

000 FLATNESS GUIDED TEST-TIME ADAPTATION FOR 001 002 VISION-LANGUAGE MODELS 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

010
011 Test-time adaptation (TTA) of Vision-Language Models (VLMs) has emerged as
012 a technique for tackling distribution shifts during the test time. Recent research
013 indicates that the test-time adaptation is intrinsically linked to the model’s train-
014 ing history. However, existing TTA methods, such as Test-time Prompt Tuning,
015 often design adaptation strategies in isolation from the models’ training charac-
016 teristics, which degrade their performance. This paper argues that the flatness ac-
017 quired via sharpness-aware training is an efficient clue for the test-time adapta-
018 tion of VLMs. Built on this insight, this paper proposes a novel Flatness-Guided
019 Adaptation framework (FGA) for VLMs to cohesively unify training and test-
020 time procedures. Its core idea is to leverage the alignment between the training
021 minimum and test loss flat regions to guide the adaptation process. Specifically,
022 our FGA consists of a prompt-tuning stage and a test-time adaptation stage. In
023 the tuning stage, a Sharpness-Aware Prompt Tuning method is utilized to identify
024 the training flat minimum, offering a geometric clue of flatness for subsequent
025 adaptation. In the test stage, a Sharpness-based Test Sample Selection approach
026 is proposed to ensure the alignment of flat minima between the training and each
027 augmented test sample’s loss landscape. In comparison to existing TTA methods,
028 our FGA avoids the expensive prompt parameter updates during test time, and
029 substantially reduces the computation overhead. Extensive experiments on both
030 domain generalization and cross-dataset benchmarks demonstrate that our FGA
031 achieves superior performance over prevalent TTA methods. Notably, FGA even
032 surpasses SOTA performance by 4.55% on ImageNet-A, when using a ViT-B/16
033 image encoder. Our code will be available soon.

034 1 INTRODUCTION 035

036 Recent advancements in vision-language pretraining, such as CLIP (Radford et al., 2021), have
037 generated new opportunities for developing foundational models in vision tasks (Jia et al., 2021;
038 Yang et al., 2022). These models, trained on extensive collections of image-text pairs, can learn and
039 represent a diverse range of visual concepts. By means of well-designed prompts, they can be applied
040 to downstream tasks in a zero-shot manner without requiring task-specific data (Li et al., 2022;
041 Ramesh et al., 2022; Patashnik et al., 2021). Consequently, various prompt tuning methods (Zhou
042 et al., 2022b;a) are proposed to directly learn prompts using training data from downstream tasks.
043 Though these methods find better prompts compared to hand-crafted ones, the learned prompts are
044 limited to the training distribution and may have limited generalization beyond that.

045 To address this issue, several studies (Chen et al., 2022; Boudiaf et al., 2022; Wang et al., 2020) have
046 attempted to develop test-time adaptation (TTA) methods, which aim to rapidly adjust pre-trained
047 models to unlabeled test data streams during inference. Among various TTA strategies, methods
048 based on Test-Time Prompt Tuning (TPT) (Shu et al., 2022), which optimize a set of learnable
049 prompts via entropy minimization on augmented test views, have demonstrated promising per-
050 formance and gained significant attraction (Shu et al., 2022; Feng et al., 2023; Yoon et al., 2024). Re-
051 cent research indicates that the test-time adaptation is intrinsically influenced by the model’s training
052 history (Goyal et al., 2022). However, most existing TTA methods, including TPT-based methods,
053 design adaptation strategies in isolation, treating the test phase as a standalone optimization problem
disconnected from the model’s training history. This isolation from the training phase may fail to

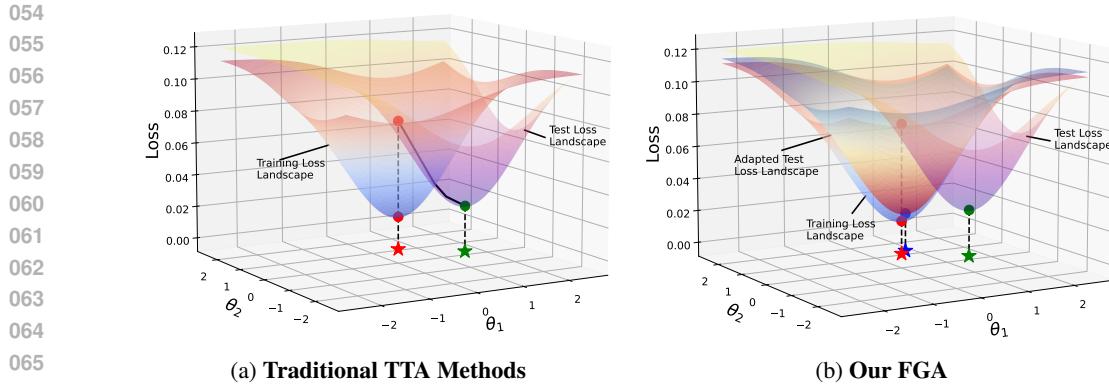


Figure 1: **Comparison of conventional TTA methods and Flatness-Guided Adaptation (FGA).** (a) Traditional TTA methods treat the test landscape as static, aiming to optimize parameters to achieve the test flat minimum (★), using the training minimum (★) as an initialization. (b) Our FGA keeps parameters unchanged during testing. Instead, it adjusts the test landscape to a position where the training minimum (★) is already very close to the minimum (★) of the adapted test landscape.

exploit valuable geometric and representational properties inherent in the pre-trained model, leading to suboptimal test-time adaptation.

To improve model generalization, seeking flat minima within the training loss landscape has emerged as an effective training strategy over the past few years (Foret et al., 2020; Kwon et al., 2021; Kim et al., 2022). It is widely observed that parameters residing in flat minima tend to generalize better to out-of-distribution data (Cha et al., 2021; Zhang et al., 2024b; Li et al., 2025; Zou et al., 2024) than those sharp ones. Nonetheless, conventional TTA methods often ignore the influence of sharpness-aware training on the test-time adaptation. While Sharpness-Aware Minimization (SAM) (Foret et al., 2020) seeks flat regions during training, its principle is rarely extended to guide test-time adaptation in a unified framework. This disconnection leads to computationally expensive test-time optimizations (e.g., backpropagation in TPT (Shu et al., 2022)) that are agnostic to loss geometric structure and often yield suboptimal generalization. This paper argues that the flatness is not merely a desirable property during training but a powerful clue that can dictate test-time adaptation.

Inspired by this insight, this paper proposes a novel *Flatness-Guided Adaptation* (FGA) framework, which cohesively unifies training and test-time procedures from the perspective of loss landscape geometry. It mainly leverages the alignment between the training minimum and test loss flat regions to guide the adaptation process (see Figure 1). Specifically, our FGA framework consists of two synergistic stages: (1) In the prompt tuning stage, a *Sharpness-Aware Prompt Tuning* (SAPT) method is utilized to fine-tune the prompts on the downstream training dataset, aiming at seeking the training flat minimum. Since flatter minima generally indicate better model generalization than sharper ones (Keskar et al., 2016; Dziugaite & Roy, 2017; Jiang et al., 2019; Foret et al., 2020), the minimization of sharpness not only improves model generalization but also provides a test-time criterion to measure the alignment of flat minima within the training and test loss landscapes. (2) In the test-time stage, FGA leverages the geometric clue of flatness acquired via SAPT. For a given test sample, a *Sharpness-based Test Sample Selection* (STSS) method is proposed to intelligently select its augmented views based on the sharpness score of their loss landscapes around the training flat minimum. This ensures that the final prediction is derived from a test-time loss landscape whose flat minima align with those identified during training. During this process, loss landscapes are efficiently altered through data augmentations. In comparison with existing TTA methods, our FGA avoids the expensive prompt parameter updates during test time, eliminating the computational overhead of adaptation and offering a more plausible adaptation strategy. Theoretical analysis suggests that using the sharpness-based metric will help distinguish the proximity of test samples to the training distribution. The closer an augmented sample is to the training distribution, the smaller its sharpness-based score is likely to be. Since models tend to generate more reliable results for data closer to the training distribution, FGA significantly improves the generalization ability of vision-language models. Extensive experiments on domain generalization (Hendrycks et al., 2021b) and cross-dataset (Zhou et al., 2022a) benchmarks demonstrate the superior performance of FGA over prevailing TTA methods.

108 Our main contributions can be summarized as follows:
 109

- 110 • A novel Flatness-Guided Adaptation (FGA) framework is proposed to cohesively unify training
 111 and test-time procedures for vision-language models. By ensuring the alignment of model’s
 112 training flat minimum with flat regions in test loss landscapes, it significantly enhances the gen-
 113 eralization capabilities of VLMs under distribution shifts.
- 114 • Theoretical analysis is presented to offer a clearer insight into how sample selection at test time
 115 improves the reliability of predictions.
- 116 • Extensive experiments on domain generalization and cross-dataset benchmarks demonstrate the
 117 superior performance of FGA over other prevalent TTA methods, while significantly eliminating
 118 the computational overhead.

120 **2 RELATED WORK**
 121

122 **Test-time adaptation (TTA) of vision-language models.** Vision-language models like CLIP have
 123 shown strong performance in various tasks. To enhance CLIP’s transfer learning for downstream
 124 classification tasks, methods like text prompt learners (e.g., CoOp (Zhou et al., 2022b) and Co-
 125 CoOp (Zhou et al., 2022a)) and visual adapters (e.g., Tip-Adapter (Zhang et al., 2022)) have been
 126 proposed. However, these methods struggle with distribution misalignment between pre-training and
 127 test data. Test-time adaptation (TTA) methods address this by adjusting models during testing, with
 128 two main streams (Abdul Samad et al., 2024): the first modifies the training process using a self-
 129 supervised proxy task, such as image rotation prediction, and uses it to guide test-time optimization
 130 (e.g., Test-Time Training (Sun et al., 2020) and TTT++ (Liu et al., 2021)); the second adapts models
 131 without altering the training process (e.g., TPT (Shu et al., 2022), which uses entropy minimiza-
 132 tion to learn adaptive parameters during testing). DiffTPT (Feng et al., 2023) introduces a diffusion
 133 model to generate diverse augmentations for further improvements. PromptAlign (Abdul Samad
 134 et al., 2024) adds an explicit term to align the learned distributions with that of test data. Meanwhile,
 135 online methods like TDA (Karmanov et al., 2024) and DPE (Zhang et al., 2024a) use a key-value
 136 cache or prototype set to adapt progressively to test data. They benefit from information aggregated
 137 during testing but are unsuitable for single test-sample scenarios, unlike TPT-based methods. This
 138 paper proposes a novel Flatness-Guided Adaptation (FGA) framework that leverages the geometry
 139 of loss landscapes to enhance CLIP’s generalization and inference efficiency in single test-sample
 140 adaptation scenarios. By avoiding backpropagation and parameter updates during testing, FGA sig-
 nificantly reduces computational overhead while achieving robust out-of-domain performance.

141 **Generalization from a loss landscape view.** In recent years, optimization techniques aimed at flat
 142 minima in loss landscapes have surged to improve the generalization of deep models (Keskar et al.,
 143 2016; Dziugaite & Roy, 2017; Jiang et al., 2019). Among them, SAM (Foret et al., 2020), which
 144 focuses on finding parameters located in regions of the loss landscape with consistently low loss
 145 values, has gained significant attention for its effectiveness and scalability. To seek flatter minima,
 146 numerous SAM variants, such as ASAM (Kwon et al., 2021) and FisherSAM (Kim et al., 2022),
 147 have already been developed over the past few years. This concept of flat minima has also been
 148 extended to improve the out-of-domain generalization of deep models (Zou et al., 2024; Cha et al.,
 149 2021; Li et al., 2025). However, most of them focus on the training stage. SAR (Niu et al., 2023) and
 150 SoTTA (Gong et al., 2023), two online test-time adaptation (TTA) methods, both utilize sharpness-
 151 aware minimization at test time to improve robustness by seeking flat minima. Yet, they operate
 152 solely during testing without accounting for training-testing sharpness interactions. In contrast, our
 153 FGA applies sharpness-aware minimization during training to establish flatness as a criterion for
 154 subsequent alignment, then at test time adapts by adjusting loss landscapes through augmentation
 155 selection—without updating model parameters—and preserving the pre-trained flat minimum’s op-
 timality on adapted test loss landscapes.

156
 157 **3 METHODOLOGY**
 158

159 **3.1 PRELIMINARIES**
 160

161 **Contrastive Language-Image Pre-training.** CLIP (Radford et al., 2021) primarily comprises a
 Text Encoder E_t and an Image Encoder E_v . The Image Encoder is available in two architectures:

one based on ResNet (He et al., 2016) and the other using the popular Vision Transformer (ViT) (Dosovitskiy et al., 2020). This encoder transforms an input image \mathbf{x} into its feature representation, i.e., $e_i = \mathbf{E}_v(\mathbf{x})$. For a classification task with K classes, the corresponding class labels are formatted into a text template, “a photo of a [cls]”, which is then mapped to tokens $\mathbf{y}_k = (\text{SOS}, t_1, t_2, \dots, t_L, c_k, \text{EOS})$. Here, SOS and EOS represent the embeddings of the start and end tokens, while t_1, t_2, \dots, t_L corresponds to the phrase “a photo of a”, and the token c_k denotes the specific description of the k -th class. The text encoder of CLIP, designed as a Transformer architecture, processes these tokens to generate text features: $e_{t,k} = \mathbf{E}_t(\mathbf{y}_k)$. During the pre-training stage, CLIP is trained on the WIT dataset (Radford et al., 2021) through a contrastive learning approach. In this setup, each image is paired with its corresponding text sentence as a positive sample, while all other image-text combinations are treated as negative samples. The goal of the contrastive learning objective is to enhance the cosine similarity of positive pairs while reducing that of negative pairs. In the classification stage, all classes in the dataset are converted to text, and the cosine similarity between image embeddings and text embeddings is computed to determine the probability of an image belonging to each category:

$$p(y_k | \mathbf{x}) = \frac{\exp(\text{sim}(\mathbf{e}_{t,k} \cdot \mathbf{e}_i) \tau)}{\sum_{j=1}^K \exp(\text{sim}(\mathbf{e}_{t,j} \cdot \mathbf{e}_i) \tau)}, \quad (1)$$

where τ is the temperature of the softmax.

Prompt tuning. Prompt tuning has emerged as a popular tuning method for Transformer-based models in downstream tasks. This approach does not modify the model parameters; rather, it changes the input to the model, making it highly efficient. Specifically, instead of using the template “a photo of a [cls]”, it replaces the tokens associated with the hand-crafted prompts (“a photo of a”) with learnable parameters $\mathbf{p} = (p_1, \dots, p_L)$, which are then updated based on the dataset used for downstream tasks.

Test-time prompt tuning. To prevent overfitting that may arise from prompts learned on the downstream training set—which may not perform effectively on test data with distribution shifts—test-time prompt tuning (TPT) (Shu et al., 2022) fine-tunes a specific prompt for each test sample. During testing, multiple augmented views of the test samples are generated. Then, predictions with entropy below a predetermined threshold are kept, while others are discarded using a confidence filter. The averaged entropy of selected predictions is then used as a loss function to update the prompts.

3.2 FLATNESS-GUIDED ADAPTATION

Our proposed Flatness-Guided Adaptation (FGA) framework fundamentally offers a unified, loss landscape-centric methodology that seamlessly bridges the training and test phases. This approach leverages the flatness as a universal guiding principle to enhance both generalization during training and robust adaptation during inference under distribution shifts. As illustrated in Figure 2, FGA

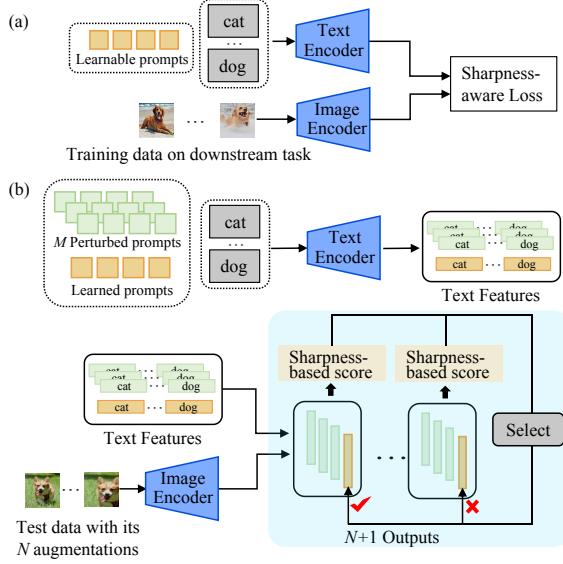


Figure 2: Overview of our Flatness-Guided Adaptation (FGA). It consists of two synergistic mechanisms: (a) Sharpness-aware Prompt Tuning: It optimizes the model parameters to reduce the loss value and sharpness, enabling stable and effective adaptations during test time without direct access to training data. (b) Sharpness-based Test Sample Selection: It introduces a selection mechanism to identify augmented test samples that ensure the training flat minimum aligns with those in their loss landscapes, enabling more confident predictions.

integrates two complementary mechanisms that operate in concert: sharpness-aware prompt tuning (SAPT) during training and sharpness-guided test sample selection (STSS) during inference. This section will elaborate on the key idea and technical details of the framework.

3.2.1 SHARPNESS-AWARE PROMPT TUNING

FGA mainly exploits the alignment between training and test flat minima for the efficient adaptation of VLMs. However, a major challenge in achieving this alignment arises from inherent data constraints. Test samples remain unknown during training, and at test time, training data becomes inaccessible due to storage limitations and privacy requirements. To overcome this, FGA focuses on the intrinsic properties of the training minimum—ensuring that the test loss landscape shares these desirable characteristics: (1) the training minimum should correspond to a low loss value, indicating that the model is effectively learning from the data; (2) the training minimum may display implicit biases, such as reduced sharpness, which are often beneficial for improved generalization.

Traditional training methods for optimizing the prompts, such as CoOp (Zhou et al., 2022b), typically use cross-entropy loss to fine-tune the prompt \mathbf{p} :

$$\ell_{\text{CE}}(\mathbf{p}) = - \sum_{i=1}^n \log p_{\mathbf{p}}(y_i | \mathbf{x}_i), \quad (2)$$

where $p_{\mathbf{p}}(y_i | \mathbf{x}_i)$ represents the predictive probability that \mathbf{x}_i belongs to its true label class. While standard SGD tends to find flat minima, methods such as SAM (Foret et al., 2020) can enhance this implicit bias through explicit perturbation-aware optimization. To enable more precise alignment during testing, we adopt Sharpness-aware Prompt Tuning (SAPT) during training, which jointly minimizes both the loss and its “sharpness”:

$$\ell_{\text{SAPT}}(\mathbf{p}) = \ell_{\text{CE}}(\mathbf{p}) + \lambda \max_{\|\epsilon\| \leq \rho} [\ell_{\text{CE}}(\mathbf{p} + \epsilon) - \ell_{\text{CE}}(\mathbf{p})]. \quad (3)$$

The first and second terms above represent the loss value and loss sharpness, with λ acting as a hyperparameter to balance them. Similar to previous studies (Foret et al., 2020; Kwon et al., 2021), sharpness is defined as the sensitivity of the training loss to small perturbations ϵ (with a norm less than ρ) added to the prompts \mathbf{p} . Since the perturbation strength ρ is small enough, we can apply a Taylor expansion to approximately solve for the optimal perturbation ϵ^* :

$$\epsilon^* = \arg \max_{\|\epsilon\| \leq \rho} \ell_{\text{CE}}(\mathbf{p} + \epsilon) - \ell_{\text{CE}}(\mathbf{p}) \approx \arg \max_{\|\epsilon\| \leq \rho} \epsilon^T \nabla_{\mathbf{p}} \ell_{\text{CE}}(\mathbf{p}) = \rho \frac{\nabla_{\mathbf{p}} \ell_{\text{CE}}(\mathbf{p})}{\|\nabla_{\mathbf{p}} \ell_{\text{CE}}(\mathbf{p})\|}. \quad (4)$$

During training via (stochastic) gradient descent, the contribution from $\nabla_{\mathbf{p}} \epsilon^*$ can be disregarded due to the minor perturbation strength ρ .

In this way, SAPT not only yields robust prompts that enhance generalization but also provides the sharpness measure as additional information for adaptation during testing.

3.2.2 SHARPNESS-BASED TEST SAMPLE SELECTION

Through sharpness-aware prompt tuning, the prompts are positioned at a flat minimum within the training loss landscape. To avoid computationally expensive gradient descent during inference, we keep the pre-trained prompt fixed and instead adapt the test loss landscapes such that the well-trained prompt from the downstream training dataset (i.e., the training flat minimum) coincides with the flat minimum in the adapted test landscape, as illustrated in Figure 1.

To achieve this alignment, we propose a Sharpness-based Test Sample Selection (STSS) method. STSS utilizes data augmentations to create multiple test loss landscapes for each sample. By selecting augmented samples that align the training minimum with flat minima in their respective loss landscapes, we ensure the training minimum remain optimal. Given that such alignment typically corresponds to small loss values and reduced loss sharpness in these test landscapes, STSS introduces a sharpness-based score as a metric. To mitigate the computational burden of backpropagation in calculating sharpness, we redefine it as the maximum variation in the loss resulting from M random perturbations:

$$\ell_{\text{STSS}}(\mathbf{p}) = \ell_{\text{SRG}}(\mathbf{p}) + \lambda \max_{m=1, \dots, M; \epsilon_m \sim \mathcal{N}} \left[\ell_{\text{SRG}} \left(\mathbf{p} + \rho' \frac{\epsilon_m}{\|\epsilon_m\|} \right) - \ell_{\text{SRG}}(\mathbf{p}) \right]. \quad (5)$$

270 Table 1: **Results on datasets with natural distribution shifts.** We report top-1 accuracy (%) for
 271 each method across five datasets, using the CLIP-ViT-B/16 backbone. We highlight the best results
 272 in **bold** and underline the second best results. The abbreviation “IN” means the ImageNet dataset. \dagger
 273 denotes results reproduced by adapting the method to the single-sample setting.

Algorithm	IN	IN-A	IN-V2	IN-R	IN-Sketch	Avg.	OOD Avg.
CLIP-ViT-B/16 (Radford et al., 2021)	68.34	49.89	61.88	77.65	48.24	61.20	59.42
CoOp (Zhou et al., 2022b)	71.51	49.71	64.20	75.21	47.99	61.72	59.28
CoCoOp (Zhou et al., 2022a)	71.02	50.63	64.07	76.18	48.75	62.13	59.91
Tip-Adapter (Zhang et al., 2022)	70.75	51.04	63.41	77.76	48.88	62.37	60.27
TPT (Shu et al., 2022)	69.70	53.67	64.30	73.90	46.40	61.59	59.57
DiffTPT (Feng et al., 2023)	70.30	55.68	65.10	75.00	46.80	62.58	60.64
C-TPT (Yoon et al., 2024)	-	52.90	63.40	78.00	48.50	-	60.70
ZERO (Farina et al., 2024)	69.06	61.35	64.13	77.28	48.29	64.02	62.76
MTA (Zanella & Ben Ayed, 2024)	69.29	57.41	63.61	76.92	48.58	63.16	
PromptAlign* (Abdul Samad et al., 2024)	-	59.37	65.29	79.33	50.23	-	63.55
TDA (Karmanov et al., 2024)	69.51	60.11	64.67	80.24	50.54	65.01	63.89
DPE (Zhang et al., 2024a)	71.91	59.63	65.44	80.40	52.26	65.93	64.43
TPT (Shu et al., 2022)+CoOp	73.30	56.88	66.60	73.80	49.40	64.00	61.67
DiffTPT (Feng et al., 2023)+CoOp	75.00	58.09	66.80	73.90	49.50	64.66	62.07
C-TPT (Yoon et al., 2024)+CoOp	72.90	52.73	65.61	76.46	48.63	63.27	60.86
ZERO (Farina et al., 2024)+CoOp	73.61	63.17	66.82	77.71	48.52	65.97	64.05
MTA (Zanella & Ben Ayed, 2024)+CoOp	73.99	59.29	66.97	78.20	49.96	65.68	63.61
SAR \dagger (Niu et al., 2023)+CoOp	73.03	55.35	65.89	77.09	48.65	64.00	61.75
FGA(SAPT only + CoOp)	70.79	51.04	64.41	77.66	49.31	62.64	60.61
FGA(STSS only + CoOp)	73.99	64.00	<u>67.11</u>	77.92	49.36	66.48	64.60
FGA (Ours)	74.01	65.90	<u>67.23</u>	81.24	51.81	68.04	66.55

293 Here, ℓ_{STSS} represents the sharpness-based score used to select the most reliable augmented test
 294 samples, and ℓ_{SRG} denotes a surrogate loss function when test labels are unavailable, such as en-
 295 tropy (Wang et al., 2020; Goyal et al., 2022). The perturbation direction is expressed by $\epsilon_m / \|\epsilon_m\|$,
 296 where ϵ_m is drawn from the standard normal distribution \mathcal{N} . The term ρ' controls the magnitude
 297 of perturbations during testing. To obtain $\ell_{\text{SRG}} \left(\mathbf{p} + \rho' \frac{\epsilon_m}{\|\epsilon_m\|} \right)$, we first obtain text features for each
 298 category ($\mathbf{e}_{t,k,m}$) through the forward pass of the text encoder:
 299

$$[\mathbf{e}_{t,k,1}, \dots, \mathbf{e}_{t,k,M}] = \mathbf{E}_t([\mathbf{y}_{k,1}, \dots, \mathbf{y}_{k,M}]), \quad (6)$$

300 where the input sequence $\mathbf{y}_{k,m}$ for the k -th category and m -th perturbation consists of the tokens:
 301 $\mathbf{y}_{k,m} = (\text{SOS}, \mathbf{p} + \rho' \frac{\epsilon_m}{\|\epsilon_m\|}, c_k, \text{EOS})$. Notably, the additional computational cost of this step is
 302 minimal, as text features only need to be computed once per test category. Then, the surrogate loss
 303 for perturbed prompts is:
 304

$$\ell_{\text{SRG}} \left(\mathbf{p} + \rho' \frac{\epsilon_m}{\|\epsilon_m\|} \right) = - \sum_{k=1}^K p_m(y_k | \mathbf{x}) \log p_m(y_k | \mathbf{x}), \quad (7)$$

305 with probabilities derived from cosine similarity:
 306

$$p_m(y_k | \mathbf{x}) = \frac{\exp(\text{sim}(\mathbf{e}_{t,k,m} \cdot \mathbf{e}_i) \tau)}{\sum_{j=1}^K \exp(\text{sim}(\mathbf{e}_{t,j,m} \cdot \mathbf{e}_i) \tau)}. \quad (8)$$

314 Finally, the final prediction aggregates votes from the top r augmented samples with the lowest
 315 sharpness-based scores, which are more reliable predictions according to the theoretical analysis in
 316 the next section.
 317

4 THEORETICAL ANALYSIS

320 This section provides a theoretical explanation of how our method improves test-time classification.
 321 Let’s begin with the following problem: During training, the model learns from data sampled in-
 322 dependently and identically from distribution \mathcal{S} ; During testing, however, data is drawn from two
 323 distinct distributions \mathcal{T}_1 and \mathcal{T}_2 . Then, the question is: *How can we distinguish between these test
 distributions and determine on which one the model will perform more reliably?*

324 **Table 2: Cross-dataset generalization from ImageNet to fine-grained classification datasets.**
 325 During the prompt tuning stage, the prompts are tuned on ImageNet with 16-shot training data per
 326 category, using a ViT-B/16 image encoder.

Method	Caltech101	Pets	Cars	Flowers102	Aircraft	SUN397	DTD	Eurosat	Food101	UCF101	Avg.
CLIP-ViT-B/16 (Radford et al., 2021)	93.35	88.25	65.48	67.44	23.67	62.59	44.27	42.01	83.65	65.13	63.58
CoOp (Zhou et al., 2022b)	93.70	89.14	64.51	68.71	18.47	64.15	41.92	46.39	85.30	66.55	63.88
CoCoOp (Zhou et al., 2022a)	94.43	90.14	65.32	71.88	22.94	67.36	45.73	39.23	83.97	68.44	64.94
TPT (Shu et al., 2022)	94.16	87.79	66.87	68.98	24.78	65.50	47.75	42.44	84.67	68.04	65.10
DiffTPT (Feng et al., 2023)	92.49	88.22	67.01	70.10	25.60	65.74	47.00	43.13	87.23	62.67	64.92
C-TPT (Yoon et al., 2024)	93.60	88.20	65.80	69.80	24.00	64.80	46.00	43.20	83.70	65.70	64.48
ZERO (Farina et al., 2024)	93.66	87.75	68.04	67.68	25.21	65.03	46.12	34.33	86.53	67.77	64.21
PromptAlign (Abdul Samad et al., 2024)	94.01	90.76	68.50	72.39	24.80	67.54	47.24	47.86	86.65	69.47	66.92
TDA (Karmanov et al., 2024)	94.24	88.63	67.28	71.42	23.91	67.54	47.40	58.00	86.14	70.66	67.53
TPT+CoOp (Zhou et al., 2022b)	93.75	88.93	67.06	68.25	25.89	66.40	47.15	48.78	83.82	66.53	65.66
TPT+MaPLe (Khattak et al., 2023)	93.59	90.72	66.50	72.37	24.70	67.54	45.87	47.80	86.64	69.19	66.50
ZERO (Farina et al., 2024)+CoOp	93.85	88.36	64.90	67.23	19.14	64.73	43.62	33.53	82.67	66.61	62.46
ZERO (Farina et al., 2024)+MaPLe	94.48	90.60	68.58	71.62	26.25	68.20	45.86	42.17	86.77	69.87	66.42
FGA (Ours)	96.96	91.28	68.93	72.11	26.97	69.29	49.76	47.58	84.95	68.17	67.60

340 To address this, we first derive an upper bound for the generalization error, which quantifies the
 341 model’s performance on unseen data from \mathcal{T}_1 and \mathcal{T}_2 . We will then explore how, when the test dis-
 342 tributions are sufficiently distinguishable, FGA can effectively distinguish between them. This is
 343 crucial because, as we will show, when the test distribution closely resembles the training distribu-
 344 tion, the generalization error bound decreases, leading to more accurate predictions.

345 **Theorem 1 (Generalization Bound)** Consider real-valued function class $\mathcal{F} = \{f_{\theta}(\cdot)\}$, and a
 346 bounded loss function $\ell : \mathbb{R} \times \mathbb{R} \rightarrow [0, M]$. Define ℓ^{ρ} as:

$$\ell^{\rho}(f_{\theta}(\mathbf{x}), y) = \max_{\|\epsilon\|_2 \leq \rho} \ell(f_{\theta+\epsilon}(\mathbf{x}), y). \quad (9)$$

350 Assume that ℓ^{ρ} is μ -Lipschitz with respect to f :

$$|\ell^{\rho}(f, y) - \ell^{\rho}(f', y)| \leq \mu |f - f'|. \quad (10)$$

353 Denote the training and test distribution as \mathcal{S} and \mathcal{T} , respectively. Then, with probability at least
 354 $1 - \delta$, the following inequality holds:

$$\mathbb{E}_{\mathcal{T}}[\ell^{\rho}(f_{\theta}(\mathbf{X}_{\mathcal{T}}), Y_{\mathcal{T}})] \leq \frac{M}{2} d_{\mathcal{F}\Delta\mathcal{F}}(\mathcal{S}; \mathcal{T}) + \hat{\ell}_{\mathcal{S}}^{\rho}(f_{\theta}) + 2\mu R_n(\mathcal{F}, \mathcal{S}) + M \sqrt{\frac{\log(1/\delta)}{2n}}. \quad (11)$$

356 Here, $(\mathbf{X}_{\mathcal{T}}, Y_{\mathcal{T}})$ represents the random vector that follows the distribution \mathcal{T} . The term $d_{\mathcal{F}\Delta\mathcal{F}}(\mathcal{S}; \mathcal{T})$
 359 quantifies the discrepancy between distributions \mathcal{S} and \mathcal{T} , whose formal definition is provided in
 360 Appendix A. $R_n(\mathcal{F}, \mathcal{S})$ represents the Rademacher complexity (Zhang, 2023).

362 In the following, we will show that when the two test distributions are sufficiently distinguish-
 363 able—compared with the tightness of the above upper bound—we can effectively differentiate be-
 364 tween them. To proceed with this analysis, we first introduce the concepts of bound tightness and
 365 distribution separability.

366 **Definition 2 (β -tightness)** Let α be an upper bound for the variable x such that $\Pr\{x \leq \alpha\} \geq 1 - \delta$.
 367 If there exists an oracle upper bound α^* for which $\Pr\{x \leq \alpha^*\} = 1 - \delta$, we say that the upper
 368 bound is β -tight, where $\beta = |\alpha - \alpha^*|$.

370 **Definition 3 (γ -separability)** Let \mathcal{T}_1 and \mathcal{T}_2 be two test distributions. We say that they are γ -
 371 separable if the condition $|d_{\mathcal{F}\Delta\mathcal{F}}(\mathcal{T}_1; \mathcal{S}) - d_{\mathcal{F}\Delta\mathcal{F}}(\mathcal{T}_2; \mathcal{S})| > \gamma$ holds. Here, \mathcal{S} represents the training
 372 distribution.

374 **Theorem 4** Consider a function class $\mathcal{F} = \{f_{\theta}(\cdot)\}$, where the parameters θ lie in a set such
 375 that the loss function is bounded within $[0, M]$. Let $p = (p_1, \dots, p_K)$ and $q = (q_1, \dots, q_K)$ be
 376 probability distributions over a finite set $\{1, \dots, K\}$, with $p_i, q_i \geq \eta > 0$ for all i . Denote by $H(q)$
 377 the entropy and by $H(p, q)$ the cross-entropy. Given a training distribution \mathcal{S} and two γ -separable
 378 test distributions \mathcal{T}_1 and \mathcal{T}_2 , assume $d_{\mathcal{F}\Delta\mathcal{F}}(\mathcal{S}, \mathcal{T}_1) < d_{\mathcal{F}\Delta\mathcal{F}}(\mathcal{S}, \mathcal{T}_2)$. Define the quantile function

378 $Q_i(\delta)$ for the entropy loss of f_θ on \mathcal{T}_i such that $\Pr\{H^\rho < \mathbb{E}[H^\rho] + Q_i(\delta)\} = 1 - \delta$, and let
 379 $Q(\delta) = \sup\{Q_1(\delta), Q_2(\delta)\}$ be the supremum quantile. Then, with probability at least $1 - \delta$:
 380

$$\begin{aligned} 381 \mathbb{E}_{\mathcal{T}_i} [H^\rho(f_\theta(X_{\mathcal{T}_i}))] &\leq \frac{M}{2} d_{\mathcal{F}\Delta\mathcal{F}}(\mathcal{S}; \mathcal{T}_i) + \hat{H}^\rho(Y_{\mathcal{S}}, f_\theta(X_{\mathcal{S}})) + 2\mu R_n(\mathcal{F}, \mathcal{S}) + M\sqrt{\frac{\log(1/\delta)}{2n}} \\ 382 &\quad + \mathbb{E}_{\mathcal{S}} \|Y_{\mathcal{S}} - f_{\tilde{\theta}}(X_{\mathcal{S}})\|_1 + \frac{1}{\eta} \mathbb{E}_{\mathcal{S}} \|Y_{\mathcal{S}} - f_{\tilde{\theta}}(X_{\mathcal{S}})\|_1^2. \end{aligned} \quad (12)$$

383 Here, the notation $\tilde{\theta}$ is defined as $\tilde{\theta} := \theta + \arg \max_{\|\epsilon\| \leq \rho} \max \{H(\mathbf{y}, f_{\theta+\epsilon}(\mathbf{x})), H(f_{\theta+\epsilon}(\mathbf{x}))\}$.
 384 Furthermore, if this bound is β_i -tight for \mathcal{T}_1 and \mathcal{T}_2 with $\beta_i < \gamma$, then there exists a threshold ξ such
 385 that:
 386

$$\Pr\{H^\rho(f_\theta(X_{\mathcal{T}_1})) < \xi\} > \Pr\{H^\rho(f_\theta(X_{\mathcal{T}_2})) < \xi\}. \quad (13)$$

387 This inequality indicates that a test distribution further from the training distribution tends to exhibit
 388 a higher sharpness score. By comparing sharpness scores across test distributions, we can identify
 389 which one is closer to the training distribution, thus yielding more reliable predictions. Notably, the
 390 tunable parameter ρ controls the tightness of the upper bound, facilitating a precise differentiation
 391 between test distributions and improving the model performance. It is important to note that in the
 392 theoretical analysis presented in this section, we do not distinguish between ρ and ρ' (which are
 393 utilized to calculate the sharpness of the training and test loss landscapes, respectively). However,
 394 in practical implementation, we may opt to use different values for ρ and ρ' for better performance.
 395 Due to space limitations, detailed proofs and further discussions are provided in the appendix.
 396

499 5 EXPERIMENTS

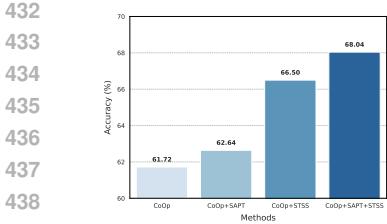
500 5.1 EXPERIMENTAL SETUP

501 **Datasets.** We conduct two types of experiments to evaluate the model’s robustness to natural
 502 distribution shifts and its cross-dataset generalization capabilities, following previous research such
 503 as TPT (Shu et al., 2022). To assess the model’s robustness to natural distribution shifts, we apply
 504 prompt tuning on the ImageNet (Deng et al., 2009) dataset, and evaluate its performance on
 505 four ImageNet variants—ImageNet-A (Hendrycks et al., 2021c), ImageNet-V2 (Recht et al., 2019),
 506 ImageNet-R (Hendrycks et al., 2021a) and ImageNet-Sketch (Wang et al., 2019)—which is also
 507 known as the domain generalization task. In addition, we perform cross-dataset evaluations for im-
 508 age classification across 10 datasets, each from a distinct domain with different classes: including
 509 Caltech101 (Fei-Fei et al., 2004), OxfordPets (Parkhi et al., 2012), StanfordCars (Krause et al.,
 510 2013), Flower102 (Nilsback & Zisserman, 2008), Aircraft (Maji et al., 2013), SUN397 (Xiao et al.,
 511 2010), DTD (Cimpoi et al., 2014), Food101 (Bossard et al., 2014), UCF101 (Soomro, 2012) and
 512 Eurosat (Helber et al., 2019). In this experiment, ImageNet serves as the source dataset, while the
 513 remaining fine-grained datasets are used as target datasets for evaluation.
 514

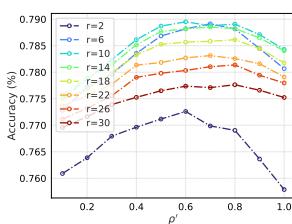
515 **Implementation details.** Our experiments are based on pretrained CLIP (Radford et al., 2021) mod-
 516 els, specifically CLIP-ResNet50 (using a ResNet50 image encoder) and CLIP-ViT-B/16 (using a
 517 Vision Transformer image encoder). Due to space limits, we focus on reporting the experimental
 518 results of CLIP-ViT-B/16, deferring those of CLIP-ResNet50 to the appendix. In the prompt tun-
 519 ing stage, our experiments are built on the CoOp (Zhou et al., 2022b) framework. The prompts are
 520 trained in a 16-shot manner on the ImageNet dataset. We set the number of prompts to 4 and utilize
 521 the SGD optimizer, with a learning rate of 0.002. For cross-dataset and domain generalization tasks,
 522 the prompts were trained for 5 and 50 epochs, with batch sizes of 4 and 32, respectively. The key hy-
 523 perparameters ρ are determined through a grid search, with the values ranging from [0.05, 0.1, 0.3,
 524 0.5, 0.7]. During testing, existing TPT-based methods usually leverage the input image along with
 525 its 63 augmented views. To ensure a fair comparison, we apply the same data augmentation strategy
 526 across all experiments. To avoid tuning hyperparameters on test data, we just set $\lambda = 1$ and $\rho' = 0.5$
 527 for all experiments. Please refer to the Appendix for more discussions about other hyperparameters.
 528

529 5.2 MAIN RESULTS

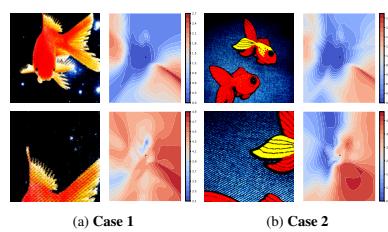
530 **Robustness to natural distribution shifts.** We first compare the proposed FGA with prevalent TTA
 531 techniques on ImageNet and its variant OOD datasets. The results, presented in Table 1, highlight the



440
441
442
443
Figure 3: **Ablation study**
on main components of
the proposed FGA.



444
445
446
447
448
449
450
451
452
453
454
455
Figure 4: **The influence of**
the key hyperparameter
 ρ' on the test accuracy.



456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
Figure 5: **2D Visualization of loss**
landscapes associated with different
augmented test samples.

superior performance of FGA across several ImageNet-based OOD datasets. Notably, even the ablated version of our method, FGA (STSS only + CoOp), exhibits strong performance, surpassing all previous approaches with an OOD average of 64.60% and an overall average of 66.48%. We attribute this robustness to the fact that standard SGD training already imbues models with an implicit bias toward flatter minima. By explicitly enhancing this geometric property through SAPT, the full FGA algorithm achieves a substantial leap in generalization performance. Specifically, when compared to TPT+CoOp, FGA shows an average accuracy improvement of 4.88% (61.67% \rightarrow 66.55%) on the OOD benchmark. Furthermore, our FGA also consistently surpasses other powerful TTA methods (e.g., DiffTPT, C-TPT, ZERO, MTA, and SAR) when they are combined with CoOp. It is critical to note that while online TTA methods like SAR benefit from aggregating information across a test data stream, FGA operates in a more challenging single-sample adaptation setting. For a fair comparison, we have adapted SAR to this setting. These superior results of FGA strongly demonstrate its effectiveness in enhancing CLIP’s out-of-domain generalization across diverse datasets.

Cross-dataset generalization. We also observe superior performance of the FGA in evaluating cross-dataset generalization from ImageNet to various fine-grained classification benchmarks. Based on the comprehensive results presented in Table 2, the proposed FGA method demonstrates superior overall performance, achieving the highest average accuracy of 68.09% and attaining top-tier results on 6 out of 10 datasets, including a notably strong performance on Caltech101 (96.96%). Furthermore, FGA (67.60%) achieves an average accuracy improvement of 1.94% over the powerful baseline TPT+CoOp (65.66%). It also exhibits superior performance over the combinations of TTA methods (like TPT and ZERO) and different tuning methods (CoOp and MaPLE). These results further validate its effectiveness in adapting to diverse datasets during testing. It is important to note that due to the significant difference in the amount of target domain information available to different TTA settings, it is not imperative to expect single-sample TTA methods to surpass online TTA methods like TDA. It is particularly valuable for VLMs like CLIP, as it enables models to recognize more fine-grained categories in image classification without the need for additional training.

Runtime and Memory Efficiency. To quantify the computational advantage of FGA, we report runtime per test image and peak GPU memory usage, all measured on a single NVIDIA Tesla V100. Specifically, FGA achieves 22 \times faster inference than DiffTPT (0.07s vs 1.67s) and 9 \times speedup over TPT (0.07s vs 0.62s). Additionally, FGA’s memory usage is 15 \times lower than TPT (1.28GB vs 19.24GB). These results validate FGA’s computational efficiency, delivering high-performance test-time adaptation with minimal resource overhead. It is important to note that this work primarily focuses on the single test sample adaptation setting. Therefore, comparative analysis with online TTA methods that utilize aggregated test data falls outside the scope of the present investigation.

5.3 ABLATION STUDY

Main components analysis. Our ablation study on the domain generalization benchmark (using CLIP-ViT-B/16 architecture, shown in Figure 3) validates the necessity of each FGA component: (1) Sharpness-aware prompt tuning (SAPT) enhances generalization, boosting CoOp’s average accuracy by 0.92% (61.72% \rightarrow 62.64%) on ImageNet and OOD datasets; (2) Test-time sharpness selection (STSS) drives major gains, with CoOp+STSS outperforming CoOp by 4.82% (61.72% \rightarrow 66.54%); (3) SAPT synergistically enhances STSS, where full FGA (CoOp+SAPT+STSS) achieves a 5.40% gain over CoOp+SAPT (62.64% \rightarrow 68.04%)—exceeding standalone STSS improvements (4.82%). This confirms that flatter minima from SAPT intrinsically improve test-time sample selection.

486 **Ablative analysis on key parameter ρ' .** Theoretical analysis (Section 4) establishes ρ and ρ' as
 487 key generalization controllers, playing significant roles during the training and testing stages, re-
 488 spectively. Since ρ 's role has been well explored in previous research (Foret et al., 2020), we focus
 489 on ρ' for test-time adaptation: as mentioned earlier, it governs distribution distinguishability, with
 490 proper values enhancing prediction reliability through sensitive discrimination. Empirical valida-
 491 tion on ImageNet-R (Figure 4) shows non-monotonic accuracy dependence on ρ' —initially rising
 492 then falling. It is because extreme values ($\rho' \rightarrow 0$ or $\rho' \gg 0$) may yield uninformative sharpness
 493 measures and degrade performance. Crucially, $\rho' = 0$ degenerates to entropy maximization, and its
 494 comparison with non-zero cases also demonstrates sharpness's necessity. Notably, all experiments
 495 fix $\rho' = 0.5$ without test-data tuning, and this analysis solely aims to demonstrate the control ef-
 496 fect of ρ' on generalization. Sample retention follows a similar trend: accuracy peaks then declines
 497 with increased retention. This reflects the probabilistic correlation: lower sharpness typically means
 498 greater proximity to the training distribution, meaning performance degrades when retaining exces-
 499 sively high-sharpness samples.

500 5.4 VISUALIZATION OF LOSS LANDSCAPES

502 To intuitively validate FGA's effectiveness, we visualize the test data's loss surface using a 2D tech-
 503 nique (Li et al., 2018) in Figure 5, revealing how sample selection enhances prediction reliability.
 504 The visualization demonstrates critical relationships: when parameters reside in flat minima (Figure
 505 5, top), augmented samples maintain semantic integrity and enable reliable predictions. Conversely,
 506 parameters outside flat minima (bottom) yield distorted semantic representations that degrade gener-
 507 alization. This contrast directly demonstrates FGA's core mechanism—filtering unreliable test sam-
 508 ples to prevent their negative impact, thereby boosting VLMs' generalization capacity.

510 6 CONCLUSION

512 This paper demonstrates that flatness operates not just as a beneficial training characteristic but as
 513 a key geometric clue for test-time adaptation. This understanding motivates the proposal of a novel
 514 framework, Flatness-Guided Adaptation (FGA), which utilizes the principle of loss landscape flat-
 515 ness as a unified guide to improve both training and test generalization against distribution shifts.
 516 Different from previous TTA methods that often fine-tune prompts per sample, it directs adaptation
 517 by leveraging the geometric relationship between training minima and test-time loss landscapes.
 518 Specifically, it first identifies flat minima during prompt tuning and then ensures the alignment across
 519 training and test landscapes via a selective mechanism. Comprehensive experiments and theoretical
 520 analysis confirm FGA's effectiveness and superior performance. We anticipate this work will ad-
 521 vance the understanding of loss landscapes and inspire future TTA technologies.

522 **Future Work.** Our proposed FGA is grounded in a general analysis of loss landscape geometry,
 523 a foundational concept that is broadly applicable across diverse model architectures and learning
 524 paradigms. This foundation makes FGA a flexible component that could be integrated into modern
 525 visual-language models, advanced prompt tuning methods, or new types of test-time adaptation
 526 objectives to potentially enhance their performance. In this work, we intentionally followed the
 527 experimental setup introduced in the TPT paper. This choice allows a controlled and fair comparison
 528 with prior TTA methods, helping us to clearly demonstrate the contribution of FGA itself. The
 529 extension of FGA to other experimental configurations would require extensive engineering efforts
 530 to conduct large-scale experiments across diverse settings, and thus remains our future work.

531 REFERENCES

533 Jameel Abdul Samad, Mohammad Hanan Gani, Noor Hussein, Muhammad Uzair Khattak,
 534 Muhammad Muzammal Naseer, Fahad Shahbaz Khan, and Salman H Khan. Align your prompts:
 535 Test-time prompting with distribution alignment for zero-shot generalization. *Advances in Neural
 536 Information Processing Systems*, 36, 2024.

538 Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101—mining discriminative compo-
 539 nents with random forests. In *Computer vision—ECCV 2014: 13th European conference, zurich,
 Switzerland, September 6–12, 2014, proceedings, part VI* 13, pp. 446–461. Springer, 2014.

540 Malik Boudiaf, Romain Mueller, Ismail Ben Ayed, and Luca Bertinetto. Parameter-free online test-
 541 time adaptation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 542 *Recognition*, pp. 8344–8353, 2022.

543 Junbum Cha, Sanghyuk Chun, Kyungjae Lee, Han-Cheol Cho, Seunghyun Park, Yunsung Lee, and
 544 Sungrae Park. Swad: Domain generalization by seeking flat minima. *Advances in Neural Infor-*
 545 *mation Processing Systems*, 34:22405–22418, 2021.

546 Dian Chen, Dequan Wang, Trevor Darrell, and Sayna Ebrahimi. Contrastive test-time adaptation.
 547 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 548 295–305, 2022.

549 Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. De-
 550 scribing textures in the wild. In *Proceedings of the IEEE conference on computer vision and*
 551 *pattern recognition*, pp. 3606–3613, 2014.

552 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
 553 erarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
 554 pp. 248–255. Ieee, 2009.

555 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 556 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
 557 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint*
 558 *arXiv:2010.11929*, 2020.

559 Gintare Karolina Dziugaite and Daniel M Roy. Computing nonvacuous generalization bounds for
 560 deep (stochastic) neural networks with many more parameters than training data. *arXiv preprint*
 561 *arXiv:1703.11008*, 2017.

562 Matteo Farina, Gianni Franchi, Giovanni Iacca, Massimiliano Mancini, and Elisa Ricci. Frustrat-
 563 ingly easy test-time adaptation of vision-language models. *arXiv preprint arXiv:2405.18330*,
 564 2024.

565 Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning generative visual models from few training
 566 examples: An incremental bayesian approach tested on 101 object categories. In *2004 conference*
 567 *on computer vision and pattern recognition workshop*, pp. 178–178. IEEE, 2004.

568 Chun-Mei Feng, Kai Yu, Yong Liu, Salman Khan, and Wangmeng Zuo. Diverse data augmentation
 569 with diffusions for effective test-time prompt tuning. In *Proceedings of the IEEE/CVF Interna-*
 570 *tional Conference on Computer Vision*, pp. 2704–2714, 2023.

571 Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimiza-
 572 tion for efficiently improving generalization. *arXiv preprint arXiv:2010.01412*, 2020.

573 Taesik Gong, Yewon Kim, Taeckyung Lee, Sorn Chottananurak, and Sung-Ju Lee. Sotta: Robust
 574 test-time adaptation on noisy data streams. *Advances in Neural Information Processing Systems*,
 575 36:14070–14093, 2023.

576 Sachin Goyal, Mingjie Sun, Aditi Raghunathan, and J Zico Kolter. Test time adaptation via conjugate
 577 pseudo-labels. *Advances in Neural Information Processing Systems*, 35:6204–6218, 2022.

578 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
 579 nition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
 580 770–778, 2016.

581 Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset
 582 and deep learning benchmark for land use and land cover classification. *IEEE Journal of Selected*
 583 *Topics in Applied Earth Observations and Remote Sensing*, 12(7):2217–2226, 2019.

584 Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
 585 Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A critical
 586 analysis of out-of-distribution generalization. In *Proceedings of the IEEE/CVF international con-*
 587 *ference on computer vision*, pp. 8340–8349, 2021a.

594 Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
 595 Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A critical
 596 analysis of out-of-distribution generalization. In *Proceedings of the IEEE/CVF international con-*
 597 *ference on computer vision*, pp. 8340–8349, 2021b.

598 Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural adversarial
 599 examples. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-*
 600 *tion*, pp. 15262–15271, 2021c.

602 Chao Jia, Yinfai Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan
 603 Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning
 604 with noisy text supervision. In *International conference on machine learning*, pp. 4904–4916.
 605 PMLR, 2021.

606 Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and Samy Bengio. Fantastic
 607 generalization measures and where to find them. *arXiv preprint arXiv:1912.02178*, 2019.

609 Adilbek Karmanov, Dayan Guan, Shijian Lu, Abdulmotaleb El Saddik, and Eric Xing. Efficient
 610 test-time adaptation of vision-language models. In *Proceedings of the IEEE/CVF Conference on*
 611 *Computer Vision and Pattern Recognition*, pp. 14162–14171, 2024.

612 Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Pe-
 613 ter Tang. On large-batch training for deep learning: Generalization gap and sharp minima. *arXiv*
 614 *preprint arXiv:1609.04836*, 2016.

616 Muhammad Uzair Khattak, Hanoona Rasheed, Muhammad Maaz, Salman Khan, and Fahad Shah-
 617 baz Khan. Maple: Multi-modal prompt learning. In *Proceedings of the IEEE/CVF Conference on*
 618 *Computer Vision and Pattern Recognition*, pp. 19113–19122, 2023.

619 Minyoung Kim, Da Li, Shell X Hu, and Timothy Hospedales. Fisher sam: Information geometry
 620 and sharpness aware minimisation. In *International Conference on Machine Learning*, pp. 11148–
 621 11161. PMLR, 2022.

623 Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
 624 categorization. In *Proceedings of the IEEE international conference on computer vision work-
 625 shops*, pp. 554–561, 2013.

626 Jungmin Kwon, Jeongseop Kim, Hyunseo Park, and In Kwon Choi. Asam: Adaptive sharpness-
 627 aware minimization for scale-invariant learning of deep neural networks. In *International confer-
 628 ence on machine learning*, pp. 5905–5914. PMLR, 2021.

630 Aodi Li, Liansheng Zhuang, Xiao Long, Minghong Yao, and Shafei Wang. Seeking consistent
 631 flat minima for better domain generalization via refining loss landscapes. In *Proceedings of the*
 632 *Computer Vision and Pattern Recognition Conference (CVPR)*, pp. 15349–15359, June 2025.

633 Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss land-
 634 scape of neural nets. *Advances in neural information processing systems*, 31, 2018.

636 Liunian Harold Li, Pengchuan Zhang, Haotian Zhang, Jianwei Yang, Chunyuan Li, Yiwu Zhong, Li-
 637 juan Wang, Lu Yuan, Lei Zhang, Jenq-Neng Hwang, et al. Grounded language-image pre-training.
 638 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 10965–10975, 2022.

640 Yuejiang Liu, Parth Kothari, Bastien Van Delft, Baptiste Bellot-Gurlet, Taylor Mordan, and Alexan-
 641 dre Alahi. Ttt++: When does self-supervised test-time training fail or thrive? *Advances in Neural*
 642 *Information Processing Systems*, 34:21808–21820, 2021.

643 Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained
 644 visual classification of aircraft. *arXiv preprint arXiv:1306.5151*, 2013.

646 Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
 647 of classes. In *2008 Sixth Indian conference on computer vision, graphics & image processing*, pp.
 722–729. IEEE, 2008.

648 Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Zhiqian Wen, Yaofu Chen, Peilin Zhao, and
 649 Mingkui Tan. Towards stable test-time adaptation in dynamic wild world. *arXiv preprint*
 650 *arXiv:2302.12400*, 2023.

651

652 Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In *2012*
 653 *IEEE conference on computer vision and pattern recognition*, pp. 3498–3505. IEEE, 2012.

654

655 Or Patashnik, Zongze Wu, Eli Shechtman, Daniel Cohen-Or, and Dani Lischinski. Styleclip: Text-
 656 driven manipulation of stylegan imagery. In *Proceedings of the IEEE/CVF international confer-
 657 ence on computer vision*, pp. 2085–2094, 2021.

658

659 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 660 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 661 models from natural language supervision. In *International conference on machine learning*, pp.
 662 8748–8763. PMLR, 2021.

663

664 Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
 665 conditional image generation with clip latents. *arXiv preprint arXiv:2204.06125*, 1(2):3, 2022.

666

667 Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet classifiers
 668 generalize to imagenet? In *International conference on machine learning*, pp. 5389–5400. PMLR,
 669 2019.

670

671 Manli Shu, Weili Nie, De-An Huang, Zhiding Yu, Tom Goldstein, Anima Anandkumar, and Chaowei
 672 Xiao. Test-time prompt tuning for zero-shot generalization in vision-language models. *Advances
 673 in Neural Information Processing Systems*, 35:14274–14289, 2022.

674

675 K Soomro. Ucf101: A dataset of 101 human actions classes from videos in the wild. *arXiv preprint*
 676 *arXiv:1212.0402*, 2012.

677

678 Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei Efros, and Moritz Hardt. Test-time train-
 679 ing with self-supervision for generalization under distribution shifts. In *International conference*
 680 *on machine learning*, pp. 9229–9248. PMLR, 2020.

681

682 Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Tent: Fully
 683 test-time adaptation by entropy minimization. *arXiv preprint arXiv:2006.10726*, 2020.

684

685 Haohan Wang, Songwei Ge, Zachary Lipton, and Eric P Xing. Learning robust global representa-
 686 tions by penalizing local predictive power. *Advances in Neural Information Processing Systems*,
 687 32, 2019.

688

689 Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and Antonio Torralba. Sun database:
 690 Large-scale scene recognition from abbey to zoo. In *2010 IEEE computer society conference on*
 691 *computer vision and pattern recognition*, pp. 3485–3492. IEEE, 2010.

692

693 Jinyu Yang, Jiali Duan, Son Tran, Yi Xu, Sampath Chanda, Liqun Chen, Belinda Zeng, Trishul
 694 Chilimbi, and Junzhou Huang. Vision-language pre-training with triple contrastive learning.
 695 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 696 15671–15680, 2022.

697

698 Hee Suk Yoon, Eunseop Yoon, Joshua Tian Jin Tee, Mark Hasegawa-Johnson, Yingzhen Li, and
 699 Chang D Yoo. C-tpt: Calibrated test-time prompt tuning for vision-language models via text
 700 feature dispersion. *arXiv preprint arXiv:2403.14119*, 2024.

701

702 Maxime Zanella and Ismail Ben Ayed. On the test-time zero-shot generalization of vision-language
 703 models: Do we really need prompt learning? In *Proceedings of the IEEE/CVF Conference on*
 704 *Computer Vision and Pattern Recognition*, pp. 23783–23793, 2024.

705

706 Ce Zhang, Simon Stepputtis, Katia Sycara, and Yaqi Xie. Dual prototype evolving for test-time
 707 generalization of vision-language models. *Advances in Neural Information Processing Systems*,
 708 37:32111–32136, 2024a.

702 Renrui Zhang, Wei Zhang, Rongyao Fang, Peng Gao, Kunchang Li, Jifeng Dai, Yu Qiao, and Hong-
703 sheng Li. Tip-adapter: Training-free adaption of clip for few-shot classification. In *European*
704 *conference on computer vision*, pp. 493–510. Springer, 2022.

705 Ruipeng Zhang, Ziqing Fan, Jiangchao Yao, Ya Zhang, and Yanfeng Wang. Domain-inspired
706 sharpness-aware minimization under domain shifts. *arXiv preprint arXiv:2405.18861*, 2024b.

708 Tong Zhang. *Mathematical analysis of machine learning algorithms*. Cambridge University Press,
709 2023.

711 Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Conditional prompt learning for
712 vision-language models. In *Proceedings of the IEEE/CVF conference on computer vision and*
713 *pattern recognition*, pp. 16816–16825, 2022a.

714 Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for vision-
715 language models. *International Journal of Computer Vision*, 130(9):2337–2348, 2022b.

717 Yingtian Zou, Kenji Kawaguchi, Yingnan Liu, Jiashuo Liu, Mong-Li Lee, and Wynne Hsu. Towards
718 robust out-of-distribution generalization bounds via sharpness. *arXiv preprint arXiv:2403.06392*,
719 2024.

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755