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Abstract

Motor imagery (MI)-based brain-computer interfaces (BClIs) hold significant po-
tential for rehabilitation and assistive technologies. However, their widespread
adoption is hindered by high inter-subject variability in electroencephalogram
(EEQG) signals, necessitating extensive calibration for new users. Transfer learning
(TL) methods overcome this by leveraging data from existing subjects to reduce the
calibration time. However, the lack of standard evaluation protocols in EEG-MI TL
research makes it challenging to compare different approaches fairly. Moreover, the
lack of availability of codebases adds to the issue of reproducibility. In this paper,
we propose a standardized evaluation protocol to compare key transfer learning
techniques across cross-session and cross-subject scenarios. We further conduct
ablation studies focusing on signal length and preprocessing parameters to quantify
the sensitivity of the algorithms to signal and noise variability. Finally, we present
Python implementations of the methods for reproducibility.

1 Introduction

Brain-Computer Interfaces (BCIs) enable direct communication between brain and devices. Motor
Imagery (MI) BCIs, which decode imagined movements from EEG, hold promise for rehabilitation
and assistive use. Classical methods such as Minimum Distance to Riemannian Mean (MDRM) [[1]]
and Common Spatial Patterns (CSP) [2] with Linear Discriminant Analysis (LDA) [3} 4] perform
well within sessions but degrade across sessions and subjects, requiring costly calibration. Transfer
learning (TL) mitigates this. Riemannian Alignment (RA) whitens trials via resting-state means
before MDRM. Euclidean Alignment (EA) [3]] uses the global mean in Euclidean space, while
Log-Euclidean Alignment MDRM (LEA-MDRM) [6] relies on log-Euclidean means of active trials.
Tangent Space Alignment (TSA) [7]] applies tangent mapping with class-wise Procrustes rotations,
and Riemannian Procrustes Analysis (RPA) [8]] aligns by recentering, scaling, and rotation. Manifold
Embedded Knowledge Transfer (MEKT) [9]] aligns covariance matrices to a shared reference, projects
to tangent space, and reduces distributional shifts while preserving geometry. Yet, the field lacks
standardized protocols and open codebases, hindering reproducibility and fair comparison. Our study
addresses these gaps through the following contributions:

» Standardized Evaluation: We benchmark key transfer learning (TL) methods using a unified
protocol for cross-session and cross-subject scenarios.

 Ablation Studies: We analyze signal length and preprocessing choices to assess algorithm sensitiv-
ity to signal and noise variability.

* Open-Source Code: We release Python implementations and the benchmarking codebase to ensure
reproducibility and support future work.
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2 Related Work

To mitigate domain shifts from inter-subject and inter-session variability in EEG signals, classical
and Riemannian transfer learning (TL) techniques are widely used in motor imagery (MI) decoding.
However, inconsistent evaluation protocols hinder fair comparisons. Benchmarking efforts such as
MOABB [10] enable reproducible BCI evaluations, with a recent large-scale study [[11] testing 30+
pipelines across 36 datasets but restricted to within-session settings. EEG-FM-Bench [12] extends
this to foundation models. Yet, systematic studies of Riemannian TL methods in cross-subject and
cross-session MI decoding, including ablation on preprocessing, remain lacking. Our work addresses
this gap with standardized evaluations and open-source implementations to ensure reproducibility.

3 Motor Imagery datasets

We used the BCI Competition IV datasets 2a [13] and 2b [14], standard MI benchmarks with
multi-session data enabling cross-session and cross-subject evaluation (see Appendix for details).

4 Methods: Standardizing benchmarks

The selected methods span key paradigms in EEG-based motor imagery transfer learning, covering
Euclidean, Riemannian, and tangent space approaches. We included CSP+LDA, MDRM, RA-
MDRM, EA, LEA, TSA, RPA, and MEKT to enable comparison between simple and advanced
techniques. To ensure rigor, we first reproduced algorithm results [SHI2] confirming close agreement.
Benchmarks were then conducted in two scenarios: cross-session (training on Session 1, testing on
Session 2) and cross-subject (leave-one-subject-out). Both 4-class (left hand, right hand, foot, tongue)
and 2-class (left vs. right hand) tasks were evaluated. Trials spanned 0.5-3.5s post-cue, covering the
motor imagery window. Signals were band-pass filtered to 8-30 Hz with a 50th-order filter, targeting
mu and beta rhythms. Preprocessing followed prior consensus, with ablation confirming utility. For
methods with tunable hyperparameters, values were adopted directly from source papers.

4.1 Benchmark 1: 2 Class vs 4 Class: Cross-Session

Comparison of Mean Accuracies (2-Class) - BCI Competition IV 28 - Cross-Session
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Figure 2: Comparison of mean accuracies in the
cross-session scenario, on the BCI Competition
IV 2B dataset. EA and MEKT are again the best
and worst performers respectively, with LEA
slightly behind EA.

Figure 1: Comparison of mean accuracies in the
cross-session scenario, on the BCI Competition
IV 2A dataset. EA and MEKT achieve the high-
est and lowest mean accuracies respectively.

In dataset 2a cross-session [I3][14] most TL methods perform well[I] especially in 2-class, showing
adaptability to session shifts. EA achieves the highest mean 2-class accuracy, slightly surpassing
RA-MDRM and LEA, confirming the benefit of Euclidean alignment before feature extraction.
Accuracy drops notably in 4-class, reflecting higher task difficulty. MEKT performs worst in both
tasks, suggesting sensitivity to alignment dataset size. CSP+LDA (0.77 / 0.61) is competitive but
generally trails alignment methods. Large subject-wise SDs indicate strong inter-subject variability.
For dataset 2b |17} 2-class cross-session accuracies [2| are lower than 2a, likely due to fewer EEG
channels (3 vs. 22). EA (0.70) again leads, slightly ahead of LEA, TSA, and RA-MDRM. CSP+LDA
performs comparably to several alignment methods, suggesting weaker session shifts or limited
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alignment gains with few channels. MDRM (0.62) and MEKT (0.55) are lowest, with MEKT most
affected by reduced spatial data. Variability remains high (SD ~0.10-0.14) but slightly lower than in

2a, confirming persistent subject differences.

4.2 Benchmark 2: 2 Class vs 4 Class: Cross-Subject

Comparison of Mean Accuracies (2-Class vs d-Class) - BCI Competition IV 24 - Cross Validation

Figure 3: Comparison of mean accuracies in the
cross-subject scenario, on the BCI Competition
IV 2A dataset. MEKT performs the best in both
the 2-class and 4-class scenarios with more data
available.
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Figure 4: Comparison of mean accuracies in the
cross-subject scenario, on the BCI Competition
IV 2B dataset. Performance differences between

models are less pronounced due to the dataset’s
low channel complexity.

In dataset 2a cross-subject [I3][I6] accuracies drop compared to cross-session [3] reflecting higher
inter-subject variability. MEKT performs best (0.75 / 0.55), showing its manifold embedding and
joint adaptation are well-suited to bridging subject differences. LEA (0.72/0.51) and EA (0.71 /
0.53) also rank high, surpassing RA-MDRM (0.70 / 0.48), MDRM (0.57 / 0.33), and CSP+LDA
(0.67 / 0.40), confirming the importance of alignment. RPA (0.53 /0.32) lags, especially in 4-class,
suggesting Procrustes limitations under high variability. The sharp 4-class drop (e.g., MEKT 0.75
— 0.55) underscores the difficulty of cross-subject multi-class MI BCI. For dataset 2b[I8] 2-class
cross-subject accuracy also degrades but less than in 2a, likely due to task simplicity. EA, LEA,
and MEKT each reach 0.67 E], while RA-MDRM (0.66) and TSA (0.66) perform similarly, ahead
of CSP+LDA (0.61), MDRM (0.62), and RPA (0.58). The smaller gap between best methods and
baseline than in 2a may reflect channel limitations reducing alignment gains. MEKT’s strength here,
unlike cross-session, highlights its ability to handle distribution shifts with more data.

5 Ablation study

An ablation study is conducted to identify the optimal EEG time window for motor imagery (MI)
analysis, as neural responses evolve dynamically after cue onset. The choice of start—end points
determines which phases of the motor imagery response is captured. Short windows may miss
information, while longer ones risk adding noise, and algorithms vary in sensitivity to these dynamics.
We test multiple windows ((0.5-1.5), (0.5-2.5), (0.5-3.5), (1.5-2.5), (1.5-3.5), (2.5-3.5) s) to
evaluate each method’s reliance on temporal characteristics. We also examine filtering, a standard
preprocessing step to improve SNR by isolating MI-related frequency bands. Since Ml is linked to
mu (8—13 Hz) and beta (14-30 Hz) rhythms via ERD/ERS, we compare unfiltered signals with the
standard MI band (8-30 Hz) and narrower alpha (8—12 Hz) and beta (13-30 Hz) filters. This assesses
the importance of spectral components for classification and how algorithm performance depends on
them. Together, these analyses reveal algorithm robustness to temporal and spectral variations and
their reliance on discriminative features.

5.1 Ablation study 1: 4-Class Cross-Session: Variable Input signal length

In dataset 2a|[I] longer windows covering the full MI period improve accuracy, with (0.5-3.5s) giving
the best or near-best results (EA 0.65, RA-MDRM 0.66, LEA 0.67, MDRM 0.64). The shortest
late window (2.5-3.5s) performs worst, confirming reduced discriminative power later. RA-MDRM
and LEA slightly exceed EA and CSP+LDA, while MEKT and RPA remain weakest. In dataset 2b
trends are similar but weaker: (0.5-3.5s) is best for EA (0.70) and CSP+LDA (0.66), (0.5-2.5s)
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Table 1: Mean Accuracy + Standard Deviation ~ Table 2: Mean Accuracy + Standard Deviation
across varying time windows: Dataset 2a. Using ~ across varying time windows: Dataset 2b. Per-
the full trial length significantly improves perfor- ~ formance difference isn’t significant between the

mance. windows due to low complexity of the dataset.
Time Window ~ (05,1.5) (0525 (0.535) (1525 (1535 (2535 Time Window ~ (05.1.5) (0525 (0535 (1525  (1535)  (2535)
Method Method
EA 0.60£0.16 0.64£0.16 065014 0.57£0.15 0.60£0.14 0490.11 MDRM 062+0.11 0.63£0.11 062009 0.58+0.10 059£0.07 0.56%0.07
CSP+LDA 0.57+0.15 0.60+0.13 0.61£0.14 0.55+0.13 0.57+0.12 0.47+0.09 RA-MDRM 0.65£0.10 0.66+0.12 0.66+0.11 0.61+0.09 0.61+0.09 0.57+0.07
MDRM 0.58+£0.12 0.62£0.11 0.64£0.12 0. 11 0.58£0.12 0490.12 EA 067011 0.68£0.11 070£0.11 0.62£0.10 0.6420.09 0.60+0.07

RA-MDRM 0.60£0.13  0.67+0.13 0.66+0.14 0‘58&0.]3 0.61+0.12  0.50+0.11

LEA 065+0.11 0.67+0.11 0.67+0.11 0.61£010 062+0.08 0.58%0.06
LEA 0622014 0.67£0.13 0.67£0.14 0580.14 0622013 0.52£0.12 CSP+LDA 0.63+0.11 0.65£0.13 0.66+0.11 0.60+0.10 0.62+0.09 0.59+0.06
TSA 0.56£0.16  0.61£0.16 062014 0.52£0.14 056£0.15 046+0.13 MEKT 0.54+0.07 055£0.08 055+0.10 0.54+0.07 0.57£0.09 0.560.09
RPA 051£0.11 053£0.13 056014 046+0.11 049£0.11 045+0.10 TSA 0.63+0.12 0.68+0.11 065013 0.59+0.12 058+0.12 0.56+0.07
MEKT 0474023 051£027 051+0.29 046+023 049+026 045£0.19 RPA 0.60£0.12 0.60+0.13 0.64£0.09 0.53+0.13 0.55+0.07 0.55+0.09

for TSA (0.68), and late-only windows lowest (EA 0.60, LEA 0.58). MEKT stays lowest overall
(0.55-0.57) with little sensitivity. Flatter patterns than 2a suggest fewer channels and two classes
reduce window choice impact, aside from avoiding short/late segments.

5.2 Ablation study 2: Cross-Session: Pre-processing filters

Table 3: Mean Accuracy * SD for varying pre-  Table 4: Mean Accuracy + SD for varying pre-
processing filters: Dataset 2a. Most discrimi-  processing filters: Dataset 2b. Performance dif-
native information lies in the beta band, though  ferences are smaller due to fewer available chan-

some is also in the alpha band. nels.

Preprocessing None Standard Alpha Beta Preprocessing None Standard Alpha Beta
Method Method

EA 0.53+£0.14 0.65+0.14 056+0.15 0.65+0.16 EA 0.58+0.06 0.70+0.11 0.68+0.10 0.65+0.12
CSP+LDA 0.50+£0.15 0.61+0.14 052+0.14 0.60+0.14 CSP+LDA 0.60+0.08 0.66+0.11 0.65+0.11 0.61+0.09
MDRM 055+0.15 0.64+0.12 058+0.16 0.63+0.11 MDRM 0.56+0.07 0.62+0.09 0.61+0.07 0.61+0.07
RA-MDRM 0.59+0.12 0.66+0.14 0.61+0.16 0.67+0.13 RA-MDRM 0.59+0.08 0.66+0.11 0.67+0.08 0.64+0.10
LEA 0.60+0.12 0.67+0.14 0.61+0.16 0.67+0.13 LEA 0.61+£0.09 0.67+0.11 0.67+0.09 0.65+0.09
TSA 0.53+0.15 0.63+0.14 057+0.17 0.63+0.13 TSA 0.61£0.09 0.67+0.11 0.67+0.10 0.64+0.09
RPA 049+0.10 0.55+0.13 052+0.13 0.52+0.11 RPA 0.56+0.07 0.60+0.10 0.55+0.07 0.60+0.08
MEKT 046+023 0.51+029 050+026 0.52+0.27 MEKT 0.54+0.06 0.55+£0.10 0.57+0.09 0.54+0.08

Filtering improves accuracy in both datasets. In 2a[3] the ‘Standard’ 8-30 Hz band boosts performance
over ‘None’ (EA 0.53—0.65, LEA 0.60—0.67). EA, RA-MDRM, and LEA also benefit from the
‘Beta’ band, while ‘Alpha’ is consistently weaker, confirming beta activity as most discriminative.
CSP+LDA peaks with ‘Standard,” while MEKT and RPA remain lowest overall. In 2b[] gains are
smaller due to fewer channels and simpler 2-class discrimination. EA (0.70) again leads, followed by
LEA, TSA, and RA-MDRM. CSP+LDA shows robustness, with ‘None’ (0.60) ~ ‘Beta’ (0.61), still
surpassing MEKT and RPA.

6 Discussion

This work contributes to EEG-based motor imagery BCls by establishing a standardized evaluation
protocol and open codebase for comparing key transfer learning techniques. Comparative analysis
on BCI Competition IV 2a and 2b highlights distinct performance profiles: EA excelled in cross-
session tasks, showing that Euclidean alignment can be both competitive and efficient, while MEKT
performed best in cross-subject transfer, reflecting its sophisticated distribution alignment. These
results emphasize that different strategies suit different domain shifts. Ablation studies showed
performance peaks when using longer MI windows (0.5-3.5s post-cue) and standard mu/beta filtering
(8-30Hz), which improves SNR and accuracy across methods. By releasing implementations, we
directly address reproducibility and enable fair comparisons. Few limitations remain. Findings are
based on two standard yet widely used datasets (2a, 2b); broader validation on datasets with different
channels, subjects, equipment, or paradigms (e.g., ERP, SSVEP) is needed. Algorithm selection
covered key Euclidean, Riemannian, and tangent space methods, but other approaches may yield
different trade-offs. Evaluation was offline only; real-time BCIs pose additional challenges such as
computational constraints and online adaptation, not considered here. Finally, we focused solely on
cross-session and cross-subject transfer as the most practically relevant scenarios, leaving metrics
like computational cost outside the scope of this paper.
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Appendix A.

BCI Competition IV 2a dataset: This dataset comprises EEG recordings from 9 subjects performing
four distinct motor imagery tasks (left hand, right hand, both feet, and tongue movements) across two
sessions held. Each session contained 6 runs of 48 trials (12 per class), totaling 288 trials per session.
During the experimental paradigm, subjects seated in an armchair viewed a fixation cross (¢ = 0s),
heard a warning tone, then saw a directional arrow cue (¢ = 2s) indicating which motor imagery task
to perform until the cross disappeared (¢ = 6s), with no feedback provided. The data was sampled at
250 Hz, bandpass-filtered between 0.5-100 Hz, and an additional 50 Hz notch filter to eliminate line
noise.

BCI Competition IV 2b dataset: This dataset (BCIC IV 2b) comprises EEG recordings from 9 right-
handed subjects performing two distinct motor imagery tasks (left hand vs. right hand movements)
across five sessions(we used the first two sessions). Each screening session contained six runs of ten
trials each (five per class), totaling 60 trials per session. During the experimental paradigm, subjects
seated in an armchair viewed a fixation cross, heard a warning tone (¢t = 2s), then saw a directional
arrow cue (left or right) presented for 1.25 seconds (starting ¢ = 3s), followed by a 4-second motor
imagery period with no feedback provided. The data from 3 bipolar EEG channels (C3, Cz, C4) was
sampled at 250 Hz, bandpass-filtered between 0.5-100 Hz, and included an additional 50 Hz notch
filter to eliminate line noise.

Code: Anonymous Github

Table 5: Comparison of CSP+LDA and recreated accuracy per subject

Subject CSP+LDA Ours

S1 0.78 0.80
S2 0.45 0.53
S3 0.82 0.85
S4 0.59 0.57
S5 0.40 0.42
S6 0.50 0.54
S7 0.81 0.79
S8 0.69 0.81
S9 0.77 0.82

Mean 0.65+0.17 0.68£0.18

Table 6: Comparison of MDRM baseline with recreated accuracy scores.

Subject MDRM Recreated Accuracy

Subject 1 0.78 0.78
Subject 2 0.44 0.47
Subject 3 0.77 0.78
Subject 4 0.55 0.58
Subject 5 0.44 0.41
Subject 6 0.47 0.48
Subject 7 0.72 0.76
Subject 8 0.75 0.75
Subject 9 0.77 0.76
Mean 0.63 + 0.15 0.64



https://anonymous.4open.science/r/Accelerating_TransferLearning_for_MotorImagery-738B/README.md

Table 7: Comparison of expected accuracy (RA-MDRM) and recreated method’s accuracy across
subjects.

Subject RA-MDRM RA-MDRM (ours)

1 0.79 0.77
2 0.54 0.52
3 0.77 0.80
4 0.54 0.62
5 0.46 0.48
6 0.45 0.51
7 0.76 0.78
8 0.79 0.79
9 0.75 0.73
Mean 0.65 0.66

Table 8: LEA - MDRM - Affine Transformed Accuracy Across Subjects

Subject Accuracy
Subject 1 0.7951
Subject 2 0.5243
Subject 3 0.8056
Subject 4 0.6181
Subject 5 0.4688
Subject 6 0.5174
Subject 7 0.7847
Subject 8 0.8021
Subject 9 0.7292
Mean 0.6717

Expected Mean 0.66

Table 9: Expected accuracy vs. recreated test accuracy - EA method

Subject  Expected Accuracy EA (ours)

Subject 1 0.88 0.84
Subject 2 0.56 0.53
Subject 3 0.99 0.94
Subject 4 0.74 0.74
Subject 5 0.50 0.52
Subject 6 0.65 0.72
Subject 7 0.69 0.74
Subject 8 0.90 0.88
Subject 9 0.73 0.78
Mean 0.74 0.75




Table 10: Per-subject Cross-Session accuracy and mean accuracy across 9 subjects - RPA method.

Subject Accuracy
Subject 1 0.7500
Subject 2 0.5172
Subject 3 0.8276
Subject 4 0.5431
Subject 5 0.5776
Subject 6 0.5948
Subject 7 0.7241
Subject 8 0.7328
Subject 9 0.8621
Mean Accuracy 0.6810
Trimmed Mean Accuracy (Excl. 4 Lowest) 0.7793
Expected Trimmed Mean Accuracy 0.7848

Table 11: Per-subject cross-session accuracy and mean accuracy across 9 subjects - TSA Method.

Subject Accuracy
Subject 1 0.7069
Subject 2 0.5000
Subject 3 0.9310
Subject 4 0.6638
Subject 5 0.4914
Subject 6 0.5000
Subject 7 0.6121
Subject 8 0.9655
Subject 9 0.9397
Mean Accuracy 0.7011
Trimmed Mean Accuracy (Excl. 2 Lowest) 0.7814
Expected Trimmed Mean Accuracy 0.7856

Table 12: Per-subject accuracy and mean accuracy across 9 subjects - MEKT Method

Subject Accuracy
Subject 1 0.8681
Subject 2 0.5000
Subject 3 0.9514
Subject 4 0.7431
Subject 5 0.5833
Subject 6 0.6944
Subject 7 0.6389
Subject 8 0.9444
Subject 9 0.8056
Mean Accuracy 0.7477

Expected Accuracy 0.7631




Table 13: Comparison of 2-Class Test Accuracies - Cross-Session: Dataset 2a

Subject EA CSP+LDA  MDRM  RA-MDRM LEA TSA RPA MEKT
Subject 1 0.90 0.90 0.91 0.86 0.87 0.87 0.81 0.51
Subject 2 0.59 0.53 0.55 0.59 0.56 0.58 0.57 0.65
Subject 3 0.99 0.92 0.87 0.98 0.98 0.97 0.91 0.97
Subject 4 0.72 0.72 0.78 0.77 0.78 0.75 0.58 0.55
Subject 5 0.59 0.58 0.57 0.51 0.51 0.48 0.51 0.65
Subject 6 0.72 0.74 0.68 0.70 0.69 0.66 0.63 0.44
Subject 7 0.84 0.76 0.55 0.72 0.76 0.69 0.74 0.81
Subject 8 0.97 0.97 0.99 0.96 0.97 0.97 0.82 0.97
Subject 9 0.87 0.84 0.92 0.90 0.92 0.91 0.88 0.54

Mean+SD  0.80+0.14 0.77£0.14 0.76£0.16  0.78+0.15  0.78+0.16 0.76£0.17 0.72+0.14 0.68+0.19

Table 14: Comparison of 4-Class Test Accuracies - Cross-Session: Dataset 2a

Subject EA CSP+LDA MDRM  RA-MDRM LEA TSA RPA MEKT
Subject 1 0.76 0.78 0.81 0.77 0.80 0.78 0.63 0.21
Subject 2 0.52 0.48 0.51 0.55 0.56 0.50 0.38 0.67
Subject 3 0.77 0.68 0.70 0.79 0.81 0.80 0.63 0.89
Subject 4 0.66 0.62 0.67 0.66 0.64 0.60 0.56 0.23
Subject 5 0.38 0.33 0.44 0.42 0.42 0.47 0.38 0.43
Subject 6 0.51 0.51 0.49 0.48 0.48 0.43 0.42 0.23
Subject 7 0.80 0.62 0.60 0.76 0.77 0.69 0.61 0.84
Subject 8 0.81 0.82 0.74 0.77 0.80 0.73 0.68 0.91
Subject 9 0.67 0.64 0.76 0.76 0.73 0.73 0.66 0.22

Mean+SD  0.65+0.14 0.61+0.14 0.64+0.12  0.66+0.14  0.67+0.14 0.64+0.13 0.55+0.12 0.5140.29

Table 15: Comparison of 2-Class Test Accuracies - Cross subject: Dataset 2a

Subject EA CSP+LDA  MDRM  RA-MDRM LEA TSA RPA MEKT
Subject 1 0.65 0.72 0.62 0.72 0.73 0.64 0.49 0.87
Subject 2 0.59 0.54 0.49 0.54 0.56 0.43 0.46 0.50
Subject 3 0.92 0.92 0.63 0.81 0.83 0.79 0.62 0.95
Subject 4 0.72 0.66 0.67 0.62 0.69 0.65 0.55 0.74
Subject 5 0.53 0.44 0.50 0.62 0.65 0.44 0.53 0.58
Subject 6 0.68 0.55 0.50 0.69 0.70 0.69 0.47 0.69
Subject 7 0.65 0.60 0.53 0.59 0.66 0.71 0.51 0.64
Subject 8 0.83 091 0.60 0.87 0.86 0.84 0.58 0.94
Subject 9 0.80 0.69 0.57 0.79 0.78 0.76 0.60 0.81

Mean+SD  0.71£0.11 0.67+0.15 0.57+£0.06  0.70£0.11  0.72+£0.09 0.66+0.14 0.53+0.05 0.7540.15

Table 16: Comparison of 4-Class Test Accuracies - Cross subject: Dataset 2a

Subject EA CSP+LDA MDRM  RA-MDRM LEA TSA RPA MEKT
Subject 1 0.69 0.55 0.53 0.64 0.64 0.64 0.38 0.72
Subject 2 0.27 0.24 0.24 0.23 0.26 0.20 0.25 0.23
Subject 3 0.74 0.49 0.55 0.62 0.67 0.68 0.34 0.80
Subject 4 0.42 0.33 0.34 0.41 0.41 0.29 0.31 0.45
Subject 5 0.30 0.24 0.25 0.37 0.35 0.32 0.24 0.33
Subject 6 0.42 0.29 0.25 0.32 0.37 0.35 0.29 0.40
Subject 7 0.60 0.34 0.33 0.38 0.61 0.41 0.34 0.56
Subject 8 0.69 0.59 0.26 0.69 0.70 0.62 0.33 0.78
Subject 9 0.62 0.56 0.25 0.61 0.61 0.57 0.40 0.65

Mean +SD  0.53+0.17 0.40£0.14 0.33+0.12 0.48+0.15 0.51+0.15 0.45+0.17 0.32+0.05 0.55%+0.19




Table 17: Comparison of 2-Class Test Accuracies - Cross-Session: Dataset 2b

Subject EA CSP+LDA MDRM  RA-MDRM LEA TSA RPA MEKT
Subject 1 0.69 0.57 0.52 0.69 0.68 0.75 0.60 0.55
Subject 2 0.56 0.54 0.53 0.52 0.58 0.39 0.57 0.47
Subject 3 0.58 0.60 0.57 0.58 0.57 0.60 0.44 0.46
Subject 4 0.90 0.89 0.82 0.84 0.84 0.85 0.78 0.58
Subject 5 0.83 0.63 0.65 0.84 0.84 0.81 0.63 0.49
Subject 6 0.79 0.79 0.70 0.69 0.75 0.75 0.74 0.77
Subject 7 0.58 0.59 0.62 0.61 0.58 0.55 0.51 0.52
Subject 8 0.67 0.64 0.61 0.53 0.61 0.66 0.52 0.65
Subject 9 0.68 0.68 0.60 0.60 0.59 0.62 0.51 0.47

Mean+SD  0.70+0.11 0.66+0.11  0.62+0.09  0.66£0.11  0.67+£0.11 0.67+0.14 0.59+0.11 0.55+0.10

Table 18: Comparison of 2-Class Test Accuracies - Cross-Subject: Dataset 2b

Subject EA CSP+LDA MDRM  RA-MDRM LEA TSA RPA MEKT
Subject 1 0.77 0.75 0.78 0.72 0.78 0.76 0.56 0.78
Subject 2 0.64 0.60 0.62 0.60 0.65 0.66 0.57 0.66
Subject 3 0.59 0.54 0.56 0.59 0.61 0.60 0.50 0.58
Subject 4 0.87 0.60 0.64 0.86 0.87 0.85 0.73 0.81
Subject 5 0.66 0.57 0.57 0.64 0.65 0.67 0.52 0.63
Subject 6 0.74 0.62 0.68 0.68 0.71 0.66 0.70 0.75
Subject 7 0.58 0.58 0.57 0.62 0.61 0.59 0.54 0.62
Subject 8 0.55 0.56 0.57 0.59 0.54 0.56 0.63 0.57
Subject 9 0.64 0.63 0.59 0.59 0.62 0.60 0.44 0.65

Mean+SD  0.67+0.10 0.61+0.06 0.62+0.07  0.66+0.08  0.67+0.09 0.66+0.09 0.58+0.09 0.67+0.08
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