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Abstract

Traditional group equivariant methods presuppose
known groups, an assumption that can be unre-
alistic for real-world datasets and potentially too
restrictive for neural network architectures. Typ-
ically, equivariance in neural networks is imple-
mented through group transformations applied to
a canonical weight tensor, facilitating weight shar-
ing across a specified group G. In this study, we
introduce a method to learn such weight-sharing
schemes. Our approach involves developing a
set of learnable, doubly stochastic matrices that
function as soft permutation matrices on canoni-
cal weight tensors, accommodating regular group
representations as a specific instance. This allows
for adaptive kernel transformations that are opti-
mized in conjunction with downstream tasks. Our
results demonstrate that when datasets display
pronounced symmetries, the learned permutation
matrices approximate regular group representa-
tions, effectively transforming our weight-sharing
networks into standard group convolutional net-
works.

1. Introduction
Equivariance in deep learning models has proven to be an
effective and important inductive bias in various tasks. Con-
straining the function space that adheres to specific symme-
tries has been shown to improve generalization and param-
eter efficiency (Bronstein et al., 2021; Cohen & Welling,
2016; Hoogeboom et al., 2022; Bekkers et al., 2024). The
most seminal example of effective equivariance is that of
convolutional neural networks (CNNs): which achieve trans-
lation equivariance by translating learnable kernels to every
position in the input. This design ensures that the weights
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defining the kernels are shared across all translations, so that
if the input is translated, the output features are correspond-
ingly translated; in other words, equivariance is achieved
through weight sharing. In the seminal work by Cohen &
Welling (2016), this concept was extended to generalize
weight-sharing under any discrete group of symmetries, re-
sulting in the group-equivariant CNN (G-CNN). G-CNNs
enable G-equivariance to a broader range of symmetries,
such as rotation, reflection, and scale (Cohen & Welling,
2016; Bekkers et al., 2018; Worrall & Welling, 2019; Sos-
novik et al., 2021). However, the impact of G-CNNs is
closely tied to the presence of specific inductive biases in
the data. Yet, for many types of data, including natural im-
ages and sequence data, exact symmetries are not present or
known, leading to overly constrained models that can suffer
in performance (Wang et al., 2022; Romero & Lohit, 2021;
Allingham et al., 2024; van der Ouderaa et al., 2023).

In this work, we tackle the challenge of specifying group
symmetries upfront by introducing a general weight-sharing
scheme. Our method can represent G-CNNs as a special
case but is not limited to exact equivariance constraints,
offering greater flexibility in handling various symmetries
in the data. Inspired by the idea that group equivariance
for finite groups can be achieved through weight-sharing
patterns on a set of base weights (Ravanbakhsh et al., 2017),
we propose learning the symmetries directly from the data
on a per-layer basis, requiring no prior knowledge of the
possible symmetries.

We leverage the fact that regular group representations act as
permutations and that the expectation of random variables
defined over this set of permutations is a double stochastic
matrix (Birkhoff, 1946). This implies that regular partial
group transformation can be approximated by a stack of dou-
bly stochastic matrices which essentially act as (soft) per-
mutation matrices. Consequently, we learn a set of double
stochastic matrices through the Sinkhorn operator (Sinkhorn,
1964), resulting in weight-sharing under learnable group
transformations. We summarize our contributions as fol-
lows:

1. We propose a novel weight-sharing scheme that can adapt
to group actions when certain symmetry transformations
are present in the data, enhancing model flexibility and
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performance.

2. We present empirical results on augmented MNIST and
CIFAR10, demonstrating the effectiveness of our approach
in learning relevant weight-sharing schemes when clear
symmetries are present.

3. We provide a thorough analysis of the learned symme-
tries and their impact on downstream tasks, showcasing the
practical benefits of our method.

2. Background
We begin by revisiting group convolutional methods in the
context of image processing, followed by their relation to
weight-sharing schemes. Some basic familiarity with group
theory and representations is assumed and the relevant pre-
liminaries are covered in A.1.

Group convolution Consider feature maps f : X → RD

over some domain on which a group action is defined, i.e.,
over a G-space. E.g., for images (signals over X = R2)
we could consider the group G = (R2,+) of translations,
which acts on X via gx = x + y, with g = (y) a transla-
tion by y ∈ R2. While the group G merely defines how
two transformations g, h ∈ G applied one after the other
correspond to a net translation gh ∈ G, a representation ρ
concretely describes how data is transformed. E.g., signals
f : X → R can be transformed via the left-regular represen-
tation [ρ(g)f ](x) := f(g−1x), which in the case of images
and the translation group is given by [ρ(g)f ](x) = f(x−y).

In general, group convolution is defined as transforming a
base kernel under every possible group action, and for every
transformation take the inner product with the underlying
data via

G conv inner product form: (k ⋆G f)(g) = ⟨ρ(g)k, f⟩ , (1)

with ⟨·, ·⟩ denoting the inner product. For images, which
are essential functions over the group G = (R2,+), and
taking ⟨k, f⟩ :=

∫
X
k(x)f(x)dx the standard inner prod-

uct, Eq. (1) boils down to the standard cross-correlation
operator1:
G conv integral form:

(k ⋆ f)(g) =

∫
G

k(g−1h)f(h)dh (2)

standard (R2,+) conv:

(k ⋆ f)(x) =

∫
R2

k(x′ − x)f(x′)dx′ . (3)

Semi-direct product groups When equivariance to larger
symmetry groups is desired, e.g. in the case of G = SE(2)

1Due to the equivalence between convolution and correlation
via kernel reflection, we henceforth simply refer to operators of
the type of (2) as convolution even though technically they are
cross-correlations.

roto-translation equivariance for images with domain X =
R2, a lifting convolution can be used to generate signals
over the group G. In essence it is still of the form of (2),
however integration is over X instead of over G:

G lifting conv:

(k ⋆ f)(g) =

∫
X

k(g−1x)f(x)dx (4)

SE(2) lifting conv:

(k ⋆ f)(x,R) =

∫
R2

k(R−1(x′ − x))f(x′)dx′ , (5)

with g = (x,R) ∈ (R2,+)⋊ SO(2). The roto-translation
group is an instance of a semi-direct product group (denoted
with ⋊) between the translation and rotation group, which
has the practical benefit that a stack of rotated kernels can be
precomputed (Cohen & Welling, 2016), and the translation
part efficiently be taken care of via optimized Conv2D
operators. Namely via (k ⋆ f)(x,Ri) = Conv2D[ki, f ],
with ki := k(R−1

i x). This trick can also be applied for full
group convolutions (2).

3. Method
Our goal is to identify the underlying symmetries in datasets
where exact symmetries are unknown, ensuring parameter
efficiency and avoiding strict group constraints. We revisit
regular representations and their essential function in for-
mulating the group convolution equation (1). Transitioning
from theoretical constructs to practical implementations, we
interpret regular representations as permutations to derive
a weight-sharing scheme from a base vector of weights.
Our approach, characterized by the use of doubly stochas-
tic matrices, lays the groundwork for developing adaptive
weight-sharing layers that intuitively learn dataset symme-
tries. We cover a positioning of our work within existing
literature in Appendix C.

Weight-sharing through learnable representations To
achieve weight-sharing over a finite set of symmetries, we
define learnable representations ρ : G → GL(V ). Specif-
ically, we assign a learnable transformation (permutation
matrix) to each element in G. It is important to note that we
refer to G and ρ as a ”group” and ”representation” in a loose
sense, as we relax the homomorphism property and do not
initially endow G with a group product. Consequently, the
collection of linear transformations does not form a group
representation a priori. However, our proposed method is
capable of modeling this structure in principle.

Regular representations as permutations Consider the
case of a continuous group G, e.g. of rotations SO(2),
and a real signal f : G → R over it. This signal is to be
considered an infinite dimensional vector with continuous
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”indices” g ∈ G that index the vector elements f(g). To
emphasize the resemblance of the regular representation to
permutation matrices we write it as

Reg. repr. in integral form: [ρ(g)f ](i) =

∫
G

Pg(i, h)f(h)dh ,

with Pg(i, h) = δg−1i(h) a kernel that for each g maps h
to a new ”index” i ∈ G, where the Dirac delta essentially
codes for the group product as δg−1i(h) is non-zero only if
g−1i = h ⇔ g · h = i.

The discrete counterpart of such an integral transform is
matrix-vector multiplication with a matrix ρ(g) = Pg with
entries Pghi = 1 if gh = i and zero otherwise. As a
concrete example, consider a signal f : G → R over the
discrete group G = C4 of cyclic permutations of size 4, i.e.,
a periodic signal of length four, then we could vectorize it as
vg = f(g) and the regular representation becomes a simple
permutation matrix with

P0 =

(
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)
, P1 =

(
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

)
,

P2 =

(
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

)
, P3 =

(
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

)
.

We refer to the collection of permutation matrices P ∈
[0, 1]|G|×|G|×|G| as the permutation tensor.

Recall that the regular convolution operator (2) is not
only defined for signals over groups G but for G-spaces
X , in general, as in Eq. (4). It requires a representa-
tion that acts on signals (convolution kernels) over X .
However, since the group G acts by automorphisms (bi-
jections) on the space X , we can define the regular rep-
resentation—as before—using permutation integral with
Pg(x, x

′) = δg−1x(x
′) that effectively sends old ”indices”

x′ to their new location x, or concretely via permutation
matrices P of shape |G|×|X|×|X|, where X is the domain
of the signal that is transformed—which can also be G.

In practice, it is common that we perform a discretization
of continuous signals f , e.g., when we work with images,
we discretize the continuous signal f : R2 → RC to
f : Z2 → RC . Therefore, the group action over the dis-
cretized signal should approximate the group action over
the continuous signal. We can see that in some cases, the
group representation of the action on the discrete signal
can still be implemented using permutation matrices. E.g.,
90◦ rotations (in C4) applied to images merely permute the
pixels. However, for finer discretizations, e.g. using 45◦ ro-
tations, interpolation can be used as a form of approximate
permutations (Lafarge et al., 2021).

Weight sharing In a discrete group setting, we then see
that convolution (1) is obtained by multiplications with ma-

trices obtained by stacking permuted base kernel weights
w ∈ R|X|

Discrete G conv: fout = Wf in , (6)

with W = Pw :=

 (P0w)T

(P1w)T

...

 ∈ R|G|×|X| .

E.g., a group convolution over C4 is implemented with a

matrix of the form W =

(
w0 w1 w2 w3
w3 w0 w1 w2
w2 w3 w0 w1
w1 w2 w3 w4

)
. More generally,

we can model (partial) equivariance through relaxation of
the permutation constraint, by instead employing double
stochasticity. A more thorough motivation can be found in
Appendix B.

Regular representations allow for element-wise acti-
vations An important practical element of using regu-
lar representations to define group convolutions is that
permutations commute with element-wise activations,
namely, [ρ(g)σ(f)](i) = σ(f)(g−1i) = σ(f(g−1i)) =
σ([ρ(g)f ](i)). In contrast, steerable methods—based on
irreducible representations (cf. App. A.4)—require special-
ized activation functions so as not to break group equivari-
ance. Such activations in practice are not as effective as
the classic element-wise activations such as ReLU (Weiler
& Cesa, 2019). Hence, when learning weight-sharing
schemes—as is our objective—it is preferred to achieve
weight-sharing using regular representations without the
risk of breaking equivariance by using standard activation
functions.

Weight Sharing Convolutional Neural Networks Now
everything is in place to define our Weight Sharing Con-
volutional Neural Networks (WSCNNs). We let Θl

i ∈
R|X|×|X| be a collection of learnable parameters that
parametrize the representation stack of the layer l as Rl =
(SK(Θl

0), S
K(Θl

1), ..., S
K(Θl

N ))T ∈ [0, 1]|G|×|X|×|X|.
I.e., we parameterize this tensor as a stack of |G| approxi-
mate doubly stochastic |X|-dimensional matrices, wherein
stochasticity is enforced via K applications of the Sinkhorn
operator (see Appendix A.3). We also define a set of learn-
able base weights θl ∈ R|X|×Cout×Cin . The WSCNN layer
is then simply given by Eq. (6) with P and w respectively
replaced by Rl and θl.

We further note that on image data |X| can be large, making
the discrete matrix form implementation computationally
demanding. Hence, we consider semi-direct product group
parametrizations for G, in which we let G be of the form
(Rn,+)⋊H , with H a learnable (approximate) group. Then,
the representation stacks will merely be of shape |H| ×
|X ′| × |X ′|, with |H| ≪ |G| the size of the sub-group
and |X ′| the number of pixels that support the convolution
kernel. Hence, in the context of 2D images with convolution
kernels of size k, |X ′| = k2. A WSCNN layer is then
efficiently implemented via a Conv2D[f ,Rlθl]. For group
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Table 1. MNIST with different transformations.
Test Acc.

Model Sharing Rot. MNIST ScaledMNIST

CNN Z2 98.48± 0.08 99.30± 0.01
GCNN Z2 ⋊ C4 98.96± 0.14 97.50± 0.15

WSCNN + norm learned 97.56± 0.07 99.27± 0.04
WSCNN + norm + ent learned 98.04± 0.11 99.24± 0.01

convolutions (after the lifting layer) the representation stacks
will be of shape |H| × (|X ′| × |H|)× (|X ′| × |H|).

4. Experiments
We first demonstrate that the proposed weight sharing
method can effectively pick up on useful weight sharing
patterns when trained on image datasets with different equiv-
ariance priors. Training setup, regularizers (norm and ent),
model architecture, and model sizes can be found in Ap-
pendix D. We then proceed to further analyze the learned
weight-sharing structures on a suite of toy datasets.

4.1. Image datasets and equivariance priors

We tested our weight-sharing scheme’s ability to recognize
data symmetries on augmented datasets, specifically evalu-
ating on rotated and scaled MNIST images, and CIFAR-
10 with no added train-time augmentation. MNIST, al-
tered by rotations (full SO(2)) and scaling (factors be-
tween [0.3, 1.0]), represents datasets with known symme-
tries, whereas CIFAR-10 represents unknown symmetries.

Performance comparisons were made against two models:
a C4-group convolutional model, which directly encodes a
subgroup of MNIST’s symmetries, and a standard CNN
with double the channels and no symmetry constraints.
The group convolutional model (GCNN), with fixed weight
sharing, and the standard CNN, lacking any predefined in-
ductive biases, framed the evaluation spectrum, with our
weight-sharing CNN (WSCNN) introducing a learnable,
semi-flexible weight-sharing approach.

In cases of misalignment between model and data symme-
tries, such as the C4-GCNN on scaled MNIST, performance
suffered. However, our WSCNN consistently achieved good
performance across all datasets, indicating its ability to pick
up on relevant weight-sharing patterns without needing fixed
group specifications.

Visual inspections and analysis on the rotatedMNIST exper-
iment further confirmed the WSCNN’s ability to adapt to
data symmetries, with learned kernels effectively rotating in
alignment with the data’s underlying patterns (see Appendix
F.1 for learned transformations applied to kernels), and the
representation stack often resembling C4 permutations, as
illustrated in Fig 1).

Table 2. CIFAR10 results.
Model # Elem. Test Acc.

CNN 32 - 70.50± 0.62
CNN 64 - 76.29± 0.57
GCNN 4 76.72± 0.26

WSCNN + norm 4 78.80± 0.46
WSCNN + norm + ent 4 76.80± 1.40

Figure 1. Comparison of C4 representations and the representation
stack learned by the lifting layer on the rotated MNIST dataset.

Table 2 presents the CIFAR-10 results. Notably, when main-
taining an equal number of channels, rotational equivariance
significantly enhances performance compared to a conven-
tional CNN (referred to as CNN 32) with the same chan-
nel capacity. Moreover, our model with a learned weight-
sharing scheme surpasses both approaches, even when the
CNN’s channel dimension is doubled to increase the num-
ber of free kernels (referred to as CNN 64). This suggests
our model is able to effectively pick up on relevant weight-
sharing patterns from training data.

4.2. Learning Partial Equivariances

We tested our model’s ability to recognize data symmetries
on a series of toy problems featuring noisy G-transformed
samples. The data generation details and results are outlined
in Appendix E. Additionally, we tested the ability to pick up
partial group structures in Appendix F.1. Our experiments
used a single-layer setup to learn kernels matching each data
sample despite inherent noise, focusing on identifying base
kernels and their transformations to accommodate the toy
problems’ variability.

5. Conclusion
We demonstrated a method for identifying underlying sym-
metries in data without specific group constraints. Our
approach learns symmetries even in partial or approxi-
mate forms, reflecting realistic scenarios. By using doubly
stochastic matrices and adapting kernel weights for convo-
lutions, we enable flexible learning of the representation
stack. For future work, we see an opportunity to enhance
our approach by hierarchically weight-sharing across layers
and encouraging group equivariance. This involves reusing
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the learned group structure by identifying the Cayley tensor
(akin to (Marchetti et al., 2023)) in each layer and promoting
a shared group structure throughout the network.
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A. Preliminaries
A.1. Groups

We are interested in (symmetry) groups, which are algebraic constructs that consist of a set G and a group product—which
we denote as a juxtaposition—that satisfies certain axioms, such as the existence of an identity element e ∈ G such that for
all g ∈ G we have eg = ge = g, closure such that for all g, h ∈ G we have gh ∈ G, the existence of an inverse g−1 for
each g such that g−1g = e, and associativity such that for all g, h, i ∈ G we have (gh)i = g(hi).

A.2. Representations

In the context of geometric deep learning (Bronstein et al., 2021), it is most useful to think of groups as transformation
groups and the group structure describes how transformations relate to each other. Specifically, group representations
ρ : G → GL(V ) are concrete operators that transform elements in a vector space V in a way that adheres to the group
structure (they are group homomorphisms). That is, to each group element g, we can associate a linear transformation
ρ(g) ∈ GL(V ), with GL(V ) the set of linear invertible transformations on vector space V .

A.3. Sinkhorn normalization

The Sinkhorn operator (Sinkhorn, 1964; Adams & Zemel, 2011) transforms an arbitrary matrix to a doubly stochastic one
through iterative row and column normalization, provided that the number of iterations is large enough. That is, initialize a
tensor X ∈ RN×N , then it will converge to a doubly stochastic tensor via the following algorithm:

S0(X) = exp(X) , Sl(X) = Tc(Tr(S
l−1(X))) , SN ∋ S = lim

l→∞
Sl(X) , (7)

with Tc and Tr the normalization operators over the rows and columns, respectively, defined as Tc = X ⊘ 1N1T
NX︸ ︷︷ ︸

sumc(X)

and Tr = X ⊘X1N1T
N︸ ︷︷ ︸

sumr(X)

, where ⊘ denotes elementwise division, sumc(·), sumr(·) perform column-wise and row-wise

summation, respectively.

A.4. Irreducible representations

In this section, we closely follow the mathematical preliminaries outlined in (Weiler & Cesa, 2019). For a comprehensive
reference on Representation Theory, see (Serre et al., 1977).

Equivalent representations Two representations ρ and ρ′ of a group G are considered equivalent if there exists a similarity
transform such that:

∀g ∈ G ρ(g) = Qρ′(g)Q−1

where Q represents a change of basis matrix.

Irreps A matrix representation is called reducible if it can be decomposed as:

ρ(g) = Q−1(ρ1(g)⊕ ρ2(g))Q
−1 = Q

(
ρ1(g) 0
0 ρ2(g)

)
Q−1

where Q is a change of basis matrix. If the sub-representations ρ1 and ρ2 cannot be further decomposed, they are termed
irreducible representations (irreps). The set of all irreducible representations of a group G is denoted as Ĝ.

Additionally, any representation ρ : G → GL(V ) of a compact group G can be expressed as:

ρ(G) = Q

⊕
j∈I

ρj

Q−1

where I is an index set (possibly with repetitions) over Ĝ.
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Similarly to what we showed in Section 3, a representation ρ : G → Rd×d can be viewed as a collection of d2 functions
over G. The Peter-Weyl theorem asserts that the collection of functions formed by the matrix entries of all irreps in Ĝ
spans the space of all square-integrable functions over G. For most groups, these entries form an orthogonal basis, allowing
any function f : G → R to be written as:

f(g) =
∑
ρj∈Ĝ

∑
m,n<dj

wj,m,n ·
√
dj [ρj(g)]mn

where dj is the dimension of the irrep ρj , while m,n index the entries of ρj . Note that this expression corresponds to the
inverse Fourier transform and that the coefficients wj,m,n can be obtained by the Fourier transform of f with respect to the
basis functions {[ρj(g)]mn}j∈I .

Connection with regular representations It can be shown that the regular representations can be decomposed using the
corresponding irreps as follows:

ρreg(g) = Q−1

⊕
pj

dj⊕
ρj

Q

where Q performs the Fourier transform, while Q−1 performs the inverse Fourier transform. This implies that when
functions f : G → R are considered as vectors in R|G|, with a basis where each axis corresponds to a group element,
then, as we have seen in Section 3, the group action results in a permutation of these axes. However, applying the Fourier
transform changes the basis so that G acts independently on different subsets of the axes, resulting in the action being
represented by a block-diagonal matrix, which is the direct sum of irreps.

B. Doubly stochastic matrices as expected regular group representations
Let S∞ (Sn) denote respectively the system of infinite (n× n) double stochastic matrices, i.e. matrices S ≡ {sij ∈ [0, 1] :
i, j = 1, 2, ...(, n)} such that

∑
j sij = 1, and

∑
i sij = 1. Let P∞ (Pn) denote respectively the system of infinite (n× n)

permutation matrices, i.e. matrices P ≡ {pij ∈ {0, 1} : i, j = 1, 2, ...(, n)} such that
∑

j pij = 1, and
∑

i pij = 1. Note
that for any permutation tensor P ∈ R|G|×|X|×|X|, where X is the domain of the signal that is transformed by the group G,
then Pg ∈ P|X| for every g ∈ G.

Then, by Birkhoff’s Theorem (Birkhoff, 1946), and its extension to infinite dimensional matrices, commonly called
Birkhoff’s Problem 111 (Isbell, 1962; Révész, 1962; Kendall, 1960), we have that any convex combination of permutation
matrices will be equal to a double stochastic matrix, i.e,∑

P∈Pn

λ(P )P = S ∈ Sn, with
∑

P∈Pn

λ(P ) = 1 (∀n ∈ N ∪ {+∞})

where λ(P ) gives a probability measure supported on a finite subset of the set of permutation matrices P . Therefore:

Using double stochastic matrices, we can model approximate equivariance as defined in (Romero & Lohit, 2021).

I.e., let S be a random variable over {Pg ∈ P|X| | g ∈ G} with a finitely supported probability measure P[S = Pg] = λ(Pg)
for every g ∈ G, then S = E[S] =

∑
g∈G P[S = Pg]Pg is a double stochastic matrix. We want to note that S can be seen

as a generalization of the convolution matrix presented in (Liu, 2023).

C. Related Works
Partial or relaxed equivariance Methods such as (Romero & Lohit, 2021; Benton et al., 2020; Allingham et al.,
2024) learn partial equivariance by learning distributions over transformations, and thereby aim to learn partial or relaxed
equivariances from data by sampling some group elements more often than others. (Wang et al., 2022) tries to relax
equivariance by introducing learnable equivariance-breaking components. However, these methods require pre-specified sets
of symmetry transformations to be known beforehand. In contrast, we aim to pick up the relevant symmetry transformations
during training.
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Symmetry discovery methods (Sanborn et al., 2022; Marchetti et al., 2023) learn the group structure via (irreducible)
group representations. (Sanborn et al., 2022) proposed to learn the Fourier transform of finite compact commutative
groups and their corresponding bispectrum by learning to separate orbits on our dataset. This approach can be extended to
non-commutative finite groups leveraging advanced unitary representation theory (Marchetti et al., 2023). However, these
methods are constrained to finite-dimensional groups and require specific orbit-predicting datasets. In contrast, our approach
learns a relaxation of regular group representations—as opposed to irreducible representations (see further discussion in
Appendix A.4). Moreover, our approach is not merely capable of learning symmetries, it subsequently utilizes them in a
regular group-convolution-type architecture.

Weight-sharing methods Previous studies have demonstrated that equivariance to finite groups can be achieved through
weight-sharing schemes applied to model parameters. Notably, the works in (Ravanbakhsh et al., 2017), (Zhou et al., 2020),
and (Yeh et al., 2022) provide foundational insights into this approach. In (Zhou et al., 2020), weight-sharing patterns are
learned by using a matrix that operates on flattened canonical weight tensors, effectively inducing weight sharing. They
additionally prove that for finite groups, there are weight-sharing matrices capable of implementing the corresponding
group convolution. However, their approach requires learning these patterns through meta-learning and modeling the
weight-sharing matrix as an unconstrained tensor. In contrast, our method learns weight sharing directly in conjunction with
the downstream task and enforces the matrix to be doubly stochastic, thereby representing soft permutations by design.

(Yeh et al., 2022) presents an approach closely aligned with ours, where a weight-sharing scheme is learned that is
characterized by row-stochastic entries. Their method involves both inner- and outer-loop optimization and demonstrates the
ability to uncover relevant weight-sharing patterns in straightforward scenarios. However, their approach does not support
joint optimization of the canonical weights and weight-sharing pattern, and they acknowledge difficulties in extending
their method to higher input dimensionalities. Unlike (Yeh et al., 2022), we enforce both row and column stochasticity.
Additionally, we can optimize for the sharing pattern and weight tensors jointly, and successfully apply our approach to
more interesting data domains such as image processing.

In (Theodosis et al., 2023), group actions are integrated directly into the learning process of the downstream task. This
method involves learning a set of generator matrices that operate via matrix multiplication on flattened input vectors.
However, this approach constrains the operators to members of finite cyclic groups, which inherently limits their ability
to represent more complex group structures. Furthermore, this restriction precludes the possibility of modeling partial
equivariances, reducing the flexibility and applicability of the model to more diverse or complex scenarios.

D. Experiment details
D.1. Regularizers.

We test two regularizers on the representations R, which are similar to those used by (Yeh et al., 2022):

• Entropy Regularizer: The primary motivation for using the entropy regularizer is to encourage sparsity in our
weight-sharing schemes, which helps the matrices approximate actual permutation matrices rather than simply being
doubly stochastic. This approach stems from the intuition for some transformations, the weight-sharing schemes should
mimic soft-permutation matrices. The effectiveness of this sparsity depends on the specific group transformations
relevant to the task—for example, C4 rotations are typically represented by exact permutation matrices. In contrast,
CN rotations or scale transformations might require interpolation, thus aligning more closely with soft permutation
matrices. Our experimental results indicate that the utility of this regularizer varies with the underlying transformations
in the data; for instance, it is not beneficial for scale transformations in the MNIST dataset, as anticipated. The entropy
regularizer is of the following form:

H(R) = −
N,D,D∑
ijk

Rijk · log(Rijk)

• Normalization Regularizer: Empirically, we have found the normalization regularizer essential for reducing the
number of iterations needed by the Sinkhorn operator to ensure the matrices are row and column-normalized. Without
this regularizer, the tensors either fail to achieve double stochasticity or require an excessively high number of Sinkhorn
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iterations to do so. The normalization regularizer is of the following form:

N(R) =
1

D

D∑
i

sumr(R)2i + sumc(R)2i

Where sumr, sumc are defined as in A.3.

Effect of the entropy regularizer The influence of the entropy regularizer was assessed on the augmented MNIST datasets
across 50 training epochs. Results varying the entropy loss weight (λent) across different numbers of representation stacks
are detailed in Table 3. For the rotated MNIST, where C2 and C4 rotations are expected to match exact permutations, the
application of entropy regularization was anticipated to be advantageous. In contrast, for ScaleMNIST, where weight-sharing
patterns are not expected to be exact permutation matrices, entropy regularization was found to reduce performance.

Table 3. Effect of different weightings for the entropy regularizing term.

Rot. MNIST Scale MNIST

λent

|G|
2 3 4 5 4

0 98.076 97.90 97.66 97.78 99.40

0.001 97.88 97.76 97.61 97.66 99.30
0.01 98.03 97.82 97.74 97.51 99.37
0.1 98.08 97.96 97.73 97.53 99.39

D.2. Architectural details

Model architecture We found it to be beneficial to fix an identity element in the representation stacks, which implies
that the first stack of transformed filters corresponds to the raw network filters. We used the following architectures for the
MNIST and CIFAR10 datasets:

• MNIST. For all MNIST experiments, a simple 5-block CNN was used. Each block uses a kernel size of 5 and is
succeeded by instance norm and ReLU activation, respectively. After the final convolution block, any spatial and group
dimensions are reduced through a global average pooling operation, and a single linear layer is used as a classification
head. We used a group convolution layer and our proposed weight sharing convolution layer as a drop-in replacement
for the regular Conv2d modules in all experiments. For the group convolutional model and our weight sharing model,
the default hidden channel dimension in the blocks was set to 32 unless otherwise stated, and 64 in the regular CNN
models.

• CIFAR10. We used the ResNet architecture as in (Knigge et al., 2022) Appendix B.1, except that we swapped the final
global max pooling operator with a global mean pooling. However, in contrast to (Knigge et al., 2022), we use regular
discrete kernels instead of continuous kernel parameterizations.

Training details For MNIST, the models used a learning rate of 1e-2 and were trained for 100 epochs. For CIFAR10,
following (Knigge et al., 2022), we trained the models for 200 epochs using a learning rate of 1e-4. All the experiments
were done on a single GPU with 24GB memory under six hours.

D.3. Network sizes

Table 4. Model sizes for different datasets. For the weight-sharing CNNs we distinguish between the number of free model and kernel
parameters and the parameters of the weight sharing scheme with +

MNIST CIFAR10
Model CNN GCNN WSCNN CNN 32 CNN 64 GCNN WSCNN

Num. Params. 412 K 410 K 410 + 122 K 428 K 1.66 M 1.63 M 1.63 M + 468 K
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E. Toy problems
E.1. Data generation processes

For the construction of the toy problems, we look at two types of data-generating processes:

Equivariant data. Assume a canonical vector x̂ and corresponding label ŷ. We assume these vectors transform under a
known group G, such that the data-generating process is as follows:

Sample group action: g ∼ µ(G),

Apply group action to feature with noise: x = ρx(g)x̂+ ϵ

Apply group action to label: y = ρy(g)ŷ

with ρx, ρy the representations of G acting on the feature and label space, respectively.

(a) (b)

Figure 2. Samples of the two tasks. Left: Equivariant task. The labels transform with the data. Right: Invariant task. The labels are fixed.

E.2. Additional results: toy problems

We conducted experiments on various signals subjected to different transformations, including: a 1D signal with cyclic shifts
(exemplary samples shown in Fig. 2), a 2D signal with C8 rotations (illustrated in Fig. 4), and a 3D voxel grid enhanced
by 24 cube symmetries. In each scenario, the learned kernel stack accurately matched the data samples, achieving perfect
accuracy. Fig. 3 displays the learned representations for localized shifts in the 1D signal, while Fig. 5 presents the learned
kernel stack for the 2D signal dataset.
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Figure 3. Representations learned for 1D equivariant shift task

Figure 4. Samples of the 2D-signal dataset.

Figure 5. Equivariant task for flattened rotated 2D signals. Learned kernel stack

F. Additional results
F.1. Rotated MNIST: Learned kernels from the lifting layer

Figure 6. Learned kernels from the lifting layer of WSCNN, applied to rotated MNIST and reshaped to [No., of, elements, Cout]. Since
P1 is set as the identity operator, the first column displays the raw kernels. Subsequent columns illustrate the effects of each learned
transformation applied to the base tensors.

F.2. Visualization of G-Conv layers

Figure 7 displays the ground truth permutation matrices that implement a shift-twist operator, which is the group transfor-
mation that underlies regular group convolution operator for C4 rotations. Figure 8 illustrates the corresponding matrices
learned for each learnable weight sharing layer on the rotated MNIST dataset. The learned matrices closely show similar
patterns as the shift-twist operator, suggesting the model’s ability to capture such transformations from training data.
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Figure 7. Ground-truth permutation matrices for C4 rotations for 5× 5 spatial kernel, implementing a shift-twist operator.

Figure 8. Learned representations for the weight-sharing G-conv layers. Top to bottom: first to last layer learned representation stacks.
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F.3. Learning partial equivariance

To assess whether our method effectively captures the underlying data symmetries, we analyze the learned weight-sharing
structure by comparing it to known ground truth patterns. Since our model does not impose associativity or any strict group
constraints on the representation stack, it may learn to represent mixtures or interpolations of group elements. Hence, in
general, we will not observe a relevant algebraic structure if we produce a Cayley table based on the learned representations
as done in (Sanborn et al., 2022; Marchetti et al., 2023).

Therefore, we will use an approach that allows us to capture the flexibility of our representations. To this end, we will
examine each representation matrix to determine how closely it resembles a convolution matrix (Liu, 2023) associated
with a random variable defined over some specific group G. We employ the set of group actions from G, represented as
approximate permutation tensors {Pgt

k }|G|
k=1, as a reference framework to quantify the fit and alignment of our model’s

representations with these predefined group actions. As such, for each learned weight sharing tensor Rl
i, we calculate the

fit P̂i =
∑|G|

k ckP
gt
k and acquire coefficients ck > 0, such that

∑|G|
k ck = 1 in a constrained linear regression setup by

minimizing ||P̂i −Rl
i||2.

To verify if our model can detect partial group structures, we assessed it using two datasets: a 1D signal with cyclical shifts,
and a 3× 3× 3 voxel grid with rotations from C4 ×C4. The cyclical shifts dataset used the full set of shifts as ground truth.

Figure 9(a, b) displays the coefficient results, where part (a) shows uniform training across group elements and part (b)
shows training with the first half of the elements, demonstrating the model’s capability to handle partial transformations
effectively. Fig. 10 shows the coefficients for the C4 × C4 × C4 cube symmetries, indicating that our model primarily
identifies transformations aligned with the C4 × C4 data augmentations.

(a) Shift-dataset with uniformly sampled
group elements.

(b) Shift-dataset with partially sampled
group elements.

Figure 9. Coefficient responses of learned representations and their base transformations.
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Figure 10. Coefficients for the cube dataset with C4 × C4 rotations with C4 × C4 × C4 base elements. We show the coefficients for the
base representations of C4 × C4 × C4 cube symmetries. The x-axis quantifies the permutation representation for each element consisting
of the number of 90-degree flips around each x, y or z axis.

15


