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Abstract

Motor imagery (MI)-based brain-computer interfaces (BCIs) hold significant po-1

tential for rehabilitation and assistive technologies. However, their widespread2

adoption is hindered by high inter-subject variability in electroencephalogram3

(EEG) signals, necessitating extensive calibration for new users. Transfer learning4

(TL) methods overcome this by leveraging data from existing subjects to reduce the5

calibration time. However, the lack of standard evaluation protocols in EEG-MI TL6

research makes it challenging to compare different approaches fairly. Moreover, the7

lack of availability of codebases adds to the issue of reproducibility. In this paper,8

we propose a standardized evaluation protocol to compare key transfer learning9

techniques across cross-session and cross-subject scenarios. We further conduct10

ablation studies focusing on signal length and preprocessing parameters to quantify11

the sensitivity of the algorithms to signal and noise variability. Finally, we present12

Python implementations of the methods for reproducibility.13

1 Introduction14

Brain-Computer Interfaces (BCIs) enable direct communication between brain and devices. Motor15

Imagery (MI) BCIs, which decode imagined movements from EEG, hold promise for rehabilitation16

and assistive use. Classical methods such as Minimum Distance to Riemannian Mean (MDRM) [1]17

and Common Spatial Patterns (CSP) [2] with Linear Discriminant Analysis (LDA) [3, 4] perform18

well within sessions but degrade across sessions and subjects, requiring costly calibration. Transfer19

learning (TL) mitigates this. Riemannian Alignment (RA) whitens trials via resting-state means20

before MDRM. Euclidean Alignment (EA) [5] uses the global mean in Euclidean space, while21

Log-Euclidean Alignment MDRM (LEA-MDRM) [6] relies on log-Euclidean means of active trials.22

Tangent Space Alignment (TSA) [7] applies tangent mapping with class-wise Procrustes rotations,23

and Riemannian Procrustes Analysis (RPA) [8] aligns by recentering, scaling, and rotation. Manifold24

Embedded Knowledge Transfer (MEKT) [9] aligns covariance matrices to a shared reference, projects25

to tangent space, and reduces distributional shifts while preserving geometry. Yet, the field lacks26

standardized protocols and open codebases, hindering reproducibility and fair comparison. Our study27

addresses these gaps through the following contributions:28

• Standardized Evaluation: We benchmark key transfer learning (TL) methods using a unified29

protocol for cross-session and cross-subject scenarios.30

• Ablation Studies: We analyze signal length and preprocessing choices to assess algorithm sensitiv-31

ity to signal and noise variability.32

• Open-Source Code: We release Python implementations and the benchmarking codebase to ensure33

reproducibility and support future work.34
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2 Related Work35

To mitigate domain shifts from inter-subject and inter-session variability in EEG signals, classical36

and Riemannian transfer learning (TL) techniques are widely used in motor imagery (MI) decoding.37

However, inconsistent evaluation protocols hinder fair comparisons. Benchmarking efforts such as38

MOABB [10] enable reproducible BCI evaluations, with a recent large-scale study [11] testing 30+39

pipelines across 36 datasets but restricted to within-session settings. EEG-FM-Bench [12] extends40

this to foundation models. Yet, systematic studies of Riemannian TL methods in cross-subject and41

cross-session MI decoding, including ablation on preprocessing, remain lacking. Our work addresses42

this gap with standardized evaluations and open-source implementations to ensure reproducibility.43

3 Motor Imagery datasets44

We used the BCI Competition IV datasets 2a [13] and 2b [14], standard MI benchmarks with45

multi-session data enabling cross-session and cross-subject evaluation (see Appendix for details).46

4 Methods: Standardizing benchmarks47

The selected methods span key paradigms in EEG-based motor imagery transfer learning, covering48

Euclidean, Riemannian, and tangent space approaches. We included CSP+LDA, MDRM, RA-49

MDRM, EA, LEA, TSA, RPA, and MEKT to enable comparison between simple and advanced50

techniques. To ensure rigor, we first reproduced algorithm results 5–12, confirming close agreement.51

Benchmarks were then conducted in two scenarios: cross-session (training on Session 1, testing on52

Session 2) and cross-subject (leave-one-subject-out). Both 4-class (left hand, right hand, foot, tongue)53

and 2-class (left vs. right hand) tasks were evaluated. Trials spanned 0.5–3.5s post-cue, covering the54

motor imagery window. Signals were band-pass filtered to 8–30 Hz with a 50th-order filter, targeting55

mu and beta rhythms. Preprocessing followed prior consensus, with ablation confirming utility. For56

methods with tunable hyperparameters, values were adopted directly from source papers.57

4.1 Benchmark 1: 2 Class vs 4 Class: Cross-Session58

Figure 1: Comparison of mean accuracies in the
cross-session scenario, on the BCI Competition
IV 2A dataset. EA and MEKT achieve the high-
est and lowest mean accuracies respectively.

Figure 2: Comparison of mean accuracies in the
cross-session scenario, on the BCI Competition
IV 2B dataset. EA and MEKT are again the best
and worst performers respectively, with LEA
slightly behind EA.

In dataset 2a cross-session 13 14, most TL methods perform well 1, especially in 2-class, showing59

adaptability to session shifts. EA achieves the highest mean 2-class accuracy, slightly surpassing60

RA-MDRM and LEA, confirming the benefit of Euclidean alignment before feature extraction.61

Accuracy drops notably in 4-class, reflecting higher task difficulty. MEKT performs worst in both62

tasks, suggesting sensitivity to alignment dataset size. CSP+LDA (0.77 / 0.61) is competitive but63

generally trails alignment methods. Large subject-wise SDs indicate strong inter-subject variability.64

For dataset 2b 17, 2-class cross-session accuracies 2 are lower than 2a, likely due to fewer EEG65

channels (3 vs. 22). EA (0.70) again leads, slightly ahead of LEA, TSA, and RA-MDRM. CSP+LDA66

performs comparably to several alignment methods, suggesting weaker session shifts or limited67
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alignment gains with few channels. MDRM (0.62) and MEKT (0.55) are lowest, with MEKT most68

affected by reduced spatial data. Variability remains high (SD ∼0.10–0.14) but slightly lower than in69

2a, confirming persistent subject differences.70

4.2 Benchmark 2: 2 Class vs 4 Class: Cross-Subject71

Figure 3: Comparison of mean accuracies in the
cross-subject scenario, on the BCI Competition
IV 2A dataset. MEKT performs the best in both
the 2-class and 4-class scenarios with more data
available.

Figure 4: Comparison of mean accuracies in the
cross-subject scenario, on the BCI Competition
IV 2B dataset. Performance differences between
models are less pronounced due to the dataset’s
low channel complexity.

In dataset 2a cross-subject 15 16, accuracies drop compared to cross-session 3, reflecting higher72

inter-subject variability. MEKT performs best (0.75 / 0.55), showing its manifold embedding and73

joint adaptation are well-suited to bridging subject differences. LEA (0.72 / 0.51) and EA (0.71 /74

0.53) also rank high, surpassing RA-MDRM (0.70 / 0.48), MDRM (0.57 / 0.33), and CSP+LDA75

(0.67 / 0.40), confirming the importance of alignment. RPA (0.53 / 0.32) lags, especially in 4-class,76

suggesting Procrustes limitations under high variability. The sharp 4-class drop (e.g., MEKT 0.7577

→ 0.55) underscores the difficulty of cross-subject multi-class MI BCI. For dataset 2b 18, 2-class78

cross-subject accuracy also degrades but less than in 2a, likely due to task simplicity. EA, LEA,79

and MEKT each reach 0.67 4, while RA-MDRM (0.66) and TSA (0.66) perform similarly, ahead80

of CSP+LDA (0.61), MDRM (0.62), and RPA (0.58). The smaller gap between best methods and81

baseline than in 2a may reflect channel limitations reducing alignment gains. MEKT’s strength here,82

unlike cross-session, highlights its ability to handle distribution shifts with more data.83

5 Ablation study84

An ablation study is conducted to identify the optimal EEG time window for motor imagery (MI)85

analysis, as neural responses evolve dynamically after cue onset. The choice of start–end points86

determines which phases of the motor imagery response is captured. Short windows may miss87

information, while longer ones risk adding noise, and algorithms vary in sensitivity to these dynamics.88

We test multiple windows ((0.5–1.5), (0.5–2.5), (0.5–3.5), (1.5–2.5), (1.5–3.5), (2.5–3.5) s) to89

evaluate each method’s reliance on temporal characteristics. We also examine filtering, a standard90

preprocessing step to improve SNR by isolating MI-related frequency bands. Since MI is linked to91

mu (8–13 Hz) and beta (14–30 Hz) rhythms via ERD/ERS, we compare unfiltered signals with the92

standard MI band (8–30 Hz) and narrower alpha (8–12 Hz) and beta (13–30 Hz) filters. This assesses93

the importance of spectral components for classification and how algorithm performance depends on94

them. Together, these analyses reveal algorithm robustness to temporal and spectral variations and95

their reliance on discriminative features.96

5.1 Ablation study 1: 4-Class Cross-Session: Variable Input signal length97

In dataset 2a 1, longer windows covering the full MI period improve accuracy, with (0.5–3.5s) giving98

the best or near-best results (EA 0.65, RA-MDRM 0.66, LEA 0.67, MDRM 0.64). The shortest99

late window (2.5–3.5s) performs worst, confirming reduced discriminative power later. RA-MDRM100

and LEA slightly exceed EA and CSP+LDA, while MEKT and RPA remain weakest. In dataset 2b101

2, trends are similar but weaker: (0.5–3.5s) is best for EA (0.70) and CSP+LDA (0.66), (0.5–2.5s)102
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Table 1: Mean Accuracy ± Standard Deviation
across varying time windows: Dataset 2a. Using
the full trial length significantly improves perfor-
mance.

Time Window (0.5,1.5) (0.5,2.5) (0.5,3.5) (1.5,2.5) (1.5,3.5) (2.5,3.5)
Method

EA 0.60 ± 0.16 0.64 ± 0.16 0.65 ± 0.14 0.57 ± 0.15 0.60 ± 0.14 0.49 ± 0.11
CSP+LDA 0.57 ± 0.15 0.60 ± 0.13 0.61 ± 0.14 0.55 ± 0.13 0.57 ± 0.12 0.47 ± 0.09
MDRM 0.58 ± 0.12 0.62 ± 0.11 0.64 ± 0.12 0.54 ± 0.11 0.58 ± 0.12 0.49 ± 0.12
RA-MDRM 0.60 ± 0.13 0.67 ± 0.13 0.66 ± 0.14 0.58 ± 0.13 0.61 ± 0.12 0.50 ± 0.11
LEA 0.62 ± 0.14 0.67 ± 0.13 0.67 ± 0.14 0.58 ± 0.14 0.62 ± 0.13 0.52 ± 0.12
TSA 0.56 ± 0.16 0.61 ± 0.16 0.62 ± 0.14 0.52 ± 0.14 0.56 ± 0.15 0.46 ± 0.13
RPA 0.51 ± 0.11 0.53 ± 0.13 0.56 ± 0.14 0.46 ± 0.11 0.49 ± 0.11 0.45 ± 0.10
MEKT 0.47 ± 0.23 0.51 ± 0.27 0.51 ± 0.29 0.46 ± 0.23 0.49 ± 0.26 0.45 ± 0.19

Table 2: Mean Accuracy ± Standard Deviation
across varying time windows: Dataset 2b. Per-
formance difference isn’t significant between the
windows due to low complexity of the dataset.

Time Window (0.5,1.5) (0.5,2.5) (0.5,3.5) (1.5,2.5) (1.5,3.5) (2.5,3.5)
Method

MDRM 0.62 ± 0.11 0.63 ± 0.11 0.62 ± 0.09 0.58 ± 0.10 0.59 ± 0.07 0.56 ± 0.07
RA-MDRM 0.65 ± 0.10 0.66 ± 0.12 0.66 ± 0.11 0.61 ± 0.09 0.61 ± 0.09 0.57 ± 0.07
EA 0.67 ± 0.11 0.68 ± 0.11 0.70 ± 0.11 0.62 ± 0.10 0.64 ± 0.09 0.60 ± 0.07
LEA 0.65 ± 0.11 0.67 ± 0.11 0.67 ± 0.11 0.61 ± 0.10 0.62 ± 0.08 0.58 ± 0.06
CSP+LDA 0.63 ± 0.11 0.65 ± 0.13 0.66 ± 0.11 0.60 ± 0.10 0.62 ± 0.09 0.59 ± 0.06
MEKT 0.54 ± 0.07 0.55 ± 0.08 0.55 ± 0.10 0.54 ± 0.07 0.57 ± 0.09 0.56 ± 0.09
TSA 0.63 ± 0.12 0.68 ± 0.11 0.65 ± 0.13 0.59 ± 0.12 0.58 ± 0.12 0.56 ± 0.07
RPA 0.60 ± 0.12 0.60 ± 0.13 0.64 ± 0.09 0.53 ± 0.13 0.55 ± 0.07 0.55 ± 0.09

for TSA (0.68), and late-only windows lowest (EA 0.60, LEA 0.58). MEKT stays lowest overall103

(0.55–0.57) with little sensitivity. Flatter patterns than 2a suggest fewer channels and two classes104

reduce window choice impact, aside from avoiding short/late segments.105

5.2 Ablation study 2: Cross-Session: Pre-processing filters106

Table 3: Mean Accuracy ± SD for varying pre-
processing filters: Dataset 2a. Most discrimi-
native information lies in the beta band, though
some is also in the alpha band.

Preprocessing None Standard Alpha Beta
Method

EA 0.53 ± 0.14 0.65 ± 0.14 0.56 ± 0.15 0.65 ± 0.16
CSP+LDA 0.50 ± 0.15 0.61 ± 0.14 0.52 ± 0.14 0.60 ± 0.14
MDRM 0.55 ± 0.15 0.64 ± 0.12 0.58 ± 0.16 0.63 ± 0.11
RA-MDRM 0.59 ± 0.12 0.66 ± 0.14 0.61 ± 0.16 0.67 ± 0.13
LEA 0.60 ± 0.12 0.67 ± 0.14 0.61 ± 0.16 0.67 ± 0.13
TSA 0.53 ± 0.15 0.63 ± 0.14 0.57 ± 0.17 0.63 ± 0.13
RPA 0.49 ± 0.10 0.55 ± 0.13 0.52 ± 0.13 0.52 ± 0.11
MEKT 0.46 ± 0.23 0.51 ± 0.29 0.50 ± 0.26 0.52 ± 0.27

Table 4: Mean Accuracy ± SD for varying pre-
processing filters: Dataset 2b. Performance dif-
ferences are smaller due to fewer available chan-
nels.

Preprocessing None Standard Alpha Beta
Method

EA 0.58 ± 0.06 0.70 ± 0.11 0.68 ± 0.10 0.65 ± 0.12
CSP+LDA 0.60 ± 0.08 0.66 ± 0.11 0.65 ± 0.11 0.61 ± 0.09
MDRM 0.56 ± 0.07 0.62 ± 0.09 0.61 ± 0.07 0.61 ± 0.07
RA-MDRM 0.59 ± 0.08 0.66 ± 0.11 0.67 ± 0.08 0.64 ± 0.10
LEA 0.61 ± 0.09 0.67 ± 0.11 0.67 ± 0.09 0.65 ± 0.09
TSA 0.61 ± 0.09 0.67 ± 0.11 0.67 ± 0.10 0.64 ± 0.09
RPA 0.56 ± 0.07 0.60 ± 0.10 0.55 ± 0.07 0.60 ± 0.08
MEKT 0.54 ± 0.06 0.55 ± 0.10 0.57 ± 0.09 0.54 ± 0.08

Filtering improves accuracy in both datasets. In 2a 3, the ‘Standard’ 8–30 Hz band boosts performance107

over ‘None’ (EA 0.53→0.65, LEA 0.60→0.67). EA, RA-MDRM, and LEA also benefit from the108

‘Beta’ band, while ‘Alpha’ is consistently weaker, confirming beta activity as most discriminative.109

CSP+LDA peaks with ‘Standard,’ while MEKT and RPA remain lowest overall. In 2b 4, gains are110

smaller due to fewer channels and simpler 2-class discrimination. EA (0.70) again leads, followed by111

LEA, TSA, and RA-MDRM. CSP+LDA shows robustness, with ‘None’ (0.60) ≈ ‘Beta’ (0.61), still112

surpassing MEKT and RPA.113

6 Discussion114

This work contributes to EEG-based motor imagery BCIs by establishing a standardized evaluation115

protocol and open codebase for comparing key transfer learning techniques. Comparative analysis116

on BCI Competition IV 2a and 2b highlights distinct performance profiles: EA excelled in cross-117

session tasks, showing that Euclidean alignment can be both competitive and efficient, while MEKT118

performed best in cross-subject transfer, reflecting its sophisticated distribution alignment. These119

results emphasize that different strategies suit different domain shifts. Ablation studies showed120

performance peaks when using longer MI windows (0.5–3.5s post-cue) and standard mu/beta filtering121

(8–30Hz), which improves SNR and accuracy across methods. By releasing implementations, we122

directly address reproducibility and enable fair comparisons. Few limitations remain. Findings are123

based on two standard yet widely used datasets (2a, 2b); broader validation on datasets with different124

channels, subjects, equipment, or paradigms (e.g., ERP, SSVEP) is needed. Algorithm selection125

covered key Euclidean, Riemannian, and tangent space methods, but other approaches may yield126

different trade-offs. Evaluation was offline only; real-time BCIs pose additional challenges such as127

computational constraints and online adaptation, not considered here. Finally, we focused solely on128

cross-session and cross-subject transfer as the most practically relevant scenarios, leaving metrics129

like computational cost outside the scope of this paper.130
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Appendix A.172

BCI Competition IV 2a dataset: This dataset comprises EEG recordings from 9 subjects performing173

four distinct motor imagery tasks (left hand, right hand, both feet, and tongue movements) across two174

sessions held. Each session contained 6 runs of 48 trials (12 per class), totaling 288 trials per session.175

During the experimental paradigm, subjects seated in an armchair viewed a fixation cross (t = 0s),176

heard a warning tone, then saw a directional arrow cue (t = 2s) indicating which motor imagery task177

to perform until the cross disappeared (t = 6s), with no feedback provided. The data was sampled at178

250 Hz, bandpass-filtered between 0.5-100 Hz, and an additional 50 Hz notch filter to eliminate line179

noise.180

BCI Competition IV 2b dataset: This dataset (BCIC IV 2b) comprises EEG recordings from 9 right-181

handed subjects performing two distinct motor imagery tasks (left hand vs. right hand movements)182

across five sessions(we used the first two sessions). Each screening session contained six runs of ten183

trials each (five per class), totaling 60 trials per session. During the experimental paradigm, subjects184

seated in an armchair viewed a fixation cross, heard a warning tone (t = 2s), then saw a directional185

arrow cue (left or right) presented for 1.25 seconds (starting t = 3s), followed by a 4-second motor186

imagery period with no feedback provided. The data from 3 bipolar EEG channels (C3, Cz, C4) was187

sampled at 250 Hz, bandpass-filtered between 0.5-100 Hz, and included an additional 50 Hz notch188

filter to eliminate line noise.189

Code: Anonymous Github190

Table 5: Comparison of CSP+LDA and recreated accuracy per subject

Subject CSP+LDA Ours
S1 0.78 0.80
S2 0.45 0.53
S3 0.82 0.85
S4 0.59 0.57
S5 0.40 0.42
S6 0.50 0.54
S7 0.81 0.79
S8 0.69 0.81
S9 0.77 0.82

Mean 0.65± 0.17 0.68± 0.18

Table 6: Comparison of MDRM baseline with recreated accuracy scores.

Subject MDRM Recreated Accuracy
Subject 1 0.78 0.78
Subject 2 0.44 0.47
Subject 3 0.77 0.78
Subject 4 0.55 0.58
Subject 5 0.44 0.41
Subject 6 0.47 0.48
Subject 7 0.72 0.76
Subject 8 0.75 0.75
Subject 9 0.77 0.76

Mean 0.63 ± 0.15 0.64
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Table 7: Comparison of expected accuracy (RA-MDRM) and recreated method’s accuracy across
subjects.

Subject RA-MDRM RA-MDRM (ours)
1 0.79 0.77
2 0.54 0.52
3 0.77 0.80
4 0.54 0.62
5 0.46 0.48
6 0.45 0.51
7 0.76 0.78
8 0.79 0.79
9 0.75 0.73

Mean 0.65 0.66

Table 8: LEA - MDRM - Affine Transformed Accuracy Across Subjects

Subject Accuracy
Subject 1 0.7951
Subject 2 0.5243
Subject 3 0.8056
Subject 4 0.6181
Subject 5 0.4688
Subject 6 0.5174
Subject 7 0.7847
Subject 8 0.8021
Subject 9 0.7292

Mean 0.6717
Expected Mean 0.66

Table 9: Expected accuracy vs. recreated test accuracy - EA method

Subject Expected Accuracy EA (ours)
Subject 1 0.88 0.84
Subject 2 0.56 0.53
Subject 3 0.99 0.94
Subject 4 0.74 0.74
Subject 5 0.50 0.52
Subject 6 0.65 0.72
Subject 7 0.69 0.74
Subject 8 0.90 0.88
Subject 9 0.73 0.78

Mean 0.74 0.75
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Table 10: Per-subject Cross-Session accuracy and mean accuracy across 9 subjects - RPA method.

Subject Accuracy
Subject 1 0.7500
Subject 2 0.5172
Subject 3 0.8276
Subject 4 0.5431
Subject 5 0.5776
Subject 6 0.5948
Subject 7 0.7241
Subject 8 0.7328
Subject 9 0.8621

Mean Accuracy 0.6810
Trimmed Mean Accuracy (Excl. 4 Lowest) 0.7793
Expected Trimmed Mean Accuracy 0.7848

Table 11: Per-subject cross-session accuracy and mean accuracy across 9 subjects - TSA Method.

Subject Accuracy
Subject 1 0.7069
Subject 2 0.5000
Subject 3 0.9310
Subject 4 0.6638
Subject 5 0.4914
Subject 6 0.5000
Subject 7 0.6121
Subject 8 0.9655
Subject 9 0.9397

Mean Accuracy 0.7011
Trimmed Mean Accuracy (Excl. 2 Lowest) 0.7814
Expected Trimmed Mean Accuracy 0.7856

Table 12: Per-subject accuracy and mean accuracy across 9 subjects - MEKT Method

Subject Accuracy
Subject 1 0.8681
Subject 2 0.5000
Subject 3 0.9514
Subject 4 0.7431
Subject 5 0.5833
Subject 6 0.6944
Subject 7 0.6389
Subject 8 0.9444
Subject 9 0.8056

Mean Accuracy 0.7477
Expected Accuracy 0.7631
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Table 13: Comparison of 2-Class Test Accuracies - Cross-Session: Dataset 2a

Subject EA CSP+LDA MDRM RA-MDRM LEA TSA RPA MEKT

Subject 1 0.90 0.90 0.91 0.86 0.87 0.87 0.81 0.51
Subject 2 0.59 0.53 0.55 0.59 0.56 0.58 0.57 0.65
Subject 3 0.99 0.92 0.87 0.98 0.98 0.97 0.91 0.97
Subject 4 0.72 0.72 0.78 0.77 0.78 0.75 0.58 0.55
Subject 5 0.59 0.58 0.57 0.51 0.51 0.48 0.51 0.65
Subject 6 0.72 0.74 0.68 0.70 0.69 0.66 0.63 0.44
Subject 7 0.84 0.76 0.55 0.72 0.76 0.69 0.74 0.81
Subject 8 0.97 0.97 0.99 0.96 0.97 0.97 0.82 0.97
Subject 9 0.87 0.84 0.92 0.90 0.92 0.91 0.88 0.54

Mean ± SD 0.80±0.14 0.77±0.14 0.76±0.16 0.78±0.15 0.78±0.16 0.76±0.17 0.72±0.14 0.68±0.19

Table 14: Comparison of 4-Class Test Accuracies - Cross-Session: Dataset 2a

Subject EA CSP+LDA MDRM RA-MDRM LEA TSA RPA MEKT

Subject 1 0.76 0.78 0.81 0.77 0.80 0.78 0.63 0.21
Subject 2 0.52 0.48 0.51 0.55 0.56 0.50 0.38 0.67
Subject 3 0.77 0.68 0.70 0.79 0.81 0.80 0.63 0.89
Subject 4 0.66 0.62 0.67 0.66 0.64 0.60 0.56 0.23
Subject 5 0.38 0.33 0.44 0.42 0.42 0.47 0.38 0.43
Subject 6 0.51 0.51 0.49 0.48 0.48 0.43 0.42 0.23
Subject 7 0.80 0.62 0.60 0.76 0.77 0.69 0.61 0.84
Subject 8 0.81 0.82 0.74 0.77 0.80 0.73 0.68 0.91
Subject 9 0.67 0.64 0.76 0.76 0.73 0.73 0.66 0.22

Mean ± SD 0.65±0.14 0.61±0.14 0.64±0.12 0.66±0.14 0.67±0.14 0.64±0.13 0.55±0.12 0.51±0.29

Table 15: Comparison of 2-Class Test Accuracies - Cross subject: Dataset 2a

Subject EA CSP+LDA MDRM RA-MDRM LEA TSA RPA MEKT

Subject 1 0.65 0.72 0.62 0.72 0.73 0.64 0.49 0.87
Subject 2 0.59 0.54 0.49 0.54 0.56 0.43 0.46 0.50
Subject 3 0.92 0.92 0.63 0.81 0.83 0.79 0.62 0.95
Subject 4 0.72 0.66 0.67 0.62 0.69 0.65 0.55 0.74
Subject 5 0.53 0.44 0.50 0.62 0.65 0.44 0.53 0.58
Subject 6 0.68 0.55 0.50 0.69 0.70 0.69 0.47 0.69
Subject 7 0.65 0.60 0.53 0.59 0.66 0.71 0.51 0.64
Subject 8 0.83 0.91 0.60 0.87 0.86 0.84 0.58 0.94
Subject 9 0.80 0.69 0.57 0.79 0.78 0.76 0.60 0.81
Mean ± SD 0.71±0.11 0.67±0.15 0.57±0.06 0.70±0.11 0.72±0.09 0.66±0.14 0.53±0.05 0.75±0.15

Table 16: Comparison of 4-Class Test Accuracies - Cross subject: Dataset 2a

Subject EA CSP+LDA MDRM RA-MDRM LEA TSA RPA MEKT

Subject 1 0.69 0.55 0.53 0.64 0.64 0.64 0.38 0.72
Subject 2 0.27 0.24 0.24 0.23 0.26 0.20 0.25 0.23
Subject 3 0.74 0.49 0.55 0.62 0.67 0.68 0.34 0.80
Subject 4 0.42 0.33 0.34 0.41 0.41 0.29 0.31 0.45
Subject 5 0.30 0.24 0.25 0.37 0.35 0.32 0.24 0.33
Subject 6 0.42 0.29 0.25 0.32 0.37 0.35 0.29 0.40
Subject 7 0.60 0.34 0.33 0.38 0.61 0.41 0.34 0.56
Subject 8 0.69 0.59 0.26 0.69 0.70 0.62 0.33 0.78
Subject 9 0.62 0.56 0.25 0.61 0.61 0.57 0.40 0.65
Mean ± SD 0.53±0.17 0.40±0.14 0.33±0.12 0.48±0.15 0.51±0.15 0.45±0.17 0.32±0.05 0.55±0.19
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Table 17: Comparison of 2-Class Test Accuracies - Cross-Session: Dataset 2b

Subject EA CSP+LDA MDRM RA-MDRM LEA TSA RPA MEKT

Subject 1 0.69 0.57 0.52 0.69 0.68 0.75 0.60 0.55
Subject 2 0.56 0.54 0.53 0.52 0.58 0.39 0.57 0.47
Subject 3 0.58 0.60 0.57 0.58 0.57 0.60 0.44 0.46
Subject 4 0.90 0.89 0.82 0.84 0.84 0.85 0.78 0.58
Subject 5 0.83 0.63 0.65 0.84 0.84 0.81 0.63 0.49
Subject 6 0.79 0.79 0.70 0.69 0.75 0.75 0.74 0.77
Subject 7 0.58 0.59 0.62 0.61 0.58 0.55 0.51 0.52
Subject 8 0.67 0.64 0.61 0.53 0.61 0.66 0.52 0.65
Subject 9 0.68 0.68 0.60 0.60 0.59 0.62 0.51 0.47

Mean ± SD 0.70±0.11 0.66±0.11 0.62±0.09 0.66±0.11 0.67±0.11 0.67±0.14 0.59±0.11 0.55±0.10

Table 18: Comparison of 2-Class Test Accuracies - Cross-Subject: Dataset 2b

Subject EA CSP+LDA MDRM RA-MDRM LEA TSA RPA MEKT

Subject 1 0.77 0.75 0.78 0.72 0.78 0.76 0.56 0.78
Subject 2 0.64 0.60 0.62 0.60 0.65 0.66 0.57 0.66
Subject 3 0.59 0.54 0.56 0.59 0.61 0.60 0.50 0.58
Subject 4 0.87 0.60 0.64 0.86 0.87 0.85 0.73 0.81
Subject 5 0.66 0.57 0.57 0.64 0.65 0.67 0.52 0.63
Subject 6 0.74 0.62 0.68 0.68 0.71 0.66 0.70 0.75
Subject 7 0.58 0.58 0.57 0.62 0.61 0.59 0.54 0.62
Subject 8 0.55 0.56 0.57 0.59 0.54 0.56 0.63 0.57
Subject 9 0.64 0.63 0.59 0.59 0.62 0.60 0.44 0.65
Mean ± SD 0.67±0.10 0.61±0.06 0.62±0.07 0.66±0.08 0.67±0.09 0.66±0.09 0.58±0.09 0.67±0.08
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