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ABSTRACT

Imitation learning for robotic manipulation often suffers from limited generaliza-
tion and data scarcity, especially in complex, long-horizon tasks. In this work, we
introduce a hierarchical framework that leverages code-generating vision-language
models (VLMs) in combination with low-level diffusion policies to effectively
imitate and generalize robotic behavior. Our key insight is to treat open-source
robotic APIs not only as execution interfaces but also as sources of structured su-
pervision: the associated subtask functions - when exposed - can serve as modular,
semantically meaningful labels. We train a VLM to decompose task descriptions
into executable subroutines, which are then grounded through a diffusion policy
trained to imitate the corresponding robot behavior. To handle the non-Markovian
nature of both code execution and certain real-world tasks, such as object swap-
ping, our architecture incorporates a memory mechanism that maintains subtask
context across time. We find that this design enables interpretable policy decompo-
sition, improves generalization when compared to flat policies and enables separate
evaluation of high-level planning and low-level control.

1 INTRODUCTION

The field of robotics has increasingly embraced imitation learning and the expansion of data collection
as pivotal research avenues, inspired by the recent successes of generative models in language
and vision domains (Kim et al., 2024; Ha et al., 2023; Team et al., 2024; Brohan et al., 2022).
Unfortunately, however, the challenge of obtaining high-quality and diverse data necessary for
training robots to perform a wide array of tasks remains a problem due to the need for accurate
language annotations and corresponding expert demonstrations (Blank et al., 2024). On the other
hand, many robotics tasks share a common trait of compositionality, which is akin to functional
programming: Sophisticated programs may appear to exhibit highly complex behavior that is difficult
to imitate, but they are usually compositions of simpler functions that are easy to understand. Similarly,
navigating and manipulating objects can result in long-horizon, complex patterns that, when broken
down into simple skills, become easy to learn. Once learned, skills can then be dynamically composed
to potentially achieve greater adaptability and generalize to new tasks.

This idea is not novel; the robotics community has extensively studied pick-and-place tasks because
they are fundamental building blocks for interacting with the world (Siciliano et al., 2008). Nonethe-
less, learning atomic skills and composing them into complex behaviors is challenging for a variety of
reasons. Firstly, one needs to either rely on unsupervised learning to decompose long-horizon tasks,
or assume access to labeled demonstrations for each subtask, which can be costly to obtain. Secondly,
simply having access to a skill library is not sufficient when dealing with high level instructions, as
they too first need to be translated into skills, which is exacerbated by the difficulty of long-horizon
planning (Chen et al., 2025; Mishani et al., 2025).

To address the former, this paper builds on the insight that open-source robot control APIs can be a
valuable source of data collection, as they not only provide expert demonstrations, but also come with
annotations in the form of a code trace of their action. This code naturally exhibits a hierarchy of
complexity and compositions of simple functions, making it well-suited for automating the collection
of sub-task labels. Unlike natural language, which tends to be under-specified on the end state of an
instruction Gu et al. (2023), these sub-task code labels are precise and unambiguous, making them
ideal for robust concatenation. In order to utilize code as instructions for an end-to-end imitation
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Figure 1: An illustration of our hierarchical learning approach combining thought imitation and action
imitation. An oracle policy consisting of Python API calls collects demonstration data including
corresponding code snippets per executed action. During the visual-question-answering (VQA) stage,
a VLM is trained on the oracle demonstrations to generate the underlying API code (codegen loss) as
well as recognize objects in the scene (auxiliary loss). Finally, a diffusion model, conditioned on the
generated code, is trained to imitate low-level actions of the oracle.

learning system, we propose a hierarchical framework involving a code generating vision-language
model (VLM) trained to imitate the language descriptions of API policies and a code guided low-level
policy based on diffusion models (Chi et al., 2023) learning to dynamically map code to actions.
Our training scheme is visualized in Figure 1: We first train a VLM to generate API calls from
successful demonstrations of an oracle policy. Subsequently, we distill the low-level action part of the
oracle policy into a custom language-conditioned diffusion policy (DP) while conditioning on VLM
generated code. This ensures that any generated code trace during training mimics those observed
during inference, where both models operate simultaneously. We find that this approach effectively
mitigates distribution shift and improves generalization compared to a policy that relies solely on
high-level task descriptions. Furthermore, by incorporating a memory mechanism into both the high-
and low-level policies, we demonstrate that our model can handle non-Markovian tasks, as well as
the inherently stateful nature of oracle policy code, which requires memory to function correctly.

This work serves two purposes. First, as a study of the performance of diffusion policy under
various conditioning inputs: no conditioning, natural language conditioning or verifiably correct text
conditioning (i.e. executable code). The second interpretation is as a method to distill existing scripted
robot policies into learned policies. The applied use-case of this method is to distill a classical robotic
setup which relies on many sensors and precise calibration and scripted policies into an AI-based
system, which relies only a camera and robot proprioception.

Contributions. Our contributions can be summarized as follows:

• We introduce a novel VLM training scheme for code generation of robotic control primitives,
including auxiliary losses and a memory buffer of past actions to tackle state tracking.

• We present a hierarchical framework for training code-conditioned diffusion models on
VLM-labeled demonstration data, as well as a custom encoder based on learned attention
pooling layers for processing multimodal conditioning information.

• We find that by accurately composing sub-tasks at inference time, our hierarchical policy
generalizes better than flat variants on various tasks of the ClevrSkills benchmark.

2 RELATED WORK

Language-Guided Imitation Learning. Modern imitation learning (IL) benchmarks typically
require learning a single language-conditioned policy for a variety of tasks (Mees et al., 2022; Walke
et al., 2023; Haresh et al., 2024). Diffusion policies (Chi et al., 2023) offer a strong IL baseline and
have since been adapted to tackle this by adding pretrained language encoders (Ha et al., 2023; Reuss
et al., 2024; Li et al., 2024). Similarly, vision-language-action (VLA) models have been proposed,
processing language and vision instructions through a more close integration of pretrained foundation
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models into the policy. Architectural choices commonly range from using diffusion heads (Wen
et al., 2024a; Liu et al., 2024b; Wen et al., 2024b) and flow matching (Black et al., 2024) to directly
predicting action tokens through language (Kim et al., 2024; Zawalski et al., 2024).

Hierarchical Policies. Hierarchical models aim to generalize to new tasks by factorizing their action
distribution into high and low-level predictions with varying choices of intermediate representations.
Hierarchical diffusion models (Ma et al., 2024; Chen et al., 2024) split action generation into key-step
prediction and inpainting steps, while VLM-based models have been used to predict a large variety
of representations (Pan et al., 2025; Liu et al., 2024a; Stone et al., 2023; Li et al., 2025; Pan et al.,
2024; Ingelhag et al., 2024) as well as natural language (Wen et al., 2025; Shi et al., 2025; Zhong
et al., 2025). More closely to our work, several works have explored using code to represent policies
(Xie et al., 2025; Liang et al., 2023; Li et al., 2023; Singh et al., 2023; Varley et al., 2024; Zhi et al.,
2024). Typically, a pretrained (vision-)language model is leveraged to generate code corresponding
to a multi-step plan, given a natural language description of a task. The focus hereby mostly lies on
improving the high-level planning capabilities, whereas the low-level policy is obtained by directly
executing robot API code. In our paper, code serves merely as an intermediate representation, with
the goal of learning both high and low-level policies entirely through neural networks.

Akin to our paper, recent works such as HAMSTER (Li et al., 2025), HiRobot (Shi et al., 2025),
Gr00t N1 (Bjorck et al., 2025) and DexVLA (Wen et al., 2025) fully realize high and low-level
policies within conditional generative models. Our research diverges by focusing on the generalization
performance in an idealized framework, where we obtain perfect access to subtask labels by generating
code-annotated demonstration data using robot APIs. This approach precisely specifies high-level
thoughts for each time step, unlike 2D path representations (Li et al., 2025), natural language (Shi
et al., 2025; Wen et al., 2025) or latent thoughts (Bjorck et al., 2025). As a result, we can not only
isolate the success rate of the high-level planner from the success rate of the low-level policy, but also
automate data collection by directly letting the high-level planner act in the environment. The latter
advantage has already been realized in the case of training non-hierarchical policies (Ha et al., 2023;
Duan et al., 2024; Ahn et al., 2024).

3 PRELIMINARIES

Imitation Learning Language conditioned imitation learning aims to learn a policy πθ : O×L →
∆A mapping observations ot ∈ O and task descriptions ℓt ∈ L to a probability distribution over
actions At ∈ A. More specifically, we assume to always predict a sequence of actions (action chunk),
i.e. At = [at,at+1, ...,at+H ] ∈ RH×Da , where H is the prediction horizon (Zhao et al., 2023; Chi
et al., 2023) and ot = [Xb

t ,X
w
t , st] consists of image inputs Xt ∈ RH′×W×C corresponding to base

and wrist cameras as well as low-dimensional proprioception features st ∈ RDs .
Diffusion Policy. Diffusion policy (DP) (Chi et al., 2023) parametrizes πθ using diffusion
models such as DDPM (Ho et al., 2020), which entails training a conditional latent variable
model pθ(A0|o, ℓ) =

∫
pθ(A

0:K |o, ℓ)dA1:K . The latents A1:K are noisy versions of the orig-
inal data, defined by a forward noise process q(Ak|Ak−1) = N (Ak;

√
1− βkA

k, βkI) and
βk > 0. To reverse the noising process, the model is parametrized as pθ(A

k−1|Ak,o, ℓ) =
N (Ak−1;µθ(A

k, k|o, ℓ), σ2
kI) and trained using a weighted Evidence Lower Bound (ELBO) loss

(Kingma & Gao, 2023). Finally, sampling from πθ(o, ℓ) is performed by ancestral sampling, starting
from AK ∼ N (0, σ2I) and iteratively sampling Ak−1 ∼ pθ(·|Ak,o, ℓ).
Vision-Language Models. Vision-language models (VLMs) are versatile models pretrained on
large-scale, multimodal internet data (Liu et al., 2023). For our purposes, we assume VLMs to
model a distribution pϕ(ℓ

out|Xb, ℓin) trained using next-token prediction. Given a single (base
camera) image Xb and a task description ℓin, a language suffix ℓout is predicted autoregressively
pϕ(ℓ

out | Xb, ℓin) =
∏T

t=1 pϕ(lt | l1, . . . , lt−1,X
b, ℓin) via a decoder-only Transformer architecture.

4 FROM CODE TO ACTION

To optimally facilitate thought and action imitation respectively, our training pipeline splits data
generation and training into two stages, which we visualize in Figure 1. Firstly, we train a code-
generating VLM on an oracle dataset generated using API calls from hard coded policies, as described

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Keystep

Frame
cache info

Subtask

Figure 2: Illustration of a code trace on the task PlaceNextTo. Key-steps ℓki
form unique subtask la-

bels, while in-between steps correspond to the most recent key-step. To condition the low level policy
on historical information, we extract commands that write to an internal dictionary pose_dict and
save them to a cumulative cache (cache info), while the high level policy is endowed with memory by
conditioning on a history mt of key-step instructions.

in Section 4.1. Using a visual-question-answering (VQA) format, the VLM is trained to predict the
current action in the form of API code, given an image and a task prompt. We also introduce auxiliary
losses for bounding box predictions and a memory mechanism for state tracking, which we elaborate
on in Section 4.2. Secondly, we train a conditional diffusion model to predict low-level actions, given
code instructions generated from the VLM, which we outline in Section 4.3.

4.1 DATA GENERATION

To obtain the oracle dataset Doracle = {τi}Ni=1, we utilize the ClevrSkills environment (Haresh et al.,
2024), which comes with a variety of open-source scripted policies (called solvers) for each task.
Since the policies are not perfect, we filter out any unsuccessful trajectories. Each trajectory consists
of a sequence of observations, actions and language instructions τ = (o1,a1, ℓ1,o2,a2, ℓ2, . . . ),
where ℓt corresponds to the API code that was executed at time t to produce action at.

The policies (and hence the annotations) that ClevrSkills provides are hierarchical. For example, there
is a pick_move3d_place policy, which internally uses pick, move3d and place policies,
and utility functions such as get_actor. We chose to use the annotations at their most fine-grained
level to provide detailed conditioning to the diffusion policy. For more details we refer to API in
Appendix C.

We pre-process the API calls ℓt ∈ τ into key-step instructions corresponding to the first time an API
call is executed, and comment out code using the # symbol in any subsequent time-step with the
same API call. We visualize one example of a code trace corresponding to a demonstration on the
PlaceNextTo task in Figure 2.

4.2 CODE GENERATION VLM

Architecture. We build on the LLaVa framework (Liu et al., 2023), employing a Phi-3 language
model backbone (Abdin et al., 2024) due to its favorable trade-off between competitive performance
and efficient inference speed. Our objective is to construct a high-level VLM that maps image-valued
inputs Xb and a natural language prompt ℓin, which specifies the overall task, to an API call that,
when executed, would lead to the completion of the current subtask. In practice, however, mapping
cannot rely solely on the current observation, as most API-based policies operate in a non-Markovian
regime - retaining state information such as previous object poses or task-relevant events across
timesteps to ensure correct behavior in the future.

To effectively imitate such non-Markovian policies, we augment our VLM with a lightweight memory
mechanism. Specifically, we implement a caching strategy that maintains a memory buffer mt,
which accumulates generated API calls over time. At each timestep t, the model appends the most
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recent API call to the buffer only if it corresponds to a key-step. This memory is then incorporated
into future predictions, enabling coherent, temporally-aware code generation. We’ll provide a more
detailed formalization of how and when this memory mechanism is used in the following paragraph.

Training scheme. Our VLM is trained on two different objectives: Code generation and auxiliary
losses such as bounding box prediction and object recognition. For code generation, the general
prompt structure combines memory information mt, the task prompt ℓin and an optional key-step
request ℓkey . The goal is to minimize the loss

Lcode(ϕ) = −Et∼U([T ])

[
pϕ(ℓt|Xb

t , ℓ
in,mt−1)

]
− Ei∼U([n])

[
pϕ(ℓki |Xb

ki
, ℓin, ℓkey,mki−1

)
]
,

where mj := (ℓk1 , . . . , ℓmax{ki≤j}) is the memory buffer of previous key-step instructions and ℓkey

is an additional prompt (Please give a keystep reply). Both mj and ℓkey are processed by the VLM
by appending them to the instruction ℓin.

Efficient Inference One of the main motivations behind splitting Lcode into a key-step and an
intermediate instruction objective is to enable two modes of inference.

• VLM + Oracle Policy Using the key-step mode pϕ(ℓki |Xb
ki
, ℓin, ℓkey,mki−1) is useful for

enabling tool usage (Qu et al., 2025) with the VLM. In our case, the tools are Python API
calls to invoke the oracle policies on which the VLM was trained. Although a perfectly
executed code trace does not result in a 100% success rate due to failure cases of the oracle
policies, using the VLM in this mode gives us a robust policy, as well as a close-to-optimal
metric for measuring performance of the high-level policy.

• VLM + Diffusion Policy The intermediate prediction ℓ̂t ∼ pϕ(·|Xb
t , ℓ

in,mt−1) is used
when using the code outputs merely as conditioning information for a learned low level
policy. In this mode, we query the VLM at each timestep. To update mt, we verify if ℓ̂t
is a key-step request by checking for non commented-out code blocks. If this is not the
case, mt is not updated. In practice, we also use this mechanism for speeding up inference:
When the first l = 20 characters of ℓ̂t match a commented version of the last key-step in
mt−1, we truncate the auto-regressive generation through early stopping and use the last
key-step instead. Although l is a hyperparameter, we found it to only have a minimal impact
on performance.

Object detection. To enhance the understanding of object locations within a scene, we introduce an
auxiliary loss. We simplify the bounding box representation by dividing images into a 10× 10 grid
and assigning objects to the nearest patch. Although this approach may compromise some accuracy,
our early experiments indicated that predicting two integer values, rather than multiple digits, offered
greater robustness while maintaining performance. Consequently, for each image Xb, we obtain a set
of bounding boxes {(xi, yi)}ki=1. These bounding boxes are then utilized to generate a VQA format,
where we query the VLM to determine if a randomly selected object is present at a specific location
(xi, yi). Additionally, we ask the VLM to directly predict (xi, yi) based on a given object description.
While the prediction of bounding boxes is not directly queried for during inference, it is still utilized
when generating code instructions. For example, in the API function get_actor(), the location
of the actor (object) in the image is used to disambiguate between actors with identical descriptions.

4.3 HIERARCHICAL DIFFUSION POLICY

For the low level part of our hierarchical model, we choose to train a custom language-conditioned
diffusion policy architecture (Chi et al., 2023). The main modifications come from the need to encode
lengthy code instructions, as well as the need to enable conditioning on a consistent memory buffer.
The overall architecture is visualized in Figure 3. To encode the code instructions (task info) and
memory instructions (cache info), we use a frozen T5 language model (Raffel et al., 2020), which
processes each respectively and produces a sequence of token embeddings. While one could feed the
entire history mt of memory into the policy at each timestep, we instead opt to preprocess mt into
a single prompt ℓcache which only contains information about stored variables that are relevant for
future frames (for details, see Appendix E). For example, in the visualized trajectory of Figure 2 there
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Figure 3: The low level policy is conditioned on proprioception, base and wrist camera images,
as well as Python code in the form of task info for code corresponding to the current instruction
and cache info for state tracking. Observation embeddings are treated as tokens and cross-attend to
language embeddings using an attention pooling mechanism.

is exactly one such instruction which typically occurs at the beginning. The motivation behind this is
to allow for greater generalization, since conditioning on a long history of observations can lead to
overfitting to specific trajectories, reducing the model’s ability to generalize to novel situations. For
the same reason, we do not provide the overall task description ℓin, but force the low level policy to
rely only on subtask code instructions.

In addition to language embeddings, we use a lightweight vision encoder based on a standard ResNet-
18 to process base and wrist cameras, as well as linear embedding layers for proprioception and extra
information corresponding to the gripper state. We treat proprioception and image embeddings as a
single token, respectively, and combine them with the language tokens using an attention pooling
layer, consisting of several cross-attention blocks. The purpose of the pooling mechanism is to
aggregate token-level language embeddings and arrive at a fixed-dimensional embedding, which
can then be fed into a diffusion UNet head (Chi et al., 2023) with FiLM embeddings (Perez et al.,
2018). Finally, to train the diffusion head, we employ DDPM with a custom loss weighting inspired
by (Kingma & Gao, 2023), using ϵ-prediction with a sigmoid(−λ+2) ELBO weighting and a cosine
noise scheduler.

During training, we modify the trajectories in Doracle to better match the distribution encountered
at inference time. Specifically, we replace the oracle code instructions ℓt with generated code
instructions ℓ̂t ∼ pϕ(·|Xb

t , ℓ
in,mt−1). As we will show in section 5.2, training the low level policy

on these generated high-level instructions leads to substantial improvements in overall performance.

Overall, the hierarchical policy is instantiated as

pθ,ϕ(At|ot, ℓ) = pθ(At|ot, ℓt, ℓ
cache
t )pϕ(ℓt, ℓ

cache
t |Xb

t , ℓ,mt−1),

where At is an action chunk of size 8. We choose to run pϕ at every step for two reasons. Firstly,
the memory mt needs to be updated alongside the execution of At. Secondly, we found that blind
execution of an action chunk can lead to detrimental performance when the action chunk spans
multiple subtasks. To mitigate this, we can stop execution of At whenever a generated instruction
ℓk, k ∈ {t, . . . , t+ 8} contains a key-step command and regenerate a new chunk Ak.

5 EXPERIMENTS

We evaluate our method on various tasks of the ClevrSkills benchmark (Haresh et al., 2024). Aside
from open-source oracle solvers, which allow training our code generating VLM, ClevrSkills is built
to benchmark compositional reasoning and generalization to higher level tasks. In section 5.1 we
provide our main results where we aim to train a single hierarchical multitask policy and compare
it to a flat baseline as well as an oracle-based baseline, whereas in section 5.2 we analyze design
choices such as action chunking regeneration, dataset generation strategies and data scaling properties
of our method.
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Table 1: A performance comparison per task and low level training dataset. Mean success rates (%)
and standard deviations are shown, computed over 64 seeds with 2 runs each.

Task Task Prompt Only (DP) VLM+DP VLM+Oracle
L0 L1 L0+L1 L0 L1 L0+L1

PlaceNextTo 21.9±2.2 7.0±2.3 25.8±2.3 55.4±0.8 10.2±2.4 66.1±1.1 83.1±3.7

PlaceOnTop 14.1±2.2 0.0±0.0 17.2±1.7 29.0±0.9 31.3±6.3 53.1±4.2 75.0±1.0

Topple 93.0±1.1 9.3±0.0 94.5±0.8 94.5±0.8 9.4±9.4 99.0±1.0 100±0.0

Push 74.2±5.6 2.3±0.8 69.5±3.9 87.4±1.6 0.0±0.0 85.9±0.0 91.5±1.5

SingleStack 0.0±0.0 14.1±3.1 15.6±3.1 0.0±0.0 22.6±0.8 43.9±4.7 81.5±1.5

StackTopple 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 17.2±1.6 38.9±3.1 71.0±1.0

PushToTarget 2.3±1.1 30.4±5.5 8.6±2.3 0.8±0.8 87.5±1.6 82.5±7.5 75.3±0.3

Unseen in L0+L1
Pick 35.2±5.6 0.0±0.0 35.9±1.6 59.0±3.6 67.1±0.0 78.0±3.0 87.0±1.0

ReverseStack 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 21.8±4.7 41.4±2.4 80.0±1.0

NovelNoun 14.8±1.1 0.0±0.0 14.8 ±1.1 26.5±1.5 26.5±7.5 50.7±0.8 63.4±6.6

Average 25.55 6.31 28.19 35.24 29.36 63.95 80.78

5.1 MULTITASK BENCHMARK

Setup. To evaluate the performance of our hierarchical policy, we are not only interested in assessing
general success rates per task, but also in the quantification of generalization through composing
simpler subtasks to achieve new behaviors. For this purpose, we slightly deviate from the taxonomy
of the compositionality of tasks introduced in ClevrSkills and simplify the benchmark into L0 and
L1 tasks, corresponding to primitive behaviors and more complex, long horizon tasks respectively.
The tasks in L1 are chosen such that they can be achieved by composing multiple subtasks of L0
together (for details, refer to (Haresh et al., 2024) Appendix A). To be precise, we include the tasks
PlaceNextTo, PlaceOnTop, Topple and Push into the L0 dataset, whereas the tasks SingleStack,
StackTopple and PushToTarget are part of the L1 datasets. Aside from Topple and Push, all tasks
have 3 objects chosen at random from a collection of 32 different combinations of colors and shape.

We first generate 500 trajectories for each task of the entire ClevrSkills suite to train our high level
policy. Here, we also include additional tasks such as Pick, ReverseStack and NovelNoun which we
hold out from the training set of the low level policy as they are mostly testing language understanding
and can be readily solved by reusing behaviors from L0 and L1 tasks mentioned above. For the low
level policy, we generate 2000 trajectories for each task and we train separate policies for the L0, L1
and combined L0+L1 datasets respectively. As a comparison, we also train a flat diffusion policy
with the same architecture, where language conditioning is set to ℓt = ℓ, ℓcachet = ℓ, i.e. we replace
the low level commands with identical high level natural language descriptions of the task.

Results. Table 1 shows success rates per task, separated by training dataset of the low level policy,
for hierarchical (VLM+DP) and flat (DP) variants, as well as the performance of VLM+Oracle
which is obtained by executing the key-step policy pϕ(ℓki

|Xb
ki
, ℓin, ℓkey,mki−1

). The flat variant
only receives the task prompt ℓin in the form of natural language. Overall, we find that using code
instructions generated through the VLM is highly beneficial, with success rates improving across
all tasks. We observe that this holds even when there is only a small overlap across tasks. For
example, this can be seen when comparing success rates on the L0 dataset with a flat variant. Here,
PlaceNextTo sees the biggest improvement in performance with a greater than 30% increase, while
the only shared primitive with other tasks is picking up the correct object, which is also found in
PlaceOnTop. Similarly, Push does not share any primitives with other L0 tasks, but still benefits from
the decomposition of subtasks.

When comparing the performance of training on a the combination L0+L1 with training on only
one dataset respectively, we see that the hierarchical policy can readily reuse instructions from
lower level tasks to solve longer horizon tasks. This is mainly pronounced in stacking tasks, which
require chaining together PlaceOnTop multiple times and optionally using the Topple skill at the
right time. However, it is interesting that zero-shot generalization of the low level to solve stacking
remains challenging, with a success rate of 0% when trained only on L0. In this case, while the
policy correctly executes the start, it tends to fail at lifting blocks high enough toward the end of
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Figure 4: Left: Success rates on Swap, a non-Markovian task, divided into small and large datasets
used to train the low level policy. Right: Success rates on pick and place tasks when training on a
small and a large number of demonstrations for PlaceNextTo and PlaceOnTop.

the trajectory. Overall, to the best of our knowledge, our model is the first to generalize across
these 10 tasks of the ClevrSkills suite, achieving average success rates exceeding 50%, significantly
outperforming the original benchmark baseline ( Haresh et al. (2024), Table 3). Finally, we find
that despite the smaller dataset, our hybrid VLM+Oracle policy performs strongly. This allows
zero-shot generalization of the low level policy to tasks that were not seen during training, such as
Pick, ReverseStack and NovelNoun.

Non-Markovian Swapping In Table 1, all tested tasks are solvable using Markovian low-level
policies. 1 To explicitly test the memory capabilities of our hierarchical policy, we train on small
and large datasets of 1000 and 2000 trajectories of swapping two objects respectively. This is a
challenging non-Markovian task with many subtasks, as the robot needs to (i) first remember the
position of one object, (ii) pick and place it onto a free position, (iii) save the position of the other
object before moving it onto the remembered initial position and (iv) pick and place the second object
on the last remembered position. We note that the actual number of subtasks is closer to 12, as each
moving, picking and placing instruction form their own subtasks.

We compare a flat variant trained on natural language (DP), our hierarchical policy (VLM+DP),
the high level policy (VLM+Oracle) and a modified version of the task (DP+Oracle). The
latter automatically calls an oracle function for computing initial positions and inserts it
into the natural language task prompt. This equates to evaluating our low level pol-
icy on a Markovian version of the task. Figure 4 shows success rates for each method.

Pick PlaceNextTo PlaceOnTop
Task

0.0
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0.8
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s R
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Action Chunking Ablation
No Regen
Regen

Half Chunk

Figure 5: A comparison of different action chunk-
ing strategies during inference. No Regen cor-
responds to always executing the full predicted
chunk, whereas Regen generates a new chunk when
the VLM predicts a new key-step instruction.

As expected, DP without any high level thoughts
or additional information fails regardless of
training dataset size. Similar to the Markovian
tasks, letting the VLM execute its generated
thoughts yields the strongest performance, while
learning the low level actions requires more tra-
jectories in terms of scaling. We also observe
that giving the low level policy sufficient infor-
mation yields better performance than relying
on the VLM. We hypothesize that this is due to
the VLM failing at advancing to the next subtask
if the low level policy goes out of distribution.

Data Scaling We further investigate whether
scaling the number of trajectories in the L0
dataset proportionally enhances generalization
to L1 tasks. As shown on the right side of Fig-
ure 4, we evaluate a larger variant of the L0 dataset, which includes twice the number of demonstra-
tions for the PlaceNextTo and PlaceOnTop tasks. Our results reveal not only improved performance on

1We note that this technically does not hold for the high level policy due to internal variables such as target
poses, which have to be stored in memory mt even when the task itself is Markovian, see Figure 2.
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Figure 6: Comparison of different subtask labeling strategies when training on PlaceNextTo and
PlaceOnTop. Left: Success rates by task and dataset. Right: Timeline comparison of instructions
per timestep. The VLM tends to predict pick instructions earlier, causing performance issues when
training on oracle thoughts.

these specific L0 tasks, but also a notable increase in success rates on the more complex stacking task
- despite the number of stacking demonstrations remaining constant. This cross-task improvement
provides compelling evidence for compositional generalization, suggesting that the VLM effectively
learns to decompose long-horizon tasks into reusable, transferable primitives.

5.2 ABLATIONS

Dataset Generation In Figure 6 we analyze the impact of different strategies for generating the
thoughts ℓt for training the low level policy. We find that directly using trajectories from Doracle leads
to significantly lower performance. We hypothesize that this is due to a small mismatch in the time at
which various subtasks are predicted by the VLM, compared to the start and end times of subtasks
when following the oracle policy. However, we found that augmenting oracle thoughts by randomly
shifting the start and end times of subtasks by up to 3 steps can mitigate this issue. Our choice of
using the VLM to relabel the thoughts performs similarly on PlaceOnTop, while slightly better on
PlaceNextTo. Finally, we also tested using the VLM+Oracle policy to generate a completely new
demonstration dataset Dexec, which yields the best performance on average while being more costly.

Action Chunking As outlined in section 4.3, we regenerate action chunks whenever a new subtask
instruction is predicted by the VLM. In Figure 5, we demonstrate the performance of the hierarchical
policy with and without this regeneration mechanism when trained on a dataset of 2000 Pick,
PlaceNextTo and PlaceOnTop trajectories. We find that the regeneration becomes important when
there are many subtasks to be chained together. In Pick, which consists of only two subtasks (moving
to a pose and picking up), both methods achieve a success rate of 100%. On the other hand, both
PlaceNextTo and PlaceOnTop see a decrease in performance when always executing the full action
chunk. In PlaceOnTop this is especially pronounced, as the information on which object to place
only becomes available after picking up the first object. (In PlaceNextTo this is not the case as the
API solver precomputes free space next to objects of interests and saves it in memory). We also test
halfing the prediction horizon (without regeneration), but find that it generally worsens performance.

6 CONCLUSION

In this work, we introduced From Code to Action, a hierarchical framework that integrates code-
generating vision-language models with code-guided low-level policies to enable compositional
generalization in robotic manipulation tasks. Our approach leverages the inherent structure of open-
source API policies, allowing for automatic data collection without the need for manual subtask
annotations. We investigate whether such code can serve as effective subtask supervision and
demonstrate that a VLM, when provided with an appropriate memory buffer, can reliably predict
the corresponding API code. Building on this, we develop a diffusion policy conditioned on the
VLM-generated code and show that it significantly outperforms a flat policy baseline. Notably, our
system exhibits strong signs of compositional generalization, with performance on long-horizon tasks
improving as the number of training examples on simpler tasks increases.
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A LIMITATIONS

Our experiments are limited to simulation only and limited to the API of the ClevrSkills benchmark.
Future work includes real-world deployment as well as testing the approach on different open-source
APIs. Furthermore, our low-level policy vision encoder is trained from scratch and thus naturally
limited in generalization. It remains to be explored if large pretrained policies equally benefit from
the hierarchical architecture proposed in this paper.

B LLM USAGE

We used LLMs solely for editorial assistance, including rewriting and restructuring sentences to
improve clarity and readability. All scientific ideas, experimental designs and analyses are entirely
our own and were conducted without the aid of LLMs. No content was generated by LLMs beyond
linguistic refinement.

C API DESCRIPTION

Below is a description of the API which the ClevrSkills oracle uses to solve the tasks used in this
paper. The VLM is trained to mimic the use of this API, and it is used as conditioning for the diffusion
policy.

1

2 # ************* Utility function API *************
3

4 def get_actor(

5 actor: str,

6 actor_pos: Optional[Tuple[int, int]] = None
7 ) -> sapien.ActorBase:

8 """

9 :param actor: The name of the actor. The name is matched to

the names↪→

10 of actors in the scene using Bleu score.

11 :param actor_pos: Optional position of the actor in the

observation↪→

12 image, relative to a coarse 10 by 10 grid. This can be used to

13 disambiguate when there are multiple identical actors.

14 :return: The actor which matches the description most closely.

15 """

16

17

18 def get_pose(actor: sapien.ActorBase) -> sapien.Pose:

19 """

13
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20 :param actor: A Sapien actor.

21 :return: The pose of the actor .

22 """

23

24 def free_space(actor: sapien.ActorBase) -> sapien.Pose:

25 """

26 :param actor: The actor to be put in free space.

27 :return: A pose for actor in free space.

28 """

29

30 def free_space_next_to(

31 actor: sapien.ActorBase,

32 next_to_actor: sapien.ActorBase,

33 direction: List,

34 description: str

35 ) -> sapien.Pose:

36 """

37 :param actor: the actor to be placed.

38 :param next_to_actor: the actor to be placed next to.

39 :param direction: direction (list of floats) where to

40 place actor relative to next_to_actor.

41 :param description: Natural language description of the

direction↪→

42 (does not influence returned pose).

43 :return: A pose for actor, next to next_to_actor, in free

space.↪→

44 """

45

46 def pre_pick_ee_pose(actor: sapien.ActorBase) -> sapien.Pose:

47 """

48 :param actor: The actor to be picked.

49 :return: End-effector pose to move to, to perform a picking

operation.↪→

50 """

51

52 def pre_place_ee_pose(

53 actor: sapien.ActorBase,

54 target_pose: sapien.Pose

55 ) -> sapien.Pose:

56 """

57 :param actor: actor to be place. Assumed to be grasped by the

agent.↪→

58 :param target_pose: The pose to place the actor in.

59 :return: the pose where end-effector should move to place the

60 actor at target_pose. It is assumed that the EE is currently

holding↪→

61 the actor.

62 """

63

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

64 def pre_push_pose(

65 actor: sapien.ActorBase,

66 topple: bool = False,
67 target_pose: sapien.Pose = None,
68 ) -> sapien.Pose:

69 """

70 :param actor: The actor to be pushed

71 :param topple: When true, the returned pose will be closer to

72 the top of the actor, because the goal is to push-to-topple.

73 :param target_pose: The target to push towards. Used to

compute↪→

74 the pushing direction.

75 :return: the pose that the end-effector should move in order

76 to push actor towards the target_pose.

77 """

78

79

80 def pose_on_top(

81 actor: sapien.ActorBase,

82 target_actor: sapien.ActorBase

83 ) -> sapien.Pose:

84 """

85 :param actor: the actor to be placed on target_actor.

86 :param target_actor: The target actor.

87 :return: a pose where actor is on top of target_actor.

88 """

89

90 def towards_pose(

91 src_pose:sapien.Pose,

92 dst_pose:sapien.Pose,

93 alpha:float=0.5

94 ) -> sapien.Pose:

95 """

96 :param src_pose: Pose of source actor.

97 :param dst_pose: Pose of destination actor.

98 :param alpha: Blending coefficient between poses.

99 :return: Blended position between src_pose and dst_pose.

100 The orientation of src_pose is used.

101 This function is used to compute how to push source actor

102 towards destination actor.

103 """

104

105 # ************* Policies API *************
106

107 def move3d(

108 ee_target_pose: sapien.Pose = None,
109 match_ori: bool = False,
110 vacuum: bool = False,
111 extend_bounds: float = 0.01,
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112 check_done: bool = True,
113 ) -> Move3dSolver:

114 """

115 :param ee_target_pose: the target pose of the end-effector.

116 :param match_ori: Whether the orientation of the

ee_target_pose↪→

117 must be matched.

118 :param vacuum: Whether to turn vacuum gripper on or off during

moving.↪→

119 :param extend_bounds: By how much to extend the bounds of the

grasped↪→

120 actor (in meters) in order to avoid collections.

121 :param check_done: whether the solver should check and

self-report↪→

122 that it has completed. In most cases you want to set this to

True.↪→

123 :return: A solver (policy) to move the end-effector to the

specified↪→

124 pose.

125 """

126

127 def touch(

128 actor: sapien.ActorBase,

129 push: bool = False,
130 topple: bool = False
131 ) -> TouchSolver:

132 """

133 :param actor: The actor to be touched, pushed or toppled.

134 :param push: Whether to push.

135 :param topple: Whether to topple. Toppling takes priority over

pushing.↪→

136 :return: A solver (policy) to touch/push/topple the actor.

137 """

138

139

140 def pick(actor: sapien.ActorBase, lift=0.1):

141 """

142 :param actor: The actor to be picked.

143 :param lift: How much to lift the actor above the initial pose

at↪→

144 pickup.

145 Without lifting a bit, actors could be pushed off the gripper

146 during horizontal transport.

147 :return: A solver (policy) to pick the actor.

148 """

149

150 def place(

151 actor: sapien.Actor,

152 target_pose: sapien.Pose,
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153 match_ori_2d: bool = False,
154 drop_distance: float = 0.02,

155 ) -> PlaceSolver:

156 """

157 :param actor: Actor to be placed.

158 :param target_pose: Absolute pose to place the actor.

159 :param match_ori_2d: Match z-axis rotation of target_pose?

160 :param drop_distance: The actor will be dropped from this

height↪→

161 relative to target (in meters).

162 :return: A solver (policy) to place the actor in target_pose.

163 """

164

165 def place_on_actor(

166 actor: sapien.Actor,

167 target_actor: sapien.Actor,

168 target_pose: sapien.Pose,

169 match_ori_2d: bool = False,
170 drop_distance: float = 0.02,

171 ) -> PlaceOnActorSolver:

172 """

173 :param actor: The actor to be placed

174 :param target_actor: The actor to-be-placed-upon

175 :param target_pose: pose (relative to target_actor)

176 :param match_ori_2d: Match z-axis rotation of target_pose?

177 :param drop_distance: From what distance to drop the actor (in

meters).↪→

178 :return: A solver (policy) to place the actor on target_actor

in↪→

179 target_pose.

180 """

181

182

183 def push_along_path(actor: sapien.ActorBase, target_pose:

sapien.Pose) -> PushAlongPathSolver:↪→

184 """

185 :param actor: The actor to be pushed.

186 :param target_pose: The pose to be pushed towards.

187 :return: A solver (policy) to push actor to target_pose,

188 while avoiding collisions

189 """

190

D DETAILS: VLM PERFORMANCE ON CLEVRSKILLS

In Table 2 we show the success rate of the VLM+Oracle policy on the full ClevrSkills task suite
aside from the tasks that require multimodal input prompts. Furthermore, we provide the number of
average actions, which denotes the average number of API policy calls which are invoked to solve
the task. Each task was evaluated on 100 random seeds.
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Table 2: VLM + scripted policies: performance on a variety of ClevrSkills tasks
Task Name Level Success (%) Avg. #Actions
Pick 0 99 2
Place on top 0 84 2.4
Place next to 0 96 2
Rotate 0 83 3
Throw at 0 71 3
Throw to topple 0 91 3
Touch 0 94 1.9
Push 0 93 2.8
Topple 0 100 2.9
Pick and place on top 1 79 5.3
Pick and place next to 1 96 4.2
Follow_order 1 83 5.2
Follow_order_and_restore 1 55 8.4
Neighbour 1 50 7.2
NovelAdjective 1 31 4.6
NovelNoun 1 58 4.1
NovelNounAdjective 1 56 4.2
Rotate and restore 1 72 4.9
Rotate symmetry 1 58 5.9
Stack 1 90 7.9
Stack in reversed order 1 79 7.5
Sort by texture 1 41 8.2
Swap 1 84 11.2
Throw onto 1 100 2
Balance scale 2 44 10.8
Stack sorted_by_texture 2 57 9.5
Stack and topple 2 81 9.9
Swap by pushing 2 7 9.8
Swap and rotate 2 83 11.3
Throw and sort 2 46 4.5

mean (all levels) - 72.6 5.3
mean 0 88.3 2.6
mean 1 68.8 6.05
mean 2 53.0 9.3

E DETAILS: LOW-LEVEL POLICY

E.1 DATASET

As described in section 5.1 we train on 2000 trajectories for each of the described tasks on a simple
object split using the ClevrSkills simulator. Each object color is randomly chosen from the following
list: cyan, red, white, yellow, black, blue, green, purple, while the object shapes are randomly chosen
from a list of cube, cylinder, triangle, hexagon. Each dataset is generated using random seeds 12000
to 14000 of the simulator.

E.2 HYPERPARAMETERS

We use the AdamW optimizer for all experiments with a learning rate of 1.0e − 4, beta values
of [0.95, 0.999], epsilon 1.0e − 8, weight decay 1.0e − 6 and a cosine learning rate scheduler.
Furthermore, following the choice of Chi et al. (2023) we keep an exponential moving average
(EMA) of the model weights using the same hyperparameters. However, we deviate in terms of using
historical observations and proprioception values and only provide one timestep of observations
into the model. Regarding the diffusion head, we use DDPM Ho et al. (2020) with standard
hyperparameters:
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Table 3: DDPM Noise Scheduler Hyperparameters
Hyperparameter Value
num_train_timesteps 100
beta_start 0.0001
beta_end 0.02
beta_schedule squaredcos_cap_v2
variance_type fixed_small
clip_sample True
prediction_type epsilon

E.3 CACHE INFO

To separate code instructions from cache information, we use a simple regular expression scanning
for pose_dict values being set. Algorithm 1 illustrates this behavior. During inference, we can
extract caching information from the VLM memory buffer by calling ExtractMemoryInfo on
its memory of past key-step instructions mt. This ensures that all instructions that attempt to assign
to some key of pose_dict are persistent through time and visible to the low level policy in the
form of ℓcache. If no memory info is returned by the function (i.e. if none of the instructions in mt

were writing to pose_dict), we set ℓcache = "null". Figure 2 illustrates the extraction of memory
information from the code trace in PlaceNextTo. In this task, the oracle (and, as a result, the trained
VLM) uses the first timestep to calculate a target placing position alongside outputting a moving
instruction. This instruction is then persistent in the memory buffer mt of the VLM, which we in turn
extract in the form of ℓcache to feed into the low level policy at every time step.

E.4 TESTING

During inference, we use 10 denoising steps for faster inference using the DDIM sampler Song et al.
(2020). We always test on 64 random initializations of the environment with seeds 10 to 74.

Algorithm 1 Extract Memory Info from Python String
1: procedure EXTRACTMEMORYINFO(python_string)
2: Define cache_pattern as regex: pose_dict[’.*?’] =
3: Split python_string into lines by newline
4: Initialize empty list cache_lines
5: Initialize empty list remaining_lines
6: for each line in lines do
7: if regex_pattern matches line then
8: Append line to cache_lines
9: else

10: Append line to remaining_lines
11: end if
12: end for
13: Join remaining_lines into remaining_string
14: Join cache_lines into cache_string
15: return cache_string, remaining_string
16: end procedure

F COMPUTE RESOURCES

All of our experiments were conducted on a mixture of A100-80GB and V100-32GB GPUs. The
high level VLM can be trained on a node of 8 A100s within 48 hours, while the low level policy can
be trained separately and requires fewer compute resources. We trained the diffusion policy on a node
of 8 V100s for around 24-72 hours depending on the size of the dataset. For our biggest dataset, we
train for 250 epochs, taking around 72 hours of walltime. For inference, a single A100 is sufficient to
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run both the high and lowlevel policy in parallel, i.e. they consume less than 80GB of memory in
total.

G SOCIETAL IMPACT

Enabling learning of arbitrary robotic manipulation policies has the potential for societal impact.
Our work was performed on simple environments with simple objects, thus limiting the direct
potential negative impact and limiting the application to stationary robots in e.g. a warehouse setting.
Nonetheless, we acknowledge that the automation of data collection and improving scalability of robot
learning can have drastic societal impact due to the possibility to automate previously challenging
tasks that required human supervision. This can lead to the replacement of human workers with
robots. In the longer term, this can also accelerate the development of arbitrary robot policies which
can be used for warfare or other malicious activities.
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