
AutoEval Done Right: Using Synthetic Data for Model Evaluation

Pierre Boyeau 1 Anastasios N. Angelopoulos 1 Tianle Li 1 Nir Yosef 1 2 Jitendra Malik 1 Michael I. Jordan 1 3

Abstract

The evaluation of machine learning models using
human-labeled validation data can be expensive
and time-consuming. AI-labeled synthetic data
can be used to decrease the number of human an-
notations required for this purpose in a process
called autoevaluation. We suggest efficient and
statistically principled algorithms for this pur-
pose that improve sample efficiency while re-
maining unbiased.

1. Introduction
Our goal is to evaluate machine learning systems—
assessing their accuracy, fairness, and other metrics—with
as few data points as possible. This goal is important for re-
ducing the human effort required to collect extensive vali-
dation datasets (Hastie et al., 2009) for such tasks. Towards
that end, we will explore an approach called autoevalua-
tion, wherein we evaluate models in a two-stage procedure:
(i). Produce synthetic labels using AI on a large unlabeled
dataset, and (ii). evaluate AI models using the synthetic
labels.

Autoevaluation can save months or years of time and po-
tentially millions of dollars in annotation costs; see, e.g.,
Scale AI, or the recent work of Zheng et al. (Zheng et al.,
2024) using gpt-4 to rank alternative language models’
answers to questions with high agreement with human an-
notators. However, the synthetic labels may not be trust-
worthy, especially for the purpose of certifying a model’s
worst-case safety, multi-group accuracy and fairness, or to
understand if observed differences between models are sig-
nificant. This motivates the need for serious statistical in-
quiry on the general question of autoevaluation.
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This work introduces methods for autoevaluation done
right. Given a small amount of human data and a large
amount of synthetic data, we will construct autoevaluation
procedures that combine these datasets to get better esti-
mates of performance.

In other words, our methods will increase the effective sam-
ple size of human data without compromising statistical va-
lidity. Intuitively, we use the limited human data in order to
measure the bias of the synthetic data. Then, we evaluate
the model on the synthetic data and correct the bias us-
ing this estimate. The core statistical tool used for this de-
biasing is called prediction-powered inference (PPI) (An-
gelopoulos et al., 2023a); we will describe this tool in detail
in the coming text. This approach can improve both metric-
based evaluations (Section 2) and pairwise-comparison-
based evaluations (Section 3), and can readily be applied
using an existing Python software. We will include code
snippets throughout for producing more precise unbiased
evaluations. These lower-variance evaluations are also ac-
companied by confidence intervals.

1.1. Related Work

Autoevaluation has been a subject of interest, particularly
in language modeling, well before the current wave of
progress in machine learning (Corston-Oliver et al., 2001;
Agarwal et al., 2021; Garg et al., 2022). Since the de-
velopment of powerful machine learning systems such as
gpt-4, the accuracy of the annotations that these systems
produce has started to approach that of humans (Zheng
et al., 2024; Huang et al., 2024), giving substantial cre-
dence to autoevaluation as an alternative to human evalu-
ations (Li et al., 2024a).

The prohibitive cost of human annotation has also encour-
aged the development of automatic metrics used to evalu-
ate model performance without human aid (Papineni et al.,
2002; Lin & Och, 2004), representing a distinct but re-
lated approach to autoevaluation. Automatic metrics can
be computed on the fly, rely on more data points and are
hence less noisy, which can be more informative than hu-
man evaluations when the latter are scarce (Wei & Jia,
2021). Standard autoevaluation methods are generally ad
hoc, and resulting estimates of model performance can sys-
tematically differ from those obtained by human evalua-
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tion (Garg et al., 2022; van Breugel et al., 2023). In par-
allel, classical solutions for generating confidence inter-
vals, such as rank-sets (Al Mohamad et al., 2021), can-
not take advantage of the AI-generated data. It has been
unclear how AI-generated data can be combined with hu-
man data to improve the quality of evaluations. Towards
this end, (Chaganty et al., 2018) produced lower-variance
estimates of machine translation performance by combin-
ing human preferences with automated metrics via control
variates.

For the purpose of model training, a number of strategies
have been proposed to combine human-derived ground-
truth with synthetic labels, e.g., using pseudo labeling (Lee
et al., 2013; Arazo et al., 2020) or consistency regulariza-
tion (Bachman et al., 2014; Laine & Aila, 2016). Unlike
these training methods, our work focuses on the reliable
evaluation of already trained models, providing statistical
guarantees essential for deployment.

Prediction-powered inference (PPI) is a set of estimators
that incorporate predictions from machine learning mod-
els (Angelopoulos et al., 2023a) to get lower-variance es-
timators that remain unbiased. In our case, we employ an
optimized variant, PPI++ (Angelopoulos et al., 2023b), in
order to estimate metrics using synthetic data. From a sta-
tistical perspective, PPI is closely related to the fields of
multiple imputation and semiparametric inference, perhaps
most notably the augmented inverse propensity weight-
ing (AIPW) estimator (Robins & Rotnitzky, 1995; Tsiatis,
2006) (see (Angelopoulos et al., 2023b) for a careful re-
view). Indeed, we are not the first to notice this applica-
tion of PPI; the work of Saad-Falcon et al. (Saad-Falcon
et al., 2023) describes an autoevaluation method for evalu-
ating and ranking language models from pairwise compar-
isons for the purpose of retrieval-augmented generation. A
preprint by Chatzi et al. (Chatzi et al., 2024), posted con-
currently with ours, also considers the problem of ranking
models from pairwise comparisons, and constructs approx-
imate rankings with coverage guarantees. Our approach is
complementary to these existing works. Our specific con-
tribution is to develop an instantiation of PPI that is prac-
tical and yields tight confidence intervals, is easy to imple-
ment using existing software, and is compatible with exist-
ing evaluation systems such as Chatbot Arena (Cha; Chiang
et al., 2024). Moreover, we evaluate our PPI method on
real data. Along the way, we develop an interesting exten-
sion of the PPI algorithms to the case where the annotation
model outputs not just a single synthetic Y , but a distribu-
tion over Y .

2. Autoevaluating Accuracy and other
Metrics

We begin by describing how to use prediction-powered in-
ference for estimating metrics. The most commonly used
metrics are accuracy and loss, so we focus on these; how-
ever, our tools will be general and allow autoevaluation of
any metric.

2.1. Defining the Goal

Basic notation We observe inputs X in some space X ,
such as the space of natural images, natural language, and
so on. We seek to predict labels Y in some space Y , such as
the space of classes, next tokens, actions, etc. Towards this
end, let f1, . . . , fM denote M pretrained models mapping
inputs in X to label estimates in some third space Ŷ . We
often have Ŷ = Y , in which case the model directly out-
puts predictions of the label. However, we leave open the
possibility that Ŷ is some other space—such as the space of
softmax scores in the case of classification. The appropriate
output space for f(X) will be easy to infer from context.

Metrics We will evaluate the performance of the models
by estimating the expectation of some metric function ϕ :
Ŷ ×Y → R; in other words, the metric of model m will be

µm = E [ϕ(fm(X), Y )] (1)

for some metric function ϕ and every m = 1, . . . ,M .
We are interested in estimating the M -length vector µ =
(µ1, . . . µM ). For example, in the case of the accuracy, we
would want to measure accuracym = E [ϕacc(fm(X), Y )]
where ϕacc(y, y

′) = 1 if y = y′ and 0 otherwise, for every
m ∈ 1, . . . ,M .

Accuracy is not the only quantity that can be framed within
this setup. As another example, when the predictors are
multilabel classifiers, one performance metric of inter-
est could be the average precision of the model, that is,
ϕAP (ŷ, y) := |ŷ∩y|

|ŷ| . In the case of regression, µm could
correspond to the mean squared or absolute error of model
m, in which case ϕ(ŷ, y) := (ŷ−y)2 or ϕ(ŷ, y) := |ŷ−y|,
respectively. Finally, one can imagine estimating multiple
losses at once; for example, for the purpose of assessing
fairness, one may want to evaluate accuracy across many
groups.

Data We assume access to two datasets: a small human-
annotated dataset, {(Xi, Yi)}ni=1, and a large amount of un-
labeled data points, {Xu

i }Ni=1, whose ground-truth labels
{Y u

i }Ni=1 are unavailable. Importantly, both datasets are
i.i.d.; extensions to some limited non-i.i.d. regimes are han-
dled in (Angelopoulos et al., 2023a), but we will not discuss
them here. One should think of the regime where N ≫ n:
we have far more synthetic labels than real ones. For both
datasets and every model, we also assume access to a syn-
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thetic label distribution that approximates p(Y | X). We
denote {P̃i,m}ni=1 and {P̃u

i,m}Ni=1 as the set of synthetic la-
bel distributions conditioned on the labeled and unlabeled
input data points, respectively. For each i and m, we will
use the notation dP̃i,m(y) to represent the estimated PDF
or PMF evaluated at label y.

For the sake of intuition, we make a few remarks regarding
this data generating process. First, the synthetic data dis-
tributions can be seen as distributions over labels produced
by one or several “annotator models”, that can either be re-
lated or different from the models to evaluate. In the latter
case, the synthetic label distribution, for a given input, is
the same for each model f1, . . . , fM . We do not need the
subscript m in this scenario, and can simply denote the syn-
thetic label distribution as P̃i. However, the general case
of P̃i,m allows for each model to have a different annota-
tor model, and possibly allow models to self-annotate, that
is, to themselves produce synthetic labels. Second, we note
that the framework we described applies directly to the case
where the annotator model produces single predictions of
Y instead of distributions, by setting up dP̃i,m(y) to be a
delta function at the prediction (the distribution is entirely
concentrated on the prediction of Y ).

2.2. The Algorithm

We combine the labeled and unlabeled data to estimate µ.
In particular, we seek to benefit from the large sample size
of the automatically annotated dataset to produce an esti-
mator with low variance, while ensuring that this estimator
remains unbiased. We will begin with the case of estimat-
ing accuracy, and then generalize our algorithm to arbitrary
metrics.

WARM-UP: MODEL ACCURACY

The classical approach to estimating model accuracy is to
compute the fraction of correct labels:

µ̂classical
m =

1

n

n∑
i=1

1(Ŷi,m = Yi),

where Ŷi,m = argmaxy fm(Xi)y and fm(Xi) is the soft-
max output of model m. Instead, we propose estimating
the accuracy of a classifier differently: by using the classi-
fier’s own confidence on the unlabeled data as a signal of its
accuracy. Let pi,m = fm(Xi)Ŷi,m

denote the top softmax

score of model m on labeled example i, and pui,m, Ŷ u
i,m be

defined analogously. We will use the estimator

µ̂m :=
λ

N

N∑
i=1

pui,m︸ ︷︷ ︸
accuracy

+
1

n

n∑
i=1

∆λ
i,m︸ ︷︷ ︸

bias correction

, (2)

where ∆λ
i,m := 1{Ŷi,m = Yi}−λpi,m. Here, λ is a tuning

parameter—for the time being, think of λ = 1. The above
estimator decomposes into two natural components. Inter-
preting the top softmax score as the probability of correct-
ness, the first term captures the model’s internal estimate of
its accuracy on the unlabeled data. The second term is the
bias of the first term.

This estimator has two beneficial properties: unbiased-
ness and variance reduction. Unbiasedness means that
E[µ̂] = µ. This implies that the inclusion of machine learn-
ing predictions in our estimator does not introduce system-
atic errors for estimating the accuracy. Variance reduction
means that the use of synthetic data reduces the variance of
our estimator: Var (µ̂m) ≤ Var

(
µ̂classical
m

)
.

This is formally true for the optimally chosen parameter
λ; indeed, the optimal choice of λ ensures that our estima-
tor is always better than µ̂classical (in an asymptotic sense).
See (Angelopoulos et al., 2023b) for details and a formal
proof; refer to Supplement A to see how to compute this
estimator in Python.

GENERAL METRICS

The approach we have presented for evaluating classifier
accuracy is an instance of a more general framework for
evaluating properties of machine learning models. In par-
ticular, we can use our annotator model to output an ap-
proximate expectation of each label {Yi}ni=1 and {Y u

i }Ni=1

in the following way:{
Êi,m =

∫
y∈Y ϕ(fm(Xi), y)dP̃i(y)

Êu
i,m =

∫
y∈Y ϕ(fm(Xu

i ), y)dP̃
u
i (y).

(3)

These expressions look complicated, but have a simple in-
terpretation: the annotator model, given Xi, thinks the dis-
tribution of Yi is dP̃i, and we are simply calculating the
expected metric under that estimated distribution. This ex-
plains the hats on the expectation symbols; these are not
real expectations, but rather, estimated expectations ac-
cording to the annotator model. Indeed, in the case of clas-
sification, we see that, as is intuitive, the expected accuracy
of the mth model on the ith data point is equal to its top
softmax score:

Êi,m =

∫
ϕacc(Ŷi,m, y)dP̃i,m(y) = dP̃i,m(Ŷi,m) = pi,m.

Along the same lines, our previous estimator can be gener-
alized to the case of arbitrary metrics as

µ̂m :=
λ

N

N∑
i=1

Êu
i,m︸ ︷︷ ︸

metric on synthetic data

+
1

n

n∑
i=1

∆λ
i,m︸ ︷︷ ︸

bias correction

, (4)
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where now ∆λ
i,m := ϕ(fm(Xi), Yi)−λÊi,m. The first sum

in the above expression is the average metric predicted by
model m over all synthetic labels. If the annotator model
is near-perfect and N is large, then this term will almost
exactly recover the metric. However, if the synthetic label
distribution is not good, this can bias our estimate of the
metric. The second term corrects this bias by calculating it
on the labeled dataset and subtracting it off.

Returning to the role of the tuning parameter: λ ∈ [0, 1]
is a discount factor on our synthetic data. When the syn-
thetic data is very good, we can set λ = 1; when it is bad,
setting λ = 0 will throw it away entirely. One can asymp-
totically optimize the variance of µ̂ in order to set λ, as
in (Angelopoulos et al., 2023b).

Again, it is straightforward to see that for any fixed value of
λ, our estimator in (4) is unbiased, meaning E[µ̂] = µ, and
will be strictly lower-variance than its classical counterpart
when λ is optimally chosen.

VARIANCE AND CONFIDENCE INTERVALS

As we have explained above, the main benefit of AutoE-
val is to reduce the number of human-labeled data points
to achieve a particular variance. We can formalize this by
analyzing the variance of µ̂m and µ̂classical

m . In particular,
we can write the covariance matrix of µ̂ as

1

n
V =

1

N
λ2Cov(Lu

i ) +
1

n
Cov(∆λ

i ),

where ∆λ
i :=

(
∆λ

i,1, . . . ,∆
λ
i,M

)
. This expression admits

a simple plug-in estimator; it also indicates that we should
pick λ to minimize V in the appropriate sense. It also al-
lows for the production of non-asymptotic confidence in-
tervals using concentration. We opt to use asymptotic con-
fidence intervals for µ. In particular, we have that as n and
N approach infinity,

√
nV̂ −1/2 (µ̂− µ) → N (0, IM ) ,

where V̂ is the plug-in estimator of V , corresponding to

V̂ =
nλ2

N
Ĉov(Lu

i )+ Ĉov(∆i), Lu
i = (Êu

i,1, . . . , Êu
i,M ).

Note that when λ = 0, we exactly recover µ̂classical—but
this may not be the parameter that minimizes the variance
V̂ . Indeed, we can explicitly choose λ to minimize the vari-
ance. An explicit expression for this estimate can be found
in (Angelopoulos et al., 2023b).

Another beneficial aspect of the asymptotic analysis is that
it allows us to construct confidence intervals with which
we can reliably rank models. For example, coordinatewise,
the following is an asymptotically valid 1 − α confidence

interval marginally for each µ̂m:

Cm =

(
µ̂m ±

z1−α/2√
n

V̂m,m

)
. (5)

The above interval comes with the following (standard)
guarantee for all m = 1, . . . ,M : limn,N→∞ P(µm ∈
Cm) = 1− α.

As an alternative to producing confidence intervals for a
single coordinate µm based on Equation (5), we might want
to create confidence sets that contains the entire vector µ,
that is, simultaneously valid intervals. The simultaneous
interval can be constructed using the chi-squared distribu-
tion as

Cχ =

{
µ : n

∥∥∥V̂ −1/2(µ̂− µ)
∥∥∥2
2
≤ χ2

1−α,M

}
,

where χ2
1−α,M denotes the 1−α quantile of the chi-squared

distribution with M degrees of freedom. This interval has
the following (standard) guarantee:

lim
n,N→∞

P(µ ∈ Cχ) = 1− α,

and thus, it can be used to rank the models by checking
whether the m and m′ coordinates of Cχ overlap for each
model m and m′ in 1, . . . ,M .

2.3. Application to Rank Computer Vision Models

We applied the described methodology applies for evaluat-
ing computer vision models. We considered five trained
computer vision models (ResNet-18, ResNet-34,
ResNet-50, ResNet-101, and ResNet-152) opti-
mized over the training set of ImageNet and sourced from
PyTorch (Paszke et al., 2019). We considered the task
of estimating their accuracy on the validation set of Ima-
geNet in a low-data regime, using a subset of labeled data
points. The ground-truth model accuracies were computed
as the mean accuracies evaluated over the entire validation
dataset.

We considered two different approaches to estimate the ac-
curacy of these models. The first is referred to as PPI (An-
gelopoulos et al., 2023a), and corresponds to (2) with
λ = 1. The second strategy, PPI++ (Angelopoulos et al.,
2023b) optimizes λ to minimize the variance, with lim-
ited computational overhead (Table S3). These approaches
were benchmarked against µ̂classical along with a standard
z-test confidence interval.

To reflect a low-data regime, we randomly sampled a small
number n of observations to be used as labeled data points
available for these approaches. The rest of the observations
in the validation data were used as unlabeled data points for
PPI and PPI++. Our synthetic label distribution dP̃i,m
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Figure 1. ImageNet experiment. For every approach, we built confidence intervals around the average accuracy of different ResNet
architectures. a. MSE of the point estimates of the model accuracies. b. ESS of PPI and PPI++ against the classical approach. c.
Correlation between the estimated and true model rankings. Here, and in all following figures, obtained metrics are averaged across 250
random splits of the validation data into labeled and unlabeled data.

is the softmax vector of model m on labeled data point i;
dP̃u

i,m for an unlabeled data point is analogous.

The mean-squared error of our estimates of the model ac-
curacies improved over the classical baseline (Figure 1a).
Both PPI and PPI++ had lower mean-squared errors than
the baseline, no matter the size of the labeled set. Little
to no difference was observed between PPI and PPI++,
which probably means that the imputed accuracy scores are
reliable proxies for the true quantities. Our approach hence
provided more accurate point estimates of the model accu-
racies. When uncertainty quantification does matter, PPI
and PPI++ provided calibrated confidence intervals across
all labeled set sizes, and produced tighter confidence inter-
vals than the baseline (Figure 6).

The benefit of using unlabeled data can be measured by
computing the effective sample size (ESS) of PPI and
PPI++ relative to the classical approach (Figure 1b). This
value can be interpreted as the equivalent number of la-
beled data points for the classical approach that would be
required to achieve the same level of precision as PPI or
PPI++. Our ESS exceeds that of the classical approach
by approximately 50%, which demonstrates the utility of
unlabeled data for evaluating model performance.

Here, and in the other experiments, we also evaluated our
approach for the purpose of model ranking, by ranking
models based on their confidence intervals after Bonferroni
correction. Models with overlapping confidence intervals
were considered tied. Figure 1c shows the correlation of
the estimated model ranks with the ground truth ranking
(computed on all data) for different n and averaged across
labeled-unlabeled data splits. This experiment showed dra-
matic differences between the approaches. PPI++ showed
much stronger correlations with the ground truth than the
other approaches, meaning that its rankings were more ac-
curate and less prone to ties.

To confirm the applicability of our approach to scenarios

using larger sample sizes, we rerun this experiment with
n = 10, 000 labeled data points (Table S4). This experi-
ment confirmed, among other things, that PPI++ provided
more accurate point estimates and tighter confidence inter-
vals than the classical approach.

2.4. Application to Evaluate Protein Fitness Prediction
Models

We also used AutoEval to rank regression models, and
more specifically, protein fitness prediction models. Pro-
tein fitness prediction is a crucial task in computational bi-
ology, aiming to predict the biological relevance of protein
mutations based on their amino acid sequences. The recent
development of deep learning models for protein language
modeling has enabled the emergence of powerful models,
trained on millions of protein sequences, used to predict
protein fitness in a zero-shot manner (Meier et al., 2021).
Unfortunately, evaluating these models for a specific task
remains challenging due to the scarcity of experimental
data that can be used for evaluation, typically requiring ex-
pensive, time-consuming, and poorly scalable wet-lab ex-
periments (Laine et al., 2019; Riesselman et al., 2018).

We applied AutoEval on ProteinGym (Notin et al., 2023),
which gathers several assays containing both experimental
fitness measurements, used as ground-truth labels, and pre-
dicted fitness scores from various fitness predictive models.
We focused on ranking protein language models for pre-
dicting the fitness of mutations in the IgG-binding domain
mutations of protein G based on an assay of N = 536, 962
pairwise mutations (Olson et al., 2014).

We considered a scenario where one aims to select the best
model for zero-shot fitness prediction for a specific pro-
tein, using a small experimental dataset and a large set of
potential mutations for which fitness is not measured. We
focused on the Pearson correlation between predicted and
experimental fitness scores as a validation metric for rank-
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Figure 2. Protein fitness experiment for building confidence intervals and point estimates for the Pearson correlation of seven protein
language models with the experimental fitness scores, using a held-out model to produce synthetic labels. a. MSE of the point estimates
of the model correlations. b. ESS of PPI and PPI++ against the classical approach. c. Correlation between the estimated and true model
rankings.

ing models. More specifically, we aimed to estimate the
metric µm = E[Y fm(X)], where Y,X, fm are the exper-
imental fitness, the protein sequence, and the m-th fitness
predictor, respectively, assuming that Y and fm(X) have
zero mean and unit variance. This fits in our general metric
evaluation framework, where the metric function in Equa-
tion (1) is ϕ(y, y′) = yy′.

We used VESPA (Marquet et al., 2022), a protein lan-
guage model, as a held-out annotator model for synthetic
label generation. VESPA produce point estimates of the
experimental fitness scores fVESPA(Xi) based on the pro-
tein sequence Xi aiming to approximate the experimental
fitness scores Yi. While VESPA does not provide uncer-
tainty estimates for its predictions, we can still use it as
an annotator model in our framework. Specifically, we ap-
plied our estimator to estimate model m ’s Pearson cor-
relation with the experimental fitness scores, by setting
Eu
i,m = fm(Xu

i )fVESPA(X
u
i ) for the synthetic term and

∆λ
i,m = fm(Xi)Yi−λfm(Xi)fVESPA(Xi) for the bias cor-

rection term in Equation (4).

The results of this experiment are shown in Figure 2.
The effective sample sizes of PPI++ were systematically
higher than the classical approach (Figure 2b), by approx-
imately 50%. Furthermore, the ranks obtained by our ap-
proach were also much closer to the true model ranks than
the classical approach (Figure 2c), with a five-fold im-
provement for n = 1000.

PPI++ confidence intervals for models’ correlations with
the experimental fitness scores were also slightly tighter
than the classical approach, yet remained calibrated (Fig-
ure 6). The PPI estimator performed worse than the clas-
sical approach. This is a known issue of this estimator, that
PPI++ mitigates.

A question remains: how good does the annotator model
need to be to allow AutoEval to work well? Figure 3
compares the effective sample size of PPI++ obtained

with different annotator models. As expected, the better
the annotator model, the higher the effective sample size.
We importantly note that even with a very poor annota-
tor model, PPI++ performs at least as well as the classi-
cal approach. When the annotator labels do not correlate
with the true labels, PPI++ falls back to the classical ap-
proach (λ = 0), effectively ignoring the synthetic labels.
That being said, we observe that even mediocre annotator
models, such as CARP, provide a 10% increase in effec-
tive sample size compared to the classical approach. Alto-
gether, these observations suggest that AutoEval can pro-
vide better point estimates and tighter confidence intervals
compared to the classical approach even when the annota-
tor model is mediocre.
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Figure 3. ESS of PPI++ against annotator model performance for
n = 500 labeled points for the protein fitness experiment. The
horizontal line denotes the ESS of classical.

3. Evaluating Model Performance from
Pairwise Comparisons

Characterizing the absolute performance of ML models for
the purpose of ranking them is challenging. The previous
section described a methodology to compare models based
on a common performance metric. Unfortunately, metrics
serving as proxies for model performance might either not
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exist, or diverge from human judgment (Ji et al., 2023).

In such cases, assessing relative model performance might
be more appropriate. This can typically be done by compar-
ing different model predictions to each other. The Chatbot
Arena project (Cha), for instance, allows human annotators
to state preferences over different LLM predictions to the
same prompt. Comparison-based evaluation is also an ex-
citing opportunity for autoevaluation (Zheng et al., 2024;
Li et al., 2024b). In particular, an external LLM, prompted
to serve as an annotator, agrees with human annotators with
high fidelity. Still, it is unclear how biased an AI annotator
might be, which drastically limits the usefulness of the val-
idation data it produces. (Li et al., 2024b) conducted stud-
ies into biases within AI annotators, such as stylistic and
model-specific biases, highlighting the need for more ro-
bust inference. This section describes how to leverage such
AI-generated preferences while making statistically valid
inferences about model performance.

3.1. A Model to Assess Relative Performance

The canonical model for assessing relative performance of
models based on pairwise comparisons, as in a tournament,
is called the Bradley-Terry (BT) model (Zermelo, 1929;
Bradley & Terry, 1952; Ford Jr, 1957). The BT model
is used in the Chatbot Arena (Chiang et al., 2024), by the
World Chess Federation, the European Go Federation, and
many other competitive organizations as a tool for ranking
players.

Now we describe the BT model. Imagine, among M mod-
els, we are trying to compare the strength of model A to the
strength of model B. Towards this end, we give a prompt
Q to both models, and they give us an answer. We show
this answer to a human, who gives us Y = 1 if the answer
of model B is better than the answer of model A, and vice
versa. The assumption of the BT model is that Y follows a
logistic relationship,

Pζ(Y = 1 | A,B) =
1

1 + eζA−ζB
,

with some parameter vector ζ of length M , whose entries
are called the Bradley-Terry coefficients. Each model m
has a BT coefficient ζm which, when large relative to the
other coefficients, signifies that it is more likely to win the
pairwise comparison. (Also, because the model in (3.1) is
invariant to addition of a constant to every coordinate of ζ,
we can, without loss of generality, set ζ1 = 0, making the
model identifiable.)

It is well-known that, given a labeled dataset of n pairwise
comparisons, {Ai, Bi, Qi, Yi}, the maximum-likelihood
estimator of the BT coefficients is a logistic regres-
sion (Hunter, 2004). Let Xi be the vector of all zeros except
at indexes Ai and Bi, where it is −1 and 1 respectively. The

logistic regression estimate of the BT coefficients is

ζ̂classical = argmin
ζ∈RM−1,ζ1=0

1

n

n∑
i=1

ℓζ(Xi, Yi),

where ℓ is the binary cross-entropy loss.

3.2. Autoevaluation of Relative Performance

Prediction-powered inference can be applied out-of-the-
box to the BT model, making it possible to leverage large
numbers of AI-generated preferences while controlling for
their potential bias. In addition to the set of human pref-
erences defined above, additionally define the unlabeled
dataset {(Au

i , B
u
i , Q

u
i )}Ni=1. On both the labeled and un-

labeled datasets, we have the prompt and both models’ an-
swers; we use a LLM in place of the human to choose be-
tween the answers. This gives us a prediction Ŷi and Ŷ u

i

of the pairwise comparison on both datasets. The PPI++
estimator of the BT coefficients is given by

ζ̂ = argmin
ζ∈RM−1

ζ1=0

1

n

n∑
i=1

(
ℓζ(Xi, Yi)− λℓζ(Xi, Ŷi)

)

+
λ

N

N∑
i=1

ℓζ(X
u
i , Ŷ

u
i ),

(6)

where λ ∈ [0, 1] controls the weight we give to the AI-
generated preferences. Although this estimator departs
from the arguments given in Section 2, it has a very similar
interpretation; it constructs an unbiased and lower-variance
loss function for the true logistic regression, and then min-
imizes it.

The resulting BT coefficient estimates have the same ap-
pealing properties as above. In particular, they are unbi-
ased for any fixed λ, and one can construct valid confidence
intervals around them using PPI and PPI++; see (An-
gelopoulos et al., 2023a;b) for this and other generalized
linear models, as well as methods for optimally choosing
λ. Supplement A describes how to compute this estimator
easily in Python.

3.3. Autoevaluation of LLMs from Pairwise
Preferences

We evaluated our approach on the Chatbot Arena
project (Chiang et al., 2024). We first extracted 16K ob-
servations from the Chatbot Arena dataset, in which a total
of 20 recent LLMs were compared (Table S1). Each ob-
servation contains a prompt written by a human, responses
from two of the 20 LLMs, and the preference of the hu-
man over the two responses. For each observation, we used
gpt-4o-mini as a judge (Zheng et al., 2024) by prompt-
ing it to identify the most useful response, following the

7
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Figure 4. LLM experiment for building confidence intervals and point estimates for the BT coefficients of different LLMs. a. MSE
of the point estimates of the BT coefficients. b. ESS of PPI and PPI++ against the classical approach. c. Correlation between the
estimated and true model rankings.

0.20 0.22 0.24 0.26 0.28
200

220

240

260

Claude Sonnet

Gemini 1.5

GPT-4o
GPT-4o-mini

LLama 3.1

corr. of the annotator pred with GT

E
S

S

Figure 5. ESS of PPI++ against annotator model performance for
n = 200 labeled points in the LLM experiment. The horizontal
line denotes the ESS of classical.

same prompting approach as (Li et al., 2024b). We focused
on scenarios where only a few of the 16K human prefer-
ences were available, and compared our approach (using
both available human preferences and all gpt-4o-mini
preferences) to the classical approach.

Results are shown in Figure 4. We observed that the BT
coefficients were better estimated by PPI++ than by the
classical approach, hinting that the point estimates of Auto-
Eval are more accurate (Figure 4a). PPI++ also produced
calibrated, and tighter confidence intervals than the classi-
cal approach (Figure 6, Table S5) We also observed ESS
showing a 20% to 25% improvement over the classical ap-
proach (Figure 4b). Finally, we observed that the estimated
rankings of the models were more correlated with the true
rankings when using PPI++ (Figure 4c).

We also studied other choices of LLM judges (Figure 5).
Similar to the protein fitness experiment, the quality of the
LLM judge had a large impact on the performance of our
approach. Furthermore, we observed that all considered
judges allowed our approach to outperform the classical ap-
proach, obtaining ESS improvements between 20% to 35%
depending on the LLM judge.

Discussion
AutoEval is a promising direction to reduce the cost and
effort of model evaluation. We have presented a method-
ology that makes it possible to use such synthetic data for
model evaluation, improving over classical approaches in a
statistically rigorous way. Our implementation is available
as a Python package.

It is worth noting that the statistical methods we have pre-
sented apply beyond autoevaluation. Indeed, many setups
involve trading off low-quality or unreliable validation la-
bels, which are plentiful, with high-quality but scarce vali-
dation labels. Our methodology applies readily to such se-
tups, and could, for instance, help integrate crowd-sourced
validation labels with expert validations.

One limitation of our approach is that it requires the cu-
rated expert and autoevaluated data to be representative of
the data in production. These distributional shifts typically
arise when the labeled inputs are not sampled uniformly
at random from the unlabeled pool, or when labeled and
unlabeled data points come from different populations al-
together. In such cases, AutoEval, in the form described
in Equations (4) and (6), loses the statistical guarantees we
outline in the paper, and confidence intervals may no longer
be valid. To address this issue, we derived alternative Auto-
Eval estimators that are robust to covariate shifts (see Sup-
plement B).

Finally, it is interesting to consider other metrics by which
one could evaluate models with PPI-type approaches.
Herein, we handled mean estimation and logistic regres-
sion, but the framework can do more. One might want to
evaluate other metrics, such as fairness and bias, e.g., via
estimating the least-squares coefficients relating sensitive
attributes and prediction error. For any deployed machine
learning system, it is important to test many of these met-
rics to ensure good performance, in which case having pre-
cise estimates and tight confidence intervals becomes espe-
cially important.
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Figure 6. Interval metrics for the different experiments. Coverage (left) and width (right) of the 90%-confidence intervals. Each
experiment is described in the main text and focuses on the estimation of a different metric.

Software and Data
All code used to reproduce this work is available
as supplementary materials available on OpenReview.
We refer the reader to Supplement C for details on
the experimental setup. Tools to apply the described
methodology for model evaluation are available as a
Python package, available at https://github.com/
aangelopoulos/ppi_py. Code to reproduce the
experiments is available at https://github.com/
PierreBoyeau/autoeval.
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Impact Statement
AutoEval provides a principled strategy to facilitate model
evaluation in low-data regimes, which is relevant to deploy
reliable machine learning systems. AutoEval could also
make it easier to certify algorithmic fairness, e.g., by es-
timating the least-squares coefficients relating sensitive at-
tributes and prediction error. Our methodology could also
enable more efficient human oversight of model evaluation,
which remains crucial to responsibly deploy machine learn-

ing systems.
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A. Code snippets
This section provides code snippets to produce confidence intervals and point estimates for model accuracy and pairwise
comparisons with the existing Python package ppi py (Angelopoulos et al., 2023a).

Snippet 1: Python code to produce CIs and point estimates for model accuracy. The variable meanings are explained in the
code comments.

Snippet 2: Python code to produce CIs for the Bradley-Terry coefficients (without multiplicity correction). The variable
meanings are explained in the code comments. For clarity, the matrix X labeled has one row per pairwise comparison.
The ith row is a two-hot vector, with −1 at position Ai and +1 at position Bi. The matrix X unlabeled is analogous.
Note that X labeled and X unlabeled have only M − 1 columns, since ζ1 does not need to be estimated.

B. Handling covariate shifts
We here describe alternative AutoEval estimators that can be used to handle covariate shifts. We focus here on a scenario
where the labeled inputs Xi are obtained from a different distribution QX than the distribution of interest PX . More
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particularly, we assume that for any i ≤ n, {
Xi

i.i.d.∼ QX

Yi | Xi
i.i.d.∼ PY |Xi

while Xu
j

i.i.d.∼ PX for j ≤ N , and Y u
j | Xu

j ∼ PY |Xu
j

(though Y u
j are unobserved). The rest of the assumptions, and

notations, are as in the main text.

We assume that the Radon-Nikodym derivative w := dPX/dQX is known, such that an importance sampling approach
can be used to correct for the distributional shift.

Table S1. Coverage for α = 0.1 in the ImageNet experiment under covariate shifts. To introduce covariate shifts, we sampled labeled
data points weighted by the probability predicted by ResNet-101 on one of the 1000 ImageNet classes. Importance weights were
estimated using self-normalized importance sampling.

Sample size Unweighted Reweighted

n = 50 0.5044 0.9128
n = 100 0.3780 0.9196
n = 200 0.2444 0.9184
n = 300 0.1992 0.9376
n = 400 0.1692 0.9252
n = 500 0.1572 0.9320

Using the same notations as in the main text, the reweighted AutoEval estimator for metric estimation (Equation (4))
becomes:

µ̂w
m :=

λ

N

N∑
i=1

Êu
i,m +

1

n

n∑
i=1

∆λ,w
i,m , (7)

where ∆λ
i,m := w(Xi)ϕ(fm(Xi), Yi)− λÊi,m

Similarly, for pairwise comparisons, the reweighted estimator modifies Equation (6) as

ζ̂ = argmin
ζ∈RM−1

ζ1=0

1

n

n∑
i=1

(
w(Xi)ℓζ(Xi, Yi)− λℓζ(Xi, Ŷi)

)
+

λ

N

N∑
i=1

ℓζ(X
u
i , Ŷ

u
i ). (8)

Table S1 shows the coverage for the reweighted AutoEval estimator in the ImageNet experiment under covariate shifts. As
expected, the original AutoEval estimator does not provide calibrated confidence intervals due to the broken exchangeabil-
ity assumption between labeled and unlabeled data points. The reweighted AutoEval estimator, on the other hand, provides
calibrated confidence intervals.

C. Experimental details
C.1. Data acquisition and preprocessing

ImageNet We downloaded model weights from PyTorch’s model zoo for the different ResNet models, trained on the
training set of ImageNet. We then computed the different models’ predictions on the validation set of ImageNet on a
high-performance computing cluster.

Protein fitness We relied on ProteinGym1 to access both the ground-truth fitness values and the predictions of the
different protein language models for a specific assay corresponding to IgG-binding domain mutations of protein G
(SPG1 STRSG Olson 2014). All fitness scores were normalized as a preprocessing step.

1https://github.com/OATML-Markslab/ProteinGym
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LLM We considered a subset of the Chatbot Arena dataset aiming to rank twenty recent LLMs (Table S2). The data
contained 16K human preferences over pairs of LLM answers to the same (human-provided) prompts. In parallel, using a
similar procedure as in (Zheng et al., 2024), we prompted a judge LLM (gpt-4o-mini) to provide its own preferences
for the same prompts and LLM answers.

Table S2. Overview of the evaluated language models. Models are grouped by their base architecture family/provider.

Family Model Version/Date

OpenAI GPT-4 2023-03-14
GPT-4 2023-06-13
GPT-4-Turbo 2024-04-09
GPT-4 Preview 2023-11-06
GPT-4-Online 2024-05-13

Anthropic Claude-3-Opus 2024-02-29
Claude-3-Sonnet 2024-02-29
Claude-3-Haiku 2024-03-07

Google Gemini-1.5-Pro 2024-05-14
Gemini-1.5-Flash 2024-05-14

Meta LLaMA-3-70B-Instruct –
LLaMA-3-8B-Instruct –

Mistral AI Mistral-Large 2024-02

Other Command-R –
Command-R-Plus –
PHI-3-Medium-4K-Instruct –
Qwen-1.5-72B-Chat –
Qwen-2-72B-Instruct –
Starling-LM-7B-Beta –
YI-1.5-34B-Chat –

C.2. Methodological details

Monte Carlo trials In all experiments, we randomly split the data into labeled and unlabeled sets 250 times, and com-
puted all point estimates in the main text and in this supplementary material as the average estimate over these splits.

Model ranking To rank models with the different estimators, we computed 90% confidence intervals for the different
approaches after Bonferroni correction. Models with overlapping confidence intervals were assigned the same rank.

C.3. Experimental setup

All AutoEval experiments were run on a workstation with 12th generation Intel (R)Core (TM) i9-12900KF, 128GB of
RAM, and on a compute cluster relying on CPU nodes with four cores. We relied on the Python package ppi py, except
for the LLM experiment, for which we relied on Jax to implement PPI and PPI++ for the Bradley-Terry model.
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D. Additional experiments
D.1. Running times

Table S3 compares the running times for AutoEval with the classical approach for the ImageNet experiment. There, the
main bottleneck for AutoEval consisted in obtaining synthetic labels, with prediction time scaling approximately linearly
with the number of unlabeled examples. Once these labels are obtained, AutoEval ran extremely fast, in a few milliseconds.

Table S3. Runtime comparison between AutoEval and the classical approach for the evaluation of ResNet-101 in the ImageNet exper-
iment (n = 1, 000, N = 50, 000). This experiment was run on a workstation with an Nvidia RTX 3090 GPU, 128GB RAM, and an
i9-12900KF CPU.

Method Prediction (s) Inference (ms)

Classic 5 0.3
PPI++ 237 8.3

D.2. Larger sample sizes

Table S4. ImageNet experiment for n = 10, 000.

Method MSE (×10−5) Interval width Coverage Efficiency ratio

Classic 1.43 1.37 0.93 1.00
PPI 1.07 1.21 0.931 1.27
PPI++ 1.03 1.19 0.93 1.29

D.3. Coverage analysis

Table S5. Coverage analysis for different confidence levels in the LLM experiment. Values represent the proportion of confidence
intervals that contain the ground truth parameter across different significance levels (α).

Method α = 0.05 α = 0.1 α = 0.15 α = 0.2

Classic 0.96 0.90 0.85 0.80
PPI 0.97 0.92 0.88 0.82
PPI++ 0.95 0.90 0.85 0.79
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