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Abstract
In text classification, the classical comparison between discriminative and generative classifiers gains renewed
relevance in the transformer era, where computational constraints often limit thorough experimentation. Through
systematic small-scale experiments on text classification tasks, we investigate how the fundamental “two regimes"
phenomenon—where generative classifiers excel with limited data but show higher asymptotic error—manifests
across modern architectures (Auto-regressive, Masked Language Models, Discrete Diffusion, and Encoders). By
training models from scratch on controlled text datasets, we isolate and analyze core architectural behaviors in
terms of sample efficiency, calibration, and preservation of ordinal relationships. Our findings provide insights
into the inherent trade-offs of different modeling approaches for text classification, demonstrating how small-scale
experimentation can inform both theoretical understanding and practical architectural choices.

1. Introduction
Text Classification (TC), a fundamental task in Natural Language Processing (NLP), provides an ideal testbed for systematic
investigation of machine learning principles. Since the emergence of transformer architectures, the field has been dominated
by discriminative classifiers that leverage token embeddings (e.g., the [CLS] token in BERT (Devlin et al., 2019)). These
models directly learn the conditional probability distribution Pθ(y|X), where X denotes the input text and y represents the
ground truth label. However, as these discriminative models grow larger, systematic experimentation becomes prohibitively
expensive, making it challenging to understand their behavior in real-world scenarios where labeled data is scarce or
expensive to obtain (Zheng et al., 2023). On the other hand, generative classifiers, which model the joint distribution
Pθ(X, y), are known to work better in low-data settings, giving rise to the classical ’two-regimes’ phenomenon (Ng & Jordan,
2001; Yogatama et al., 2017; Zheng et al., 2023; Li et al., 2025). This advantage stems from their ability to learn underlying
data distributions rather than just decision boundaries. The inherent data efficiency of generative approaches, combined
with recent advances such as Discrete Diffusion (Lou et al., 2024), motivates us to revisit the classical discriminative versus
generative debate through controlled, small-scale experiments.

Our main contributions include: (a) A systematic small-scale comparative study of discriminative (Encoder) and generative
(Text Diffusion, AR, MLM) approaches across 9 classification benchmarks, revealing nuanced interactions between model
size and sample complexity. (b) Comprehensive analyses of model scaling behavior, sample efficiency, and performance in
low-resource settings, including novel evaluation perspectives examining ordinal relationships and calibration. (c) Practical
recommendations for model selection based on deployment constraints and requirements.

2. Related Work
The study of generative versus discriminative classifiers originated with Efron (1975)’s analysis of logistic regression and
discriminant analysis, with Ng & Jordan (2001) establishing the fundamental trade-off between generative models’ faster
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Figure 1: [Best viewed in color] Illustration of different modeling paradigms (ENC: Encoder-based classification, MLM: Masked Language
Modeling, AR: Auto-Regressive Model, DIFF: Discrete Text Diffusion).

learning rate and discriminative models’ lower asymptotic error. Yogatama et al. (2017) provided the first neural investigation
using LSTMs for text classification, demonstrating a true generative approach by prepending the label y to the input text
X and maximizing P (X|y)P (y) through the class conditional likelihood P (X|y) =

∏T
t=1 p(xt|x< t, y). This traditional

generative formulation requires #label forward passes during inference as it computes P (X|y) for each possible label.
While Li et al. (2025) showed that appending labels at the end of sequences can yield better in-distribution performance
and enable single-pass inference, this represents a pseudo-generative variant as it doesn’t strictly model P (X|y). Similar
pseudo-generative approaches include MLM (Devlin et al., 2019) and Discrete Diffusion (Lou et al., 2024), with recent work
(Sahoo et al., 2024) revealing connections between these objectives. These approaches can be viewed through the lens of
multi-task learning, where joint modeling of P (X, y) involves balancing unsupervised and supervised objectives (Wu et al.,
2020; Hu et al., 2023). Zheng et al. (2023) extended the theoretical understanding to multi-class and non-linear settings,
while recent studies have highlighted generative classifiers’ robustness to distribution shifts (Li et al., 2025; Stanley et al.,
2025). Refer to Appendix A for a more detailed review on Discriminative vs Generative and Pseudo-generative variants,
their connection to multi-task learning, Discrete Diffusion, Ordinality & Calibration.

3. Methodology
We approach text classification through two paradigms: (a) Generative - Discrete Diffusion models, Auto-regressive
models (AR), and Masked Language Models (MLM) & (b) Discriminative - Encoder-based transformer models. Let
D = {(Xi, yi)}Ni=1 denote the dataset where Xi is the input text and yi ∈ Y is the corresponding label. We experiment with
four different architectures.

(1) Encoder-based classification (ENC): A standard transformer encoder that processes input text to produce embeddings,
followed by a linear classification head trained with cross-entropy loss.

(2) Masked Language Modeling (MLM): Following BERT (Devlin et al., 2019), we mask 15% of input tokens during
training and predict them using bidirectional context. While not explicitly modeling P (X|y), MLM approximates pseudo-
likelihood through P (xm|x\m) (Wang & Cho, 2019). At training, we use the template "[CLS] Input [SEP] The label is
[Label]" and at inference, we replace [Label] with a [Mask] and predict it by restricting it to Y .

(3) Auto-regressive modeling (AR): Following GPT (Radford et al., 2018), we train a causal model to predict next tokens
given previous ones. For true generative variants (AR), labels are prepended and the model explicitly learns P (X|y)P (y),
requiring #label forward passes at inference (Yogatama et al., 2017; Li et al., 2025). In pseudo-generative variants (ARpseudo),
labels are appended, enabling single-pass inference but no longer strictly modeling the joint distribution(Li et al., 2025). This
label placement distinction is only relevant for causal architectures like AR with left-to-right attention; it has no theoretical
impact on bidirectional models like MLM or DIFF that can attend to the full context.

(4) Text Diffusion (DIFF): Following Lou et al. (2024), we gradually corrupt text to [MASK] tokens and train a model to
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Figure 2: [Best viewed in color] Comparison of weighted-F1 scores of models across different configurations (↑ is better). For rest of
the datasets, refer to Figure 7 in Appendix F. (X-axis: sample size, Y-axis: weighted-F1 score)

reverse this corruption process. At inference, we use the template "Input [SEP] The label is [MASK]" and predict the masked
label token. Like MLM, this approach is inherently pseudo-generative as it models token reconstruction rather than true
P (X|y). Refer to Appendix B for a detailed overview of each approach.

4. Experiments and Results
Our study investigates three key aspects: (1) comparative performance of different modeling approaches trained from scratch
across varying data and model sizes, (2) robustness to input perturbations through random token substitution and dropping,
and (3) model calibration and preservation of ordinal relationships in predictions. We evaluate five modeling approaches
(AR, ARpseudo, MLM, DIFF, and ENC) across 9 text classification benchmarks spanning sentiment analysis, news categorization,
and social media analysis: AG News (Zhang et al., 2015), Emotion (Saravia et al., 2018), SST2 & SST5 (Socher et al.,
2013), Multiclass Sentiment, Twitter Financial News, IMDb (Maas et al., 2011), and Hate Speech (Davidson et al.,
2017). To ensure fair comparison, all approaches use the same transformer backbone architecture, varying only in their
objective functions and label placement. For systematic evaluation, we experiment with three model scales: small (1 layer,
1 attention head), medium (6 layers, 6 heads), and large (12 layers, 12 heads). We vary dataset sizes from 128 to full
data, apply input perturbations via random token dropping and substitution, and measure performance using weighted-F1
scores. For ordinal relationship assessment, we use Mean Squared Error (MSE) and Mean Absolute Error (MAE), while for
calibration quality we measure Expected Calibration Error (ECE), Maximum Calibration Error (MCE), and Unimodality
(UM). All experiments are repeated with 3 random seeds, totaling 2835 configurations. Implementation details are provided
in Appendix C.

4.1. Results and Key Findings

For 1-layer, 1-head models (Figure 2), all approaches show near-random performance in low-data regimes. However,
as training data increases, only ENC (orange line) continues to improve, ultimately outperforming others in high-data
settings. This suggests that for small models - often necessary due to real-world latency constraints - ENC is the most
effective approach. The classical ‘two regimes’ phenomenon does not manifest when the model size is small. The pattern
shifts dramatically for larger architectures.Under the 12-layer, 12-head configuration, both generative models—AR and
DIFF—outperform ENC in low-data settings, with this advantage diminishing as data increases. This aligns with previous
findings (Ng & Jordan, 2001; Yogatama et al., 2017; Rezaee et al., 2021) about generative models’ advantages in data-limited
scenarios. Surprisingly, for large models, the pseudo-generative MLM (blue line) consistently outperforms all methods across
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Figure 3: [Best viewed in color] Comparison of weighted-F1 scores between ARpseudo and AR (↑ is better). 1-layer results are omitted
here as they are mostly trivial in low-data settings. Results for remaining datasets are provided in Figure 8, Appendix F. (X-axis: sample
size, Y-axis: weighted-F1 score)

our 9 benchmark datasets in high-data settings, challenging the conventional wisdom about discriminative dominance
in high-sample regime. This aligns with Erhan et al. (2010)’s finding that pseudo-generative models implicitly perform
unsupervised pre-training alongside supervised learning, creating an effective multi-task setup (Section 2). Thus, for
scenarios without model size constraints, generative models emerge as the optimal choice for low-data settings such
as for low-resource languages and continual learning applications requiring frequent updates with limited samples, while
pseudo-generative MLM is superior when abundant labeled data is available. Coming to the medium scale 6-layer,
6-head configuration, in low-data settings, DIFF emerges as the best performing model across all datasets, clearly outperform
even it’s generative counterpart AR. As the training data size increases, we see that the discriminative ENC outperforming
DIFF. Thus, in medium scale architectures, between the generative DIFF and the discriminative ENC, the classical
‘two regimes’ still holds. Figure 3 shows that ARpseudo generally underperforms AR and also displays higher variance in
low-data settings—the recommended use case—while the opposite holds in high-data scenarios. This reveals a new insight
beyond Li et al. (2025), who only evaluated full-data settings where ARpseudo performed better in-distribution. As noted in
Section B, AR requires |label|-times forward passes per prediction, unlike the single pass needed for ARpseudo; however, this
can be mitigated via batching or parallel processing, reducing inference time differences at the cost of higher computation.

Figures 4,5,6 in Appendix E presents ordinal and calibration results. DIFF does not support calibration metrics like ECE,
MCE, and UM, as its masking/absorbing noise process produces only binary outputs rather than soft probabilities. While a
uniform noise schedule can yield probabilities over V , it performed slightly worse, so we used the absorbing schedule in our
study. From the ECE and MCE plots, we observe that ENC outputs remain well-calibrated across all sample sizes, while MLM
reaches similar calibration only in high-data regimes. We also see that MLM and ENC achieve UM in over 80% of the samples,
aligning with findings from Kasa et al. (2024). Their MAE and MSE values are also low, indicating strong ordinality in
high-data settings. This completes the picture for large models under high-data, where MLM not only outperforms others in
weighted-F1 but is also well-calibrated and ordinal, making it a strong candidate for real-world deployment. However, under
low-data conditions, 12-layers AR outperforms ARpseudo in 7 out of 9 datasets on calibration metrics. It also surpasses DIFF
in ordinal performance, thus making it the more reliable choice among generative models in low-data scenario. Also, even
though generative approaches like DIFF were recommended based on weighted-F1 for 6-layers case (in Figure 2) deploying
them in production could be risky when calibrated or ordinal probabilities are required, especially for imbalanced datasets
like twitter and hatespeech (see Appendix E). These metrics are particularly important when downstream models consume
output probability scores as features which is often the case in multi-stage ranking systems.

5. Conclusion
Our study offers practical modeling recommendations across deployment scenarios. For latency-sensitive applications, ENC
is ideal—especially in the 1-layer setting—due to its accurate, well-calibrated, ordinal outputs. For offline settings with
sufficient data, the 12-layer MLM performs best across F1, calibration, and ordinal metrics. In low-resource scenarios, both AR
and DIFF are strong options, with DIFF favored for its performance at 6-layers. However, if calibrated probability outputs

4



Generative or Discriminative?

are essential, such as in ranking pipelines, AR is the preferred choice.
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A. More Background and Related works
Generative and Discriminative Models for Classification. The comparison between generative and discriminative
classifiers originated with Efron (1975)’s analysis of logistic regression and discriminant analysis. Building on this
foundation, Ng & Jordan (2001) examined naive Bayes and logistic regression, establishing the fundamental trade-off
between generative models’ faster learning rate and discriminative models’ lower asymptotic error. Their theoretical analysis
heavily depends on linearity and independence assumptions. However, subsequent work by Xue & Titterington (2008)
challenged these findings through empirical studies and asymptotic analysis of statistical efficiency. Yogatama et al. (2017)
provided the first empirical study of discriminative vs generative models for TC with neural architectures using LSTMs.
They maximize the joint probability P (X, y) = P (X|y)P (y) by concatenating the label y text at the beginning of the input
text X and maximizing the class conditional likelihood i.e. P (X | y) =

∏T
t=1 p (xt | x<t, y). The final predicted label is

obtained by ŷ = argmaxy P (X|y)P (y). They found that generative LSTMs have better accuracy than their discriminative
counterparts at low-sample regimes. Further, they noted that the neural generative LSTMs are generally better than baseline
generative models with stronger independence assumptions (e.g. naive Bayes, Kneser–Ney Bayes (Ney et al., 1994; Teh,
2006)). Next, the work by Zheng et al. (2023) has extended the theoretical understanding of generative classifiers to
multi-class and non-linear settings. More recent studies (Li et al., 2025; Stanley et al., 2025) have found that generative
classifiers tend to avoid shortcut learning and exhibit greater robustness to distribution shifts.

While prior studies provide valuable insights, the landscape of NLP has evolved dramatically with the advent of novel
transformer-based generative paradigms such as Auto-Regressive (AR) models (Radford et al., 2018) and Discrete Diffusion
models (Lou et al., 2024). Our work extends beyond these previous comparisons by conducting the first comprehensive
evaluation of modern transformer-based generative and discriminative classifiers for TC. While previous works primarily
focused on classification accuracy and sample complexity, we examine multiple dimensions that are crucial for real-world
deployments. For instance, Yogatama et al. (2017) initial work with neural architectures was limited to a fixed model size,
leaving open questions about how the generative-discriminative trade-off varies with model capacity and computational
budget—questions that have become increasingly relevant in the era of large language models. Similarly, though Zheng
et al. (2023) provided theoretical insights for multi-class settings, their analysis did not address practical considerations like
calibration quality or preservation of ordinal relationships between classes.

Pseudo-Generative Models. Recent work (Sahoo et al., 2024) highlights a natural connection between Discrete Text
Diffusion (Lou et al., 2024) and the Masked Language Modeling (MLM) objective in BERT (Devlin et al., 2019), showing
that the diffusion objective can be expressed as a weighted sum of MLM losses. Using transformer encoder models, this
approach achieves likelihood bounds comparable to or better than those in Lou et al. (2024). Motivated by this, we include
vanilla MLM as a baseline for text classification. While MLM has typically served as a pretraining objective followed by
fine-tuning (Liu et al., 2019), there has been little systematic study of its direct use for classification. Although MLM does
not explicitly model P (X|y), it estimates P (xm|x\m), where xm is a masked token and x\m represents all other tokens.
This approximates the pseudo-likelihood of P (X, y) when modeled over the corpus (Wang & Cho, 2019). We therefore
classify MLM as a pseudo-generative model.

Also, traditional generative classifiers aim to model P (X|y) by prepending the label token. However, recent work (Li
et al., 2025) shows that appending the label at the end—though not strictly modeling P (X|y)—can yield better in-
distribution performance. This setup also enables efficient inference, requiring only a single forward pass to predict the
label, unlike traditional generative models that need #label forward passes. These benefits motivate the inclusion of such
pseudo-generative models in our benchmarks. Notably, these approaches involve minimal changes to standard transformer
architectures—typically just altering label placement or the loss function—while preserving the core model design. This
allows for fair comparisons using widely available implementations accessible to practitioners.

We also acknowledge a separate class of hybrid generative-discriminative models, where some subset of parameters are
trained generatively and others discriminatively (Raina et al., 2003; McCallum et al., 2006; Hayashi, 2025). However, we
exclude them from our study, as their architectural differences hinder fair comparison with fully generative or discriminative
models, placing them outside the scope of this work.

Relation to Multi-task Learning. Learning logP (X, y) jointly, when factored as logP (X) + logP (y|X) (or logP (y) +
logP (X|y)) can be viewed as a multi-task learning setup, where unsupervised learning of logP (X) (logP (Y )) and
supervised learning of logP (Y |X) (logP (X|Y )) represent two different but related tasks. This connection is supported
by empirical results showing that unsupervised pre-training helps downstream supervised tasks (Erhan et al., 2010). As
demonstrated by Wu et al. (2020); Hu et al. (2023), when model capacity is sufficiently large, such multi-task learning
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setups tend to be more successful - the model has enough capacity to perform well on both the unsupervised and supervised
objectives. However, with limited model capacity, there are inherent trade-offs between the tasks, leading to challenges in
jointly optimizing for both P (X) and P (y|X) (or P (y) and P (X|y)). This insight motivates us to conduct a systematic
study examining the relationship between model capacity and the performance of discriminative vs generative classifiers -
an analysis that has not been previously undertaken in the literature.

Discrete Diffusion Models for Classification. Recent advances in discrete diffusion models have shown promising results
in text generation tasks, matching or surpassing autoregressive models at GPT-2 scale (Lou et al., 2024; Sahoo et al.,
2024; Shi et al., 2024). While these models have demonstrated success in controlled generation tasks (Li et al., 2022a; He
et al., 2023), specifically syntax controlled generation of text (Kumar et al., 2020) and text infilling, their application to
classification remains relatively unexplored. Traditional diffusion models for text generation, such as DiffusionBERT (He
et al., 2023), DiffusionLM (Li et al., 2022b), and D3PM (Austin et al., 2021), operate by embedding discrete token sequences
into continuous spaces and applying Gaussian noise-based diffusion. In contrast, SEDD (Lou et al., 2024) was the first to
directly model diffusion in discrete space through a score entropy-driven objective. Hence, we adopt SEDD as our baseline
method. Our work provides the first systematic evaluation of discrete diffusion models for classification tasks, comparing
them against traditional discriminative and generative approaches.

Robustness to Noise. Previous studies have examined robustness primarily through the lens of adversarial attacks (Li et al.,
2019), distribution shifts (Li et al., 2025) and domain shifts (Jaini et al., 2024). While recent work has provided certified
robustness guarantees for perturbations like insertion, deletion, reordering and synonyms for specific architectures (Zeng
et al., 2023; Zhang et al., 2024), our study presents comparisons across model families under two different noise conditions
in the context of TC for transformer architectures.

Calibration & Ordinality. Model calibration is crucial in classification, as it reflects how well predicted probabilities align
with actual frequencies. Proper Scoring Rules (PSR) (Merkle & Steyvers, 2013) offer a theoretical basis for producing
calibrated predictions: a scoring rule (i.e. loss function) is proper if its expected value is minimized only when predicted
probabilities match the true distribution. All our modeling approaches—Generative (AR, MLM, Discrete Diffusion) and
Discriminative (Encoder)—optimize proper scoring rules. GPT and MLM maximize likelihood, Discrete Diffusion optimizes
a variational bound, and cross-entropy minimizes the KL-divergence between predicted and true distributions. Recent
work (Blasiok et al., 2023) shows that models trained with PSRs are often naturally calibrated when achieving low training
loss, without requiring post-hoc calibration. This motivates us to empirically assess calibration across our models, as their
differing architectures and objectives may still lead to varying calibration behaviors.

Ordinality in text classification is essential for applications like sentiment analysis or medical assessments, where label order
affects decisions and distant misclassifications are more harmful. Recent works (Kasa et al., 2024) systematically compare
explicit methods—like custom losses enforcing label order—with implicit approaches using pretrained models’ semantics.
However, no prior work focuses on exploring ordinality across diverse modeling frameworks trained from scratch.

B. Methodology
We approach the problem of label classification by leveraging two popular language modeling paradigms: (a) Generative -
Discrete Diffusion models, Auto-regressive models (AR), and Masked Language Models (MLM) & (b) Discriminative -
Encoder-based transformer models. Note that, for brevity, we use the term “generative” from this point onward to also
include the pseudo-generative baselines. Let D = {(Xi, yi)}Ni=1 denote the dataset where Xi is the input text and yi ∈ Y is
the corresponding label from a finite set of classes Y . Generative models tend to learn the joint data distribution P (X, y) first
and then try to infer the label using the marginals, whereas Discriminative models directly learn the conditional distribution
P (y|X). Note that each Xi = x1

i . . . x
n
i , where xj

i is a token from the associated vocabulary V .

B.1. Discriminative Model for Classification

(1) Encoder-based classification (ENC): A Transformer encoder (Vaswani et al., 2017) fθ encodes the input as hi = fθ(Xi)
as a d-dimensional embedding, followed by a linear classifier head W ∈ R|Y|×d which is the standard discriminative
learning setup:

ŷi = softmax(Whi), Lenc = −
N∑
i=1

logP (yi|Xi) (1)

where Lenc is the cross-entropy based objective for training the encoder model.
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B.2. Generative Models for Classification

(2) Masked Language Modeling (MLM): During training, we mask 15% of tokens in input sequence Xi = x1
i . . . x

n
i

following Devlin et al. (2019) and predict them using unmasked bi-directional context. Wang & Cho (2019) show that the
MLM objective stochastically captures the pseudo-loglikelihood which makes it similar to a denoising autoencoder (Vincent
et al., 2010). Hence, we consider MLM under the generative family of models. Formally, the objective is:

Lmlm = −
N∑
i=1

∑
j∈Mi

logP (xj
i |X

\j
i ) (2)

where Mi is the set of masked positions and X
\j
i denotes the unmasked input with only token at position j masked. At

inference, we use the template:

X ′
i = [CLS] Xi [SEP] "The label is" [MASK] .

and predict the masked label token. The output vocabulary is restricted to the label token set VY .

(3) Auto-regressive modeling (AR): Following Radford et al. (2018), we train a causal generative model to minimize the
next-token prediction loss over the entire label + input sequence:

Lgpt = −
N∑
i=1

Li∑
j=1

logP (xj
i |y, x

1
i , . . . , x

j−1
i ) (3)

where Li is the length of the i-th sequence. At inference time, we perform one forward pass per candidate label y ∈ VY by
prepending it to the input X , and compute the log-likelihood. The predicted label is then obtained as argmaxy∈VY logP (X |
y). In ARpseudo (refer pseudo-generative models in Section 2) the label is appended at the end instead of the beginning and
only one forward pass is required to generate the predicted label token y. Note that label placement is only relevant for
causal generative architectures (like AR) with a left-to-right attention structure. For bidirectional (pseudo-)generative models
like MLM or DIFF, it has no theoretical impact.

(4) Text Diffusion (DIFF): For each input-label pair (Xi, yi), we first create a template:

Xi = Xi [SEP] "The label is" yi .

where each template is a sequence Xi = x1
i . . . x

Li
i with tokens xj

i ∈ V .

Similar to how diffusion models gradually add noise to images, our forward process gradually corrupts text by converting
tokens to pure noise (here [MASK]). Following Lou et al. (2024), we define the forward process through discrete transition
matrices Qt following a continuous markov process (see eq. 4). This process occurs at different timesteps t ∈ [0, T ],
where each token position is independently corrupted, starting from the original text and progressively moving towards a
completely masked sequence.

dpt
dt

= Qt pt, with p0 = pdata (4)

The reverse process learns to reconstruct the original text by predicting what token should replace each [MASK] symbol.
This is done by learning score ratios sθ(x, t)z = pt(z)

pt(x)
where x, z are tokens from V and modeling the reverse process (Sun

et al., 2022) as:
dpT−t

dt
= sθ(x, t)zQT−t pT−t (5)

Denoising Score Entropy (DSE) is used for training the score model in a manner that ensures several desired properties for
sθ and ensures the computation is tractable:

LDSE = E
x0∼p0,

x∼p(·|x0)

[∑
z ̸=x

wxz

(
sθ(x)z

− p(z | x0)

p(x | x0)
log sθ(x)z

)]
(6)

where p is assumed to be perturbation of some base density p0 and weights wxz > 0.
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The ELBO (Theorem 3.6 in Lou et al. (2024)) provides an upper bound on the negative log-likelihood, which is what we
optimize for in generative models:

− log pθ0(x0) ≤ LDWDSE(x0) + constant (7)

where LDWDSE integrates LDSE weighted by the forward diffusion matrix. At inference time, we mask the label token in
the template Xi and use the model to predict it, restricting the possible outputs to valid labels in VY . For further details,
refer to Lou et al. (2024).

C. Implementation Details
We use the bert-base-uncased1 architecture as the backbone for our Encoder and MLM experiments, without initializing
the model with pretrained weights. This architecture contains approximately 110M parameters, comprising 12 encoder
layers, 12 attention heads, and a hidden size of 768. We run all experiments for 3 random seeds and report the average and
standard deviation results in main paper.

For the Encoder experiments, we conducted a grid search over several hyperparameters, including learning rates of {1e-5,
2e-5, 3e-5, 4e-5, 5e-5}, batch sizes of {32, 64, 128, 256}, and a fixed sequence length of 512 tokens. Training was
performed for 30 epochs uniformly for all datasets without early stopping. For the MLM-based experiments, we retained
similar hyperparameter ranges but trained for 200 epochs to account for the increased complexity of masked token prediction.
We observed that adding an early stopping patience parameter sometimes led the model to select a suboptimal checkpoint,
as the validation loss often continued to decrease gradually after remaining flat or oscillating for several epochs.

For the AR and ARpseudo experiments, we used the GPT-2 base architecture2 as the backbone with 137M parameters
comparable with our other experiments. We trained a causal language model to minimize the next-token prediction loss
over the concatenated input and label sequence. A grid search was conducted with the same hyperparameter range as
mentioned above. The models were trained for up to 100 epochs, with early stopping based on validation loss, using a
patience parameter of 10 epochs.

Our Text Diffusion approach follows the Diffusion Transformer architecture (Peebles & Xie, 2023) which is basically the
vanilla transformer encoder with an extra time-conditioned embedding incorporated with it. The parameter count is ∼160M
due to the addition of time-dependent embeddings required by the diffusion mechanism. To counter this, we conducted
an ablation study by increasing the encoder size to 160M parameters (by adding layers) for other approaches (like ENC,
MLM) to match the diffusion model size, but observed no difference in performance. Hence we retain their original settings
as reported above. For diffusion-specific hyperparameters, we used a batch size of 64, learning rate 3e-4 and trained for
200K iterations. We adopted a geometric noise schedule that interpolates between 10−4 and 20, similar to the setup in (Lou
et al., 2024), and used the following absorbing/masking matrix Qabsorb as part of the transition modeling. This was the best
hyperparameter setting we found.

Qabsorb =


−1 0 · · · 0
0 −1 · · · 0
...

...
. . .

...
1 1 · · · 0


All experiments were conducted using multi-GPU training across eight NVIDIA A100 GPUs. Training time varied
depending on the methods and configurations used for each dataset. The range of training times (in hours) for various
datasets is presented in Table 1. All reported training times correspond to full-data training configurations.

D. Dataset Details
AG News (Zhang et al., 2015): It consists of approximately 120K training samples and 7.6K test samples, divided into
four categories: World, Sports, Business, and Technology. Each sample contains a short news article, typically consisting
of the title and the first few sentences. Emotion (Saravia et al., 2018): A collection of English tweets labeled with six
basic emotions: anger, fear, joy, love, sadness, and surprise. It is designed for emotion detection in text. The dataset has
20K samples divided into 16K samples for training and 2K samples each for validation and testing. Stanford Sentiment

1https://huggingface.co/google-bert/bert-base-uncased
2https://huggingface.co/openai-community/gpt2
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Config ENC ARpseudo AR MLM DIFF

(1L,1H) 1-2 2-4 2-4 1-4 1-4
(6L,6H) 1-3 3-7 3-7 3-7 2-6
(12L,12H) 2-5 5-10 5-10 5-10 5-12

Table 1: Training time (in hrs) ranges across different datasets for each configuration and approach.

Dataset Split Examples Classes Avg Tokens Label Dist. (%) Ordinal

IMDb train 25,000 2 313.87 0: 50.0, 1: 50.0 ×
test 25,000 2 306.77 0: 50.0, 1: 50.0

agnews train 120,000 4 53.17 0-3: 25.0 each ×
test 7,600 4 52.75 0-3: 25.0 each

emotion train 16,000 6 22.26 0: 29.2, 1: 33.5, 2: 8.2,
3: 13.5, 4: 12.1, 5: 3.6

×

test 2,000 6 21.90 0: 27.5, 1: 35.2, 2: 8.9,
3: 13.8, 4: 10.6, 5: 4.1

hatespeech train 22,783 3 30.04 0: 5.8, 1: 77.5, 2: 16.7 ✓
test 2,000 3 30.18 0: 5.5, 1: 76.6, 2: 17.9

multiclasssentiment train 31,232 3 26.59 0: 29.2, 1: 37.3, 2: 33.6 ✓
test 5,205 3 26.91 0: 29.2, 1: 37.0, 2: 33.8

rottentomatoes train 8,530 2 27.37 0: 50.0, 1: 50.0 ×
test 1,066 2 27.32 0: 50.0, 1: 50.0

sst2 train 6,920 2 25.21 0: 47.8, 1: 52.2 ×
test 872 2 25.47 0: 49.1, 1: 50.9

sst5 train 8,544 5 25.04 0: 12.8, 1: 26.0, 2:
19.0, 3: 27.2, 4: 15.1

✓

test 1,101 5 25.24 0: 12.6, 1: 26.3, 2:
20.8, 3: 25.3, 4: 15.0

twitter train 9,543 3 27.62 0: 15.1, 1: 20.2, 2: 64.7 ✓
test 2,388 3 27.92 0: 14.5, 1: 19.9, 2: 65.6

Table 2: Dataset statistics showing training and test split sizes, number of classes, mean and maximum token lengths, and
label distribution percentages. Refer to Section D for details on datasets.

Treebank (SST) (Socher et al., 2013): We utilize both the SST-2 (binary sentiment) and SST-5 (fine-grained sentiment)
variants of the Stanford Sentiment Treebank dataset. SST-2 consists of sentences labeled as either positive or negative,
suitable for binary sentiment classification, while SST-5 includes five sentiment categories: very negative, negative, neutral,
positive, and very positive, allowing for more fine-grained sentiment analysis. Multiclass Sentiment Analysis 3: This
dataset consists of 41.6K data points, labeled into three sentiment categories: positive, negative, and neutral. While the
dataset is designed for multiclass sentiment classification, it exhibits class imbalance, with certain sentiment classes being
more prevalent than others. This imbalance provides a more realistic challenge for sentiment analysis models, testing their
ability to handle skewed distributions and still perform effectively across all sentiment categories. Twitter Financial News
Sentiment 4: A specialized English-language collection of finance-related tweets, annotated for sentiment analysis. It
consists of 11,932 tweets labeled with three sentiment categories: Bearish, Bullish, and Neutral. This dataset is designed
to test models’ ability to understand domain-specific language and nuanced sentiment expressions in financial contexts.
IMDb (Maas et al., 2011): A binary sentiment analysis dataset consisting of 50K reviews from the Internet Movie Database
(IMDb), labeled as positive or negative. The dataset is balanced, with an equal number of positive and negative reviews.
This dataset is characterized by longer document lengths and detailed opinions, making it a challenging benchmark. Rotten
Tomatoes (Pang & Lee, 2005): A binary classification dataset which contains 10,662 movie review sentences, equally

3https://huggingface.co/datasets/Sp1786/multiclass-sentiment-analysis-dataset
4https://huggingface.co/datasets/zeroshot/twitter-financial-news-sentiment
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divided into 5,331 positive and 5,331 negative examples. The dataset is characterized by relatively short, opinion-driven
sentences that reflect concise sentiments about films. Hate Speech Offensive (Davidson et al., 2017): A major challenge in
automatic hate speech detection is distinguishing hate speech from other forms of offensive language. This dataset consists
of approximately 25K tweets, labeled into three categories: hate speech, offensive language without hate speech, and neutral
content.

Refer to Table 2 for details on dataset statistics.
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E. More Ordinal & Calibration Results
In this section, we take a closer look at ordinal and calibration results for the datasets decribed above. Here we report ordinal
metrics on the datasets Stanford Sentiment Treebank (SST5) (Socher et al., 2013), Multiclass Sentiment Analysis, Hate
Speech Offensive (Davidson et al., 2017) and Twitter Financial News Sentiment since these are the only multi-class
ordinal datasets out of 9. Calibration metrics are reported on all 9 datasets.

In Figure 4, we compare how ordinal and calibration metrics vary with increasing model size. Figure 5 presents the ordinal
metrics for all four ordinal datasets, while Figure 6 shows the calibration metrics for all nine datasets. The corresponding
insights are discussed in Section 4.

Figure 4: [Best viewed in color] Calibration and Ordinal metrics comparison across layers 1, 6 and 12. For ECE, MCE, MAE, MSE, (↓
is better) and UM (↑ is better).
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Figure 5: [Best viewed in color] Ordinal metrics. For MAE, MSE, (↓ is better) and UM (↑ is better).15
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Figure 6: [Best viewed in color] Calibration metrics. For ECE, MCE (↓ is better)
16
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F. More Main Results
This section contains the extended results of Figure 2 (see Figure 7) and Figure 3 (see Figure 8) for all 9 datasets. We omit
1-layer plots for Figure 8 since the performance is mostly trivial for low-data settings and the same trend is observed as
6/12-layers for full-data settings.

Figure 7: [Best viewed in color] Comparison of weighted-F1 scores of models across different configurations for all 9 datasets. (↑ is
better) (X-axis: sample size, Y-axis: weighted-F1 score)
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Figure 8: [Best viewed in color] Comparison of weighted-F1 scores between ARpseudo and AR (↑ is better) for all datasets. (X-axis:
sample size, Y-axis: weighted-F1 score)
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