tasks. In Atom3D, binding af nity prediction models are evaluated using
RMSE, Mean Absolute Error (MAE), Pearson correlation, and Spearman correlation metrics.

3 METHODS

3.1 SIUDATASET CONSTRUCTION

Figure 2: Construction and features of the SIU dataset. (A)The construction pipeline began

with the collection of small molecules and protein targets from established databases, followed by
data cleaning and deduplication. The small molecules underwent a comprehensive multi-software
docking process, where they were prepared and docked to their experimentally validated targets. For
quality control, the resulting poses were Itered through a voting mechanism, resulting in a dataset
organized by both PDB and assay, designed to enable unbiased bioactivity predi}ithe SIU
dataset offers large-scale structural data, making it more than fty times the size of PDBbind and
signi cantly larger than datasets currently used for bioactivity prediction tgd€KsThe SIU dataset

is meticulously structured to enhance unbiased bioactivity prediction. It features multiple pockets
(identi ed by PDB IDs) associated with the same protein target, multiple small molecules mapped
to individual pockets (green), multiple high-quality docking poses per small molecule, and detailed
label type annotations corresponding to all bioactivity values (orange).

Bioactivity label data cleaning and deduplication. Non-structural bioactivity data were retrieved

from ChEMBL (Mendez et al., 2019; Gaulton et al., 2012) and BindingDB (Chen et al., 2001;
Liu et al., 2007; Gilson et al., 2016). Non-drug-like small molecules were excluded based on
criteria such as molecular weight (150-650 Da), the presence of at least one carbon atom, and a
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minimum of nine heavy atoms (details in Appendix C.1). Each small molecule retained its original
IUPAC International Chemical Identi er (InChl) keys (Heller et al., 2015) and Simpli ed Molecular
Input Line Entry System (SMILES) notations (Weininger, 1988; Weininger et al., 1989) to prevent
mismatches arising from different software calculations. Small molecules were deduplicated using
Extended-Connectivity Fingerprints (ECFP) (Rogers & Hahn, 2010). Molecules with a Tanimoto
similarity greater than 0.8 were clustered, and representatives were selected based on bioactivity,
ensuring both quality and structural diversity while reducing computational expense in molecular
docking. Deduplication was applied only to protein targets with a small molecule count exceeding
2,146, the 90th percentile across all targets.

Protein target information for each assay was standardized using UniProt IDs (Consortium, 2015; uni,
2017), ensuring consistency across datasets and alignment with structural data. Protein structures
were retrieved, and pockets were extracted. An area withinAarEslius of the co-crystal ligand

in the same complex structure is de ned as a distinct pocket (identi ed by a single PDB ID), even
if it belongs to the same binding site as pockets from other PDB les of the same protein. A
Itering mechanism excluded PDB les with non-speci c or irrelevant ligands, and pockets were
further deduplicated using Fast Local Alignment of Protein Pockets (FLAPP). Bioactivity labels
were standardized to molar unit®igdl=L) and converted to their negative logarithms, following
conventions for drug-target binding af nity datase@z{iirk et al., 2018). The resulting dataset,
featuring structural pocket information, non-structural small molecule SMILES, and bioactivity
labels.

Figure 3:Quality control of SIU structural data. (A) A feasibility study of our methods showing the
impact of root mean square deviation (RMSD) on success (when the pose simultaneously passes the
consensus lter and has an RMSD2 A compared to the co-crystal pose) and remaining ratios (the
ratio of poses passing the lter) was analyzed using co-crystal poses, treated as the ground truth, and
redocked into their original PDB pockets according to our docking proce@B) Visualization of

our pose consensus mechanism, where RMSD is calculated between different docking poses from
different software (within same pocket PDB ID 3PB7). A single Glide docking pose is compared
with the top three docking poses generated by GOE) RMSD 1.544A: well-superimposed poses;

(C) RMSD 1.985A: similar predicted binding modeéD) RMSD 8.095A: fundamentally different
predicted binding modes.

Structural data construction via multi-software docking  SIU employs multiple docking software
programs (Friesner et al., 2004; Verdonk et al., 2003; Trott & Olson, 2010), reducing reliance on any
individual docking software. Initial 3D conformations for the small molecules were generated prior to
docking using the Glide LigPrep module with default settings. The preprocessed data were organized
into formats compatible with the chosen docking software. Protein targets were prepared, and grid



Published as a conference paper at ICLR 2025

les were generated according to each software's speci ¢ requirements to ensure compatibility. Small
molecules were then docked into the pockets of the protein structures (detailed in Appendix C.2).

For quality control, the SIU structural data underwent a majority voting mechanism: only docking
poses consistent across at least two of the three docking software were retained. This consensus-based
approach mitigated the inclusion of erroneous or misleading docking poses, thereby improving the
overall quality and reliability of the dataset.

We investigated the selection of the consensus Itering RMSD cutoff by evaluating the trade-off
between pose accuracy and the quantity of retained data. Experiments were conducted to assess the
impact of varying RMSD cutoffs on these factors (Figure 3A). In this experiment, we re-docked small-
molecule ligands with known co-crystal structures using different docking software. A successful
docking pose was de ned as one with an RMSD of less th@ncdmpared to the experimental
structure. The results demonstrate that with an RMSD cutoff beldw&signi cant number of
molecules are retained, and the success rate of the poses is satisfactory. However, as the RMSD cutoff
increases, the number of retained poses rises slightly, but their accuracy decreases substantially. This
suggests that our consensus method is effective for quality control of docked structures. Furthermore,
Figure 3B-D show that when the RMSD is arouné ey interactions are preserved, indicating a
potentially valid docking result. Based on these observations, an RMSD cutoff efds selected as

the optimal threshold.

3.2 DATASET OVERVIEW

Large-scale. The SIU dataset comprises 5,342,250 conformations detailing small molecule-protein
interactions, each entry providing comprehensive structural and bioactivity information, as shown
in gure 2B. It includes 1,385,201 bioactivity labels derived from wet experiments, each with
standardized values and clearly annotated label types. The top four label types by small molecule-
protein pair count are half-maximal inhibitory concentrationg©94,409), K (201,458), half-
maximal effective concentration E§(103,435), and K (56,485), which form the primary subset

used in our subsequent experiments.

Diversity. SIU offers an extensive range of data, encompassing 214,686 diverse small molecules
and 1,720 distinct protein targets. It includes experimentally validated low-bioactivity or inactive
molecules, which are often absent in structural datasets from wet experiments, thus providing
valuable negative data for Al-driven drug discovery (AIDD). The dataset features broad protein
type coverage, including proteins from different species and major protein classes. As illustrated
in Figure 4D, the assay values of different protein targets vary signi cantly. This broad coverage
ensures a comprehensive representation of small molecule-protein interaction modes, enhancing the
relevance of our bioactivity prediction tasks to real biological environments.

High-quality. The structural information on small molecule-protein interactions in SIU is of
high quality, due to our multi-software voting mechanism that maximizes docking accuracy within
computational limits. As detailed in the structural data construction section, we achieved a satisfactory
balance between data accuracy and scale, presenting high-quality data unobtainable with a single
docking software or solely by ranking based on software-predicted docking scores. Docking software
often provides successful simulated docking poses within the top-ranking positions, but these are
not always ranked rst by docking scores. Our method, however, is based on the consistency of
docking pose sampling across different algorithms. By examining consensus among different docking
algorithms, we effectively ensure more accurate docking pose data.

Well-organized. SIU's bioactivity labels are meticulously curated and systematically organized by
PDB IDs and label types, ensuring data integrity and enabling effective PDB-wise and assay-wise
comparisons. This organization offers a robust resource for unbiased bioactivity prediction, addressing
the limitations of existing datasets that often fail to distinguish clearly between different bioactivity
label types. Traditional machine learning measurements of correlations in bioactivity prediction
tasks are often ineffective due to the lack of clarity in existing datasets. SIU can also address this
problem, ensuring more precise and meaningful analyses. Our structured approach facilitates nuanced
assessments, such as evaluating the impact of speci ¢ small molecule transformation on protein
interactions or comparing the ef cacy of different compounds within the same protein pocket context.
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