
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CONTRASTIVE META LEARNING FOR DYNAMICAL
SYSTEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advancements in deep learning have significantly impacted the study of
dynamical systems. Traditional approaches predominantly rely on supervised
learning paradigms, limiting their scope to large scale problems and adaptabil-
ity to new systems. This paper introduces a novel meta learning framework tai-
lored for dynamical system forecasting, hinging on the concept of mapping the
observed trajectories to a system-specific embedding space which encapsulates
the inter-system characteristics and enriches the feature set for downstream pre-
diction tasks. Central to our framework is the use of contrastive learning for tra-
jectory data coupled with a series of neural network architecture designs to extract
the features as augmented embedding for modeling system behavior. We present
the application of zero-shot meta-learning to dynamical systems, demonstrating
a substantial enhancement in performance metrics compared to existing baseline
models. A notable byproduct of our methodology is the improved interpretability
of the embeddings, which now carries explicit physical significance. Our results
not only set a new benchmark in the field but also pave the way for enhanced inter-
pretability and deeper understanding of complex dynamical systems, potentially
opening new directions for how we approach system analysis and prediction.

1 INTRODUCTION

In the field of dynamical systems, the application of deep learning represents a significant develop-
ment, introducing new perspectives and methods for analyzing complex temporal behaviors. His-
torically, the analysis and prediction of these systems have largely depended on supervised learning
techniques (Kumpati et al., 1990; Ljung, 1998; Hefny et al., 2015; Brunton et al., 2016). Although
these techniques have proven useful in specific situations, they have certain drawbacks, particularly
in terms of applying acquired knowledge to novel or changing systems. Supervised learning mod-
els typically necessitate accurately labeled datasets tailored to each individual system, resulting in
a lack of applicability to scenarios involving extensive volumes of unlabeled data and flexibility to
transfer knowledge to new systems. This specific adaptation to particular datasets poses generaliza-
tion issues (Kirchmeyer et al., 2022), as the models face difficulties in adjusting to the new systems
with varying dynamics or conditions. Moreover, the reliance on substantial volumes of labeled data
renders these models impractical in situations where data is costly or less feasible to acquire, or in
instances where systems evolve beyond the distribution of the initial training data.

Meta-learning (Huisman et al., 2021; Hospedales et al., 2021) and multitask learning (Zhang &
Yang, 2018; Caruana, 1997) approaches have gained traction for their ability to handle multiple
tasks and adapt to new scenarios. These approaches leverage “comparison” as a fundamental con-
cept (Tian et al., 2020b), utilizing it to derive embeddings that uniquely identify objects across
different categories. This methodology is exemplified by innovations such as the siamese network
(Koch et al., 2015) and triplet loss (Schroff et al., 2015), which paved the way for the emergence of
“contrastive learning”. This branch of machine learning, together with the pre-train and fine-tune
strategies, facilitates few-shot or zero-shot learning, enabling models to apply knowledge from ex-
tensive datasets to previously unseen data. Despite their successes, applying these methodologies
directly to dynamical systems poses substantial hurdles (Nagabandi et al., 2018; Wang et al., 2022),
due to the unique patterns of such systems. Unlike traditional meta-learning where the new tasks or
unseen data are typically defined in categorical terms, the concept of embedding in dynamical sys-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

tems lacks the notion of distinct classes. This absence of clear-cut categories presents a challenge in
adapting existing contrastive learning methods to the field of dynamical systems.

Motivated by this challenge, our paper introduces a specialized meta-learning framework tailored
for dynamical systems. This framework encompasses a dual-phase process, firstly focusing on the
discovery of unique system embeddings by contrastive learning and subsequently employing these
embeddings for forecasting tasks. Our contributions are summarized as follows:

1. We introduce a novel perspective contrastive learning applied to dynamical system identifi-
cation problems, by comparing truncated trajectories sampled both within a single system
(intra-system) and across different systems (inter-system) to learn an effective represen-
tation of the system dynamics. To our knowledge, this study is the first exploration of
zero-shot meta-learning techniques for dynamical systems that does not require adaptation
to new systems or explicit labeling of system-specific coefficients.

2. We systematically developed a learning framework for meta dynamical system learning,
incorporating distinctively designed modules. These include the “Local Linear Least
Square” feature extractor for vector-based systems and “Spatial Adaptive LinEar Modu-
lation (SALEM)” for grid-based system. Furthermore, we also proposed a dimensional
square ratio contrastive loss function, uniquely tailored for trajectory contrastive learning
in dynamical systems.

3. Through the synthetic experiments, we offer qualitative evidence of the efficacy of con-
trastive learning in the embedding space. We also quantitatively demonstrate that the fore-
casting errors with learned embedding are significantly lower compared to those of baseline
neural networks in dynamics prediction.

2 BACKGROUND AND RELATED WORK

2.1 DEEP LEARNING BASED DYNAMICAL SYSTEM LEARNING

In the context of identifying and understanding dynamical systems, deep learning has emerged as
a popular and powerful tool at handling the temporal dependencies and nonlinear dynamics char-
acteristic of these systems. Earlier models such as recurrent neural networks (RNNs) (Bailer-Jones
et al., 1998) excel in capturing these intricate temporal patterns, enabling predictions and analyses of
discrete time system behaviors. Following the setup of continuous-time dynamical systems, the con-
cept of Neural Ordinary Differential Equations (Neural ODEs) has been introduced by Chen et al.
(2018). For predicting complex discrete time system such as Partial differential equations (PDEs),
ResNet (He et al., 2016) is commonly used as backbone model for forecasting the future dynamics
(Long et al., 2018; 2019; Xu et al., 2019).

2.2 META DYNAMICAL SYSTEM LEARNING

Meta dynamical system learning, being a merging branch of dynamical system learning, focuses on
developing models that can adapt and generalize across various physical systems and environments.
Yin et al. (2021) presents LEADS, a new framework for modeling multiple dynamical systems, by
capturing common dynamics within a shared model while also accounting for environment-specific
model. Following the work, Kirchmeyer et al. (2022) introduces a hypernetwork learned jointly with
a context vector from observed data, aims for fast adaptation and enhanced generalization across en-
vironments with minimal data samples. Wang et al. (2022) proposed DyAd, a meta-learning frame-
work comprising an encoder that deduces time-invariant hidden features of the task with limited
supervision, and a forecaster that generalizes the dynamics of the entire domain. More recently,
Blanke & Lelarge (2023) proposes CAMEL, parameterizing an affine structure to accommodate
the new task by few shot learning. Nevertheless, these earlier meta-learning models for dynamical
systems depended on supervised training on labeled system coefficients or few shot adaptation to
new systems, limiting their usability in complex situations where environments rapidly change, or
prior knowledge about the new systems is unavailable. Our approach, on the other hand, employs
contrastive learning to automatically identify system coefficients without relying on labeled data.
By leveraging unsupervised learning techniques and zero-shot forecasting, our method can operate
effectively even in the absence of prior knowledge about new systems.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2.3 CONTRASTIVE LEARNING

Contrastive Learning, diverging from traditional supervised learning methods that directly map data,
focuses on implicitly deriving data representations by comparing examples. Its inception dates
back to the early 1990s, as evidenced by foundational works such as Bromley et al. (1993). The
method has been extensively applied across various domains, significantly impacting metric learning
(Chopra et al., 2005; Sohn, 2016), a field closely related to our work.

In the community of unsupervised and semi-supervised learning, contrastive learning has gained
prominence, especially in self-supervised learning (SSL) tasks. Its effectiveness is well-established
in areas such as computer vision and natural language processing, as demonstrated in research by
Chen et al. (2020a); He et al. (2020); Tian et al. (2020a) for computer vision, and Wu et al. (2020);
Gao et al. for natural language processing. There has been notable advancements in the design of
contrastive loss, with significant contributions from Oord et al. (2018a); Chen et al. (2020a;b).

In recent years, its application to time series data has gained attention due to the unique challenges
posed by the temporal nature of the data (Pöppelbaum et al., 2022; Yue et al., 2022), enabling tasks
such as anomaly detection, clustering, and classification. Despite the promising results in the time
series domain, which is closely related to dynamical systems, the application of contrastive learning
to the latter remains largely unexplored. The major challenges include the requirement for high
interpretability in dynamical systems, as they are often governed by physical laws and principles,
and the need for learned representations to align with these underlying physical mechanisms. Addi-
tionally, the diverse forms of state representation in dynamical systems, such as grid-based systems
(to be introduced later), pose difficulties in integrating learned embedding into downstream tasks,
requiring careful consideration of how the representations can be effectively utilized.

3 PROBLEM FORMULATION

3.1 REPRESENTATION LEARNING OF MULTIPLE DYNAMICAL SYSTEMS

In this paper, we consider two types of common settings of autonomous dynamical systems: con-
tinuous time and discrete time systems. In the former, we consider the unknown system equation
in the following form: ẋ = dx(t)/dt = f(x), where x ∈ X is the system state and ẋ is its time
derivative to time index t, and the future state depends solely on the current state if function f(·) is
fixed. In the discrete time step setting, we consider the autonomous system equation in the form of
xt+1 = f(xt)

1. f ∈ F : X → T X or X denotes the system function that maps system state space
X ∈ Rn to its temporal derivative space T X ∈ Rn or future state space X .

F is the functional space that f(·) belongs to, and we consider that all functions f(·) share certain
characteristics but may vary in some aspects. The difference can be represented by a set of param-
eters ϕ (e.g., physics constants, material properties), that is fϕ(·) ∈ F , where ϕ ∈ Φ and Φ is the
coefficient space. The main objective is to develop methodologies to establish an encoder from a
trajectory observation to an informative embedding corresponding to ϕ without prior knowledge of
it. By doing so, we can accurately parameterize fϕ(·) and employ it to forecast the evolution of
future trajectories.

3.2 GENERALIZING TO NEW DYNAMICAL SYSTEMS

Under this framework, we construct a structured representation for this composite dynamical system,
composed of a set of dynamical sub-systems {fϕi(·)}, each characterized by a specific coefficient
or physics properties ϕi. Take the continuous time system for example, given an initial condition
x0, the trajectory is in the form of:

1While dynamical systems typically depend solely on the current state, practical scenarios may lack
complete state information. For instance, PDE solutions might omit boundary conditions. We there-
fore relax the single-state assumption, framing the task as a mapping that considers multiple time steps:
f : (xt−ti+1, ..., xt) → (xt+1, ..., xt+to), where ti and to are input and output time steps, respectively.
This approach leverages past observations to predict multiple future states, we follow the same setup from
Wang et al. (2022) in the experiments of grid-based systems.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

x(t) = x0 +

∫ t

0

fϕi(x(τ))dτ

For each sub-system characterized by the function fϕi
(·), we may have one or more observed tra-

jectories of the system states. These trajectories are then sampled, resulting in a set of data points
denoted as {xi,j

t }Tt=0. The indices i, j, and t represent the system coefficients, initial conditions, and
time steps, respectively.

In the context of meta dynamical system learning, our goal is to develop a model that can generalize
from a set of training systems ϕtrain to new, unseen test systems with properties ϕtest. This presents
a challenging task of learning a meta-model that captures the underlying principles governing these
dynamical systems across different coefficient spaces. Moreover, given a new system, we would like
to leverage a short observed trajectory to infer its system embedding, with which we can augment
to accurately forecast its future evolution. This approach enables us to quickly adapt our model to
previously unseen systems, making predictions based on limited observations while leveraging the
knowledge gained from the training systems.

4 PROPOSED METHOD

This section presents our two-step meta-learning framework tailored for dynamical systems, as
shown in Figure 1. The first step involves employing contrastive learning to derive embeddings
for each trajectory, capturing the coefficients or the physics properties of the dynamical system. In
the second step, we apply the embedding model to the initial segment of the trajectory to deduce the
embedding. These embeddings, representing inferred coefficients, serves as inputs for dynamical
system model to predict the future trajectories.

In the experimental section, we evaluate the framework on two types of dynamical systems:
continuous-time vector-based systems with fully observable states and interpretable physics coef-
ficients, and grid-based, multi-channel systems (e.g. PDE solution represented on spatial grids for
each state) in discrete time steps. The remaining sections are organized as follows: Section 4.1 in-
troduces the contrastive loss design, Section 4.2 and Section 4.3 discuss the design of the “encoder”
and dynamical system learning for continuous-time vector-based systems, and Section 4.4 describes
the “decoder” design to incorporate trajectory knowledge for grid-based discrete time dynamical
systems.

4.1 CONTRASTIVE LEARNING DESIGN FOR TRAJECTORY EMBEDDINGS

Anchor point
Physics
property

Initial
cond.

𝑗!
𝑗"

𝑗#

𝑖!

𝑖"

𝑖#

⋮

⋮

Negative pairs: maximize
||𝐻({𝑥$!

%",'"} − 𝐻({𝑥$!
%!,'"})||

Positive pairs: minimize
||𝐻({𝑥$"

%",'"}) − 𝐻({𝑥$!
%",'"})||

𝐻({𝑥$"
%",'"})

{𝑥!!
"!,$!}

𝑥%

𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠:	�̇� = 𝐹 𝑥, 𝑍
𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒:							𝑥$(!= 𝐹 𝑥$, 𝑍

Embedding
𝑍

Observed Traj. Predicted Traj.

Figure 1: Two-step learning pipeline for multiple dynamical systems: 1: employing a contrastive
learning framework to extract system embeddings from trajectory observations, 2: using inferred
embeddings for dynamic model forecasting of future trajectories.

At its core, contrastive learning involves training a model to distinguish between similar (“positive”)
and dissimilar (“negative”) pairs of data samples. In the context of trajectory observation of multiple

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

dynamical systems, positive pairs are truncations of trajectories that belong to the same sub-system,
suggesting similar underlying state evolution patterns, while negative pairs are truncations that are
drawn from different sub-systems. Inspired by the Square Ratio Loss (SRL) from Zhang et al.
(2023), we propose a new Element-wise Square Ratio Loss (ESRL):

LESR =
1

MD

∑
i1,j1,t1

[
D∑

d=1

∑
j2,t2

(Hd
θtr

({xi1,j1
t1 })−Hd

θtr
({xi1,j2

t2 }))2∑
i3,j3,t3

(Hd
θtr

({xi1,j1
t1 })−Hd

θtr
({xi3,j3

t3 }))2

]
. (1)

where Hθtr(·) is the neural network parameterized by θtr, to map a trajectory to d-dimensional
embedding space. Hd

θtr
(·) refers to the dth dimension or element of this mapping. Each trajectory,

denoted as {xi1,j1
t1 }, is identified with system coefficient index i1 , trajectory truncation index j1 and

starting time index t1. For brevity, we omit the specifics of the time index range. M is the number
of anchor points for normalization purpose.

On the numerator of Equation (1), we compare the element-wise square distance between the tra-
jectories drawn from same set of coefficients. Conversely, the denominator accounts for all possible
pairs of trajectories within the mini-batch. In practice, for each set of coefficients ϕi, multiple tra-
jectories are generated, each originating from a unique set of initial conditions. We then create
input sequences by randomly truncating these trajectories into shorter segments. These truncated
sequences serve as individual inputs to the encoder in Equation (1).

The Square Ratio Loss introduced by Zhang et al. (2023), along with contrastive loss like the
Triplet (Schroff et al., 2015) and Info-NCE loss 2 Oord et al. (2018b); Chen et al. (2020a), tradi-
tionally employ vector-based Euclidean distance in their ratio loss functions. During contrastive
learning, minimizing this loss function will decrease the distance between positive pairs and in-
crease the discrepancy between negative pairs. However, this setup could result in trivial solutions
in multi-dimensional embeddings. Specifically, embeddings might vary across certain dimensions
but remain constant in others (e.g. learned embeddings for 3 different systems are represented as
{[1, 0], [2, 0], [3, 0]}, the 2nd dimension becomes constant). These invariant dimensions are ineffec-
tive for training as they do not contribute to the loss function. To address this issue, we propose
the element-wise ratio loss in Equation (1), which penalizes the loss if certain dimensions of the
embedding become constant.

Further, there could exist other dimensional collapse such that the two embedding dimen-
sions became correlated (e.g. learned embeddings for 3 different systems are represented as
{[1, 2], [2, 4], [3, 6]}, the two dimensions are linearly correlated). To avoid dimensional collapse
of the embedding dimensions, we introduce a correlation regularizer inspired by the covariance
regularizer from Bardes et al. (2021).

Given zn,d as the dth dimension of the embedding from the nth trajectory truncation from the

mini-batch, let z̃n,d = (zn,d−mean({zn′,d}Nn′=1))/
√
var({zn′,d}Nn′=1) be the normalized feature,

where mean(·) and var(·) indicates the mean and variance over the dimension of truncations. Let
Z̃ = {z̃n,d}N,D

n,d=1,1 be the normalized matrix. The correlation matrix C is in the following form and
the regularizer penalizes all the non-diagonal elements of the correlation matrix if they get close to
±1:

C(Z̃) = Z̃⊤Z̃ (2)

Lcov =
1

D − 1

∑
i ̸=j

[C(Z̃)2i,j] (3)

In practice, we use the following total loss as a summation of the prior two losses. The coefficient λ
is set to 0.5 across all the standard experiments:

Ltotal = LESR + λLcov (4)
2The cosine similarity, which is equivalent to the inner product of normalized embeddings, is inversely

related to the Euclidean distance between these normalized vectors.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

One might wonder why the more popular choice of contrastive loss functions (Oord et al., 2018a;
Chen et al., 2020a;b; Schroff et al., 2015) are not employed in this case. Firstly, they are subjected
to the dimensional collapse issue above. Secondly, these probability-based loss functions may be
better effective for classification tasks, while may not be as suited for dynamical system applications,
where the distribution of embeddings is more continuous in nature. A more detailed discussion of
the above topics with corresponding comparison study are provided in Appendix C.1.

4.2 LOCAL LINEAR LEAST SQUARE FEATURE EXTRACTOR FOR VECTOR-BASED SYSTEMS

Recurrent neural networks (RNNs) is a natural choice for handling the sequential inputs of the
dynamical systems. However, we found that directly applying RNNs to vector-based trajectory data
is not sufficient for extracting the underlying physics of the dynamical systems (example learned
embedding space shown in Appendix C.1). To address this, we introduce a transformation layer to
pre-process the trajectory inputs for better extraction. Given a trajectory {xt}Tt=1 ∈ RT×D, we first
split it into multiple segments with length r:{xt}rt=1, {xt}2rt=r...{xt}Tt=T−r+1. We then model each
segment under the assumption that the dynamical system is locally linear (i.e., follows ẋ = Ax), and
calculate the optimal A ∈ RD×D that best fits the data. It is important to note that the concept of
“segment” in this context should not be confused with the trajectory “truncations” used in contrastive
learning.

Âk = argmin
A

kr∑
t=1+(k−1)r

||Axt − ˆ̇xt||2 (5)

where ˆ̇xt is the time derivative of xt approximated by finite difference methods (i.e. ˆ̇xt = (xt −
xt−1)/∆t). After extracting {Âk}T//r

k=1 , each Âk ∈ RD×D is reshaped into a vector in RD2×1. This
vector is then used as step input for the embedding network.

This preprocessing step transforms the original trajectory into a sequence of locally linear approxi-
mations, which can be more easily processed by the RNN to extract meaningful embeddings about
the underlying dynamical system. We can think of this extractor as a tool that captures the non-linear
system as a series of linear “snapshot” of the system’s behavior at different points. An RNN then
processes this sequence of coefficients, converting them into a compact embedding that represents
the system’s overall behavior. After the preprocessing step, the resulting sequence of locally linear
approximations still needs to be divided into truncations for the purpose of contrastive training at a
later stage.

4.3 DYNAMICAL SYSTEM LEARNING FOR CONTINUOUS TIME SYSTEMS

Once the trajectory embedding/encoder network is fully trained, it is integrated with the forecaster
neural network. For the vector-based systems, we simply use a multi-layer perceptron (MLP) which
takes in the concatenation of the system state inputs and the trajectory embedding. For each trajec-
tory in the dataset, the initial segment is utilized to calculate the trajectory embedding, while the
subsequent segment is employed for training the dynamics. With the forecasting neural network
denoted as Fθd(·) and trajectories represented by {xi,j

t }Tt=1, the loss function is defined as:

Lcontinuous =
1

M(T − s+ 1)

T∑
t=ts+1

∑
i,j

||ẋi,j
t − Fθd(x

i,j
t , Hθtr ({x

i,j
t′ }

t
t′=t−s+1))||2, (6)

where {xi,j
t′ }tt′=t−s+1 is the observed trajectory ahead of timestamp t with length s to infer the

embedding. For simplicity, we assume the time derivative of the system state ẋi,j
t is known as data.

If it is unknown, we can also use finite difference to estimate it or integrate the ODE to compare
with discrete time observations.

4.4 SPATIAL ADAPTIVE LINEAR MODULATION (SALEM) FOR DISCRETE-TIME SYSTEMS
LEARNING

For forecasting (2D) grid-based systems, ResNets are commonly used as baseline backbone mod-
els (Long et al., 2018; 2019; Xu et al., 2019). Typically, the model takes an input sequence shape

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

of [T,C,H,W] and outputs a future step represented as [1, C,H,W], where T is the number of
past observation steps, C is the channel number and H,W are the grid image height and width
respectively. When forecasting multiple steps into the future, an auto-regressive iterative approach
is necessary. For training discrete-time dynamical systems, the loss function in Equation (7) em-
ploys the average squared difference between predicted and actual next state, rather than using time
derivative components in Equation (6). For evaluation, multiple time stamp are forecasted with
auto-regressive manner.

Ldiscrete =
1

M(T − s+ 1)

T∑
t=ts+1

∑
i,j

||xi,j
t+1 − Fθd({x

i,j
t′ }

t
t′=t−s+1, Hθtr ({x

i,j
t′ }

t
t′=t−s+1))||2, (7)

To incorporate the learned vector embedding into the grid-based prediction, we draw inspiration
from two techniques: Feature-wise Linear Modulation (FiLM) by Perez et al. (2018) and Spatially-
Adaptive Normalization (SPADE) from Park et al. (2019). In FiLM, the channel values are modu-
lated by a single vector, while in SPADE, the normalization parameters are conditioned on spatial
semantic information.

We propose a new modularization using both vector embedding and spacial information, named
as Spatially Adaptive LinEar Modulation (SALEM), as shown in Figure 2. In the SALEM block,
we set up an arbitrary spacial coordinate system for the domain (x-y), and each coordinate will
be concatenated with the embedding Z to be mapped to a vector pair of {(γc,x,y, βc,x,y)}c=1,2...C ,
where (γc,x,y, βc,x,y) modulates the feature value at (x, y) in the cth channel by performing the
following affine transformation:

γc,x,y = m1(Z, x, y), βc,x,y = m2(Z, x, y) (8)
SALEM(Fc,x,y|γc,x,y, βc,x,y) = γc,x,y ∗ Fc,x,y + βc,x,y (9)

Embedding !

MLP

x
y

x

y

⨂ ⊕

!!,#,$ "!,#,$

element-wise

Figure 2: Spatially Adaptive LinEar Modulation (SALEM) Layer to incorporate contrastively
learned embedding for dynamics forecasting

Intuitively, SALEM is designed to adaptively incorporate embedding knowledge into different spa-
tial locations within the forecasting images. The normalization step helps keep the training process
stable and consistent. The effectiveness of this approach will be demonstrated through quantita-
tive results in the experiment section, and conceptual visualizations of SALEM’s operation will be
provided in Appendix C.4.

5 EXPERIMENTS

In this part, we evaluate our learning approach under multiple dynamical systems. For continu-
ous time, we examine the spring-mass system and the Lotka-Volterra model (Lotka-Volterra, 1925),
which serve as basic examples of linear and nonlinear systems, respectively. We start by examining
the variation of system coefficients in a two-dimensional space, which allows for simpler visual-
ization of how the learned representations correspond to these coefficients. Then we extend to the

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

original four-dimensional Lotka-Volterra model. For our evaluation of model performance in grid-
based systems, we employ two types of models: incompressible flow systems and reaction-diffusion
models. In both cases, we experiment with systems that have different numbers of varying coeffi-
cients. For dataset details, please refer to Appendix A.

5.1 VECTOR-BASED SYSTEMS

Learned embed. True coeff.Learned embed. True coeff.

Lotka-Volterra (2D)Dual spring-mass

Figure 3: System coefficients (2nd and 4th picture) vs learned trajectory embedding (1st and 3rd
picture) for dual spring-mass and Lotka-Volterra (2D) system. The x and y axes are learned embed-
ding/true coefficients. For dual-spring mass plots, the color gradients represent the two spring rates.
For Lotka-Volterra plots, the color gradient represent α and β (defined in Appendix A).

In Figure 3, we depict the learned embeddings alongside the actual coefficients for two systems. The
graph’s axes show the embedding values learned by the model and the true system parameters in two
dimensions. The color gradients always represent the true system parameters. For each system, we
analyze 121 distinct coefficient sets, chosen with evenly spaced intervals in each dimension, totaling
11 per dimension. For every coefficient set, we initiate five distinct trajectories. In the case of the true
system trajectories, since all five share identical coefficients, they overlap and only one trajectory
for each set is visible.

In the dual spring-mass system case, the learned embedding is a rotated and scaled version of the
true coefficients. This is acceptable since the embedding’s form is unconstrained and the values are
relative. Groups of five trajectories consistently converge due to the system’s linearity, and the local
linear extractor Âk is expected to directly represent the corresponding linear matrix. The Lotka-
Volterra system behaves differently, with less alignment among the sets of five trajectories due to
its inherent non-linearity. The variable nature of Âk in this context makes it challenging to extract
uniform information across trajectories. Despite these complexities, the learned embedding still
exhibits a roughly rotated shape, suggesting a two-dimensional variation that loosely correlates with
the system’s dynamical properties.

It is crucial to note that the model training was conducted in an unsupervised manner, without the
incorporation of any prior information. Even under these conditions, the training process effectively
ranks the different coefficients. This demonstrates the model’s capability to discern and organize the
coefficients in a meaningful way, despite the absence of explicit guidance or predefined knowledge.

After acquiring the embedding through contrastive learning, we apply this embedding for forecasting
in dynamical systems. As detailed in Section 4.3 and illustrated in Figure 1, for forecasting purposes,
we employ the observed trajectory to infer the embedding. This inferred embedding is then utilized
to approximate the equations of the dynamical system. To streamline the process and avoid these
complexities, we employ a simple MLP architecture in our method to evaluate the performance gain
from contrastive learning. As a comparison baseline, the standard training method uses a similar
MLP network with only system states x as the input and performs supervised learning on all the
given data. We present the forecasting results in Table 1. Our method consistently outperforms the
baseline method across all the settings.

We delay the ablation studies and further experiments of the vector-based system to Section 6 and
Appendix C.2 for readers’ interest. To notice, we do not compare our model to other prior works (Yin
et al., 2021; Kirchmeyer et al., 2022; Blanke & Lelarge, 2023) due to problem setting difference.
To the best of our knowledge, all prior works in this area necessitate knowing the coefficients of the

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Simulation Error(MSE) for the Vector-based Systems
Models Spring-Mass LV (2D) LV (4D)

Standard training 4.86e-4 ± 0.60e-4 4.40e-2 ± 0.44e-2 12.6e-2 ± 0.98e-2
Our methods 2.58e-4 ± 0.79e-4 1.31e-2± 0.88e-2 8.31e-2± 2.20e-2

system or require extra fine-tuning to adapt the model to the new systems, both will not fit into the
above experiment setup. Our approach stands out from others as we deduce the system coefficients
directly from observations, eliminating the need for model adaptation or few-shot learning when
making predictions in new environments. Previous research can be considered as parallel to our
forecasting stage, assuming the system coefficients are already known or learned from few-shot
adaptation.

5.2 GRID-BASED PDE SYSTEMS

We experiment on two grid-based systems with three different setups for each: 1. Incompressible
fluid flows: 1.1 varying buoyancy, 1.2 varying supply rate, 1.3 varying both buoyancy and supply
rate, 2. Gray-Scott reaction diffusion system of two chemical species: 2.1 varying the feed rate 2.2
varying the killing rate 2.3 varying both feed and killing rate. The setup for the first experiment (1.1)
is from Wang et al. (2022). Both datasets are synthetically generated by PhiFlow (Holl et al., 2020),
and we leave the details to Appendix A.

We compare our learning method with 3 baselines: the standard ResNet, DyAN (Wang et al., 2022)
and ResNet+FiLM module Perez et al. (2018). To notice, the DyAN method assumes prior knowl-
edge of the system coefficients (e.g. pre-calculated vorticity) while our method does not require
it. ResNet+FiLM is used for the ablation study of SALEM module. We present the results in Ta-
ble 2. The three meta-learning methods outperform the standard ResNet by a large margin. Among
the three, our SALEM method achieves the best performance. For certain experiments, DyAN and
FiLM fail the training process and produces NaN during the prediction, while SALEM provides
more stable training in practice. For visualization of the learned embedding and conceptual effec-
tiveness of the SALEM layer, please refer to the results in Appendix C.3 and Appendix C.4.

Table 2: Simulation Error(MSE) for the Incompressible Fluid Systems3

Models buoyancy supply rate buoyancy & supply rate
Standard ResNet 15.8e-2 ± 1.12e-2 4.66e-2 ± 0.13e-2 4.05e-1 ± 1.66e-1

DyAN 9.51e-2 ± 2.21e-2 3.86e-2 ± 0.88e-2 N/A
ResNet + FiLM 9.90e-2 ± 1.48e-2 4.1e-2± 0.08e-2 NaN

ResNet + SALEM (ours) 9.06e-2 ± 2.77e-2 3.12e-2 ± 0.84e-2 1.60e-1 ± 0.73e-2

Table 3: Simulation Error(MSE) for the Gray-Scott Systems
Models feed rate kill rate feed & kill rate

Standard ResNet 3.49e-3 ± 0.56e-4 1.53e-3 ± 0.44e-3 4.62e-3 ± 0.29e-3
DyAN 31.1e-3 ± 9.62e-3 NaN N/A

ResNet + FiLM 4.15e-3 ± 1.32e-4 1.38e-3 ± 0.48e-4 4.56e-3 ± 1.82e-3
ResNet + SALEM (ours) 2.28e-3 ± 1.87e-4 1.08e-3 ± 0.36e-3 3.81e-3 ± 2.22e-3

6 DISCUSSIONS

6.1 ABLATION STUDIES

To evaluate the contribuiton from different techniques in Section 4, we also provide ablation studies
in Table 4. In our baseline setup, the covariance regularize coefficient λ is set to 0.5 in Equation (4).
To assess its sensitivity, we adjusted this value to 0.2 and found the proposed method is not sensitive
to this hyper-parameter. However, completely removing this term from the loss function can lead to

3“NaN” indicates training failed (loss goes to NaN) or prediction became unstable (error goes to NaN),
“N/A” indicates not applicable.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

a marked increase in error. If conventional contrastive loss functions are adopted, such as Info-NCE
or Triplet loss, they result in a significant increase in prediction error. We also tested standard LSTM
without local feature extractor for trajectory mapping, the performance is slightly worse, therefore,
we choose the local feature extractor as standard setup.

Table 4: Ablation Study for the Vector-based Systems
Loss Covariance Reg. Local feature extractor Dual Spring-Mass LV (2D) LV (4D)
ESR λ = 0.5 ✓ 2.58e-4 ± 0.79e-4 1.31e-2± 0.88e-2 8.31e-2± 2.20e-2
ESR λ = 0.2 ✓ 2.54e-4± 0.22e-4 2.31e-2± 0.44e-2 8.61e-2± 1.57e-2
ESR ✗ ✓ 4.59e-4 ± 0.63e-4 2.89e-2± 0.69e-2 10.7e-2± 2.37e-2
ESR λ = 0.5 ✗ 4.92e-4 ± 0.69e-4 1.68e-2± 0.46e-2 7.73e-2± 1.37e-2

Info-NCE ✗ ✓ 2.75e-4± 0.47e-4 3.89e-2± 0.22e-2 22.4e-2± 5.39e-2
Triplet ✗ ✓ 6.01e-4± 1.63e-4 4.23e-2± 0.88e-2 12.2e-2± 1.96e-2

6.2 COMPARISON WITH PRIOR WORKS

Recently, the field of meta-learning for dynamical systems has begun to gain attention, with a small
but growing number of studies endeavoring to tackle this complex issue. Our approach, from the
formulation of the problem to the learning techniques used, significantly distinguishes from previous
methods.

Our method assumes no provided label information regarding the system coefficients, thus not re-
quiring the knowledge of new system coefficients for either supervised system embedding learning
or in predicting a new system. This is the major difference between our method and prior works.
Wang et al. (2022) needs the system coefficients for weak supervised learning. Yin et al. (2021);
Kirchmeyer et al. (2022) assume the linear decomposition of the shared dynamics and environment-
specific dynamics, where the latter requires unique model parameters fitted separately for each en-
vironment. These strong conditions facilitate the learning process as they acquires knowledge about
knowledge for sub-systems. However, in many instances, especially in forecasting scenarios, this
kind of information is often not available.

Once the embedding is learned, our approach is compatible with other meta-learning method Yin
et al. (2021); Kirchmeyer et al. (2022) to quickly adapt to new vector-based systems. For the grid-
based systems, similar to Wang et al. (2022), we generalize the environment-specific embedding
from the input and utilize this mapping for forecasting tasks of new systems, while our approach
does not require explicit knowledge for this embedding learning.

7 CONCLUSION AND LIMITATIONS

In this paper, we present a novel meta-learning framework for dynamical systems, leveraging con-
trastive learning coupled with a tailored feature extractor and a custom loss function. This architec-
ture facilitates the extraction of embeddings that capture the underlying physical parameters of the
system. We further enhance this model with an innovatively designed forecasting module, which uti-
lizes the model embeddings for more accurate prediction. Our approach not only achieves superior
forecasting accuracy but also enhances model interpretability and physical relevance.

As we aim to build a contrastive learning framework for general dynamical systems, we acknowl-
edge several limitations in the current study. Firstly, the complexity of the local linear extractor
grows quadratically with the system dimension, and we have yet explored its application for high-
dimensional vector-based systems. Furthermore, the embedding space utilized in this paper is also
of a low dimensionality. The potential of high-dimensional embedding spaces remains unexplored,
where we anticipate that the requisite data size could increase exponentially with the dimensional-
ity of the embedding space. We hope our work can inspire future researchers on more universally
applicable unsupervised learning methods that can handle high-dimensional continuous embedding
space.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Coryn AL Bailer-Jones, David JC MacKay, and Philip J Withers. A recurrent neural network for
modelling dynamical systems. network: computation in neural systems, 9(4):531, 1998.

Adrien Bardes, Jean Ponce, and Yann LeCun. Vicreg: Variance-invariance-covariance regularization
for self-supervised learning. arXiv preprint arXiv:2105.04906, 2021.

Matthieu Blanke and Marc Lelarge. Interpretable meta-learning of physical systems. arXiv preprint
arXiv:2312.00477, 2023.

Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Säckinger, and Roopak Shah. Signature verifi-
cation using a” siamese” time delay neural network. Advances in neural information processing
systems, 6, 1993.

Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Discovering governing equations from data
by sparse identification of nonlinear dynamical systems. Proceedings of the national academy of
sciences, 113(15):3932–3937, 2016.

Rich Caruana. Multitask learning. Machine learning, 28:41–75, 1997.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning,
pp. 1597–1607. PMLR, 2020a.

Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Geoffrey E Hinton. Big
self-supervised models are strong semi-supervised learners. Advances in neural information pro-
cessing systems, 33:22243–22255, 2020b.

Sumit Chopra, Raia Hadsell, and Yann LeCun. Learning a similarity metric discriminatively, with
application to face verification. In 2005 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’05), volume 1, pp. 539–546. IEEE, 2005.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. SimCSE: Simple contrastive learning of sentence
embeddings.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 9729–9738, 2020.

Ahmed Hefny, Carlton Downey, and Geoffrey J Gordon. Supervised learning for dynamical system
learning. Advances in neural information processing systems, 28, 2015.

Philipp Holl, Vladlen Koltun, Kiwon Um, and Nils Thuerey. phiflow: A differentiable pde solving
framework for deep learning via physical simulations. In NeurIPS workshop, volume 2, 2020.

Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. Meta-learning in neural
networks: A survey. IEEE transactions on pattern analysis and machine intelligence, 44(9):
5149–5169, 2021.

Mike Huisman, Jan N Van Rijn, and Aske Plaat. A survey of deep meta-learning. Artificial Intelli-
gence Review, 54(6):4483–4541, 2021.

Matthieu Kirchmeyer, Yuan Yin, Jérémie Donà, Nicolas Baskiotis, Alain Rakotomamonjy, and
Patrick Gallinari. Generalizing to new physical systems via context-informed dynamics model.
In International Conference on Machine Learning, pp. 11283–11301. PMLR, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Gregory Koch, Richard Zemel, Ruslan Salakhutdinov, et al. Siamese neural networks for one-shot
image recognition. In ICML deep learning workshop, volume 2. Lille, 2015.

S Narendra Kumpati, Parthasarathy Kannan, et al. Identification and control of dynamical systems
using neural networks. IEEE Transactions on neural networks, 1(1):4–27, 1990.

Lennart Ljung. System identification. In Signal analysis and prediction, pp. 163–173. Springer,
1998.

Zichao Long, Yiping Lu, Xianzhong Ma, and Bin Dong. Pde-net: Learning pdes from data. In
International conference on machine learning, pp. 3208–3216. PMLR, 2018.

Zichao Long, Yiping Lu, and Bin Dong. Pde-net 2.0: Learning pdes from data with a numeric-
symbolic hybrid deep network. Journal of Computational Physics, 399:108925, 2019.

AJ Lotka-Volterra. Elements of physical biology. Nature, 116, 1925.

Anusha Nagabandi, Ignasi Clavera, Simin Liu, Ronald S Fearing, Pieter Abbeel, Sergey Levine,
and Chelsea Finn. Learning to adapt in dynamic, real-world environments through meta-
reinforcement learning. arXiv preprint arXiv:1803.11347, 2018.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748, 2018a.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748, 2018b.

Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan Zhu. Semantic image synthesis with
spatially-adaptive normalization. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 2337–2346, 2019.

Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. Film: Visual
reasoning with a general conditioning layer. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

Johannes Pöppelbaum, Gavneet Singh Chadha, and Andreas Schwung. Contrastive learning based
self-supervised time-series analysis. Applied Soft Computing, 117:108397, 2022.

Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding for face
recognition and clustering. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 815–823, 2015.

Kihyuk Sohn. Improved deep metric learning with multi-class n-pair loss objective. Advances in
neural information processing systems, 29, 2016.

Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding. In European
conference on computer vision, pp. 776–794. Springer, 2020a.

Yonglong Tian, Chen Sun, Ben Poole, Dilip Krishnan, Cordelia Schmid, and Phillip Isola. What
makes for good views for contrastive learning? Advances in neural information processing sys-
tems, 33:6827–6839, 2020b.

Rui Wang, Robin Walters, and Rose Yu. Meta-learning dynamics forecasting using task inference.
Advances in Neural Information Processing Systems, 35:21640–21653, 2022.

Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through align-
ment and uniformity on the hypersphere. In International Conference on Machine Learning, pp.
9929–9939. PMLR, 2020.

Zhuofeng Wu, Sinong Wang, Jiatao Gu, Madian Khabsa, Fei Sun, and Hao Ma. Clear: Contrastive
learning for sentence representation. arXiv preprint arXiv:2012.15466, 2020.

Hao Xu, Haibin Chang, and Dongxiao Zhang. Dl-pde: Deep-learning based data-driven discovery
of partial differential equations from discrete and noisy data. arXiv preprint arXiv:1908.04463,
2019.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yuan Yin, Ibrahim Ayed, Emmanuel de Bézenac, Nicolas Baskiotis, and Patrick Gallinari. Leads:
Learning dynamical systems that generalize across environments. Advances in Neural Informa-
tion Processing Systems, 34:7561–7573, 2021.

Zhihan Yue, Yujing Wang, Juanyong Duan, Tianmeng Yang, Congrui Huang, Yunhai Tong, and
Bixiong Xu. Ts2vec: Towards universal representation of time series. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36, pp. 8980–8987, 2022.

Wang Zhang, Tsui-Wei Weng, Subhro Das, Alexandre Megretski, Luca Daniel, and Lam M.
Nguyen. ConCerNet: A contrastive learning based framework for automated conservation law
discovery and trustworthy dynamical system prediction. In Proceedings of the 40th Interna-
tional Conference on Machine Learning, volume 202, pp. 41694–41714. PMLR, 2023. URL
https://proceedings.mlr.press/v202/zhang23ao.html.

Yu Zhang and Qiang Yang. An overview of multi-task learning. National Science Review, 5(1):
30–43, 2018.

13

https://proceedings.mlr.press/v202/zhang23ao.html

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A DATASET DETAILS

A.1 DUAL SPRING MASS SYSTEM

The system equation is formed as following:

m1
dẋ[1]

dt
= k2(x[2]− x[1])− k1x[1]

m2
dẋ[x]

dt
= −k2(x[2]− x[1])

dx[1]

dt
= ẋ[1]

dx[2]

dt
= ẋ[2]

where the system state [x[1], x[2], ẋ[1], ẋ[2]] represents the positions and velocities of two masses.
The parameters k1, k2,m1,m2 correspond to the spring constants and the masses associated with
these two objects. We standardize the mass constants by setting m1,m2 = 1 and vary the values of
k1, k2 by sampling from [1, 2].

A.2 LOTKA-VOLTERRA SYSTEM

The Lotka-Volterra system Lotka-Volterra (1925) describes the dynamics of biological systems in
which two species interact as a predator and a prey. The equations are shown in Equation (10) with
four system coefficients: α, β, γ, δ. For visualizing the qualitative study of the embedding learning
(LV-2D), we first fix γ = 1, δ = 1, and sample α, β from [1, 2]. In the latter case of forecasting tasks
(LV-4D), we sample all α, β, δ, γ from [1, 2].

ẋ[1] = αx[1]− βx[1]x[2] (10)
ẋ[2] = δx[1]x[2]− γx[2]

For the above vector based systems, during training situations where coefficients vary across two
dimensions, we generate samples from 64 distinct sets of dynamical systems (we provided data
efficiency experiment in Table 5). For each system, we select 5 unique starting points and from
each, produce 5 separate trajectories. These trajectories span a duration of 10 seconds, with data
points collected at intervals of 0.1 seconds.

In the standard testing stage, we sample the same number of sets of coefficients from the same dis-
tribution (we also provides OOD testing experiments in Table 6). For each coefficient, we generate 5
trajectories and truncate them into sequences of 3.0 seconds, at intervals of 0.1 seconds. The initial
2.0 seconds of each trajectory are utilized to deduce the embeddings, following which we predict
the system behavior for the subsequent 1.0 seconds and compare these forecasts to the actual data.

A.3 INCOMPRESSIBLE FLUID WITH INLET FLOW AND BUOYANCY FORCE

This example was customized from a demo case of the PhiFlow Package 4 and was used in Wang
et al. (2022) as a showcase example under varying buoyancy factors. The fluid dynamics were
solved using a divergence-free solver to enforce the continuity equation, ensuring mass conserva-
tion. Advection of the fluid properties was handled using a semi-Lagrangian solver for numerical
stability. The simulation setup included a square-shaped inlet flow with a specified area and flow
rate, introducing fluid into the domain. Additionally, buoyancy forces were incorporated to capture
the effects of density differences within the fluid. In our work, we vary the buoyancy factor and the
inlet flow supply rate to generate a diverse dataset of fluid flow fields.

4https://github.com/tum-pbs/PhiFlow/tree/1.0.1

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

• Incompressible Flow with different buoyancy factor: We use the dataset introduced in Wang et al.
(2022). The buoyancy factor is varied from 1 to 25 and 25 trajectories were generated. 20 trajecto-
ries/set of coefficients were randomly drawn for training and the remaining 5 is used for testing (this
is same across all the grid based experiments). Each trajectory has 500 steps with 1 second interval.

• Incompressible Flow with different supply rate: In this example, we fixed the buoyancy factor to 5
and vary the initial supply rate of the fluid from 1 to 8. A total of 25 inflow rates are used to generate
the data.

• Incompressible Flow with different buoyancy factor and supply rate: In this example, we vary the
buoyancy factor from 1 to 5 and vary the initial supply rate of the fluid from 1 to 5. A total of 25
sets of coefficients are used to generate the data.

A.4 GRAY-SCOTT REACTION DIFFUSION SYSTEM

∂u

∂t
= Du∇2u− uv2 + f(1− u)

∂v

∂t
= Dv∇2v + uv2 − (f + k)v

The Gray-Scott system is a type of reaction-diffusion model that describes the behavior of chemical
reactions and diffusion processes, characterized by two interacting chemical species (u and v in
the above equation). It is a specific form of the more general reaction-diffusion systems used to
model various natural phenomena such as animal coat patterns, chemical reactions, and biological
morphogenesis. f is the feed rate of species u and k is the kill rate of species v.

• Reaction diffusion system with different feed rate: we vary feed rate ([0.01, 0.1]) only and generate
25 trajectories.

• Reaction diffusion system with different kill rate: we vary kill rate ([0.06, 0.064]) only and generate
25 trajectories.

• Reaction diffusion system with different feed rate and kill rate: we vary both feed rate ([0.01, 0.1])
and kill rate ([0.06, 0.064]) and generate 25 trajectories.

B EXPERIMENT DETAILS

B.1 COMPUTATIONAL PLATFORM

We perform all the experiments on a single RTX4090 GPU. For the quantitative results, we conduct
each experiment over 5 random seeds and report the average.

B.2 NEURAL NETWORK STRUCTURES

B.2.1 VECTOR-BASED SYSTEMS

For the embedding networks, we use a standard three layer LSTM with hidden varible size of 100.
With the last hidden value of LSTM as input, we then use a fully connected neural network with 2
layers to get the final output. Each hidden layer has 100 neurons.

Regarding the dimension of the embedding, it is determined based on the count of coefficients that
vary. In the case of the two-spring mass system, this dimension is set to 2. For the Lotka-Volterra
system, the embedding dimension is either 2 or 4, depending on the number of coefficients that are
variable.

For the forecasting neural network, we simply use a fully connected neural network with 2 hidden
layers. Each of the hidden layer has 100 neurons. We combine the system state and trajectory
embedding directly by concatenation to form the input, so the input layer size is the sum of these
two dimensions.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

For dynamical system forecasting, we generate trajectories span a duration of 2 seconds (20 times-
tamps) as input for the model. We predict the future trajectory for 1 second (10 timestamps) and
evaluate it with the ground truth data.

B.2.2 GRID-BASED SYSTEMS

In the embedding stage, we use a standard CNN (with channel sizes of 64-128-256-512 and kernel
size of 3 across all the layers) followed by a two layer MLP to mapping the grid state under each
time step to a hidden vector of size 5. Then we use a standard three layer LSTM + MLP as above to
map the sequential input to an embedding. During the contrastive training, we use the embedding
size of 1. During the forecasting stage, we drop the last layer and use the output of the second last
layer with a dimension of 5 to incorporate the system knowledge to forecasting models.

For the forecasting model, the backbone structure we use is a 18-layer ResNet with kernel size of 3
across all the layers. The same configuration is used across all the model variants. With the FiLM
model, in each convolutional layer, we use linear layers to map the embedding vector to the affine
coefficients (with the same size as the output channels). In our SALEM model, we use a two layer
MLP to map the concatenation of embedding vector and pixel coordinates to the affine coefficients
(with the same size as the output channels).

B.3 TRAINING DETAILS

Across all the experiments, we use a Adam optimizer with a learning rate of 0.001.

In the embedding learning stage, each trajectory is spliced into 5 truncated trajectories to feed into
the contrastive training. For vector-based systems, we use a batch size of 200 and training the model
for 2000 epochs. For grid-based systems, we use a batch size of 16 and training the model for 2000
epochs.

In the forecasting training stage, for vector-based systems, we use a batch size of 200 and training
the model for 1000 epochs. For grid-based systems, we use a batch size of 16 and training the model
for 50 epochs. In the training stage, we forward the discrete system for 3 time steps, and compare
with the ground truth data. In the testing stage, we evaluate the model performance by forecasting
20 time steps.

C MORE EXPERIMENT RESULTS

C.1 CONTRASTIVE LEARNING LOSS FUNCTION CHOICE AND ABLATION STUDIES

In classical applications of contrastive learning such as computer vision, the target of learning pro-
cess is to form discrete clusters in the embedding space, where each cluster represents a specific
category or class. This learning objective is a direct result of the inherent categorization of the data
and is explicitly influenced by the design of contrastive loss functions (Oord et al., 2018a; Chen et al.,
2020a;b). These loss functions, often in conjunction with softmax or exponential functions, work by
assigning probabilities to pairs of samples, quantifying how likely it is that a pair of embeddings be-
longs to the same class. This probabilistic approach allows the model to effectively determine how
closely an anchor point (a reference data point) is related to its positive pairs, compared to various
negative pairs, facilitating the formation of distinct, class-based clusters in the embedding space.

In contrast, when applied to dynamical systems, contrastive learning results in a more continuous
distribution of embeddings rather than distinct clusters. This difference stems from the continuous
nature of dynamical systems, where the coefficients of the sub-systems are smoothly interconnected.

To assess the effectiveness of various embedding learning modules, we systematically replaced each
module and analyzed the resultant embeddings. Figure 4 presents the outcomes of these ablation
studies. In the top-left figure, the absence of covariance loss leads to embeddings that tend to align
along a line, suggesting a linear correlation between latent dimensions and resulting in dimension
collapse due to this linear dependency.

The mid-left figure illustrates the results using the standard square ratio loss from Zhang et al.
(2023), where a similar linear arrangement of embeddings is observed. However, the rescaling of

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

W/O correlation loss W/O local feature extractor

Non-dimensional SRL Modified Info-NCE loss

Our proposed methodTriplet loss

Figure 4: Ablation study on embedding learning: typical learned embeddings

axes leads to reduced variation along the horizontal axis compared to the vertical one, implying
that only one embedding dimension is effectively conveying information, which again culminates in
dimensional collapse.

Further adaptations were made to the InfoNCE loss and Triplet loss to include multiple positive pairs,
with findings illustrated in the bottom-right figure. As in Wang & Isola (2020), the embeddings tend
to uniformly distribute over a hypersphere, although some areas of the distribution still show signs
of dimensional reduction. The Trilplet loss cannot learn an organized embedding space.

In the top right figure, we used trajectory states directly as inputs to the LSTM, bypassing the local
linear least square feature extractor as delineated in Equation (5). This approach demonstrated that
standard LSTMs typically struggle to extract robust embedding information. In the local linear
least square feature extractor, the goal of deriving the system matrix is to collect data for deducing
system coefficients at a local level. It could be debated that this local linearity does not necessarily
equate to the non-linear system, or that equation Equation (5) might be ill-conditioned for solving.
Nevertheless, by utilizing the estimated Âk from various truncated sequences, this approach will
collect insights from diverse samples and ultimately extract the valuable information.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

C.2 EXTRA EXPERIMENTS FOR VECTOR-BASED DYNAMICAL SYSTEMS

We conducted additional experiments to comprehensively assess the proposed method’s perfor-
mance across various conditions.

Table 5 shows the model data efficiency with different numbers of trajectories used for training. The
main paper’s standard experiments use the middle column’s data (64 trajectories for 2D systems,
256 for 4D systems). We explore the effects of both reducing and increasing this data. Across all
scenarios, our suggested approach consistently outperforms conventional methods.

Table 5: Experiment over Different Trajectory Number for the Vector-based Systems
Method Data # of training traj.

25 64 121
Standard training Spring-Mass 4.92e-4 ± 0.63e-4 4.86e-4 ± 0.60e-4 4.82e-4 ± 0.31e-4

Our methods 4.62e-4 ± 0.58e-4 2.58e-4 ± 0.79e-4 6.92e-5± 2.89e-5
of training traj.

25 64 121
Standard training LV (2D) 4.69e-2 ± 0.93e-2 4.40e-2 ± 0.44e-2 4.55e-2 ± 0.59e-2

Our methods 1.63e-2 ± 0.84e-2 1.31e-2± 0.88e-2 1.74e-2± 1.20e-2
of training traj.

81 256 625
Standard training LV (4D) 17.0e-2 ± 3.72e-2 12.6e-2 ± 0.98e-2 13.5e-2 ± 0.57e-2

Our methods 7.85e-2 ± 1.23e-2 8.31e-2± 2.20e-2 8.69e-2± 1.47e-2

Table 6 shows the model performance in out of distribution data. Across all three experiments, the
testing coefficients were sampled from [0.8, 1] instead of [1, 2] from the training distribution and
standard testing distribution in the main paper. Our proposed meta learning methods still outper-
forms the standard methods.

Table 6: Simulation Error(MSE) of OOD testing data for the Vector-based Systems
Models Spring-Mass LV (2D) LV (4D)

Standard training 3.37e-3 ± 0.28e-3 3.97e-2 ± 0.57e-2 10.1e-2 ± 1.27e-2
Our methods 1.01e-3 ± 1.47e-3 2.12e-2 ± 0.89e-2 8.03e-2 ± 3.22e-2

In Table 7, we evaluated our proposed methods against a benchmark that uses known coefficients
as additional input for the forecasting model. While this comparison is not fair, as it provides
both training and testing data with known information, our goal is to investigate how well our con-
trastive learning approach can identify differences between systems. As expected, the experiments
using known coefficients outperformed the other methods. However, our proposed approach showed
promising results, coming quite close to the benchmark, particularly in the initial two experiments.
This suggests that our method has capability for effectively extracting inter-system variations with-
out relying on prior knowledge of coefficients for the low dimensional systems. It is also be valuable
for complex scenarios, while it might not capture all nuances in high-dimensional contexts.

Table 7: Experiment with Known Coefficients for the Vector-based Systems
Methods Spring-Mass LV (2D) LV (4D)

Standard training 4.86e-4 ± 0.60e-4 4.55e-2 ± 0.59e-2 12.6e-2 ± 0.98e-2
Our methods 2.58e-4 ± 0.79e-4 1.31e-2± 0.88e-2 8.31e-2± 2.20e-2

Known coeffs. 2.39e-4 ± 1.17e-4 0.85e-2 ± 1.01e-2 2.12e-2 ± 0.81e-2

C.3 LEARNED EMBEDDING FOR GRID-BASED DYNAMICAL SYSTEMS

We show the typical learned embedding of the grid-based system experiments in Figure 5 and Fig-
ure 6. The x-axis is the varying coefficients and the y-axis shows the the learned embedding. Each
dataset contains 25 trajectories, 20 of which are used for training and the other 5 used for evaluation.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Each trajectory is divided into five segments, with each segment corresponding to one of the five
overlapping points located under each x-axis value in the figure. Despite some instances where the
points do not entirely overlap or the trend fluctuates locally, there is generally a monotonic relation-
ship between the learned embedding and the actual coefficients. This information will be utilized for
forecasting in dynamical systems. It is important to note that the order of the embeddings is learned
automatically without any supervised learning techniques.

Varying Supply Rate

Learned
Embedding

×

! Training points
Testing points

Figure 5: Learned Embedding vs System Coefficient: Incompressible Fluid with Varying Supply
Rate

Learned
Embedding

Varying Buoyancy Factor

×

! Training points
Testing points

Figure 6: Learned Embedding vs System Coefficient: Incompressible Fluid with Varying Buoyancy
Factor

C.4 VISUALIZATION OF SALEM LINEAR MODULATION

To conceptually visualize the effect of the SALEM layer, we select the early stage (20 step after
the initial step) of 20 trajectories with varying coefficients. We then compute the standard deviation
across these trajectories and display their mean in the upper row of Figure 7. Additionally, during
the forward pass of the neural network, we calculate the average absolute value of γ (defined in
Equation (8)) across the channels in the first SALEM layer and visualize them in the bottom row.
The grayscale intensity in the images thus indicates the relative value of the standard deviation and
average absolute γ across different spatial locations. The left column is for the varying buoyancy
factor case, and the right column is for the varying supply rate case with incompressible fluids.

When the buoyancy varies, because the supply rate is identical, the trajectory variance is primarily
evident in the upper portion of the image, where buoyancy is the dominant factor. This observation

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

is consistent with the average magnitude of γ, which is larger at the top of the image. Conceptually,
this suggests that the linear modulation places more emphasis on incorporating knowledge from the
embedding into the upper region of the simulation domain, where the effects of buoyancy are more
pronounced. The inlet flow supply is located in the central region of the simulation domain. As
a result, when the supply rate varies in the initial stages, the data exhibits variation in the middle
section of the field. This variation is reflected in the corresponding mean value of γ, which is also
higher in the central area. However, due to the simplicity of the MLP used for linear modulation, the
model is unable to capture the precise shape of the supply rate variation. Instead, it can only roughly
capture the variation in the middle portion of the image.

Varying Buoyancy Varying Supply Rate

mean std. over
trajectories

mean abs(𝛾) in
the first SALEM
layer

Figure 7: Trajectory-wise data variation and mean |γ| in the two grid-based systems (grayscale
indicates the relative value in each picture)

20

	Introduction
	Background and Related Work
	Deep Learning based Dynamical System Learning
	Meta Dynamical System Learning
	Contrastive Learning

	Problem Formulation
	Representation Learning of Multiple Dynamical Systems
	Generalizing to new dynamical systems

	Proposed Method
	Contrastive Learning Design for Trajectory Embeddings
	Local Linear Least Square Feature Extractor for Vector-based Systems
	Dynamical System Learning for Continuous Time Systems
	Spatial Adaptive LinEar Modulation (SALEM) for Discrete-Time Systems Learning

	Experiments
	Vector-based Systems
	Grid-based PDE systems

	Discussions
	Ablation studies
	Comparison with Prior Works

	Conclusion and Limitations
	Dataset Details
	Dual Spring Mass System
	Lotka-Volterra System
	Incompressible Fluid with Inlet Flow and Buoyancy Force
	Gray-Scott Reaction Diffusion System

	Experiment Details
	Computational Platform
	Neural Network Structures
	Vector-based systems
	Grid-based systems

	Training Details

	More Experiment Results
	Contrastive Learning Loss Function Choice and Ablation Studies
	Extra Experiments for Vector-Based Dynamical Systems
	Learned Embedding for Grid-based Dynamical Systems
	Visualization of SALEM Linear Modulation

