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ABSTRACT

Test-time adaptation (TTA) of Vision-Language Models (VLMs) has emerged as
a technique for tackling distribution shifts during the test time. Recent research
indicates that the test-time adaptation is intrinsically linked to the model’s train-
ing history. However, existing TTA methods, such as Test-time Prompt Tuning,
often design adaptation strategies in isolation from the models’ training charac-
teristics, which degrade their performance. This paper argues that the flatness ac-
quired via sharpness-aware training is an efficient clue for the test-time adapta-
tion of VLMs. Built on this insight, this paper proposes a novel Flatness-Guided
Adaptation framework (FGA) for VLMs to cohesively unify training and test-
time procedures. Its core idea is to leverage the alignment between the training
minimum and test loss flat regions to guide the adaptation process. Specifically,
our FGA consists of a prompt-tuning stage and a test-time adaptation stage. In
the tuning stage, a Sharpness-Aware Prompt Tuning method is utilized to identify
the training flat minimum, offering a geometric clue of flatness for subsequent
adaptation. In the test stage, a Sharpness-based Test Sample Selection approach
is proposed to ensure the alignment of flat minima between the training and each
augmented test sample’s loss landscape. In comparison to existing TTA methods,
our FGA avoids the expensive prompt parameter updates during test time, and
substantially reduces the computation overhead. Extensive experiments on both
domain generalization and cross-dataset benchmarks demonstrate that our FGA
achieves superior performance over prevalent TTA methods. Notably, FGA even
surpasses SOTA performance by 4.55% on ImageNet-A, when using a ViT-B/16
image encoder. Our code will be available soon.

1 INTRODUCTION

Recent advancements in vision-language pretraining, such as CLIP (Radford et al., 2021), have
generated new opportunities for developing foundational models in vision tasks (Jia et al., 2021;
Yang et al., 2022). These models, trained on extensive collections of image-text pairs, can learn and
represent a diverse range of visual concepts. By means of well-designed prompts, they can be applied
to downstream tasks in a zero-shot manner without requiring task-specific data (Li et al., 2022;
Ramesh et al., 2022; Patashnik et al., 2021). Consequently, various prompt tuning methods (Zhou
et al., 2022b;a) are proposed to directly learn prompts using training data from downstream tasks.
Though these methods find better prompts compared to hand-crafted ones, the learned prompts are
limited to the training distribution and may have limited generalization beyond that.

To address this issue, several studies (Chen et al., 2022; Boudiaf et al., 2022; Wang et al., 2020) have
attempted to develop test-time adaptation (TTA) methods, which aim to rapidly adjust pre-trained
models to unlabeled test data streams during inference. Among various TTA strategies, methods
based on Test-Time Prompt Tuning (TPT) (Shu et al., 2022), which optimize a set of learnable
prompts via entropy minimization on augmented test views, have demonstrated promising perfor-
mance and gained significant attraction (Shu et al., 2022; Feng et al., 2023; Yoon et al., 2024). Re-
cent research indicates that the test-time adaptation is intrinsically influenced by the model’s training
history (Goyal et al., 2022). However, most existing TTA methods, including TPT-based methods,
design adaptation strategies in isolation, treating the test phase as a standalone optimization problem
disconnected from the model’s training history. This isolation from the training phase may fail to

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

2 1 0 1 2

12
1

0
1

2

2

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Lo
ss Test Loss 

Landscape
Training Loss 
Landscape

(a) Traditional TTA Methods

2 1 0 1 2

12
1

0
1

2

2

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Lo
ss Test Loss 

Landscape
Adapted Test 
Loss Landscape

Training Loss 
Landscape

(b) Our FGA

Figure 1: Comparison of conventional TTA methods and Flatness-Guided Adaptation (FGA).
(a) Traditional TTA methods treat the test landscape as static, aiming to optimize parameters to
achieve the test flat minimum (★), using the training minimum (★) as an initialization. (b) Our FGA
keeps parameters unchanged during testing. Instead, it adjusts the test landscape to a position where
the training minimum (★) is already very close to the minimum (★) of the adapted test landscape.

exploit valuable geometric and representational properties inherent in the pre-trained model, leading
to suboptimal test-time adaptation.

To improve model generalization, seeking flat minima within the training loss landscape has
emerged as an effective training strategy over the past few years (Foret et al., 2020; Kwon et al.,
2021; Kim et al., 2022). It is widely observed that parameters residing in flat minima tend to gen-
eralize better to out-of-distribution data (Cha et al., 2021; Zhang et al., 2024b; Li et al., 2025; Zou
et al., 2024) than those sharp ones. Nonetheless, conventional TTA methods often ignore the influ-
ence of sharpness-aware training on the test-time adaptation. While Sharpness-Aware Minimization
(SAM) (Foret et al., 2020) seeks flat regions during training, its principle is rarely extended to guide
test-time adaptation in a unified framework. This disconnection leads to computationally expensive
test-time optimizations (e.g., backpropagation in TPT (Shu et al., 2022)) that are agnostic to loss ge-
ometric structure and often yield suboptimal generalization. This paper argues that the flatness is not
merely a desirable property during training but a powerful clue that can dictate test-time adaptation.

Inspired by this insight, this paper proposes a novel Flatness-Guided Adaptation (FGA) framework,
which cohesively unifies training and test-time procedures from the perspective of loss landscape
geometry. It mainly leverages the alignment between the training minimum and test loss flat re-
gions to guide the adaptation process (see Figure 1). Specifically, our FGA framework consists of
two synergistic stages: (1) In the prompt tuning stage, a Sharpness-Aware Prompt Tuning (SAPT)
method is utilized to fine-tune the prompts on the downstream training dataset, aiming at seeking
the training flat minimum. Since flatter minima generally indicate better model generalization than
sharper ones (Keskar et al., 2016; Dziugaite & Roy, 2017; Jiang et al., 2019; Foret et al., 2020),
the minimization of sharpness not only improves model generalization but also provides a test-time
criterion to measure the alignment of flat minima within the training and test loss landscapes. (2)
In the test-time stage, FGA leverages the geometric clue of flatness acquired via SAPT. For a given
test sample, a Sharpness-based Test Sample Selection (STSS) method is proposed to intelligently
select its augmented views based on the sharpness score of their loss landscapes around the train-
ing flat minimum. This ensures that the final prediction is derived from a test-time loss landscape
whose flat minima align with those identified during training. During this process, loss landscapes
are efficiently altered through data augmentations. In comparison with existing TTA methods, our
FGA avoids the expensive prompt parameter updates during test time, eliminating the computational
overhead of adaptation and offering a more plausible adaptation strategy. Theoretical analysis sug-
gests that using the sharpness-based metric will help distinguish the proximity of test samples to the
training distribution. The closer an augmented sample is to the training distribution, the smaller its
sharpness-based score is likely to be. Since models tend to generate more reliable results for data
closer to the training distribution, FGA significantly improves the generalization ability of vision-
language models. Extensive experiments on domain generalization (Hendrycks et al., 2021b) and
cross-dataset (Zhou et al., 2022a) benchmarks demonstrate the superior performance of FGA over
prevailing TTA methods.
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Our main contributions can be summarized as follows:

• A novel Flatness-Guided Adaptation (FGA) framework is proposed to cohesively unify train-
ing and test-time procedures for vision-language models. By ensuring the alignment of model’s
training flat minimum with flat regions in test loss landscapes, it significantly enhances the gen-
eralization capabilities of VLMs under distribution shifts.

• Theoretical analysis is presented to offer a clearer insight into how sample selection at test time
improves the reliability of predictions.

• Extensive experiments on domain generalization and cross-dataset benchmarks demonstrate the
superior performance of FGA over other prevalent TTA methods, while significantly eliminating
the computational overhead.

2 RELATED WORK

Test-time adaptation (TTA) of vision-language models. Vision-language models like CLIP have
shown strong performance in various tasks. To enhance CLIP’s transfer learning for downstream
classification tasks, methods like text prompt learners (e.g., CoOp (Zhou et al., 2022b) and Co-
CoOp (Zhou et al., 2022a)) and visual adapters (e.g., Tip-Adapter (Zhang et al., 2022)) have been
proposed. However, these methods struggle with distribution misalignment between pre-training and
test data. Test-time adaptation (TTA) methods address this by adjusting models during testing, with
two main streams (Abdul Samadh et al., 2024): the first modifies the training process using a self-
supervised proxy task, such as image rotation prediction, and uses it to guide test-time optimization
(e.g., Test-Time Training (Sun et al., 2020) and TTT++ (Liu et al., 2021)); the second adapts models
without altering the training process (e.g., TPT (Shu et al., 2022), which uses entropy minimiza-
tion to learn adaptive parameters during testing). DiffTPT (Feng et al., 2023) introduces a diffusion
model to generate diverse augmentations for further improvements. PromptAlign (Abdul Samadh
et al., 2024) adds an explicit term to align the learned distributions with that of test data. Meanwhile,
online methods like TDA (Karmanov et al., 2024) and DPE (Zhang et al., 2024a) use a key-value
cache or prototype set to adapt progressively to test data. They benefit from information aggregated
during testing but are unsuitable for single test-sample scenarios, unlike TPT-based methods. This
paper proposes a novel Flatness-Guided Adaptation (FGA) framework that leverages the geometry
of loss landscapes to enhance CLIP’s generalization and inference efficiency in single test-sample
adaptation scenarios. By avoiding backpropagation and parameter updates during testing, FGA sig-
nificantly reduces computational overhead while achieving robust out-of-domain performance.

Generalization from a loss landscape view. In recent years, optimization techniques aimed at flat
minima in loss landscapes have surged to improve the generalization of deep models (Keskar et al.,
2016; Dziugaite & Roy, 2017; Jiang et al., 2019). Among them, SAM (Foret et al., 2020), which
focuses on finding parameters located in regions of the loss landscape with consistently low loss
values, has gained significant attention for its effectiveness and scalability. To seek flatter minima,
numerous SAM variants, such as ASAM (Kwon et al., 2021) and FisherSAM (Kim et al., 2022),
have already been developed over the past few years. This concept of flat minima has also been
extended to improve the out-of-domain generalization of deep models (Zou et al., 2024; Cha et al.,
2021; Li et al., 2025). However, most of them focus on the training stage. SAR (Niu et al., 2023) and
SoTTA (Gong et al., 2023), two online test-time adaptation (TTA) methods, both utilize sharpness-
aware minimization at test time to improve robustness by seeking flat minima. Yet, they operate
solely during testing without accounting for training-testing sharpness interactions. In contrast, our
FGA applies sharpness-aware minimization during training to establish flatness as a criterion for
subsequent alignment, then at test time adapts by adjusting loss landscapes through augmentation
selection—without updating model parameters—and preserving the pre-trained flat minimum’s op-
timality on adapted test loss landscapes.

3 METHODOLOGY

3.1 PRELIMINARIES

Contrastive Language-Image Pre-training. CLIP (Radford et al., 2021) primarily comprises a
Text Encoder Et and an Image Encoder Ev . The Image Encoder is available in two architectures:

3
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Figure 2: Overview of our Flatness-Guided Adapta-
tion (FGA). It consists of two synergistic mechanisms:
(a) Sharpness-aware Prompt Tuning: It optimizes the
model parameters to reduce the loss value and sharp-
ness, enabling stable and effective adaptations during
test time without direct access to training data. (b)
Sharpness-based Test Sample Selection: It introduces
a selection mechanism to identify augmented test sam-
ples that ensure the training flat minimum aligns with
those in their loss landscapes, enabling more confident
predictions.

one based on ResNet (He et al., 2016) and
the other using the popular Vision Trans-
former (ViT) (Dosovitskiy et al., 2020).
This encoder transforms an input image x
into its feature representation, i.e., ei =
Ev(x). For a classification task with K
classes, the corresponding class labels are
formatted into a text template, “a photo
of a [cls]”, which is then mapped to to-
kens yk = (SOS, t1, t2, . . . , tL, ck,EOS).
Here, SOS and EOS represent the embed-
dings of the start and end tokens, while
t1, t2, . . . , tL corresponds to the phrase “a
photo of a”, and the token ck denotes
the specific description of the k-th class.
The text encoder of CLIP, designed as a
Transformer architecture, processes these
tokens to generate text features: et,k =
Et(yk). During the pre-training stage,
CLIP is trained on the WIT dataset (Rad-
ford et al., 2021) through a contrastive
learning approach. In this setup, each im-
age is paired with its corresponding text
sentence as a positive sample, while all
other image-text combinations are treated
as negative samples. The goal of the con-
trastive learning objective is to enhance
the cosine similarity of positive pairs while
reducing that of negative pairs. In the clas-
sification stage, all classes in the dataset
are converted to text, and the cosine simi-
larity between image embeddings and text
embeddings is computed to determine the
probability of an image belonging to each category:

p (yk | x) = exp (sim (et,k · ei) τ)∑K
j=1 exp (sim (et,j · ei) τ)

, (1)

where τ is the temperature of the softmax.

Prompt tuning. Prompt tuning has emerged as a popular tuning method for Transformer-based
models in downstream tasks. This approach does not modify the model parameters; rather, it changes
the input to the model, making it highly efficient. Specifically, instead of using the template “a
photo of a [cls]”, it replaces the tokens associated with the hand-crafted prompts (“a photo of a”)
with learnable parameters p = (p1, . . . , pL), which are then updated based on the dataset used for
downstream tasks.

Test-time prompt tuning. To prevent overfitting that may arise from prompts learned on the down-
stream training set—which may not perform effectively on test data with distribution shifts—test-
time prompt tuning (TPT) (Shu et al., 2022) fine-tunes a specific prompt for each test sample. During
testing, multiple augmented views of the test samples are generated. Then, predictions with entropy
below a predetermined threshold are kept, while others are discarded using a confidence filter. The
averaged entropy of selected predictions is then used as a loss function to update the prompts.

3.2 FLATNESS-GUIDED ADAPTATION

Our proposed Flatness-Guided Adaptation (FGA) framework fundamentally offers a unified, loss
landscape-centric methodology that seamlessly bridges the training and test phases. This approach
leverages the flatness as a universal guiding principle to enhance both generalization during training
and robust adaptation during inference under distribution shifts. As illustrated in Figure 2, FGA
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integrates two complementary mechanisms that operate in concert: sharpness-aware prompt tuning
(SAPT) during training and sharpness-guided test sample selection (STSS) during inference. This
section will elaborates on the key idea and technical details of the framework.

3.2.1 SHARPNESS-AWARE PROMPT TUNING

FGA mainly exploits the alignment between training and test flat minima for the efficient adapta-
tion of VLMs. However, a major challenge in achieving this alignment arises from inherent data
constraints. Test samples remain unknown during training, and at test time, training data becomes
inaccessible due to storage limitations and privacy requirements. To overcome this, FGA focuses on
the intrinsic properties of the training minimum—ensuring that the test loss landscape shares these
desirable characteristics: (1) the training minimum should correspond to a low loss value, indicating
that the model is effectively learning from the data; (2) the training minimum may display implicit
biases, such as reduced sharpness, which are often beneficial for improved generalization.

Traditional training methods for optimizing the prompts, such as CoOp (Zhou et al., 2022b), typi-
cally use cross-entropy loss to fine-tune the prompt p:

ℓCE(p) = −
n∑

i=1

log pp(yi|xi), (2)

where pp(yi|xi) represents the predictive probability that xi belongs to the its true label class. While
standard SGD tends to find flat minima, methods such as SAM (Foret et al., 2020) can enhance this
implicit bias through explicit perturbation-aware optimization. To enable more precise alignment
during testing, we adopt Sharpness-aware Prompt Tuning (SAPT) during training, which jointly
minimizes both the loss and its “sharpness”:

ℓSAPT(p) = ℓCE(p) + λ max
||ϵ||≤ρ

[ℓCE(p+ ϵ)− ℓCE(p)] . (3)

The first and second terms above represent the loss value and loss sharpness, with λ acting as a
hyperparameter to balance them. Similar to previous studies (Foret et al., 2020; Kwon et al., 2021),
sharpness is defined as the sensitivity of the training loss to small perturbations ϵ (with a norm less
than ρ) added to the prompts p. Since the perturbation strength ρ is small enough, we can apply a
Taylor expansion to approximately solve for the optimal perturbation ϵ⋆:

ϵ⋆ = argmax
∥ϵ∥≤ρ

ℓCE(p+ ϵ)− ℓCE(p) ≈ argmax
∥ϵ∥≤ρ

ϵT∇pℓCE(p) = ρ
∇pℓCE(p)

∥∇pℓCE(p)∥
. (4)

During training via (stochastic) gradient descent, the contribution from ∇pϵ
⋆ can be disregarded

due to the minor perturbation strength ρ.

In this way, SAPT not only yields robust prompts that enhance generalization but also provides the
sharpness measure as additional information for adaptation during testing.

3.2.2 SHARPNESS-BASED TEST SAMPLE SELECTION

Through sharpness-aware prompt tuning, the prompts are positioned at a flat minimum within the
training loss landscape. To avoid computationally expensive gradient descent during inference, we
keep the pre-trained prompt fixed and instead adapt the test loss landscapes such that the well-trained
prompt from the downstream training dataset (i.e., the training flat minimum) coincides with the flat
minimum in the adapted test landscape, as illustrated in Figure 1.

To achieve this alignment, we propose a Sharpness-based Test Sample Selection (STSS) method.
STSS utilizes data augmentations to create multiple test loss landscapes for each sample. By select-
ing augmented samples that align the training minimum with flat minima in their respective loss
landscapes, we ensure the training minimum remain optimal. Given that such alignment typically
corresponds to small loss values and reduced loss sharpness in these test landscapes, STSS intro-
duces a sharpness-based score as a metric. To mitigate the computational burden of backpropagation
in calculating sharpness, we redefine it as the maximum variation in the loss resulting from M ran-
dom perturbations:

ℓSTSS(p) = ℓSRG(p) + λ max
m=1,...,M ;ϵm∼N

[
ℓSRG

(
p+ ρ′

ϵm
∥ϵm∥

)
− ℓSRG(p)

]
. (5)
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Table 1: Results on datasets with natural distribution shifts. We report top-1 accuracy (%) for
each method across five datasets, using the CLIP-ViT-B/16 backbone. We highlight the best results
in bold and underline the second best results. The abbreviation “IN” means the ImageNet dataset. †
denotes results reproduced by adapting the method to the single-sample setting.

Algorithm IN IN-A IN-V2 IN-R IN-Sketch Avg. OOD Avg.

CLIP-ViT-B/16 (Radford et al., 2021) 68.34 49.89 61.88 77.65 48.24 61.20 59.42

CoOp (Zhou et al., 2022b) 71.51 49.71 64.20 75.21 47.99 61.72 59.28
CoCoOp (Zhou et al., 2022a) 71.02 50.63 64.07 76.18 48.75 62.13 59.91
Tip-Adapter (Zhang et al., 2022) 70.75 51.04 63.41 77.76 48.88 62.37 60.27

TPT (Shu et al., 2022) 69.70 53.67 64.30 73.90 46.40 61.59 59.57
DiffTPT (Feng et al., 2023) 70.30 55.68 65.10 75.00 46.80 62.58 60.64
C-TPT (Yoon et al., 2024) - 52.90 63.40 78.00 48.50 - 60.70
ZERO (Farina et al., 2024) 69.06 61.35 64.13 77.28 48.29 64.02 62.76
MTA (Zanella & Ben Ayed, 2024) 69.29 57.41 63.61 76.92 48.58 63.16
PromptAlign⋆ (Abdul Samadh et al., 2024) - 59.37 65.29 79.33 50.23 - 63.55
TDA (Karmanov et al., 2024) 69.51 60.11 64.67 80.24 50.54 65.01 63.89
DPE (Zhang et al., 2024a) 71.91 59.63 65.44 80.40 52.26 65.93 64.43
TPT (Shu et al., 2022)+CoOp 73.30 56.88 66.60 73.80 49.40 64.00 61.67
DiffTPT (Feng et al., 2023)+CoOp 75.00 58.09 66.80 73.90 49.50 64.66 62.07
C-TPT (Yoon et al., 2024)+CoOp 72.90 52.73 65.61 76.46 48.63 63.27 60.86
ZERO (Farina et al., 2024)+CoOp 73.61 63.17 66.82 77.71 48.52 65.97 64.05
MTA (Zanella & Ben Ayed, 2024)+CoOp 73.99 59.29 66.97 78.20 49.96 65.68 63.61
SAR† (Niu et al., 2023)+CoOp 73.03 55.35 65.89 77.09 48.65 64.00 61.75

FGA(SAPT only + CoOp) 70.79 51.04 64.41 77.66 49.31 62.64 60.61
FGA(STSS only + CoOp) 73.99 64.00 67.11 77.92 49.36 66.48 64.60
FGA (Ours) 74.01 65.90 67.23 81.24 51.81 68.04 66.55

Here, ℓSTSS represents the sharpness-based score used to select the most reliable augmented test
samples, and ℓSRG denotes a surrogate loss function when test labels are unavailable, such as en-
tropy (Wang et al., 2020; Goyal et al., 2022). The perturbation direction is expressed by ϵm/∥ϵm∥,
where ϵm is drawn from the standard normal distribution N . The term ρ′ controls the magnitude
of perturbations during testing. To obtain ℓSRG

(
p+ ρ′ ϵm

∥ϵm∥

)
, we first obtain text features for each

category (et,k,m) through the forward pass of the text encoder:

[et,k,1, . . . ,et,k,M ] = Et([yk,1, . . . ,yk,M ]), (6)

where the input sequence yk,m for the k-th category and m-th perturbation consists of the tokens:
yk,m = (SOS,p+ρ′ϵm/∥ϵm∥, ck,EOS). Notably, the additional computational cost of this step is
minimal, as text features only need to be computed once per test category. Then, the surrogate loss
for perturbed prompts is:

ℓSRG

(
p+ ρ′

ϵm
∥ϵm∥

)
= −

K∑
k=1

pm(yk|x) log pm(yk|x), (7)

with probabilities derived from cosine similarity:

pm(yk|x) =
exp (sim (et,k,m · ei) τ)∑K
j=1 exp (sim (et,j,m · ei) τ)

. (8)

Finally, the final prediction aggregates votes from the top r augmented samples with the lowest
sharpness-based scores, which are more reliable predictions according to the theoretical analysis in
the next section.

4 THEORETICAL ANALYSIS

This section provides a theoretical explanation of how our method improves test-time classification.
Let’s begin with the following problem: During training, the model learns from data sampled in-
dependently and identically from distribution S; During testing, however, data is drawn from two
distinct distributions T1 and T2. Then, the question is: How can we distinguish between these test
distributions and determine on which one the model will perform more reliably?

6
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Table 2: Cross-dataset generalization from ImageNet to fine-grained classification datasets.
During the prompt tuning stage, the prompts are tuned on ImageNet with 16-shot training data per
category, using a ViT-B/16 image encoder.

Method Caltech101 Pets Cars Flowers102 Aircraft SUN397 DTD Eurosat Food101 UCF101 Avg.

CLIP-ViT-B/16 (Radford et al., 2021) 93.35 88.25 65.48 67.44 23.67 62.59 44.27 42.01 83.65 65.13 63.58

CoOp (Zhou et al., 2022b) 93.70 89.14 64.51 68.71 18.47 64.15 41.92 46.39 85.30 66.55 63.88
CoCoOp (Zhou et al., 2022a) 94.43 90.14 65.32 71.88 22.94 67.36 45.73 39.23 83.97 68.44 64.94

TPT (Shu et al., 2022) 94.16 87.79 66.87 68.98 24.78 65.50 47.75 42.44 84.67 68.04 65.10
DiffTPT (Feng et al., 2023) 92.49 88.22 67.01 70.10 25.60 65.74 47.00 43.13 87.23 62.67 64.92
C-TPT (Yoon et al., 2024) 93.60 88.20 65.80 69.80 24.00 64.80 46.00 43.20 83.70 65.70 64.48
ZERO (Farina et al., 2024) 93.66 87.75 68.04 67.68 25.21 65.03 46.12 34.33 86.53 67.77 64.21
PromptAlign (Abdul Samadh et al., 2024) 94.01 90.76 68.50 72.39 24.80 67.54 47.24 47.86 86.65 69.47 66.92
TDA (Karmanov et al., 2024) 94.24 88.63 67.28 71.42 23.91 67.54 47.40 58.00 86.14 70.66 67.53
TPT+CoOp (Zhou et al., 2022b) 93.75 88.93 67.06 68.25 25.89 66.40 47.15 48.78 83.82 66.53 65.66
TPT+MaPLe (Khattak et al., 2023) 93.59 90.72 66.50 72.37 24.70 67.54 45.87 47.80 86.64 69.19 66.50
ZERO (Farina et al., 2024)+CoOp 93.85 88.36 64.90 67.23 19.14 64.73 43.62 33.53 82.67 66.61 62.46
ZERO (Farina et al., 2024)+MaPLe 94.48 90.60 68.58 71.62 26.25 68.20 45.86 42.17 86.77 69.87 66.42

FGA (Ours) 96.96 91.28 68.93 72.11 26.97 69.29 49.76 47.58 84.95 68.17 67.60

To address this, we first derive an upper bound for the generalization error, which quantifies the
model’s performance on unseen data from T1 and T2. We will then explore how, when the test dis-
tributions are sufficiently distinguishable, FGA can effectively distinguish between them. This is
crucial because, as we will show, when the test distribution closely resembles the training distribu-
tion, the generalization error bound decreases, leading to more accurate predictions.

Theorem 1 (Generalization Bound) Consider real-valued function class F = {fθ(·)}, and a
bounded loss function ℓ : R× R → [0,M ]. Define ℓρ as:

ℓρ(fθ(x), y) = max
∥ϵ∥2≤ρ

ℓ(fθ+ϵ(x), y). (9)

Assume that ℓρ is µ-Lipschitz with respect to f :

|ℓρ(f, y)− ℓρ (f ′, y)| ≤ µ |f − f ′| . (10)

Denote the training and test distribution as S and T , respectively. Then, with probability at least
1− δ, the following inequality holds:

ET [ℓ
ρ(fθ(XT ), YT )] ≤

M

2
dF∆F (S; T ) + ℓ̂ρS (fθ) + 2µRn(F ,S) +M

√
log(1/δ)

2n
. (11)

Here, (XT , YT ) represents the random vector that follows the distribution T . The term dF∆F (S; T )
quantifies the discrepancy between distributions S and T , whose formal definition is provided in
Appendix A. Rn(F ,S) represents the Rademacher complexity (Zhang, 2023).

In the following, we will show that when the two test distributions are sufficiently distinguish-
able—compared with the tightness of the above upper bound—we can effectively differentiate be-
tween them. To proceed with this analysis, we first introduce the concepts of bound tightness and
distribution separability.

Definition 2 (β-tightness) Let α be an upper bound for the variable x such that Pr{x ≤ α} ≥ 1−δ.
If there exists an oracle upper bound α⋆ for which Pr{x ≤ α⋆} = 1 − δ, we say that the upper
bound is β-tight, where β = |α− α⋆|.

Definition 3 (γ-separability) Let T1 and T2 be two test distributions. We say that they are γ-
separable if the condition |dF∆F (T1;S)−dF∆F (T2;S)| > γ holds. Here, S represents the training
distribution.

Theorem 4 Consider a function class F = {fθ(·)}, where the parameters θ lie in a set such
that the loss function is bounded within [0,M ]. Let p = (p1, . . . , pK) and q = (q1, . . . , qK) be
probability distributions over a finite set {1, . . . ,K}, with pi, qi ≥ η > 0 for all i. Denote by H(q)
the entropy and by H(p, q) the cross-entropy. Given a training distribution S and two γ-separable
test distributions T1 and T2, assume dF∆F (S, T1) < dF∆F (S, T2). Define the quantile function

7
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Qi(δ) for the entropy loss of fθ on Ti such that Pr {Hρ < E[Hρ] +Qi(δ)} = 1 − δ, and let
Q(δ) = sup{Q1(δ), Q2(δ)} be the supremum quantile. Then, with probability at least 1− δ:

ETi
[Hρ(fθ(XTi

))] ≤M

2
dF∆F (S; Ti) + Ĥρ(YS , fθ(XS)) + 2µRn(F ,S) +M

√
log(1/δ)

2n

+ ES∥YS − fθ̃(XS)∥1 +
1

η
ES∥YS − fθ̃(XS)∥21. (12)

Here, the notation θ̃ is defined as θ̃ := θ + argmax∥ϵ∥≤ρ max {H(y, fθ+ϵ(x)), H(fθ+ϵ(x))}.
Furthermore, if this bound is βi-tight for T1 and T2 with βi < γ, then there exists a threshold ξ such
that:

Pr {Hρ(fθ(XT1)) < ξ} > Pr {Hρ(fθ(XT2)) < ξ} . (13)

This inequality indicates that a test distribution further from the training distribution tends to exhibit
a higher sharpness score. By comparing sharpness scores across test distributions, we can identify
which one is closer to the training distribution, thus yielding more reliable predictions. Notably, the
tunable parameter ρ controls the tightness of the upper bound, facilitating a precise differentiation
between test distributions and improving the model performance. It is important to note that in the
theoretical analysis presented in this section, we do not distinguish between ρ and ρ′ (which are
utilized to calculate the sharpness of the training and test loss landscapes, respectively). However,
in practical implementation, we may opt to use different values for ρ and ρ′ for better performance.
Due to space limitations, detailed proofs and further discussions are provided in the appendix.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. We conduct two types of experiments to evaluate the model’s robustness to natural dis-
tribution shifts and its cross-dataset generalization capabilities, following previous research such
as TPT (Shu et al., 2022). To assess the model’s robustness to natural distribution shifts, we ap-
ply prompt tuning on the ImageNet (Deng et al., 2009) dataset, and evaluate its performance on
four ImageNet variants—ImageNet-A (Hendrycks et al., 2021c), ImageNet-V2 (Recht et al., 2019),
ImageNet-R (Hendrycks et al., 2021a) and ImageNet-Sketch (Wang et al., 2019)—which is also
known as the domain generalization task. In addition, we perform cross-dataset evaluations for im-
age classification across 10 datasets, each from a distinct domain with different classes: including
Caltech101 (Fei-Fei et al., 2004), OxfordPets (Parkhi et al., 2012), StanfordCars (Krause et al.,
2013), Flower102 (Nilsback & Zisserman, 2008), Aircraft (Maji et al., 2013), SUN397 (Xiao et al.,
2010), DTD (Cimpoi et al., 2014), Food101 (Bossard et al., 2014), UCF101 (Soomro, 2012) and
Eurosat (Helber et al., 2019). In this experiment, ImageNet serves as the source dataset, while the
remaining fine-grained datasets are used as target datasets for evaluation.

Implementation details. Our experiments are based on pretrained CLIP (Radford et al., 2021) mod-
els, specifically CLIP-ResNet50 (using a ResNet50 image encoder) and CLIP-ViT-B/16 (using a
Vision Transformer image encoder). Due to space limits, we focus on reporting the experimental
results of CLIP-ViT-B/16, deferring those of CLIP-ResNet50 to the appendix. In the prompt tun-
ing stage, our experiments are built on the CoOp (Zhou et al., 2022b) framework. The prompts are
trained in a 16-shot manner on the ImageNet dataset. We set the number of prompts to 4 and utilize
the SGD optimizer, with a learning rate of 0.002. For cross-dataset and domain generalization tasks,
the prompts were trained for 5 and 50 epochs, with batch sizes of 4 and 32, respectively. The key hy-
perparameters ρ are determined through a grid search, with the values ranging from [0.05, 0.1, 0.3,
0.5, 0.7]. During testing, existing TPT-based methods usually leverage the input image along with
its 63 augmented views. To ensure a fair comparison, we apply the same data augmentation strategy
across all experiments. To avoid tuning hyperparameters on test data, we just set λ = 1 and ρ′ = 0.5
for all experiments. Please refer to the Appendix for more discussions about other hyperparameters.

5.2 MAIN RESULTS

Robustness to natural distribution shifts. We first compare the proposed FGA with prevalent TTA
techniques on ImageNet and its variant OOD datasets. The results, presented in Table 1, highlight the
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ResNet-50 and ViT-B/16, respectively, on the OOD bench-496

mark. Notably, our method consistently outperforms state-497

of-the-art (SOTA) methods on both architectures, achieving498

an average accuracy gain of 1.79% for ResNet-50 and 3.00%499

for ViT-B/16. These results strongly demonstrate the effec-500

tiveness of SATTA in enhancing the out-of-distribution gen-501

eralization of CLIP across diverse OOD datasets.502

Cross-dataset generalization. We also observe supe-503

rior performance of the proposed method compared to state-504

of-the-art (SOTA) techniques on cross-domain benchmarks505

(as shown in Table 3). Specifically, when using ResNet-50506

and CLIP-ViT-B/16 as the backbone networks, the proposed507

method achieves an average accuracy improvement of 1.62%508

(59.37% → 60.99%) and 1.44% ( 66.46% → 67.90%) over509

SOTA methods, respectively. These improvements further510

validate the effectiveness of the proposed method in adapting511

to diverse datasets during testing. This capability is particu-512

larly valuable for vision-language models like CLIP, as it en-513

ables these models to recognize arbitrary categories in image514

classification tasks without the need for additional training.515

5.3 Ablation Study516

Main components analysis.To investigate the necessity of517

each component of the proposed algorithm, we conducted an518

ablation study on a domain generalization benchmark dataset,519

employing the CLIP-ViT-B/16 model architecture. The ex-520

perimental results are presented in Figure 3. Based on the521

analysis of these results, we can draw the following key522

conclusions: (1) Sharpness-aware prompt tuning enhances523

generalization. The sharpness-aware prompt tuning method524

(CoOp+SAPT) significantly improves the model’s general-525

ization ability compared to the traditional CoOp method. 526

Specifically, CoOp+SAPT yields an average accuracy im- 527

provement of 0.92% (from 61.72% to 62.64%) on ImageNet 528

and its out-of-distribution (OOD) datasets. (2) Sharpness- 529

based sample selection during test-time adaptation leads 530

to notable performance gains. During the test-time adap- 531

tation phase, the CoOp+STSS method, which incorporates 532

sharpness-based sample selection, achieves a substantial per- 533

formance boost of 4.78% in average accuracy (from 61.72% 534

to 66.50%) over CoOp. This demonstrates the effective- 535

ness of test-time adaptation strategies over sharpness-aware 536

prompt tuning alone. (3) Sharpness-aware prompt tuning 537

(SAPT) facilitates improved sample selection in test-time 538

adaptation. When sharpness-aware prompt tuning (SAPT) 539

is applied during the fine-tuning phase, it further enhances 540

the sample selection process during the test-time adaptation 541

phase (STSS). Specifically, CoOp+SAPT+STSS improves 542

average accuracy by 5.40% (from 62.64% to 68.04%) com- 543

pared to CoOp+SAPT, which is a larger performance gain 544

than that without SAPT (+4.78%). This suggests that op- 545

timizing for flatter minima during the fine-tuning stage not 546

only improves model generalization but also has a beneficial 547

impact on test-time adaptation performance. Interestingly, 548

the weakened version of the algorithm that does not include 549

sharpness-aware prompt tuning (CoOp+STSS) already out- 550

performs the traditional TPT+CoOp algorithm (64.00%) and 551

its variant DiffTPT+CoOp (64.12%) by a noticeable margin, 552

highlighting the efficacy of the proposed test-time adapta- 553

tion framework even in the absence of sharpness-aware fine- 554

tuning. 555

Ablative analysis on key hyperparameters. As men- 556

tioned earlier, ρ and ρ′ are two critical hyperparameters in 557

our algorithm, playing significant roles during the training 558

and testing phases, respectively. The impact of ρ on gen- 559

eralization has been well-studied in prior work [Foret et al., 560

2020], so this paper primarily focuses on how ρ′ influences 561

the model’s adaptation during testing. Theoretical analysis in 562

Section 4 has suggested that ρ′ may control the distinguisha- 563

bility between different test distributions. Properly tuning of 564

ρ′ helps identify test samples closer to the training distribu- 565

tion, thus improving prediction reliability. To validate this 566

empirically, we incrementally increase ρ′, and observe its ef- 567

fect on test accuracy. From the curves in Figure 4, we draw 568

the following conclusions: 569

• Increasing ρ′ initially improves test accuracy, but even- 570

tually leads to a decline. This mirrors the effect of ρ on 571

generalization. When ρ′ is too small or too large, the 572

sharpness values become either too small or too large, 573

failing to reflect the true relative sharpness, which re- 574

duces accuracy. Notably, when ρ′ = 0, the sample selec- 575

tion criterion defaults to entropy, highlighting the posi- 576

tive effect of sharpness in test-time adaptation. 577

• As the number of retained test samples increases, test ac- 578

curacy initially improves but eventually decreases. This 579

occurs because test samples closer to the training dis- 580

tribution tend to have smaller sharpness values. How- 581

ever, this relationship is probabilistic, not determinis- 582

tic. Retaining test samples with smaller sharpness val- 583

Figure 5: 2D Visualization of loss
landscapes associated with differ-
ent augmented test samples.

superior performance of FGA across several ImageNet-based OOD datasets. Notably, even the ab-
lated version of our method, FGA (STSS only + CoOp), exhibits strong performance, surpassing all
previous approaches with an OOD average of 64.60% and an overall average of 66.48%. We attribute
this robustness to the fact that standard SGD training already imbues models with an implicit bias
toward flatter minima. By explicitly enhancing this geometric property through SAPT, the full FGA
algorithm achieves a substantial leap in generalization performance. Specifically, when compared to
TPT+CoOp, FGA shows an average accuracy improvement of 4.88% (61.67% → 66.55%) on the
OOD benchmark. Furthermore, our FGA also consistently surpasses other powerful TTA methods
(e.g., DiffTPT, C-TPT, ZERO, MTA, and SAR) when they are combined with CoOp. It is critical
to note that while online TTA methods like SAR benefit from aggregating information across a test
data stream, FGA operates in a more challenging single-sample adaptation setting. For a fair com-
parison, we have adapted SAR to this setting. These superior results of FGA strongly demonstrate
its effectiveness in enhancing CLIP’s out-of-domain generalization across diverse datasets.

Cross-dataset generalization. We also observe superior performance of the FGA in evaluating
cross-dataset generalization from ImageNet to various fine-grained classification benchmarks. Based
on the comprehensive results presented in Table 2, the proposed FGA method demonstrates supe-
rior overall performance, achieving the highest average accuracy of 68.09% and attaining top-tier
results on 6 out of 10 datasets, including a notably strong performance on Caltech101 (96.96%).
Furthermore, FGA (67.60%) achieves an average accuracy improvement of 1.94% over the power-
ful baseline TPT+CoOp (65.66%). It also exhibits superior performance over the combinations of
TTA methods (like TPT and ZERO) and different tuning methods (CoOp and MaPLe). These results
further validate its effectiveness in adapting to diverse datasets during testing. It is important to note
that due to the significant difference in the amount of target domain information available to differ-
ent TTA settings, it is not imperative to expect single-sample TTA methods to surpass online TTA
methods like TDA. It is particularly valuable for VLMs like CLIP, as it enables models to recognize
more fine-grained categories in image classification without the need for additional training.

Runtime and Memory Efficiency. To quantify the computational advantage of FGA, we report
runtime per test image and peak GPU memory usage, all measured on a single NVIDIA Tesla V100.
Specifically, FGA achieves 22× faster inference than DiffTPT (0.07s vs 1.67s) and 9× speedup
over TPT (0.07s vs 0.62s). Additionally, FGA’s memory usage is 15× lower than TPT (1.28GB vs
19.24GB). These results validate FGA’s computational efficiency, delivering high-performance test-
time adaptation with minimal resource overhead. It is important to note that this work primarily
focuses on the single test sample adaptation setting. Therefore, comparative analysis with online
TTA methods that utilize aggregated test data falls outside the scope of the present investigation.

5.3 ABLATION STUDY

Main components analysis. Our ablation study on the domain generalization benchmark (using
CLIP-ViT-B/16 architecture, shown in Figure 3) validates the necessity of each FGA component: (1)
Sharpness-aware prompt tuning (SAPT) enhances generalization, boosting CoOp’s average accuracy
by 0.92% (61.72%→62.64%) on ImageNet and OOD datasets; (2) Test-time sharpness selection
(STSS) drives major gains, with CoOp+STSS outperforming CoOp by 4.82% (61.72%→66.54%);
(3) SAPT synergistically enhances STSS, where full FGA (CoOp+SAPT+STSS) achieves a 5.40%
gain over CoOp+SAPT (62.64%→68.04%)—exceeding standalone STSS improvements (4.82%).
This confirms that flatter minima from SAPT intrinsically improve test-time sample selection.
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Ablative analysis on key parameter ρ′. Theoretical analysis (Section 4) establishes ρ and ρ′ as
key generalization controllers, playing significant roles during the training and testing stages, re-
spectively. Since ρ’s role has been well explored in previous research (Foret et al., 2020), we focus
on ρ′ for test-time adaptation: as mentioned earlier, it governs distribution distinguishability, with
proper values enhancing prediction reliability through sensitive discrimination. Empirical valida-
tion on ImageNet-R (Figure 4) shows non-monotonic accuracy dependence on ρ′—initially rising
then falling. It is because extreme values (ρ′ → 0 or ρ′ ≫ 0) may yield uninformative sharpness
measures and degrade performance. Crucially, ρ′ = 0 degenerates to entropy maximization, and its
comparison with non-zero cases also demonstrates sharpness’s necessity. Notably, all experiments
fix ρ′ = 0.5 without test-data tuning, and this analysis solely aims to demonstrate the control ef-
fect of ρ′ on generalization. Sample retention follows a similar trend: accuracy peaks then declines
with increased retention. This reflects the probabilistic correlation: lower sharpness typically means
greater proximity to the training distribution, meaning performance degrades when retaining exces-
sively high-sharpness samples.

5.4 VISUALIZATION OF LOSS LANDSCAPES

To intuitively validate FGA’s effectiveness, we visualize the test data’s loss surface using a 2D tech-
nique (Li et al., 2018) in Figure 5, revealing how sample selection enhances prediction reliability.
The visualization demonstrates critical relationships: when parameters reside in flat minima (Figure
5, top), augmented samples maintain semantic integrity and enable reliable predictions. Conversely,
parameters outside flat minima (bottom) yield distorted semantic representations that degrade gener-
alization. This contrast directly demonstrates FGA’s core mechanism—filtering unreliable test sam-
ples to prevent their negative impact, thereby boosting VLMs’ generalization capacity.

6 CONCLUSION

This paper demonstrates that flatness operates not just as a beneficial training characteristic but as
a key geometric clue for test-time adaptation. This understanding motivates the proposal of a novel
framework, Flatness-Guided Adaptation (FGA), which utilizes the principle of loss landscape flat-
ness as a unified guide to improve both training and test generalization against distribution shifts.
Different from previous TTA methods that often fine-tune prompts per sample, it directs adaptation
by leveraging the geometric relationship between training minima and test-time loss landscapes.
Specifically, it first identifies flat minima during prompt tuning and then ensures the alignment across
training and test landscapes via a selective mechanism. Comprehensive experiments and theoretical
analysis confirm FGA’s effectiveness and superior performance. We anticipate this work will ad-
vance the understanding of loss landscapes and inspire future TTA technologies.

Future Work. Our proposed FGA is grounded in a general analysis of loss landscape geometry,
a foundational concept that is broadly applicable across diverse model architectures and learning
paradigms. This foundation makes FGA a flexible component that could be integrated into modern
visual-language models, advanced prompt tuning methods, or new types of test-time adaptation
objectives to potentially enhance their performance. In this work, we intentionally followed the
experimental setup introduced in the TPT paper. This choice allows a controlled and fair comparison
with prior TTA methods, helping us to clearly demonstrate the contribution of FGA itself. The
extension of FGA to other experimental configurations would require extensive engineering efforts
to conduct large-scale experiments across diverse settings, and thus remains our future work.
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