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Abstract
Unfamiliar terminology and complex lan-001
guage can present barriers to understanding002
science. Natural language processing stands003
to help address these issues by automatically004
defining unfamiliar terms. We introduce a005
new task and dataset for defining scientific006
terms and controlling the complexity of gen-007
erated definitions as a way of adapting to a008
specific reader’s background knowledge. We009
test four definition generation methods for this010
new task, finding that a sequence-to-sequence011
approach is most successful. We then explore012
the version of the task in which definitions are013
generated at a target complexity level. We in-014
troduce a novel reranking approach and find015
in human evaluations that it offers superior flu-016
ency while also controlling complexity, com-017
pared to several controllable generation base-018
lines.019

1 Introduction020

Unfamiliar concepts and complex language can021

make understanding scientific information difficult022

for readers (Brossard and Shanahan, 2006; Shea,023

2015; Martínez and Mammola, 2021), especially024

because understanding such terms is highly de-025

pendent on their domain knowledge. Given the026

wide variation in such knowledge, providing a one-027

size-fits-all definition may not be sufficiently un-028

derstandable for all readers.029

We envision a software tool designed to aid read-030

ers with varying domain knowledge by automati-031

cally defining scientific terms. Such a tool would032

afford readers control over generated definitions,033

including their complexity. This hypothetical sys-034

tem motivates research on automated generation of035

scientific definitions and generation-time control036

of definition complexity.037

Prior work in generating definitions and person-038

alizing generations to a reader falls short of these039

goals. Most definition generation has focused on040

common, general-usage words in English (Noraset041
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Figure 1: Example of our task. Definitions are gener-
ated with a controlled amount of complexity based on
the question, “What is (are) X?”

et al., 2017; Balachandran et al., 2018); however, 042

these approaches and models may not be suitable 043

for generating scientific definitions (Beltagy et al., 044

2019). Scientific terms rarely reach common usage 045

(Shea, 2015; Britt et al., 2014) and the contexts 046

in which their definitions might appear (e.g., a re- 047

search paper) are often much more complex than 048

general-purpose resources for definitions (e.g., dic- 049

tionaries or standard word embeddings). Previous 050

methods focused on reader personalization have 051

aimed at generating based on a reader’s prior knowl- 052

edge and interests (Acharya et al., 2018; Murthy 053

et al., 2021). These approaches work well when 054

models can leverage a reader profile (Murthy et al., 055

2021) or incorporate reader feedback over time. 056

However, in many cases a model might not have 057

access to this additional information, such as for 058

newcomers in an online forum discussing scientific 059

findings (August et al., 2020a). We are interested 060

instead in providing readers the ability to explicitly 061

set definition complexity suited to their technical 062

comfort (McNamara and Kintsch, 1996; Kintsch, 063

1994; Kim et al., 2016). 064

We introduce a new task for generating defini- 065

tions of scientific and medical terms with varying 066

complexity (§2; Joshi et al., 2017; Fan et al., 2019). 067
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Our dataset (§3) is constructed from consumer med-068

ical questions and science glossaries containing069

words that vary in their complexity and frequency.070

We start by evaluating four modeling approaches071

for generating definitions, finding that, among072

them, a finetuned BART model is most success-073

ful at this new task (§4). As a first step to adjusting074

definition complexity, we introduce methods to ex-075

plicitly set definition complexity as either high or076

low at generation time.077

To our knowledge, this is the first paper using078

decoding-time controllable generation techniques079

on text complexity. We operationalize complex-080

ity based on readability and science communica-081

tion research (Pitler and Nenkova, 2008; Gardner082

and Davies, 2013; Leroy et al., 2010) and eval-083

uate several state-of-the-art controllable genera-084

tion methods on this task (§5). We also develop a085

new, lightweight method for controlling generation086

based on discriminator ranking.087

Our automatic and human evaluations show that088

our lightweight method is effective at varying com-089

plexity while maintaining high fluency and reduc-090

ing factual errors. On publication, we will make091

our dataset, models, and evaluation scripts avail-092

able to encourage future work on this task.093

2 Definition Tasks094

Generating definitions has been approached as a095

word-to-sequence task, where language models096

used a word’s embedding to generate its defini-097

tion (Noraset et al., 2017). Recent work used a098

sequence-to-sequence setup for generating defini-099

tions instead, where the defined word was a high-100

lighted token in a sequence (Mickus et al., 2019).101

This conceptualization of definition modeling is102

an important starting point for addressing our task.103

However, new scientific terms are introduced regu-104

larly and many never appear in dictionaries or reach105

common usage (Shea, 2015; Britt et al., 2014), mak-106

ing it difficult to rely on general-purpose dictionar-107

ies (Kim et al., 2016). Scientific terms are also108

notoriously esoteric (e.g., hidden Markov model)109

or else overload definitions of common words (e.g.,110

transformer the model architecture versus trans-111

former the electrical device), both of which compli-112

cate the use of standard word representations from113

pretrained models (Beltagy et al., 2019).114

We address these issues by drawing inspiration115

from abstractive question answering (QA). Specif-116

ically, we frame our task as generating an answer117

to the question “What is (are) X?” This refram- 118

ing allows us to leverage scientific definitions from 119

more diverse sources (e.g., QA datasets) and to 120

incorporate domain-specific knowledge into defi- 121

nition generation by including supporting informa- 122

tion (§3.2; Chen et al., 2017; Joshi et al., 2017). 123

3 Dataset Collection 124

We collect a new dataset of definitions that are an- 125

swers to the question “What is (are) X?” where X 126

is a scientific term or concept (e.g., carbon nan- 127

otubes). These questions are roughly equally from 128

an existing QA dataset or templated from scientific 129

glossaries. 130

3.1 Sources 131

We draw definitions from two sources. 132

Medical consumer questions Ben Abacha and 133

Demner-Fushman (2019) collected 47,457 med- 134

ical questions from 12 National Institutes of 135

Health (NIH) websites and collected them into the 136

MedQuAD dataset. The dataset covers 37 differ- 137

ent question types. Three question categories are 138

focused on defining and providing information on 139

medical terms: “Information,” “How can I learn 140

more,” and “Other information.” 141

Manual inspection of these question categories 142

shows that all questions are of the form “What is 143

(are) X?” or “Do you have more information on 144

X?” Responses to the these questions begin with a 145

brief definition of X. After filtering for this question 146

type and removing questions with no answer due 147

to copyright restrictions, we had 4,525 definitions. 148

Wikipedia The MedQuAD questions are an ex- 149

cellent source of definitions, but only cover medical 150

terms. Because we are interested in tackling scien- 151

tific terms more broadly, we augment this set with 152

terms drawn from Wikipedia science glossaries.1 153

We extract all science-related terms and their def- 154

initions, yielding another 3,738 terms for a total 155

dataset of 8,263 terms.2 156

We split our dataset into training, development, 157

and test sets (8/1/1). Examples of terms in this 158

1https://en.wikipedia.org/wiki/
Category:Glossaries_of_science

2We explored using other QA datasets that included scien-
tific information to expand our coverage of scientific domains
outside of medicine, such as the Explain Like I am Five (Fan
et al., 2019) and ARC science exam question datasets (Clark
et al., 2018). We found these questions to be less focused on
definitions, though future work might find ways to make use
of them.
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Source Count Example Questions Example Definitions
MedQuAD 4,525 What is (are) complement

component 2 deficiency?
Complement component 2 deficiency is a disorder that causes
the immune system to malfunction, resulting in a form of im-
munodeficiency.

Wikipedia 3,738 What is (are) rotation pe-
riod?

The time that an object takes to complete a single revolution
about its own axis of rotation relative to the background stars.

Total 8,263

Table 1: Dataset statistics and examples.

dataset are in Table 1.159

3.2 Support Documents160

We next collect scientific abstracts related to each161

term to allow models to incorporate related scien-162

tific knowledge (Fan et al., 2019; Clark et al., 2018).163

Specifically, given a term question (i.e., “What is164

(are) X?”), we query S2ORC (Lo et al., 2020), a165

corpus of over 81 million scientific articles, for166

the top 10 related abstracts. Query scoring and re-167

trieval is done with Elasticsearch.3 These abstracts168

are concatenated together and form the input along169

with the term question for our models (§4).170

We use scientific abstracts, rather than general171

audience text like Wikipedia or the Common Crawl,172

for two reasons. First, scientific terms are originally173

introduced and most commonly used in research174

papers, making them the most reliable source for175

these terms. Second, terms can be contextual, hav-176

ing different meanings in common usage. Addi-177

tional details for collecting the terms and creat-178

ing the support documents are in Appendices A.1179

and A.2.180

3.3 Why Not Standard Dictionaries?181

Our goal is to create a definition dataset with (i)182

coverage of scientific and medical terminology and183

(ii) diverse levels of complexity, to support the184

application envisioned in §1. We conjecture that185

general-purpose dictionaries will lack coverage of186

such terms and tend to have complex definitions187

for those terms that they do include. Indeed, we188

found that less than 20% of the terms (191 out189

of 1,000) in the medical consumer portion of our190

dataset have entries in the Merriam Webster Dic-191

tionary (MW).4 The dictionary definitions also use192

substantially more academic vocabulary: an aver-193

age of 39% (s.d. 12%) of words in those dictio-194

nary definitions were in the Academic Vocabulary195

3https://www.elastic.co/
4For this analysis, we exclude the Wikipedia science glos-

sary terms since Wikipedia is also often used as a general-
purpose resource of definitions, and the Merriam Webster API
restricts us to 1,000 queries.

List (Gardner and Davies, 2013)—a list of words 196

that occur more frequently in academic writing 197

than common usage—compared to 29% (s.d. 12%) 198

in our definitions. Examples of definitions from 199

our dataset and from MW are in Table 7 in the 200

Appendix. 201

While complex definitions are not necessarily 202

bad, we want diverse complexity levels in our in- 203

put. While medical consumer questions tend to 204

use fewer specialized terms than a dictionary, we 205

also find that a random sample of 1,000 Wikipedia 206

terms in our dataset use close to as much special- 207

ized terminology as a dictionary (37%, s.d. 12%). 208

This provides us with a wider range of complex- 209

ity levels than were we to use a single source of 210

scientific definitions. We later explore how this 211

exposure to different complexity levels in the in- 212

put make it possible to control the complexity of 213

generated definitions (§5.2). 214

4 Definition Generation: Basic Models 215

Our first goal is to generate fluent definitions that 216

include relevant and accurate information about the 217

term being defined. Because this is a new task and 218

there are multiple reasonable approaches to gen- 219

erating fluent text (Prabhumoye et al., 2020), we 220

experiment with four methods that have performed 221

strongly in question answering and general-purpose 222

definition generation and evaluate their effective- 223

ness in this novel domain. For additional details on 224

the training setups and hyperparameter tuning for 225

the models described below, see Appendix A.3. 226

4.1 Methods 227

Sequence-to-Sequence: Finetuning BART (FT 228

BART) BART (Lewis et al., 2020) has been used 229

to define general English terms in context (Bevilac- 230

qua et al., 2020) and reached state-of-the-art results 231

on the Explain Like I am Five (ELI5; Lewis et al., 232

2020) QA dataset, which includes some questions 233

requiring scientific knowledge (e.g., “What is a 234

Turing Machine and why is it so important?”). 235
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We experiment with finetuning the BART pre-236

trained model on our task and dataset (referred to237

as FT BART). During training and generation we238

concatenate the term question with the supporting239

document. We use BART-large as our base model.5240

Out-of-the-Box Causal Language Modeling241

(OOTB GPT-2 and OOTB GPT-3) Recent work242

has also shown that large pretrained causal lan-243

guage models, such as GPT-2 and GPT-3, can gen-244

erate fluent answers to factual questions without245

finetuning (Brown et al., 2020).246

We experiment with using both GPT-2 and GPT-247

3 out-of-the-box (OOTB GPT-2 and OOTB GPT-3).248

We use GPT-2 medium6 and GPT-3 davinci7 for249

these experiments. For OOTB GPT-3, we evaluate250

with 100 terms due to OpenAI API limits. For gen-251

eration, we follow the few-shot setting proposed252

in Brown et al. (2020) and prepend two held-out253

question term and definition pairs before each gen-254

eration.255

We do not include the supporting documents in256

this few shot setting since doing so extends beyond257

GPT-2’s context window of 1024 tokens and pre-258

liminary results showed that the additional text led259

to fewer definitions and more repetition from the260

abstracts.261

Finetuning GPT-2 (FT GPT-2): Because OOTB262

GPT-2 and OOTB GPT-3 involve no finetuning or263

use of the support documents, we suspect that they264

will underperform FT BART. We experiment with265

finetuning the GPT-2 medium model (FT GPT-2)266

with the question and support document, separated267

by new special tokens.268

Information Retrieval (OOTB BIDAF): Infor-269

mation retrieval (IR) methods are an important part270

of many open-domain QA systems and have pre-271

sented a strong baseline in scientific question an-272

swering (Clark et al., 2018). We experiment using273

a pretrained BiDAF model (Seo et al., 2017) to274

extract the highest scoring span in the support doc-275

ument based on the term question (OOTB BIDAF).276

We use AllenNLP’s implementation of BiDAF277

trained on SQuAD.8278

5https://huggingface.co/facebook/
bart-large

6https://huggingface.co/gpt2-medium. We
obtain similar results when using GPT2-large.

7https://beta.openai.com/
8https://docs.allennlp.org/models/

main/models/rc/predictors/bidaf/

4.2 Results 279

Table 3 shows the ROUGE scores and BERTscore 280

for each modeling method on the development set 281

of our dataset.9 FT BART outperforms all other 282

models. OOTB GPT-3 performs surprisingly well, 283

outperforming even FT GPT-2. OOTB BIDAF ex- 284

tracts spans that don’t answer the question. 285

Table 2 provides examples of the generated defi- 286

nitions for each modeling approach. FT BART pro- 287

vides the most concise answer while also remain- 288

ing informative, compared to FT GPT-2’s definition, 289

which is circular (e.g., “Acanthoma (cancer) is a 290

type of cancer”). While most models show im- 291

pressive background knowledge, there is evidence 292

of incorrect or hallucinated information, such as 293

Acanthoma being a type of skin cancer (OOTB GPT- 294

2), these hallucinations are marked in Table 2. We 295

explore the amount of hallucinated information fur- 296

ther in §7.2. For the rest of the paper we use the FT 297

BART model since it outperforms other methods. 298

5 Controlling Definition Complexity 299

Automatically generating definitions is an impor- 300

tant first step in supporting readers who come 301

across unfamiliar scientific terms, but individuals 302

can have different tolerances for the complexity of 303

a definition depending on their domain knowledge 304

(Britt et al., 2014). The models we tested in Sec- 305

tion 4 were not trained to vary the complexity of 306

definitions; they do not adapt definitions to differ- 307

ent readers. Here we explore how to control the 308

complexity of generated definitions. 309

Controlling or guiding text generation is an ac- 310

tive research area with important applications like 311

toxicity control (Gehman et al., 2020) and language 312

debiasing (Ma et al., 2020). For a review, see Prab- 313

humoye et al., 2020. To the best of our knowledge, 314

ours is the first work to evaluate decoding-time con- 315

trollable generation methods for text complexity. 316

One task that has considered changing text com- 317

plexity is text simplification. Work on text simplifi- 318

cation has mostly used a machine translation setup 319

based on parallel corpora (Zhu et al., 2010; Cao 320

et al., 2020) to translate complex sentences into 321

simple ones. These parallel corpora are rare and 322

often expensive to create (Xu et al., 2015). This 323

setup also assumes an input text to be simplified 324

9We reserve our test for the experiments on complexity
control to avoid selecting models based on a test set that they
are later evaluated on. Hyperparameter tuning and finetuning
were done on split subsets of the training data.
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Model Response
FT BART Acanthoma is a skin lesion that develops from cells in the skin.
FT GPT-2 Acanthoma (cancer) is a type of cancer.
OOTB GPT-2 Acanthoma is a type of skin cancer that is caused by the fungus Acanthamoeba histolytica. It is a

common skin cancer in the United States, and it is also found in other parts of the world, such
as the United Kingdom, Australia, and New Zealand.

OOTB GPT-3 An Acanthoma is a form of skin cancer which can also be termed as a skin tumor that arises from
the cells of the epidermis, is usually pinkish in color and may or may not be itchy. Acanthomas are
classified in various ways based on their histological appearance, such as:

OOTB BIDAF Broad Line Region

Table 2: Generated definitions from each modeling approach for the question: “What is (are) Acanthoma?” Factu-
ally incorrect information is labelled in bold red.

Model ROUGE (↑) BERT (↑)
1 2 L

FT BART 0.33 0.16 0.30 0.89
FT GPT-2 0.27 0.08 0.24 0.87
OOTB GPT-2 0.20 0.05 0.16 0.85
OOTB GPT-3 0.30 0.14 0.27 0.87
OOTB BIDAF 0.03 0.00 0.03 0.80

Table 3: ROUGE and BERT scores for basic definition
generation methods..

(Surya et al., 2019), whereas our task expects that325

the text will be generated with varying complexity.326

5.1 Baseline Generation Control Methods327

Below we describe prior methods, used as baseline328

generation control methods. In each case, we focus329

on a binary distinction between “low complexity”330

and “high complexity” definitions, leaving more331

fine-grained distinctions to future work. We also332

introduce a novel lightweight approach based on333

reranking candidate generations in §5.2. Additional334

details for training are in Appendix A.4.335

Plug-and-play language models PPLM336

(Dathathri et al., 2020) is a technique to guide337

generation using the gradients of a classifier for a338

particular desired text attribute. At each generation339

step, the classifier’s gradients are used to update340

the language model’s hidden representations.341

Due to the computational expense of PPLM, we342

evaluate with 100 randomly sampled test set terms.343

We train our attribute classifier on sentences344

from scientific journal abstracts and scientific news345

articles. Journal abstracts are sampled from the346

ArXiv dataset (Clement et al., 2019) and used to347

guide to more complex language. Scientific news348

articles are sampled from a corpus of science news349

articles (August et al., 2020b) and used to guide350

towards less complex language.351

Generative discriminators The GeDi method 352

(Krause et al., 2021) uses a class-conditioned lan- 353

guage model trained on text with a certain desired 354

(or undesired) feature (e.g., toxicity) to guide gener- 355

ation. At each generation step, the model provides 356

next token probabilities to the generator via Bayes’ 357

rule. We train a new GeDi on the same dataset of 358

science news and journal articles as for PPLM. 359

Ensemble of language models DExperts (Liu 360

et al., 2021) combines multiple pretrained language 361

models in an ensemble of “experts” and “anti- 362

experts.” Specifically, a base language model is 363

combined with a language model trained on text 364

with desirable attributes (expert) and text with un- 365

desirable attributes (anti-expert). At generation 366

time, the base model’s logits are combined with the 367

difference of the expert’s and anti-expert’s logits. 368

Our expert and anti-expert are pretrained BART- 369

large models that we continue to pretrain on the 370

data used to train the PPLM discriminator. One 371

model is pretrained on the journal abstracts and 372

one on the science news articles. To generate more 373

complex definitions, the expert is the model trained 374

on journal abstracts while the anti-expert is the 375

model trained on science news. To generate less 376

complex definitions, the roles are reversed. 377

5.2 Novel Approach: Reranking 378

We introduce a new, lightweight method to generate 379

definitions with different complexity via reranking. 380

Past work has explored selecting candidate gen- 381

erations based discriminator scores to control for 382

specific topics or discourse structure but found that 383

it did not provide strong control (Dathathri et al., 384

2020; Gabriel et al., 2021). Because our generation 385

task does not require topic shifts and our input has 386

naturally varying complexity (§3.3), we adapt this 387

method by scoring and selecting candidates based 388

on complexity discriminators. 389
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Model AVL ↑ TE ↑ Function Words ↓ GPT ppl. ↑ # Words ↓ Flesch-Kincaid ↑
Rerank-SVM 0.10 0.12 –0.04 128.71 –0.53 1.60
Rerank-BERT 0.01 0.04 –0.01 –4.36 0.20 0.68
DExpert –0.06 0.05 0.01 1130.29 –3.23 –4.01
GeDi –0.01 0.01 –0.01 –40.45 –1.14 –0.48
PPLM (100) –0.02 0.03 –0.01 123.16 –0.67 –0.04

Table 4: Differences between high and low complexity generations. Bolded values are statistically significant in
the correct direction using independent samples t-test corrected with the Bonferroni-holm correction for multiple
hypothesis testing (p < 0.002; Weisstein, 2004). Flesch-Kincaid is a single score and so not tested for significance.

Specifically, at test time we use our BART model390

(FT BART) to generate 100 candidate definitions for391

each definition. We then rerank these candidate392

generations based on logits from a discriminator393

trained to distinguish scientific journal text from394

science news text. We consider two discriminators.395

Both are trained on the the same dataset of science396

news and journal articles as PPLM.397

BERT We use the SciBERT uncased pretrained398

model (Beltagy et al., 2019). For more complex399

definitions we select definitions with high predicted400

probability for journal text, and for less complex401

definitions we select definitions with high predic-402

tion probability for science news text.403

Linear We also experiment with using a linear404

SVM classifier. The SVM’s features are complexity405

measures drawn from science communication and406

readability literature, discussed in §5.3.407

5.3 Complexity Measures408

The complexity of scientific writing is affected by409

many factors and it is difficult to operationalize it410

into a single dimension. We use multiple measures411

of scientific writing complexity based on prior work412

in science communication and readability. These413

measures are not meant to be an exhaustive list (for414

a review, see Pitler and Nenkova, 2008), but a se-415

lection of measures that capture different elements416

of complexity important to definitions.10417

We use most of these measures in two different418

ways. Five of them are the features in our linear419

SVM reranker. We also use them as a preliminary420

automatic evaluation of the various controllable421

generation approaches in §5.1 and §5.2. Obviously,422

we expect the linear SVM reranker to outperform423

the other approaches in this automatic evaluation424

since it was trained with these complexity features;425

it should be considered something like an upper426

bound for these complexity measures. Our human427

evaluations (§6.2 and §7) provide a more complete428

10Table 17 in the Appendix has examples of model outputs
that scored either very high or very low for each measure.

picture of the systems’ performance. 429

Academic Vocabulary List (AVL) occurrences 430

The AVL is a list of academic vocabulary drawn 431

from corpora spanning many scientific disciplines 432

(Gardner and Davies, 2013). We measure the frac- 433

tion of AVL words in a generated definition. 434

Thing Explainer out-of-vocabulary The popu- 435

lar book Thing Explainer explains scientific con- 436

cepts using only the 1,000 most frequent words in 437

English (measured by Wiktionary’s contemporary 438

fiction frequency list) (Munroe, 2017).11 We mea- 439

sure the fraction of words in the definition outside 440

of the top 1,000 used in Thing Explainer. 441

Function words In health communication, func- 442

tion words (e.g., prepositions, auxiliary verbs, or 443

question words) positively correlate with perceived 444

and actual readability (Leroy et al., 2008, 2010). 445

Sentence length Sentence length is a commonly 446

used metric for document level complexity and is 447

part of many classic readability measures (Pitler 448

and Nenkova, 2008; Feng et al., 2010). While we 449

set a maximum generation length for our defini- 450

tions (64 tokens), we enable early stopping. While 451

longer sentences are often considered more com- 452

plex, we hypothesize that in our dataset longer 453

definitions will be associated with less complex 454

language due to elaborative simplification, where 455

complex terms are explained as a way of simplify- 456

ing them (Srikanth and Li, 2020). 457

Language model perplexity Language model 458

perplexity has been found to correlate with per- 459

ceived and actual reading difficulty (Pitler and 460

Nenkova, 2008; Collins-Thompson, 2014). We 461

use the GPT model to measure language model 462

perplexity, as it was trained on common English 463

(as opposed to scientific text). 464

11https://en.wiktionary.org/wiki/
Wiktionary:Frequency_lists/Contemporary_
fiction
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Control Method Direction
Low (News) High (Journal)

SVM-Rerank A type of computing in which there are many com-
puters running at the same time in different parts of
the world.

In computer science, distributed computing is the
process of computing on a large scale without a
single centralized data center.

BERT-Rerank A type of computer system in which there are more
than a few computers working together.

In computer science, distributed computing is the
process of computing on a large scale without a
single centralized data center.

GeDi Is the implementation of computer programs across
multiple computers on similar hardware and/or soft-
ware resources.

In computer science, a concept that states that
data must be shared across computing re-
sources.

DExpert An Internet-driven by-computing that portion of
different computers from start to finish.

In computer science and communication between-
Consequently-integrates.

PPLM Easeless, self-organized, and often self-
organizing networked computer systems intended
for the purposes of optimization.

Multi-purpose, distributed system software with or
without a single datum storage system.

Table 5: Generated definitions from each complexity control method for the question: What is (are) distributed
computing? Factually incorrect information is labelled in bolded red.

Flesch-Kincaid grade level This score (FK)465

uses simple calculations based on sentence length,466

word length, and syllable counts (Kincaid et al.,467

1975). Although findings are mixed on how well468

the FK predicts readability in science or medical469

documents (Leroy et al., 2008), it is a standard,470

widely used measure of text complexity (Redmiles471

et al., 2019). The FK expects a document with472

multiple sentences, but our definitions are a sin-473

gle sentence. To address this, we calculate the FK474

score based on the concatenation of all definitions475

generated by a particular method. For the same476

reason, we do not include the FK score as a feature477

in our SVM reranker (§5.1).478

6 Evaluating Complexity479

Here we evaluate how well our baseline and novel480

generation control methods can vary the complex-481

ity of definitions. For each generation method, we482

generate and evaluate 10 definitions for each term.483

6.1 Automatic Evaluation484

We automatically evaluate each control method by485

calculating the difference in each complexity mea-486

sure (§5.3) for the high and low complexity genera-487

tions. Table 4 details these differences. While each488

measure captures a different element of complexity,489

counting the number of words outside of the top490

1,000 most common English words (TE) seems to491

be one of the most consistent measures, with all492

higher complexity generations having differences493

in the expected direction. DExperts and the BERT494

reranker have the largest differences, with 5% and495

4% more words per sentence. Higher complexity496

generations also have higher GPT perplexity, with497

DExperts having the largest difference.498

The two rerankers (BERT and SVM) perform 499

better than other models on most measures. This is 500

unsurprising for the SVM since it was trained with 501

these complexity features, but it is interesting that 502

reranking with the BERT classifier also provides 503

effective control over complexity. Table 5 provides 504

example generations based on each approach. 505

6.2 Human Evaluation 506

Automatic classification of text complexity is diffi- 507

cult and domain-specific (Collins-Thompson, 2014; 508

Redmiles et al., 2019); even in combination, we 509

believe the measures in §5.3 are insufficient for a 510

full evaluation of our approaches. We therefore 511

carry out a human evaluation to assess how each 512

method influences perceived definition complexity. 513

We select the models that performed best over- 514

all in our automatic evaluation: DExperts, GeDi, 515

and the SVM reranker.12 We randomly sample 50 516

terms from our test split to evaluate. We use a high 517

and low complexity generation from each model, 518

leaving us with 50× 2× 3 = 300 definitions. 519

We broke down complexity into two ratings: 520

how complicated a definition was and how difficult 521

to understand the definition was. For each, partic- 522

ipants rated definitions on a 1–4 Likert scale. We 523

recruited participants on Amazon Mechanical Turk. 524

Each participant was payed US$0.50 cents based 525

on US$10 dollars/hour. This study was approved 526

our our institution’s internal review board. 527

Participants 233 participants took part in our 528

evaluation (mean age 35 years, s.d. 11). Table 529

18 in the Appendix provides more details on their 530

demographics. We removed 4 participants due to 531

12We do not include PPLM in this analysis due to its com-
putational cost and similar performance to GeDi.
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Figure 2: Average ratings for how complicated (“How
complicated is the definition’s text?”) and difficult to
understand (“Imagine you are looking up this term,
how hard is it for you to understand this definition?”)
definitions are for each model on each complexity level.
Range is from 1 = “Not at all” to 4 = “Very”. No differ-
ences are statistically significant.

low effort responses (i.e., responding to all prompts532

with the same rating within 15 seconds).533

Results Figure 2 shows the average ratings for534

each model type. DExperts generations differenti-535

ate most between high and low complexity. GeDi536

definitions behave in a way that is the opposite of537

what we expected, with the low complexity gener-538

ations rated as more complicated and difficult to539

understand than the high complexity generations.540

The SVM-reranked definitions perform in the ex-541

pected direction, with high complexity generations542

being rated as more complicated and difficult to543

understand. Examples of ratings and raw counts544

are in Table 19 and Figure 4 in the Appendix.545

7 Evaluating Fluency, Relevance, and546

Factuality547

Our results suggest that our reranking method is548

a simple intervention that can control complexity549

with similar performance as other state-of-the-art550

methods. However, definitions of scientific terms551

also must be fluent, relevant, and factual. Factuality552

can be especially difficult to achieve in generations553

(Maynez et al., 2020). In science communication554

such failures could spread misinformation with flu-555

ent but incorrect definitions (Britt et al., 2019).556

We do two additional human evaluations for flu-557

ency and relevance (§7.1), and factuality (§7.2).558

We used two trained annotators, one of them an559

author, to rate the same 300 definitions used in560

the complexity evaluation (§6.2). Neither annota-561

tor saw the model generations before evaluation or562

know which method had generated each definition.563

Model Fluency
(s.d.)↑

Relevence
(s.d.)↑

Factuality
(s.d.)↓

SVM 3.71 (0.59) 3.51 (0.78) 1.81 (0.81)
GeDi 3.20 (1.06)* 2.86 (1.22)* 2.38 (1.12)*
DExpert 2.33 (0.85)* 2.80 (0.91)* 2.59 (0.97)*

Table 6: Fluency, relevance, and factuality ratings from
our human evaluation. More details are in Appendices
A.7.2 and A.7.3. * =Significant compared to SVM rat-
ings using independent t-tests corrected for multiple hy-
pothesis testing using the Bonferroni-Holm correction.

7.1 Fluency & Relevance 564

Annotators rated definitions for fluency and rele- 565

vance using 1-4 Likert scales (1 = “Not at all” to 4 566

= “Very”). Table 6 shows the average fluency and 567

relevance ratings. The SVM-reranked definitions 568

were rated close to “Very” fluent and relevant (both 569

above 3.5 on a 4 point scale), and significantly more 570

fluent compared to GeDi (t198 = 5.99 p < 0.001, 571

Cohen’s d = 0.60) and DExperts (t198 = 18.85 572

p < 0.001, d = 1.88). 573

7.2 Factuality 574

For each definition, annotators identified if there 575

was any factually incorrect information in the defi- 576

nition (a binary label) and if so, rated how extensive 577

these errors were on the same 1–4 scale. Table 6 re- 578

ports on the average rating for how extensive these 579

errors were. Below we report on the binary label. 580

Overall 60% of our generations were labeled as 581

factually incorrect by at least one annotator (40% 582

by both). The SVM had significantly fewer fac- 583

tual errors (38% by one annotator, 16% by both), 584

compared to GeDi (52% and 33%, t198 = 4.71 585

p < 0.001, Cohen’s d = 0.47) and DExperts (86% 586

and 67%, t198 = 12.29 p < 0.001, d = 1.24). 587

8 Conclusion 588

We introduce a new task and dataset for gener- 589

ating definitions of scientific terms with control- 590

lable complexity as a way of adapting to differ- 591

ent reader’s scientific background. We evaluate 592

conventional generation methods and introduce a 593

lightweight approach of reranking candidate gen- 594

erations based on a discriminator to control com- 595

plexity. We find that this reranking is effective at 596

controlling text complexity while also maintaining 597

fluency and factuality. We will release our dataset 598

and code on publication to encourage more work on 599

making scientific terms more accessible to readers 600

of diverse background knowledge. 601
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9 Ethical Considerations602

The goal of this paper is to enable a wider audience603

of readers to understand and engage with scien-604

tific writing. A risk, though, is that such attempts605

might instead widen the gap to accessing scientific606

information. The texts in the datasets we train our607

models on are in General or Academic American608

English. Many people, especially those who have609

been historically underrepresented in STEM disci-610

plines and medicine, may not be comfortable with611

this dialect of English. This risks further alienating612

the readers we hope to serve. This is a common613

issue in NLP systems (Sap et al., 2019), since the614

majority of datasets are in General American En-615

glish. An important and exciting direction in NLP616

is making models more flexible to dialects and617

low-resource languages (e.g., the ACL 2022 theme618

being “Language Diversity”).619

While our results suggest that the lighter control620

of reranking generations leads to less hallucinated621

information, strong supervision of definition fac-622

tuality is important for any future deployment of623

such a system. While hallucinated information624

can be damaging in any generation context, in-625

correct scientific definitions could mislead read-626

ers and potentially contribute to broader scientific627

misinformation. Furthermore, a bad actor could628

use these models to generate fluent but incorrect629

definitions at scale, potentially contributing to mis-630

information campaigns with a veneer of scientific631

language (Britt et al., 2019). We trained our models632

on data we believe is trustworthy (e.g., questions633

and answers from NIH websites); and we release634

our training data and models to allow for further635

work on encouraging factuality in these model gen-636

erations.637
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A Appendix942

A.1 Data collection943

We downloaded all terms from the Wikipedia sci-944

ence glossaries.13 We included the first definition945

for each term, and cleaned Wikipedia text of url946

and image references. Note that since the glos-947

saries provide definitions of all terms on a single948

page, we did not use the full Wikipedia articles for949

each term. For each Wikipedia term, X, we format950

the term as the question “What is (are) X?”.951

Because our definitions often include additional952

information beyond a definition (e.g., recommen-953

dations for checking if you have the disease being954

defined), we use the first sentence of each response,955

which is commonly used in constructing definition956

datasets (Fahmi and Bouma, 2006).957

A.2 Support Documents958

Following Fan et al. (2019), we concatenate the959

abstracts together using a <P> token to create a960

support document for each term question. We filter961

all retrieved journal abstracts for each question to962

make sure that none of the same abstracts occur963

across the train, development, and test splits in our964

data.965

We analyze how often definitions occur in our966

support documents by searching the documents for967

the phrase “X is a/an.” We find that around 20%968

of the support documents contain at least one sen-969

tence with this phrase. Manual inspection of these970

sentences revealed that many of them are heavily971

jargoned, usually containing very few of the same972

words as our gold definitions. When removing973

these examples from our test and development set974

we see no drop in performance. We view these975

embedded definitions as an additional source of976

complexity that our models can leverage to vary977

the generated definitions’ complexity.978

A.3 Definition generation finetuning979

980

All training and finetuning was done on a981

NVIDIA Titan X 12GB GPU. We select 1,000 ex-982

amples from our training dataset and seperate them983

into a 75/25 split for training and testing each hy-984

perparameter setting. For our model evaluations985

in §4, we train on a 75/25 split of the full training986

data and reserve the original development split for987

testing.988

13https://en.wikipedia.org/wiki/
Category:Glossaries_of_science

Finetuning BART (FT BART) For finetuning the 989

BART model on our dataset, we do a random search 990

for hyperparameter tuning with a subset of our 991

training data. We ran a total of 10 search trials. 992

During training and generation we concatenate the 993

template question with the support document in 994

the format “question: What is (are) X? context: 995

<SUPPORT DOC>”. 996

Table 8 details the final hyperparameters. We 997

use the training code provided by HuggingFace for 998

sequence-to-sequence summarization finetuning.14 999

Out-of-the-Box (OOTB) Language Modeling 1000

(OOTB GPT-2 and OOTB GPT-3) For genera- 1001

tion, we follow the few-shot setting proposed 1002

in Brown et al. (2020). We prepend two held-out 1003

question term and definition pairs, shown in Ta- 1004

ble 9. The two examples are separated by two 1005

newlines and a separator token used during genera- 1006

tion as the stop symbol (i.e., ###). At generation 1007

time we append the question for the term. Some 1008

GPT-3 outputs were empty, which we ignore for 1009

evaluation. 1010

Finetuning GPT-2 (FT GPT-2) Each part of the 1011

input (supporting document, question, definition) 1012

is prepended with a new special symbol (i.e., <con- 1013

text>, <question>, <definition>) and the model is 1014

trained in the standard causal language model loss. 1015

At generation time, the model is conditioned on the 1016

support document, question, and the <definition> 1017

tag. 1018

We do the same random search for hyperparam- 1019

eter tuning for the GPT-2 model as for BART with 1020

the same subset of data. One difference is that we 1021

finetune on the standard causal language modeling 1022

objective for GPT-2 rather than the sequence-to- 1023

sequence summarization task. We use the training 1024

code provided by HuggingFace for causal language 1025

model training.15 Table 8 details the final hyperpa- 1026

rameters for our GPT-2 model. 1027

A.4 Discriminator training 1028

We filter out all sentences sampled from the journal 1029

abstracts and scientific news articles that are less 1030

than 5 words, as these sentences are usually bylines 1031

or headers, and randomly sample 50k sentences 1032

14https://github.com/huggingface/
transformers/tree/master/examples/
seq2seq

15https://github.com/huggingface/
transformers/tree/master/examples/
language-modeling
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Table 7: Example definitions from a general-purpose dictionary (Merriam-Webster) and our dataset.

Term Dictionary definition Dataset definition
neuroblastoma A malignant tumor formed of embryonic

ganglion cells
Neuroblastoma is a type of cancer that
most often affects children.

cirrhosis Widespread disruption of normal liver
structure by fibrosis and the formation of
regenerative nodules that is caused by any
of various chronic progressive conditions
affecting the liver

Cirrhosis is scarring of the liver.

antibiotics A substance able to inhibit or kill microor-
ganisms; specifically : an antibacterial sub-
stance (such as penicillin, cephalosporin,
and ciprofloxacin) that is used to treat or
prevent infections by killing or inhibiting
the growth of bacteria in or on the body

Summary : Antibiotics are powerful
medicines that fight bacterial infections.

Table 8: Final hyperparameters for finetuning the BART and GPT-2 models on definition generation and bounds
for hyperparameter tuning random search.

Hyperparameter BART Assignment GPT-2 Assignment Bounds

Number of epochs 3 3 [3, 5]

Effective batch size 8 16 [4, 8, 16]

Learning rate 5e-05 4e-04 [4e-3, 4e-4, 4e-5, 5e-05, 4e-6]

Adam Epsilon 1e-08 1e-07 [1e-7, 1e-8, 1e-9]

Source length/Block size 1024 1024 [1024]

Target length 64 NA [64]

Table 9: Held out QA pairs for OOTB GPT-2 and OOTB GPT-3.

Question Answer
What is (are) complement component 2
deficiency?

Complement component 2 deficiency is a disorder
that causes the immune system to malfunction, re-
sulting in a form of immunodeficiency.

What is (are) entrepreneurship? The efforts by a person, known as an ‘entrepreneur,’
in organizing resources for the creation of something
new or taking risks to create new innovations and
production.
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Table 10: Hyperparameters for BART-large PPLM
training.

Hyperparameter Assignment

Batch size 64

Embedding size 1024

Number of steps 10 epochs

Learning rate 1e-4

Table 11: Hyperparameters for BART-large GeDi train-
ing.

Hyperparameter Assignment

Number of epochs 1

Max length 192

Effective batch size 4

Learning rate 2e-5

Lambda 0.80

from each set (100k total) for training, and another1033

5k each for the development and testing splits.1034

Even some science news articles require back-1035

ground knowledge not shared among all possible1036

readers (Shea, 2015). We try to address this is-1037

sue by sampling sentences from science venues1038

that reach a broader audience (e.g., magazines) and1039

have been shown to have lower jargon levels (Au-1040

gust et al., 2020b).1041

PPLM For training the PPLM attribute classi-1042

fier, we adapt the HuggingFace training code16 to1043

work with the sequence-to-sequence architecture1044

of BART. Our attribute classifier is trained from the1045

BART-large pretrained model. We use the default1046

training hyperparameters, shown in Table 10.1047

GeDi For training the GeDi discriminator we1048

adapt the authors original training code17 to work1049

with the sequence-to-sequence architecture of1050

BART. Our GeDi is trained from the BART-large1051

pretrained model. We use the default training hy-1052

perparameters, shown in Table 11.1053

DExperts For the expert and anti-expert models,1054

we continue to pretrain the BART-large model on1055

16https://github.com/huggingface/
transformers/tree/master/examples/
research_projects/pplm

17https://github.com/salesforce/GeDi/

Table 12: Hyperparameters for additional BART-large
pretraining for DExperts.

Hyperparameter Assignment

Number of epochs 3

Source length 512

Target length 512

Effective batch size 8

Learning rate 5e-05

Learning rate optimizer Adam

Adam epsilon 1e-08

learning rate scheduler linear

weight decay 0

science journal text or science news text. Because 1056

there is no official script for BART’s pretraining, 1057

we re-implement the text corruption described in 1058

the original paper (Lewis et al., 2020). We specifi- 1059

cally create a text-infilling approach, where a num- 1060

ber of tokens are masked from each sentence. The 1061

number of tokens is drawn from a Poisson dis- 1062

tribution (λ = 3), and they are replaced with a 1063

single [MASK] token. We use one mask per sen- 1064

tence in the dataset. We use the default pretraining 1065

hyperparameters from HuggingFace’s sequence- 1066

to-sequence summarization script, detailed in Ta- 1067

ble 12. We again start from the BART-large pre- 1068

trained language model. 1069

BERT Reranker We use the SciBERT 1070

model (Beltagy et al., 2019) to train our BERT 1071

reranker. The training data is identical for 1072

training our other discriminators. Table 13 details 1073

hyperparameter settings. 1074

SVM Reranker We train our SVM with com- 1075

plexity features from Section 5.3 to classify sen- 1076

tences from academic journal abstracts and science 1077

news text using the same dataset for training our 1078

discriminators. The SVM reaches 79% accuracy 1079

on held out data, showing that these features can 1080

be strong differentiators of scientific text. 1081

A.5 Complexity generation hyperparameters 1082

We use the same generation hyperparameters across 1083

all models where possible. Shared generation hy- 1084

perparameters are detailed in Table 14, while those 1085

specific to PPLM and GeDi are in Table 15, and 1086
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Table 13: Hyperparameters for BERT reranker training.

Hyperparameter Assignment

Number of epochs 3

Max input length 1024

Effective batch size 16

Learning rate 5e-05

Learning rate optimizer Adam

Adam epsilon 1e-08

Learning rate scheduler linear

Weight decay 0.01

Warmup steps 500

Table 14: Hyperparameters shared among all models
for generation. For reranking, the top 10 samples are
taken out of 100 total returned sequences.

Hyperparameter Assignment

Number of samples 10

Number of beams 5

Top-p (sampling) 0.9

Top-k 50

Temperature 1

Max length 64

Min length 8

Table 16, respectively. For DExperts, there is1087

one additional hyperparameter, α, which we set1088

to α = 2.0 based on the authors original exper-1089

iments (Liu et al., 2021). For reranking, the top1090

10 samples are taken out of 100 total returned se-1091

quences.1092

A.6 Complexity Features1093

To calculate complexity features, we tokenized and1094

lemmatized all generated definitions using Spacy.181095

We lemmatized all words in the AVL and Thing1096

Explainer list to search for AVL word occurances1097

and Thing Explainer out-of-vocabulary words.1098

For function words, we used Spacy’s POS1099

tags. The following tags we considered func-1100

tion words: [‘DET’, ‘ADP’, ‘PRON’, ‘CONJ’,1101

‘SCONJ’, ‘AUX’, ‘PART’, ‘INTJ’]. For the Flesch-1102

18https://spacy.io/

Table 15: Hyperparameters specific to PPLM for gen-
eration. Details of each hyperparameters can be found
in (Dathathri et al., 2020).

Hyperparameter Assignment

Number of samples 10

Stepsize 0.06

Gamma 1

GM-scale 0.9

KL-scale 0.01

Repetition penalty 1.0

Grad length 10,000

Horizon length 1

Window length 0

Table 16: Hyperparameters specific to GeDi for gener-
ation. Details of each hyperparameters can be found
in (Krause et al., 2021).

Hyperparameter Assignment

Posterior weighting exponent 30

Filter p (1 - p) 0.8

Target p (τ ) 0.8

Repetition penalty scale 10

Repetition penalty 1.2

Kincaid grade level, we use the py-readability- 1103

metrics package.19 1104

Table 17 provides examples of definitions that 1105

scored high and low for each complexity feature. 1106

A.7 Human Evaluations 1107

1108

We select our number of samples (50) based on 1109

a power analysis with an expected medium effect 1110

and power β = 0.8 (for more information on power 1111

and statistical tests in NLP, see Card et al., 2020). 1112

A.7.1 Complexity & Understandability 1113

Participant Demographics The participant de- 1114

mographics for the complexity evaluation (§6.2) 1115

are shown in Table 18. 1116

Before beginning, participants filled out a short 1117

demographics questionnaire detailing their age, 1118

19https://pypi.org/project/
py-readability-metrics/

16

https://spacy.io/
https://pypi.org/project/py-readability-metrics/
https://pypi.org/project/py-readability-metrics/


Table 17: Examples of sentences with high or low values of each complexity feature. The Flesch-Kincaid reading
level score is not included since it is calculated over all responses for a model.

Feature High Low
AVL Occu-
rances

The process by which organic material dis-
solves in soil.

Your gallbladder is part of your liver.

Thing Ex-
plainer OOV

Rock composed mostly yellow tolukala-
ceous organic material composed mostly
marine calcite.

Your brain changes as you age.

Function Words A place to shelter from the elements of a
storm.

See kin genealogy.

LM Perplexity A metamorphism consisting mainly pyrox-
enesiloclinic pyroxene.

Your body is made up of many types of
muscles.

Word Count An area of machine-readable digital fore-
runners or virtual reality-generally en-
hanced with the goal of gathering, or-
ganizing artificial intelligence and guid-
ing artificial neural networks in-depth
(machine learning from artificial neural
network technology, machine learning
and/machine learning and machine learn-
ing.

See asteroid impact.

highest degree attained, and STEM (Science, Tech-1119

nology, Engineering, and Math) education. They1120

then reviewed instructions that provided examples1121

of very complex and not at all complex definitions1122

(Figure 5). Each participant rated 3 definitions1123

randomly drawn from different terms. Figure 31124

provides an example of the interface for the com-1125

plexity evaluation. Raw counts of complexity and1126

understandability ratings are provided in Figure 4.1127

Interrater agreement was relatively low for com-1128

plexity (α = 0.14) and understandability (α =1129

0.14). This is unsurprising given that we used un-1130

trained annotators and perceived complexity and1131

understandability are often based on a reader’s do-1132

main knowledge (Kintsch, 1994).1133

A.7.2 Fluency & Relevance1134

Annotators were given examples of very fluent and1135

relevant definitions, and not at all fluent and rel-1136

evant definitions before starting the task. For flu-1137

ency, annotators were asked, “How fluent is this1138

definition?” and for relevance, they were asked,1139

“How relevant is this definition for the term?” In-1140

terrater agreement was high for both fluency (Krip-1141

pendorff’s α = 0.63) and relevance (α = 0.58).1142

A.7.3 Factuality1143

Annotators were given examples of very extensive1144

factual errors and and not at all extensive factual1145

errors before starting the task. For each definition, 1146

annotators checked a box if there was any factually 1147

incorrect information in the definition based on the 1148

question, “Does this definition contain factually 1149

incorrect information?” and if so, rated how exten- 1150

sive these errors were based on the question, “If the 1151

definition contains factually incorrect information, 1152

how extensive are these errors?” Annotators were 1153

encouraged to use the internet if they did not know 1154

if a definition was correct. 1155

Interrater agreement was high for both whether a 1156

definition contained factually incorrect information 1157

(Krippendorff’s α = 0.59) and how extensive these 1158

errors were (α = 0.55). 1159
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Figure 3: Example of human evaluation interface for definition complexity. The fluency and factuality evaluations
had the same interface.

Table 18: Participant demographics for the complexity
evaluation.

Age

0-19 0
20-29 74
30-39 106
40-49 32
50-59 10
60-69 7
70-79 4
80+ 0

English
proficiency

Elementary 6
Limited working 5
Professional working 7
Full professional 25
Native/bilingual 190

Education

Pre-high school 1
High School 45
College 118
Graduate school 60
Professional school 9

# STEM courses
after high school

0 44
1-3 84
4-6 55
7-9 18
10+ 32
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Model Term Definition Complexity Understandability
DEXPERT
High

Bayesian Program-
ming

A formalism for problem-solving in computer program-
ming.

1 4

DEXPERT
Low

Zirconium A rock mineral that crystallises on rock beds or minerals
silicate beds.

3 1

GeDi Low Sexually Transmit-
ted Diseases

There are a number of sexually transmitted diseases. 1 1

GeDi High Tsunamis Summary : Tsunamis are oceanic tsunamis. 2 4

SVM Low Paroxysmal ex-
treme pain disorder

Paroxysmal extreme pain disorder (PEPD) is a rare form
of erythromelalgia.

4 2

SVM High Kelvin–Helmholtz
instability

A condition in which the flow of charged particles in a
fluid is unstable.

4 4

Table 19: Example generations and their ratings. Examples are selected to show a range of ratings.

Figure 4: Counts of complexity and understandability ratings for each controllable generation method. 1 = Not at
all and 4 = Very
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Figure 5: Instructions page for the human complexity evaluation.
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