
A Fast Algorithm for k-Memory Messaging Scheme Design in Dynamic
Environments with Uncertainty

Primary Keywords: None

Abstract

We study the problem of designing the optimal k-memory1

messaging scheme in a dynamic environment. Specifically,2

a sender, who can perfectly observe the state of a dynamic3

environment but cannot take actions, aims to persuade an un-4

informed, far-sighted receiver to take actions to maximize the5

long-term utility of the sender, by sending messages. We fo-6

cus on k-memory messaging schemes, i.e., at each time step,7

the sender’s messaging scheme depends on information from8

the previous k steps. After receiving a message, the self-9

interested receiver derives a posterior belief and takes an ac-10

tion. The immediate reward of each player can be unaligned,11

thus the sender needs to ensure persuasiveness when design-12

ing the messaging scheme.13

We first formulate this problem as a bi-linear program. Then14

we show that there exist infinitely many non-trivial persua-15

sive messaging schemes for any problem instance. Moreover,16

we show that when the sender uses a k-memory messaging17

scheme, the optimal strategy for the receiver is also a k-18

memory strategy. We propose a fast heuristic algorithm for19

this problem and show that it can be extended to the setting20

where the sender has threat ability. We experimentally evalu-21

ate our algorithm, comparing it with the solution obtained by22

the Gurobi solver, in terms of performance and running time,23

in both settings. Extensive experimental results show that our24

algorithm outperforms the solution in terms of running time,25

yet achieves comparable performance.26

Introduction27

The phenomenon of information asymmetry is commonly28

seen in many applications and has attracted extensive re-29

search attention from both computer science and economics.30

In these applications, an information sender can influence31

a receiver’s behavior by strategically revealing informa-32

tion to them. Such interactions are usually modeled by the33

Bayesian persuasion framework (Kamenica and Gentzkow34

2011). And in such environments, the information sender35

has an advantage in information, which often leads to an ad-36

vantage in their reward or utility. For example, a navigation37

platform that has access to complete information about the38

traffic conditions of an area may recommend several routes39

to a user who only possesses local information. The user40

then chooses the best route based on the recommendations.41

The platform and the user may have misaligned goals, and42

the navigation platform can send route recommendations to43

influence the user’s choice. Following the Bayesian persua- 44

sion framework, the platform can strategically design rec- 45

ommendation strategies to persuade users into taking spe- 46

cific actions that benefit the platform most. 47

Most existing studies only consider persuasions in a static 48

environment. However, in real-world applications, the infor- 49

mation sender and the receiver usually interact in a dynamic 50

way. In this paper, we consider the persuasion model in a 51

Markov decision process (MDP), where the sender has ac- 52

cess to the state of the environment and the receiver is able to 53

take action. We assume that both players are far-sighted and 54

aim to optimize their accumulated rewards. The following 55

example shows how the sender can improve their long-term 56

reward by sending information to the receiver. 57

s1 s2

s3

s4
a3, (0,0.5)

a 1, (1
,1)

a 2, (2
, � 1)

a1 , (2, � 1)a2 , (1,1)

a3, (0,0.5)

ai, (5,0.5)
ai , (0,0),0.5 ai, (0,0),0.5

Figure 1: Rewards and state transitions for the MDP in Ex-
ample 1

Example 1. Consider the example MDP shown in Figure 58

1. The states {si}4i=1 are connected by directed edges indi- 59

cating state transitions. Solid lines represent deterministic 60

transitions and dashed ones probabilistic transitions. Each 61

edge is labeled with the action triggering the transition and 62

the immediate rewards for the sender and the receiver re- 63

spectively. Dashed lines are also marked with the transition 64

probabilities. There are 3 available actions {ai}3i=1 for the 65

receiver. Assume that the initial state distribution is 0.5 for 66

s1 and s2, and 0 for both s3 and s4, i.e., the game will start at 67

state s1 or s2 randomly. The discount factor for both players 68

is 0.5. If the sender does not reveal any information to the 69

receiver, the receiver will not be able to distinguish between 70

s1 and s2, and thus will choose the “safe” action a3 in the 71

first step. The state then transits to s4 deterministically. The 72

receiver always gets 0 in state s4 no matter which action the73

receiver chooses. And the state transits back to s1, s2 with74

equal probability. This process then repeats infinitely many75

times. As a result, the sender obtains reward 0.76

However, if the sender reveals full information by telling77

the receiver what state the environment is currently in, the78

receiver will take action a1 in state s1 and a2 in state s2,79

leading to a strictly positive long-term reward for the sender.80

It is worth noting that the strategy of revealing full informa-81

tion is not the optimal one for the sender in this example.82

In this paper, we aim to design an information revealing83

strategy for the sender to maximize their long-term utility. In84

particular, we focus on the case where the sender uses a k-85

memory strategy, i.e., the strategy depends on the history of86

the previous k steps. Since (Gan et al. 2022) already showed87

that finding the optimal Markov strategy in a similar setting88

is NP-hard, our main goal is to propose a fast algorithm that89

has a performance comparable to the optimal solution.90

Our Contributions91

We formulate the problem as a bi-linear program and show92

that there exist infinitely many non-trivial persuasive mes-93

saging schemes for any problem instance. Moreover, we94

show that if the sender uses a k-memory messaging scheme,95

the optimal strategy for the receiver is also a k-memory strat-96

egy.97

Then we propose an efficient heuristic algorithm based98

on backward induction and give a variant version when the99

sender has the ability to threaten the receiver. We conduct100

extensive experiments in both settings and the results show101

that our algorithm achieves a solution quality comparable102

to that of the solution found by the Gurobi solver, yet runs103

significantly faster.104

Related Works105

Our paper is related to the broad area of information de-106

sign, also known as “Bayesian persuasion”. (Kamenica and107

Gentzkow 2011) study the setting where an informed sender108

aims to persuade an uninformed receiver in a static environ-109

ment. This model has later been applied to many real-world110

applications, including security (Rabinovich et al. 2015; Xu111

et al. 2015), advertising (Badanidiyuru, Bhawalkar, and Xu112

2018; Emek et al. 2014), and voting (Castiglioni, Celli, and113

Gatti 2020). More recently, this setting has been extended to114

a dynamic setting. (Farhadi and Teneketzis 2022; Ely 2017)115

consider a dynamic setting with a finite horizon where there116

are two states (one is absorbing), while we consider a more117

general environment with an infinite time horizon. (Celli,118

Coniglio, and Gatti 2020) consider a model where a sender119

interacts with multiple receivers in an extensive-form game.120

In their model, the sender reveals information to the receiver121

only once, while in our model, the sender sends messages122

to the receiver at every step. The most related paper is the123

study by (Gan et al. 2022), who capture the uncertainty in124

an environment with an external parameter. The key dif-125

ference is that they focus on Markov signaling schemes,126

whereas we consider a more general k-memory messaging127

scheme. Actually, the Markov signaling scheme studied by128

(Gan et al. 2022) is exactly equivalent to the 1-memory mes- 129

saging scheme in our setting. They show that it is NP-hard to 130

even approximate the optimal 1-memory messaging scheme 131

against a far-sighted receiver. (Wu et al. 2022) design an ef- 132

ficient no-regret algorithm under an online learning setting. 133

They aim to persuade a sequence of myopic receivers, while 134

we consider persuading a single far-sighted receiver. 135

Our paper is also related to dynamic mechanism design 136

(Papadimitriou et al. 2016; Pavan, Segal, and Toikka 2014; 137

Athey and Segal 2007). In particular, recent work by (Zhang 138

and Conitzer 2021) studies dynamic mechanism design in 139

a finite horizon, where the mechanism designer, who has 140

partial information about the state, aims to design a mecha- 141

nism to elicit state information from an agent so as to make 142

a better decision. On the contrary, we stand on the side of 143

information design, studying how the sender can use this in- 144

formation advantage to maximize their utility. The common 145

point is that we both adopt history-based strategies for the 146

designer. 147

Another related topic is planning in MDPs. Particularly 148

related to our work is (Zhang, Cheng, and Conitzer 2022), 149

where the authors study a setting where an informed plan- 150

ner interacts with a self-interested agent with the choice 151

to exit the environment. We both use history-based strate- 152

gies. However, they impose participation constraints on the 153

agent when the principle computes the optimal policy, while 154

we need to guarantee persuasiveness constraints when the 155

sender designs the optimal messaging scheme. 156

General specifications 157

In the standard Markov decision process (MDP), a decision 158

maker chooses an action at each time step to maximize their 159

long-term reward. Now, consider a variant of MDP where 160

there are two agents in the game, namely the sender and the 161

receiver. The receiver can take action but has no access to 162

the state. However, the sender can perfectly observe the state 163

and send messages to inform the receiver about the state in 164

order to influence their behavior. Both agents are rational 165

and attempt to maximize their long-term expected utilities. 166

Formally, such a setting can be described by a tuple 167

hN,S,A, P, ⇢0, u, �i, where: 168

• N = {s, r} denotes the player set, where s and r denote 169

the sender and the receiver, respectively. 170

• S is a finite set of environment states, only observable for 171

the sender. 172

• A is a finite set of actions that the receiver can choose to 173

take in each state. We assume all states share the same 174

action set and let d = |A| be the number of available 175

actions. 176

• P : S ⇥ A 7! �(S) is the state transition function. We 177

use P (s, a, s0) to denote the probability that the receiver 178

would arrival state t0 when he takes action a in state s. 179

• ⇢0 denotes the initial state distribution, i.e., the initial 180

state will be si with probability ⇢0(si). 181

• u = (us, ur), where us : S⇥A 7! R+ and ur : S⇥A 7! 182

R+ are the sender’s and the receiver’s immediate reward 183

functions. 184

• � is a common discount factor.185

We assume that the decision process repeats infinitely many186

time steps and consider the setting where the receiver can187

observe the immediate reward. Put differently, we assume188

that the receiver can speculate the state st after taking action189

at, since the immediate reward ur(st, at) reveals informa-190

tion about st.1 As a result, the receiver has a prior belief191

⇢t+1 = P (st, at) about the next state st+1.192

This setting induces a game between the sender and the193

receiver. The game proceeds as follows: the sender an-194

nounces a messaging scheme at the beginning of the game,195

where a messaging scheme (M,⇡) contains a message set196

M and a policy ⇡ specifying how a message is chosen. At197

each time step t, the sender first observes a state st 2 S and198

then sends a message mt 2 M to the receiver according to199

the announced messaging scheme. Here, we assume that the200

sender has commitment power, i.e., the sender will never de-201

viate from the announced scheme. After receiving the mes-202

sage, the receiver makes the best response to that message.203

Then the time step becomes t+1 and the state transits to the204

next one according to the transition function.205

If two players are fully cooperative, i.e., their utilities206

align perfectly, then the sender can just send all the informa-207

tion they have, and the problem reduces to a standard MDP.208

However, the sender may only want to reveal partial infor-209

mation to the receiver, since the two players may have con-210

flicting interests. We adopt the so-called Bayesian persua-211

sion framework (Kamenica and Gentzkow 2011) to describe212

the sender’s strategy.213

Histories and Messaging Schemes214

The game between the two agents can be described by a215

game tree of infinite depth. The sender may use differ-216

ent messaging schemes at different tree nodes. In other217

words, the sender’s messaging scheme can depend on218

the history information. We define t-length history h =219

(s1, a1, . . . , st, at) as a sequence of states and receiver’s ac-220

tions of the previous t time steps. In this work, we mainly221

focus on the k-memory messaging scheme, which depends222

on the latest history with a length equal to or less than k. If223

k = 0, we call such a strategy a Markov strategy.224

Denote by Ht the set of all histories of length t. Let225

H =
Sk

t=0 Ht be the set of all histories with length no more226

than k, where H0 is the singleton containing the empty his-227

tory h0. At the beginning of the game, there is no history228

information but a prior distribution ⇢0 over the state set S.229

Thus the prior ⇢0 carries the same information as the empty230

history.231

Given any t-length history h, we use h+ (s, a) to denote232

the new history by adding (s, a) to the end of history h. Note233

that we may need to remove the earliest state and action to234

prevent the history length from exceeding k, i.e.,235

h+ (s, a) =

⇢
(s1, a1, . . . , st, at, s, a), if t < k
(s2, a2, . . . , st, at, s, a), if t = k

.

1The receiver is able to perfectly identify st in a non-degenerate
case, i.e., ur(st, at) 6= ur(s

0
t, at), 8st, s0t 6= st, 8at.

A k-memory messaging scheme is a function that maps 236

history-state pairs to distributions over the message space. 237

Formally, denoted by ⇡ : H ⇥ S 7! �(M) the k-memory 238

messaging scheme. We use ⇡(h, s,m) to denote the proba- 239

bility that message m is sent by the sender when state s is 240

reached, given history h. Such a scheme is also called a “sig- 241

naling scheme” in the literature (Kamenica and Gentzkow 242

2011). 243

Given history h 2 H, denote by ⇢h the receiver’s belief 244

about the state s. As described in the previous section, ⇢h(s) 245

depends only on the state and action of the last time step, i.e., 246

⇢h(s) = P (st, at, s)2. We make the mild assumption that 247

⇢h(s) > 0, 8s throughout the paper. Once receiving mes- 248

sage m, a rational receiver will derive a posterior belief over 249

the state according to the standard Bayes rule: 250

⇢h(s|m,h) =
⇢h(s) · ⇡(h, s,m)P

s02S ⇢h(s0) · ⇡(h, s0,m)
. (1)

Optimization Problem Formulation 251

We study how the sender can make use of this information 252

advantage to influence the receiver’s actions. The goal of the 253

sender is to design a k-memory messaging scheme that max- 254

imizes their cumulative expected utility. 255

It is already known from (Gan et al. 2022) that solving 256

the 1-memory messaging scheme design problem against a 257

far-sighted receiver is NP-hard. Therefore, one cannot hope 258

to find an efficient algorithm to solve this problem unless 259

P=NP. In this section, we formulate the problem as a bi- 260

linear optimization problem which will be useful for later 261

analysis. 262

In the above definition, we have no restriction on how 263

many messages the sender can use. However, it is known 264

that we can view each message as an action recommenda- 265

tion since each message induces a posterior belief of the re- 266

ceiver, which leads to a certain receiver action (Kamenica 267

and Gentzkow 2011; Dughmi and Xu 2016). Thus the num- 268

ber of messages can be set equal to the number of ac- 269

tions without harming the sender’s interest, i.e., |M | = d. 270

In other words, given any messaging scheme, we can al- 271

ways construct an equivalent scheme ⇡ with the message 272

set MA = {ma : a 2 A}, where each message ma corre- 273

sponds to an action recommendation a 2 A, achieving the 274

same expected utility as the original messaging scheme. 275

Persuasiveness. Before giving a formal definition of per- 276

suasiveness, we first need to define the long-term utility for 277

each player. Let V ⇡
1 (h, s) be the expected cumulative util- 278

ity function when the sender uses strategy ⇡ when the his- 279

tory is h and the state is s. Similar to the Bellman equa- 280

tion (Bellman 1966), given a k-memory messaging scheme 281

⇡, the cumulative expected utility function of the sender 282

2Assume that h = (s1, a1, . . . , st, at), then the previous state-
action pair is (st, at).

V ⇡
1 : H⇥ S 7! R should satisfy:283

V ⇡
1 (h, s) =

X

ma2MA

⇡(h, s,ma) ·

"
us(s, a)+

� ·

X

s02S

P (s, a, s0) · V ⇡
1 (h+ (s, a), s0)

�
.

(2)

Given this, the overall expected utility of the sender from the284

beginning can be defined as follow:285

V ⇡
1 (h0) =

X

s2S

⇢0(s) · V
⇡
1 (h0, s). (3)

Similarly, the receiver’s long-term expected utility func-286

tion V ⇡
2 : H ⇥ S ⇥ A 7! R, under k-memory messaging287

scheme ⇡ can be define as:288

V ⇡
2 (h, s, a) =ur(s, a) + �

X

s02S

P (s, a, s0)

"
X

ma02MA

⇡(h+ (s, a), s0,ma0) · V ⇡
2 (h+ (s, a), s0, a0)

#
.

(4)

Now we are ready to give a formal definition of persua-289

siveness:290

Definition 1 (Persuasiveness). A k-memory messaging291

scheme ⇡ is persuasive if it satisfies the following persua-292

sive constraints, for all h 2 H,ma 2 Ma, a0 2 A :293

X

s2S

⇢h(s) · ⇡(h, s,ma) · V
⇡
2 (h, s, a)

�

X

s2S

⇢h(s) · ⇡(h, s,ma) · V
⇡
2 (h, s, a0).

(5)

Simply put, a messaging scheme is persuasive if the re-294

ceiver is always willing to take the recommended action, i.e.,295

the recommended action always maximizes the receiver’s296

long-term utility.297

With the above analysis, we can now formulate the prob-298

lem as the following mathematical program, with decision299

variables ⇡(h, s,ma), V ⇡
1 (h, s), V ⇡

2 (h, s, a):300

maximize (3)
subject to (2), (4), (5)

X

ma2MA

⇡(h, s,ma) = 1, 8h, s

⇡(h, s,ma) � 0, 8h, s,ma

(6)

Program (6) is a bi-linear program since constraint (5) is301

a bi-linear constraint.302

Theoretical Analyses303

In this section, we analyze the problem in theory and de-304

rive some structural results. We first show that there exist in-305

finitely many non-trivial persuasive messaging schemes for306

the sender, in any problem instance. Moreover, we show that307

the receiver can achieve optimality by using a k-memory308

strategy if the sender also uses a k-memory messaging 309

scheme. 310

In the standard Bayesian persuasion setting, there always 311

exist trivial persuasive schemes, e.g., revealing full or no 312

information to the receiver. Such trivial schemes also ex- 313

ist in our setting, but it is not clear if a non-trivial persua- 314

sive scheme exists, since our setting has much more compli- 315

cated constraints. Before trying to find an optimal messaging 316

scheme, we need to ensure that there indeed exist non-trivial 317

persuasive schemes, since otherwise, there are only trivial 318

schemes and we can just consider these special cases instead 319

of searching the entire space. 320

To give some intuition about this result, we first consider a 321

simple setting where � = 0. We construct a trivial persuasive 322

Markov messaging scheme as follows. Let �⇤
r be the optimal 323

strategy of the receiver if they can observe the environment 324

state s, i.e., �⇤
r (s) = argmaxa2A ur(s, a). We define the 325

following Markov messaging scheme: 326

⇡⇤(s,ma) =

⇢
1 if a = �⇤

r (s)
0 otherwise

.

This messaging scheme is trivially persuasive since follow- 327

ing the sender’s recommendation already maximizes the re- 328

ceiver’s utility. The proof of Lemma 1 is based on the above 329

construction. 330

Lemma 1. Assume that there are at least two actions ai1 331

and ai2 , with corresponding states si1 and si2 , such that 332

ai1 and ai2 are the unique maximizers of ur(si1 , a) and 333

ur(si2 , a), respectively. When � = 0, there are infinitely 334

many non-trivial Markov messaging schemes that are per- 335

suasive. 336

The intuition behind the proof is that adding a small 337

enough perturbation to a trivial scheme will not change the 338

receiver’s optimal strategy, thus maintaining persuasiveness. 339

We defer the detailed proof into the appendix. 340

Then we show that infinitely many persuasive messaging 341

schemes exist for any problem instance. Actually, this can 342

be simply derived by applying the revelation principle (My- 343

erson 1981) from the mechanism design literature. We also 344

provide an alternative proof in the appendix that does not 345

use the revelation principle. 346

Theorem 1. For any problem instance, there are infinitely 347

many persuasive messaging schemes. 348

Proof. The intuition behind our proof is to “relabel” mes- 349

sages in any messaging scheme so that they correspond to 350

the actual actions of the receiver. Let (M,⇡) be any messag- 351

ing scheme. If the sender uses this scheme, the receiver is 352

then faced with an MDP as defined in the proof of Lemma 353

2. Let �(h,m) be the receiver’s optimal strategy in the MDP. 354

Let Ma(h) = {m | �(h,m) = a} be the set of messages 355

that lead to the receiver’s action a when the history is h. Ac- 356

cording to the revelation principle, we can construct a new 357

scheme that simply uses message set MA and replace each 358

m 2 Ma(h) with ma, and get the same receiver response 359

�(h,m) = �0(h,ma), 8m 2 Ma(h). Thus the new scheme 360

is persuasive. 361

In fact, the receiver is also faced with an MDP after the362

sender commits to a messaging scheme. Thus the problem363

studied in this paper is an MDP environment design problem364

for the sender. Based on this intuition, we have the following365

result.366

Theorem 2. When the sender uses a k-memory messaging367

scheme, the optimal strategy for the receiver is also a k-368

memory strategy.369

Proof. We prove this by showing that the receiver’s prob-370

lem can be viewed as an MDP. Since the sender has com-371

mitment power, their strategy will not change throughout372

the game. Thus the receiver can simply view the sender as373

part of the environment. From the receiver’s point of view,374

they are faced with an MDP problem, where the environ-375

ment of the MDP contains both the original environment and376

the sender. The state of the MDP contains both the history h377

and the message m sent by the sender.378

After receiving a message m, the receiver will derive a379

posterior distribution by applying the Bayes rule:380

⇢h(s|h,m) =
⇢h(s)⇡(h, s,m)P

s02S ⇢h(s0)⇡(h, s0,m)
. (7)

The expected immediate reward of the receiver for taking381

action a is then
P

s ⇢h(s|h,m)ur(s, a).382

Formally, we can formulate the MDP faced by the receiver383

as follows:384

• The state space is S⇤ = H⇥M ;385

• The actions spaces is A⇤ = A;386

• The state transition function is P ⇤((h,m), a, (h +387

(s, a),m0)) = ⇢h(s) ·
P

s02S ⇢h+(s,a)(s
0) · ⇡(h +388

(s, a), s0,m0);389

• the reward function is R⇤((h,m), a) =390 P
s2S ⇢h(s|h,m) · ur(s, a).391

Since the sender uses a k-memory messaging scheme392

⇡(h, s,m), the receiver’s posterior belief of the environment393

state ⇢h(s|m,h) only depends on the information of the pre-394

vious k steps. And even if the receiver uses a strategy that395

depends on a longer memory, they cannot obtain more infor-396

mation that can affect their behaviors. And in such an MDP,397

the receiver’s optimal strategy is to choose an action for each398

MDP state (h,m), which only contains information about399

previous k time steps.400

A Fast Algorithm for Finding k-Memory401

Schemes402

In this section, we propose an efficient heuristic algorithm.403

The intuition behind our algorithm is as follows. The game404

proceeds in a Stackelberg way: the sender first announces405

their strategy and then the receiver follows. We view the406

game as a standard Bayesian extensive-form game as it pro-407

vides a lower bound of the original game. However, the408

game still contains infinitely many steps. We further sim-409

plify the game by setting a parameter T and only consider T410

time steps. Thus the game tree has a maximum depth of T .411

We then modify the backward induction algorithm (Aumann412

1995) and apply it to find a solution.413

Backward induction is a strategy for analyzing a game 414

by working backwards from the end to the beginning. The 415

algorithm starts at time T � 1 and considers all possible k- 416

length histories, of which there are |Hk| types of terminal 417

nodes. Each node at this stage is labeled with the sender’s 418

messaging scheme, denoted as ⇡h : S⇥MA 7! R. For each 419

node, the optimal messaging scheme ⇡⇤
h is computed, along 420

with the expected utilities for both players. This informa- 421

tion is then used to compute the optimal messaging scheme 422

for the previous time period, time T � 2, and the process 423

continues recursively until the optimal messaging scheme is 424

determined for all nodes in the game tree. 425

Specifically, starting from time t = T � 1, we solve the 426

following linear program for all nodes at time t, where each 427

node can be uniquely identified by a history h: 428

maximize:X

s

⇢h(s)
X

ma

⇡h(s,ma)[us(s, a) + �V1(h+ (s, a))]

subject to:X

s

⇢h(s)⇡h(s,ma)[ur(s, a) + �V2(h+ (s, a))]

�

X

s

⇢h(s)⇡h(s,ma)[ur(s, a
0) + �V2(h+ (s, a0))]

8ma, 8a
0,X

ma

⇡h(s,ma) = 1 8s 2 S,

⇡h(s,ma) � 0 8s 2 S,ma 2 MA.
(8)

Note that at any terminal node, there is no future reward 429

thus we set V (h + (s, a)) = 0 at begin. At each backward 430

step t, for each history h, after solving the above program, 431

we obtain the optimal messaging scheme ⇡⇤
h for node h. We 432

let V1(h) equal to the objective of the program, and compute 433

V2(h) as follow: 434

V2(h) =
X

s

⇢h(s)
X

ma

⇡⇤
h(s,ma)[ur(s,ma)+

�V2(h+ (s, a))].

(9)

In the end, we aggregate ⇡⇤
h with all relevant histories h 435

and output a backward message scheme ⇡backward. Our de- 436

tailed algorithm is listed in Algorithm 1. 437

Threat Based Schemes 438

Our algorithm can also be applied to the setting where the 439

sender is able to threaten the receiver. The receiver’s utility 440

is minimized when the sender provides no additional infor- 441

mation about the underlying state, e.g., always sending the 442

same message. If the sender threaten the receiver with a k- 443

memory scheme, according to Theorem 2, such a threat lasts 444

only for at most k steps. In this section we consider threats 445

that last forever. 446

When there is no information from the sender, the deci- 447

sion process of the receiver can be formulated as the fol- 448

lowing MDP M t = hS ⇥ A,A, P t, Rt
i. In each step, the 449

receiver only knows the prior belief about the environment 450

state, which is actually the “state” in M t. The transition 451

Algorithm 1: Finding a k-memory messaging
scheme

Input: State set S, action set A, transition function
P , initial state distribution ⇢0, reward
functions us and ur, memory length k,
discount factor �.

Parameter: Backward step T .
Output: Message scheme ⇡backward .

1 Set V (h+ (s, a)) = 0 for all terminal nodes h, and
all (s, a) state-action pairs;

2 for t = T � 1, · · · , 0 do
3 for h 2 Hk do
4 Solve the linear program (8) with existing

V (h+ (s, a));
5 Save the message scheme ⇡⇤

h and the
expected utilities of both players;

6 Aggregate all ⇡⇤
h to form ⇡backward;

7 return ⇡backward.

function P t is defined as follow:452

P t((st�1, at�1), a, (st, at)) =

⇢
⇢h(st), if a = at
0, otherwise

,

where h is the history containing up to time step t� 1. Sim-453

ilarly, the reward function Rt is defined as follows:454

Rt((st�1, at�1), a) =
X

s

⇢h(s)ur(s, a).

Let V t(s, a) be the receiver’s expected long-term utility455

starting from MDP state (s, a). Following the standard ap-456

proach (Manne 1960), we can find the solution to this MDP457

by solving the following linear program:458

minimize: X

(s,a)2S⇥A

V t(s, a)

subject to:
V t(s, a) �

X

s0

⇢h(s
0)[ur(s

0, a0) + � · V t(s0, a0)]

8a0 2 A, (s, a) 2 S ⇥A.

The solution V t(s, a) to the above MDP is the best ex-459

pected long-term utility the receiver can obtain when the460

sender does not provide any information. With such threat461

ability, the sender’s persuasiveness constraints become:462
X

s2S

⇢h(s)⇡(h, s,ma)V
⇡
2 (h, s, a)

�

X

s2S

⇢h(s)⇡(h, s,ma)[ur(s, a
0) + �V t((s, a0))].

(10)

We can thus find threat-based schemes for the sender by sim-463

ply replacing the corresponding constraint in program (8)464

with the constraint (10) in Algorithm 1.465

Note that the extra threatening ability does enlarge the466

sender’s strategy space, as the V t is the lower bound of the467

receiver’s utility. Replacing the original persuasiveness con-468

straint with Equation (10) clearly makes the feasible region469

larger.470

Experiments 471

In this section, we experimentally evaluate our algorithm 472

and report the experiment results. We compare our algo- 473

rithm with the method of using Gurobi to solve the bilin- 474

ear program defined in our paper, in terms of performance 475

and running time. The experiment results demonstrate that 476

our algorithm achieves solution quality comparable to that 477

of the solution found by Gurobi, yet outperforms it in terms 478

of running time. 479

We also conduct experiments with the sender being able 480

to threaten the receiver. Due to space limitations, these re- 481

sults are deferred to the appendix. 482

Experiment setup. We conduct experiments on games 483

with different sizes (number of states ⇥ number of actions), 484

ranging from 2⇥2 to 12⇥12, and different discount factors 485

�, ranging from 0.1 to 0.9. Furthermore, we evaluate how 486

the memory length influences the performance, by changing 487

k from 1 to 6. For each game size, we generate 20 game in- 488

stances, where for each instance, the reward matrices of both 489

players are generated randomly from the uniform distribu- 490

tion U [0, 1], and the transition functions are also uniformly 491

generated at random. All the algorithms are implemented 492

with Python, and all the linear programs and bi-linear pro- 493

grams are solved using Gurobi (Python version, v9.5.2). All 494

results with the same game size are based on the same set of 495

reward matrices by varying � and k. 496

Since bi-linear programs are intractable to solve, we set 497

the time limit parameter of Gurobi to 30 minutes (1800 sec- 498

onds) when solving bi-linear programs, but do not limit the 499

running time when solving linear programs. 500

We found that the Gurobi solver can hardly solve any bi- 501

linear program of our generated game instances within the 502

30-minute time limit, even for 2⇥ 2 games. However, it can 503

report the best feasible solutions obtained so far. Thus all 504

the reported results in such cases are based on these feasible 505

solutions. 506

All the results of our algorithm are obtained by setting 507

the backward step to 100 (T = 100 in Algorithm 1) unless 508

otherwise stated. Furthermore, all the reported results are av- 509

eraged over the 20 randomly generated game instances. 510

Performance. We evaluate different algorithms’ perfor- 511

mance by comparing the expected utility of the sender ob- 512

tained by them. We compare the performance of the two al- 513

gorithms under different game sizes and different memory 514

lengths. Since Gurobi does not even provide feasible solu- 515

tions to the bi-linear program of some game instances in 30 516

minutes, the results are incomparable even if our algorithm 517

can output feasible solutions. Thus all results are only av- 518

erage over the instances that Gurobi provides feasible solu- 519

tions within 30 minutes. And we only compare the perfor- 520

mance for games with sizes up to 5⇥ 5 and memory lengths 521

up to 4, since Gurobi can hardly find a feasible solution for 522

the bi-linear program of more complicated games. 523

Figure 2 shows the performances of two algorithms un- 524

der different game sizes. Our algorithm achieves perfor- 525

mances comparable to the bi-linear formulation. In general, 526

for larger games, the sender can have higher utilities. Note 527

that our algorithm sometimes achieves higher utilities than 528

Figure 2: Average sender utility obtained by different algorithms with memory length k = 1.

Figure 3: Average sender utility obtained by different algorithms in 2⇥ 2 games.

the bi-linear formulation simply because both algorithms529

only provide feasible solutions.530

Figure 3 shows the performances of two algorithms with531

different memory lengths. The performances of the two al-532

gorithms are almost identical. When the discount factor is533

large, the sender can increase their utility by using a longer534

memory. But for small discount factors, the benefit of using535

a longer memory diminishes, as the receiver does not care536

too much about future utilities.537

Running time. We analyze different algorithms’ running538

times from three different aspects: (i) game size, (ii) memory539

length, and (iii) discount factor �. Since Gurobi can hardly 540

solve any bi-linear program in our experiments, we record 541

how many of the 20 game instances that Gurobi can provide 542

a feasible solution within 30 mins. 543

The results of solving bi-linear programs with Gurobi are 544

shown in Table 1 and Table 2. It is clearly seen from Table 545

1 that as the game size increases, the number of games that 546

Gurobi can provide a feasible solution decreases. Further- 547

more, this number also decreases when the discount factor 548

� increases, which means that the more the receiver cares 549

about long-term utilities, the harder it is for Gurobi to find a 550

Table 1: Number of games
that Gurobi gives a feasible
solution to the bi-linear pro-
gram within 30 mins for k =
1.

Game size
2 3 4 5 6 8

�

0.9 20 20 11 8 4 0
0.7 20 10 7 8 16 2
0.5 20 20 20 2 10 5
0.3 20 20 20 20 20 4
0.1 20 19 20 20 20 14

Table 2: Number of games
that Gurobi gives a feasi-
ble solution to the bi-linear
program within 30 mins for
game size 2⇥ 2.

Memory length k
1 2 3 4 5 6

�

0.9 20 20 16 13 6 8
0.7 20 20 20 19 19 18
0.5 20 20 20 20 20 20
0.3 20 20 20 20 20 20
0.1 20 20 20 20 20 20

Table 3: Average running
time (in seconds) of our algo-
rithm for k = 1.

Game size
2 3 4 5

�

0.9 0.542 2.604 9.120 25.449
0.7 0.536 2.600 9.048 25.381
0.5 0.528 2.562 8.945 24.981
0.3 0.531 2.560 8.885 24.819
0.1 0.531 2.553 8.891 24.829

Table 4: Average running
time (in seconds) of our algo-
rithm for game size 2⇥ 2.

Memory length k
1 2 3 4

�

0.9 0.532 2.122 8.439 33.237
0.7 0.537 2.126 8.486 33.364
0.5 0.529 2.087 8.335 32.795
0.3 0.529 2.115 8.361 33.097
0.1 0.526 2.088 8.354 32.819

feasible solution.551

As shown in Table 2, when the discount factor � is small552

enough, Gurobi is able to find feasible solutions for all553

the game instances with different memory lengths k. How-554

ever, for larger discount factors �, it becomes less likely for555

Gurobi to find a feasible solution within 30 mins as the mem-556

ory length k grows.557

The results in Table 1 and 2 align well with our intuitions.558

As the game size and memory length increase, the strategy559

space of the sender grows larger. Therefore, solving these560

games becomes harder. Although the sender’s scheme de-561

pends on previous time steps, it can also affect both agents’562

future utilities, since the receiver considers future utilities563

when making a decision and the current decision becomes564

past information in the future. With a larger �, future util-565

ities have a larger weight in the long-term utility and thus566

have more influence when the receiver chooses an action,567

making it difficult to find a good enough scheme.568

We report the running time of our algorithm in Table 3 and569

4. Our algorithm runs much faster compared with solving570

the bi-linear program. Our algorithm is able to find a feasible571

solution for all 20 game instances within 30 minutes, for572

all different game settings. In fact, our algorithm terminates573

within 30 seconds for most of the games.574

We also conduct experiments to explore how large in-575

stances our algorithm can handle in 30 minutes, and record576

the corresponding average utility in different game sizes.577

Figure 4 shows that our algorithm can handle 12⇥12 games578

within 30 minutes. Unlike the bi-linear program formula-579

tion, the discount factor � actually has little impact on the580

running time of our algorithm. Changing the discount factor581

does not affect the execution of our algorithm except for the582

part of solving linear programs, which is also implemented583

using Gurobi. Thus we conjecture that the slight increase in584

running time is also due to the Gurobi solver.585

Figure 4: Average running time of our algorithm for k = 1
in games with different sizes.

Figure 5: The average utility of our algorithm with k = 1, in
2⇥ 2 size games.

Hyperparameter. We evaluate how the backward step af- 586

fects the performance of our algorithms with k = 1, in in- 587

stances with 2⇥ 2 game size and different discount factors. 588

The results are provided in Figure 5. When � = 0.9, the 589

sender can obtain more utility by increasing the backward 590

step from 20 to 40. Figure 5 also shows that increasing the 591

backward step may not bring an obvious increase in utility, 592

but may increase the running time quickly. Therefore, the 593

backward step parameter can be used to balance the running 594

time and the performance. 595

Conclusion 596

We studied the problem of designing the optimal k-memory 597

messaging scheme against a far-sighted receiver in a dy- 598

namic environment. We formulated this problem as a bi- 599

linear program. Then we analyzed this problem in theory 600

and derived some structural results. We also proposed a fast 601

heuristic algorithm to solve this problem. Our experiment re- 602

sults show that the solution quality of our algorithm is com- 603

parable to that of the bi-linear program solved by Gurobi, 604

and that our algorithm is much faster than solving the bi- 605

linear program. 606

References607

Athey, S.; and Segal, I. 2007. An Efficient Dynamic Mech-608

anism. Econometrica, 81: 2463–2485.609

Aumann, R. J. 1995. Backward induction and common610

knowledge of rationality. Games and Economic Behavior,611

8: 6–19.612

Badanidiyuru, A.; Bhawalkar, K.; and Xu, H. 2018. Tar-613

geting and signaling in ad auctions. In Proceedings of the614

Twenty-Ninth Annual ACM-SIAM Symposium on Discrete615

Algorithms, 2545–2563. SIAM.616

Bellman, R. 1966. Dynamic Programming. Science, 153:617

34 – 37.618

Castiglioni, M.; Celli, A.; and Gatti, N. 2020. Persuading619

Voters: It’s Easy to Whisper, It’s Hard to Speak Loud. In620

AAAI.621

Celli, A.; Coniglio, S.; and Gatti, N. 2020. Private Bayesian622

Persuasion with Sequential Games. In AAAI.623

Dughmi, S.; and Xu, H. 2016. Algorithmic Bayesian per-624

suasion. Proceedings of the forty-eighth annual ACM sym-625

posium on Theory of Computing.626

Ely, J. C. 2017. Beeps. American Economic Review, 107(1):627

31–53.628

Emek, Y.; Feldman, M.; Gamzu, I.; PaesLeme, R.; and Ten-629

nenholtz, M. 2014. Signaling schemes for revenue maxi-630

mization. ACM Transactions on Economics and Computa-631

tion (TEAC), 2(2): 1–19.632

Farhadi, F.; and Teneketzis, D. 2022. Dynamic Information633

Design: A Simple Problem on Optimal Sequential Informa-634

tion Disclosure. ERN: Other Game Theory & Bargaining635

Theory (Topic).636

Gan, J.; Majumdar, R.; Radanovic, G.; and Singla, A. K.637

2022. Bayesian Persuasion in Sequential Decision-Making.638

In AAAI.639

Kamenica, E.; and Gentzkow, M. 2011. Bayesian Persua-640

sion1. The American Economic Review, 101(6): 2590–2615.641

Manne, A. S. 1960. Linear programming and sequential de-642

cisions. Management Science, 6(3): 259–267.643

Myerson, R. B. 1981. Optimal auction design. Mathematics644

of operations research, 6(1): 58–73.645

Papadimitriou, C.; Pierrakos, G.; Psomas, C.-A.; and Rubin-646

stein, A. 2016. On the complexity of dynamic mechanism647

design. In Proceedings of the twenty-seventh annual ACM-648

SIAM symposium on Discrete algorithms, 1458–1475.649

Pavan, A.; Segal, I.; and Toikka, J. 2014. Dynamic Mecha-650

nism Design: A Myersonian Approach. Econometrica, 82:651

601–653.652

Rabinovich, Z.; Jiang, A. X.; Jain, M.; and Xu, H. 2015.653

Information Disclosure as a Means to Security. In AAMAS.654

Wu, J.; Zhang, Z.; Feng, Z.; Wang, Z.; Yang, Z.; Jordan,655

M. I.; and Xu, H. 2022. Sequential Information Design:656

Markov Persuasion Process and Its Efficient Reinforcement657

Learning. Proceedings of the 23rd ACM Conference on Eco-658

nomics and Computation.659

Xu, H.; Rabinovich, Z.; Dughmi, S.; and Tambe, M. 2015. 660

Exploring Information Asymmetry in Two-Stage Security 661

Games. In AAAI. 662

Zhang, H.; Cheng, Y.; and Conitzer, V. 2022. Planning with 663

Participation Constraints. In AAAI. 664

Zhang, H.; and Conitzer, V. 2021. Automated Dynamic 665

Mechanism Design. In NeurIPS. 666

