
Activation Map Compression through Tensor
Decomposition for Deep Learning

Le-Trung Nguyen Aël Quélennec Enzo Tartaglione
Samuel Tardieu Van-Tam Nguyen

LTCI, Télécom Paris, Institut Polytechnique de Paris
{name.surname}@telecom-paris.fr

Abstract

Internet of Things and Deep Learning are synergetically and exponentially growing
industrial fields with a massive call for their unification into a common frame-
work called Edge AI. While on-device inference is a well-explored topic in recent
research, backpropagation remains an open challenge due to its prohibitive com-
putational and memory costs compared to the extreme resource constraints of
embedded devices. Drawing on tensor decomposition research, we tackle the main
bottleneck of backpropagation, namely the memory footprint of activation map
storage. We investigate and compare the effects of activation compression using
Singular Value Decomposition and its tensor variant, High-Order Singular Value
Decomposition. The application of low-order decomposition results in consid-
erable memory savings while preserving the features essential for learning, and
also offers theoretical guarantees to convergence. Experimental results obtained
on main-stream architectures and tasks demonstrate Pareto-superiority over other
state-of-the-art solutions, in terms of the trade-off between generalization and
memory footprint.1

1 Introduction

Forward Backward

Memory

a

Memory

a

Efficient
reconstruction


Compress
and store

Figure 1: We compress the activa-
tions that will be later employed
for backpropagation.

Recent advances in Deep Learning have enabled Deep Neural
networks to be used as an efficient solution for a wide variety of
use cases, including computer vision [21, 39, 30], speech recog-
nition [8, 31] and natural language processing [45, 42]. Much
of this performance improvement is linked to the exponential
increase in the number of parameters in the neural architectures.
According to Sevilla et al., the release of AlphaGo [47] in late
2015 marks the advent of a new era, which they call the “Large
Scale Era”, in reference to the computational cost of training
doubling every 8 to 17 months [38]. At the root of exponential
growth in neural network size is the improvement in hardware
capabilities, particularly those designed for large-scale parallel
computing, such as GPUs and TPUs [1]. While this trend demon-
strates the strength of neural networks as a powerful generaliza-
tion tool in many fields, it goes in the opposite direction when it
comes to environmental concerns [41], making the deployment
of newer architectures increasingly difficult. This is particularly
true for edge devices such as mobile phones and embedded sys-

1Code: https://github.com/Le-TrungNguyen/NeurIPS2024-ActivationCompression.git

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/Le-TrungNguyen/NeurIPS2024-ActivationCompression.git


tems, which cannot afford the high computing or memory costs. To address these challenges, three
interconnected factors must be taken into account: power consumption, memory usage, and latency.

When considering larger neural networks with more layers and nodes, reducing their storage and
computational cost becomes essential, especially for certain real-time applications such as edge
computing. In addition, recent years have seen significant advances in the fields of intelligent edge
and embedded intelligence, creating unprecedented opportunities for researchers to address the
fundamental challenges of deploying deep learning systems on edge devices with limited resources
(e.g. memory, CPU, power, bandwidth). Efficient deep learning methods can have a significant impact
on distributed systems and embedded devices for artificial intelligence. Since training is supposed
to take place in the cloud, most research on model compression and acceleration is specifically
focused on inference [7]. There is, however, an emerging area of research concerning on-device
training, which represents a decisive advance in the field of artificial intelligence, with considerable
implications for a variety of practical situations [17]. Models trained offline on a dataset built at
one point in time tend to fall victim to data drift when deployed “in the wild” [36]. Its combination
with online learning strategies has the potential to enable continuous model improvement after
deployment [14], thus adapting the model predictions to observed evolutions in the data distribution.
We can illustrate this with the example of sensors in autonomous vehicles, where deep learning
models must correctly classify vehicles with new designs never seen in the training set. Other
advantages of on-device learning include security and privacy. By processing data locally, sensitive
information remains more secure and less susceptible to data breach, a major concern in applications
such as healthcare.

The main challenge limiting the feasibility of on-device learning lies in the computational demands
of the backward pass, as gradient computation and parameter updates are significantly more resource-
intensive than the forward pass (Appendix A.1). On embedded devices, memory and computation
limitations act as strict budgets that must not be exceeded. Some approaches address the memory
constraints by exploring alternatives to traditional backpropagation, including unsupervised learning
for image segmentation [51], the Forward-Forward algorithm [16], and PEPITA [34]. While promis-
ing, these methods typically fall short of backpropagation-based techniques in terms of performance.
A pioneering effort by Lin et al., demonstrated that fine-tuning a deep neural network within a
256 kB of memory is feasible by selectively updating a sub-network, achieving a good results [25].
In a complementary approach, Yang et al. proposed reducing the number of unique elements in
the gradient map through patch-based compression of the input and gradients of a given layer with
respect to the output, thereby lowering memory costs and speeding up the learning process [53].

Inspired by tensor decomposition methods, we propose a method that compresses activation maps,
reducing the memory demands for backpropagation while maintaining the deep neural network’s
generalization capability(Fig. 1). Our approach adaptively captures the majority of tensor variance,
offering guaranteed accuracy in the gradient estimation. The key contributions of our work are as
follows:

• We propose to exploit powerful low-rank approximation algorithms to compress activation
maps, enabling efficient on-device learning with controlled information loss (Sec. 3.2 and
Sec. 3.3).

• We provide a theoretical foundation for our method, along with an error analysis demon-
strating that high compression ratios are achievable with limited performance degradation
(Sec. 3.4).

• We extensively explore a diverse experimental landscape, demonstrating the generalization
capacity of our proposed algorithm (Sec. 4).

2 Related Works

Tensor Decomposition. Model compression and acceleration is a well-developed and ongoing
area of research in the deep learning community. It can be divided into two major areas, namely
hardware and algorithm design. In the case of algorithmic compression, the five main components
that stand out are efficient and compact model design, data quantization, network sparsification,
knowledge distillation, and tensor decomposition [4, 7]. All these approaches aim to reduce the space
occupied by network parameters. Also known as a low-rank approximation, tensor decomposition
has emerged as a robust solution due to its combination of grounded theoretical findings and its

2



practicality in terms of hardware implementation [49]. Originating in the field of systems theory
and signal processing [28], low-rank approximation has attracted growing interest in the deep
learning community. Early examples were limited to the application of singular value decomposition
(SVD) used to compress fully connected layers [50]. More recent work includes the application of
generalized Kronecker product decomposition (GKPD) to both linear and convolutional layers [13],
the introduction of semi-tensor product (STP) to improve compression ratios with reduced loss [56]
or even more recently the acceleration of inference and backpropagation in vision transformers [52].
Evolutions in this domain can be summed up as improvements in compression ratios, latency, and
power consumption, with limited performance loss and diversification of architectures considered.

Activation Map Compression. The term “activations” here refers to the outputs of each layer after
the non-linearity has been applied, which are then fed to the next layer. While model compression
generally aims at reducing the storage space occupied by parameters (which typically translates
into network acceleration during inference), a key observation is that activations occupy much more
space than parameters in memory during backward pass, as they are required to compute weight
derivatives [2]. This state of facts motivates a new line of research, whose main objective is to
compress activation maps using methods inspired by the literature on weight compression. For
example, we mention the use of quantization [9], sparsification [22], a combination of both with
the addition of entropy encoding [12], or even the application of wavelet transform in combination
with quantization [10]. With the exception of Eliassen et al.’s work which accelerates training
runtime, most of these works focus on accelerating inference, in a similar way to traditional model
compression.

On-device Learning. Today’s typical pipeline for on-device AI consists of designing resource-
efficient deep neural networks [24], training them offline on target data, compressing them, and
deploying them for inference on the resource-constrained environment. Alongside the rapid commer-
cial expansion of the IoT field and the ubiquitous presence of embedded devices in our daily lives, AI
at the edge has naturally attracted a great deal of interest. However, recent research has shown that
real-world data often deviated from training data, resulting in poor predictive performance [40]. In
such a context, continual learning proved to be a strong candidate for ensuring ongoing adaptation
after deployment. Similar to the human learning process, it provides models with the ability to
adapt to new incoming tasks, ideally without falling into the trap of catastrophic forgetting (i.e.,
degrading performance on older tasks in favor of new ones) [11, 33, 19]. In this respect, the very
low memory and computing resources of extreme edge devices are an obstacle to the high cost of
backpropagation. Lin et al. have shown that this challenge can be overcome by selectively fine-tuning
a sub-graph of pre-trained networks on a general dataset [25]. Their work started a line of research
showing the possibility of improvement through careful selection of channels to be updated at training
time [23, 35]. However, none of these works addresses the computational cost of training a neuron,
which is related to both the cost of loading the necessary weights and activations into RAM.

Gradient Filtering. In their work, Yang et al. demonstrate that it is possible to significantly reduce
the memory and computational cost of full layer learning using a method called gradient filtering,
which reduces the number of unique elements in the gradient map [53]. In such a frame and with the
same specific objective, we propose to compress the activation maps by using tensor decomposition
to minimize the memory cost. We perform this while providing a strong guarantee on the signal loss:
unlike gradient filtering, we adaptively size the decomposed tensor to guarantee minimal information
loss. In the next section, we will illustrate our proposed approach.

3 Method

In this section, we motivate our compression proposal by exposing the major memory bottleneck
of backpropagation (Sec. 3.1). We then present our contribution which is the compression of
activation maps through two well-known low-rank decomposition strategies, namely Singular Values
Decomposition (SVD) and its tensor counterpart Higher Order SVD (HOSVD) (Sec. 3.2). In Sec. 3.3
we explore the induced changes to backpropagation calculation and in Sec. 3.4 we study the resulting
memory and computational complexity, alongside an evaluation of the error introduced. Our ultimate
goal here is to reduce the memory footprint of backpropagation (BP).

3



3.1 The Memory Bottleneck of Backpropagation

Following the formalism introduced in [2], we consider a simple convolutional neural network (CNN)
represented as a sequence of n convolutional layers (excluding the bias for simplicity):

F(X ) = (CWn
◦ CWn−1

◦ · · · ◦ CW2
◦ CW1

)(X ), (1)

where Wi ∈ RC′×C×D×D represents the filter parameters of the ith layer, with a kernel size of
D×D. This layer receives a C-channel input and produces an output with C ′ channels. For this layer,
we denote the input and output activation tensors as Ai ∈ RB×C×H×W and Ai+1 ∈ RB×C′×H′×W ′

,
respectively. Note that H and W denote the height and width of each element of the input, while
H ′ and W ′ denote the height and width of each element of the output, with B as the minibatch size.
The loss L is computed at the output of the network and backpropagated until the ith layer as ∂L

∂Ai+1
.

At this stage, the filter parameters are updated thanks to the computation of ∂L
∂Wi

and the loss is
propagated to the previous layer as ∂L

∂Ai
. The computation of these terms follows the chain rule:

∂L
∂Wi

=
∂L

∂Ai+1
· ∂Ai+1

∂Wi
= conv

(
Ai,

∂L
∂Ai+1

)
, (2)

∂L
∂Ai

=
∂L

∂Ai+1
· ∂Ai+1

∂Ai
= convfull

[
∂L

∂Ai+1
, rot(Wi)

]
, (3)

where conv(·) is the traditional convolution operation, convolving the kernel ∂L
∂Ai+1

with the input

Ai; while convfull(·) is the convolutional operation that naturally maps the input ∂L
∂Ai+1

to an output
with the same dimensions as Ai by using the 180◦ rotated kernel Wi.
From (2), it is clear that computing the weight derivatives requires to load input activation Ai and (3)
shows that the weights Wi must be loaded into memory to calculate activation derivatives. We obtain
the same conclusions for linear layers and provide the demonstration in Appendix A.2.

To save memory, two possibilities naturally emerge: either compressing the weights or compressing
the activation. Weight compression is an extensively explored matter for network acceleration and we
do not intend to further this area of research in this work. This leaves us with activation compression,
which is still a new domain of exploration, but shows great potential for prospectively enabling
on-device backpropagation. In such a regard, thanks to its strong theoretical grounding, tensor
decomposition stands as a promising approach.

3.2 Tensor Decomposition

We will present here first the general Singular Value Decomposition (SVD) approach, which is then
extended to a multidimensional variant (HOSVD), instrumental for our purposes.

SVD. Given a matrix A ∈ RM×N , applying SVD to A consists in a factorization of the form:

A = UΣV T , U ∈ RM×M , Σ ∈ RM×N , V ∈ RN×N , (4)

where Σ is a rectangular diagonal matrix composed of r singular values si∈[1,r] with r the rank of A.
From this, we can deduce the amount of overall variance σ2

i explained by the ith pair of SVD vectors
as σ2

i = s2i /
∑

j s
2
j .

Let us assume the singular values in Σ are ordered in descending order, si ≥ sj ,∀i ≤ j. Given a
desired threshold of cumulated explained variance ε ∈ [0, 1], it becomes easy to find the “truncation
threshold” which is the minimal K ∈ [1, r] such that

∑K
i=1 σ

2
i ≥ ε. We can then approximate A by

only selecting the K first columns of U and V and the K first singular values from Σ, according to:

Ã = U(K)Σ(K)V
T
(K), U(K) ∈ RM×K , Σ(K) ∈ RK×K , V(K) ∈ RN×K . (5)

Historically, SVD was the first example of tensor decomposition applied to neural network compres-
sion and acceleration [55] but applied to the model’s parameters [49]. We take the SVD decomposition
to the activation maps as one possible baseline to compare with more complex low-rank compression
solutions.
In the case of convolutional layer i, since SVD is designed for matrix decomposition, we will simply
reshape the activation Ai as matrix Ai of dimensions B × (CHW ). Given a desired level of ex-
plained variance ε, we obtain the decomposition described in (5). We then store in memory the terms

4



U(K)×Σ(K) and V T
(K), meaning that instead of storing Θspace(BCHW ) unique elements in memory,

we are only storing Θspace[K(B + CHW )] unique elements. Regarding linear layers, activations are
M ×N matrices, and applying SVD is much more straightforward, leading to the storage cost of
Θspace[K(M +N)] instead of Θspace(MN) elements. The larger the explained variance, the closer Ã
will be to A, intuitively allowing for better estimation when performing backpropagation. However,
this also means a larger K which results in a larger memory occupation. The goal is then to find an
efficient trade-off between the desired explained variance and compression rates.

HOSVD. By construction, SVD is designed for matrix decomposition. It was demonstrated that the
reshaping operation on tensors introduced structure information distortion, leading to sub-optimal
performance [49]. Other methods more suited for tensor decomposition such as Canonical-Polyadic
(CP) decomposition [20] or Tucker decomposition [43] were naturally introduced to tackle this issue.
Given a nth-order tensor T ∈ RM1×M2×···×Mn , its Tucker decomposition corresponds to:

T = S ×1 U
(1) ×2 U

(2) ×3 · · · ×n U (n), (6)

where S ∈ RL1×L2×···×Ln is the core tensor which can be viewed as a compressed version of T ,
U (j) ∈ RMj×Lj are the factor matrices and their columns correspond to the principal components
over the jth mode. The i-mode product “×i” of a nth-order tensor G ∈ RP1×P2×···×Pn and a matrix
B ∈ RQ×Pi is a nth-order tensor R ∈ RP1×···×Pi−1×Q×Pi+1×···×Pn which can be expressed as:

Rp1,...,pi−1,q,pi+1,...,pn
= G ×i Q =

Pi∑
pi=1

gp1,p2,...,pn
bq,pi

. (7)

In such a setup, Higher-Order SVD is a specific case of Tucker decomposition where the factor
matrices U (j) are orthogonal [44]. As a follow-up to SVD, we propose to compress activation tensors
through HOSVD, with the intuition that each dimension encodes a different variance, potentially
providing enhanced compression rates for equivalent performance and vice-versa. Similarly to
traditional SVD, we can truncate S and each U (j) along each mode given a desired level of explained
variance resulting in:

T̃ = Ŝ ×1 U
(1)
(K1)

×2 · · · ×n U
(n)
(Kn)

≈ T , (8)

where U
(j)
(Kj)

∈ RMj×Kj corresponds to the Kj first columns of U (j) and Ŝ ∈ RK1×···×Kn is the
truncated version of S . In the following section, we focus on HOSVD decomposition, more precisely
on the alterations induced to the backpropagation graph, the resulting compression and speedup ratio,
and the error bound. An equivalent analysis can be made for SVD.

3.3 Backpropagation with Compressed Activations

Prior works [13, 18] already demonstrated the possibility of performing backpropagation operations
in the decomposed space without relying on the recomposition of compressed tensors. In their work,
Kim et al. compress a 4th-order kernel tensor W ∈ RC′×C×D×D through Tucker decomposition
limited to mode 1 and 2:

W = W ′ ×1 U
(1) ×2 U

(2), W ′ ∈ RL1×L2×D×D, U (1) ∈ RC′×L1 , U (2) ∈ RC×L2 . (9)

Then, it is shown that the output is calculated through

Y = conv1×1{U (2), convD×D[W ′, conv1×1(U
(1),X )]}. (10)

Our problem is similar although with some fundamental differences linked to the need to reconstruct
gradients. A convolution operator is still required to compute the weight derivatives as introduced
in (2): we apply a specific case of Tucker to one of the two components, namely the activation Ai.
Following the same reasoning, we derive that the computation of ∂L

∂Wi
in (2) becomes:

∂L
∂Wi

= conv1×1

{
conv∗

[
conv1×1

(
conv1×1

(
Ŝ, U (3)

(K3)

)
, U

(4)
(K4)

)
, conv1×1

(
∂L

∂Ai+1
, U

(1)
(K1)

)]
, U

(2)
(K2)

}
,

(11)
where conv∗ is a 2D convolution with a specific kernel size as defined in (23), and U

(j)
(Kj)

is

the vertically padded version of U (j)
(Kj)

as defined in (19). Demonstration details are available in

5



5 10

K1 = K2 = K3 = K4

100

101

102

103

104

105

R
C

B = C = C’ = H = W = H’ = W’ = 16

B = C = C’ = H = W = H’ = W’ = 32

B = C = C’ = H = W = H’ = W’ = 64

B = C = C’ = H = W = H’ = W’ = 128

(a)

5 10

K1 = K2 = K3 = K4

100

101

102

103

R
S

B = C = C’ = H = W = H’ = W’ = 16

B = C = C’ = H = W = H’ = W’ = 32

B = C = C’ = H = W = H’ = W’ = 64

B = C = C’ = H = W = H’ = W’ = 128

(b)

0.00 0.25 0.50 0.75 1.00

ε

100

101

102

103

104

S
N
R
Ĩ

(c)

Figure 2: For a single convolutional layer with minibatch size B, (a) and (b) illustrate the predicted
changes in compression rate RC and speedup ratios RS as functions of Kj , when comparing HOSVD
with vanilla training, respectively. (c) shows the evolution of the SNR with retained variance ε.

Appendix A.3. This way, we can compute the approximated weight derivative without reconstructing
the activation, through the successive computation of simpler convolutions.

Fig. 1 illustrates our method. During training, the forward pass proceeds as usual, with one key
modification to memory management. Instead of keeping complete activation maps in memory, we
store only their principal components, which are derived from the decomposition process. During the
backward pass, the principal components are retrieved from memory and used for calculations as
described in (11).

3.4 Complexity and Error Analyis

Computational Speedup and Space Complexity. For simplicity we assume here that Ai+1 and
Ai have the same shape and that the truncation thresholds across all modes are equal for HOSVD,
i.e., K1 = K2 = K3 = K4. Considering different thresholding values, we can predict the relative
improvement of HOSVD to vanilla training in both space complexity (30) and computational speedup
(29), for a backward pass. As illustrated in Fig. 2a and Fig. 2b, our method is more effective for both
space complexity and latency for the backward pass when the truncation threshold decreases and the
activation size increases. More details are provided in Appendix A.4.
We hypothesize that the first components along each dimension are enough to encode most of the
variance, implying that with relatively low values of Kj , we can achieve good training performance.
We later empirically confirm this assumption in a variety of experimental setups (Sec. 4.2).

Signal to Noise Ratio. For simplicity, we rewrite in this paragraph ∂L
∂Wi

as ∆W , Ai as I and
∂L

∂Ai+1
as ∆Y . Regarding the error introduced by truncating I in order to retain the components

corresponding to a given level of explained variance ε ∈ [0, 1], we demonstrate that the energy
contained in the resulting gradient is equal to the energy contained in Ĩ. We note I,∆W and ∆Y
as the input activation, weight derivative, and output activation derivative in the frequency domain;
I[u, v], the spectrum value at frequency (u, v). Applying the discrete Fourier transformation to Ĩ
gives us Ĩ = εI , which we use to compute the signal to noise ratio SNRĨ :

SNRĨ =

∑
(u,v) I[u, v]

2∑
(I[u, v]− εI[u, v])2

=
1

(1− ε)2
. (12)

Similarly, in the frequency domain, as the convolutional operation becomes a regular multiplication,
∆W̃ becomes ∆W̃ = Ĩ∆Y = εI∆Y . As for (12), we obtain SNR∆W̃ = (1− ε)−2 = SNRĨ . A
visual representation is provided in Fig. 2c. Analytically, this confirms the idea that the closer ε is to
1, the larger the energy is transferred from the compressed input to the weight derivatives (for ε = 0.8
we have SNR∆W̃ = 25).
Additionally, in our setup since we are only compressing the activations and given (2) and (3), the
introduced error only transfers to the weight derivative for each layer. The activation derivatives
that are propagated from one layer to another are exact computations as they do not involve the

6



1 51 101 128
K1

0.6

0.8

1.0

E
xp

la
in

ed
V

ar
ia

n
ce

d
K

(ε=0.8)
1 =24

1st dimension

1 201 401 576
K2

0.4

0.6

0.8

1.0

E
xp

la
in

ed
V

ar
ia

n
ce

d

K
(ε=0.8)
2 =32

2nd dimension

Figure 3: Explained variance ε for the first two dimensions of the activation map in the 4th last layer
when fine-tuning the last four layers of MCUNet using HOSVD on CIFAR-10, following setup A.

activations. This means that the error introduced when compressing the activations at each layer does
not accumulate through the network.

4 Experiments

In this section, we describe the experiments conducted to support the claims presented in Sec. 3. First,
we introduce the setups used for our experiments (Sec. 4.1); then, we analyze the energy distribution
in the different dimensions of HOSVD, providing an overview of the typical values of K (Sec. 4.2);
finally, we test our algorithm in different setups, state-of-the-art architectures and datasets to evaluate
the tradeoff between accuracy and memory footprint (Sec. 4.3). Experiments were performed using a
NVIDIA RTX 3090Ti and the source code uses PyTorch 1.13.1.

4.1 Experimental setup

To validate our approach, we perform a variety of computer vision experiments split across two tasks,
classification and segmentation.
Classification. We explore two types of fine-tuning policies:

• Full fine-tuning (referred to as “setup A”): Following conventional fine-tuning trends, we
load models pre-trained on ImageNet [21] and we fine-tune them on a variety of downstream
datasets (CIFAR-10, CIFAR-100, CUB [46], Flowers [32] and Pets [54]).

• Half fine-tuning (referred to as “setup B”): Following Yang et al. approach, each classifica-
tion dataset (ImageNet, CIFAR-10/100) is split into two non-i.i.d. partitions of equal size
using the FedAvg [29] method. The partitions are then split as follows: 80% for training
and 20% for validation. The first partition is used for pretraining, and the second partition is
used for finetuning.

Semantic Segmentation. Similarly to the half fine-tuning method, we reproduce Yang et al. seg-
mentation setup: we fine-tune models pretrained on Cityscapes [6] by MMSegmentation [5]. Here
there is only one downstream dataset which is Pascal-VOC12 [3]. Experimental details for both tasks
(hyper-parameters, policy, etc.) are provided in Appendix B.2.

Memory Logging. For HOSVD and SVD, instead of focusing on compressing the tensor based on
rank, we control compression through the desired amount of retained information. As a consequence,
we cannot explicitly control the memory usage of the principal components. In the results presented
below, we will always include two columns displaying peak and average memory, along with their
standard deviations.

4.2 Explained Variance Evolution

In this section, we conduct experiments to fine-tune the last four convolutional layers of MCUNet [24]
following Setup A, and CIFAR-10 as the downstream dataset. Using HOSVD with ε set to 0.8, Fig. 3
shows the explained variance retained across dimension j as a function of Kj , where j = {1, 2}
corresponds to the two largest dimensions of the activation map. We define K

(ε=x)
j as the number of

principal components required to retain at least a fraction x of the explained variance.

7



101 102 103 104 105 106

Peak Activation Memory (kB)

50

55

60

65

70

75

80

85

90

T
op

1
V

al
id

at
io

n
A

cc
u

ra
cy

(%
)

18.87× smaller
in memory

19.11% higher
in accuracy

HOSVD ε = 0.8

SVD ε = 0.8

Gradient Filter R7

Gradient Filter R4

Gradient Filter R2

Vanilla training

Figure 5: Performance curves of an MCUNet pre-trained on ImageNet and finetuned on CIFAR-10
with different activation compression strategies.

0.70 0.74 0.78 0.82 0.86 0.90 0.94 0.98
ε

70.0

72.5

75.0

77.5

80.0

82.5

T
op

1
V

al
id

at
io

n
A

cc
u

ra
cy

(%
)

Top1 Validation Accuracy (%)

Peak mem (MB)

10−1

100

101

P
eak

m
em

(M
B

)

Figure 4: Behavior of top1 validation accuracy
and peak memory when applying HOSVD with
different explained variance thresholds ε when
finetuning the last four convolutional layers of an
MCUNet model using the CIFAR-10 dataset on
setup A.

We observe that along the largest dimensions
(batch size and number of channels), less than
20% of the components capture more than 80%
of the explained variance, confirming the as-
sumption proposed in Sec. 3.4. Additionally,
the curves observed present a logarithmic behav-
ior, hinting at the possibility of reaching high
explained variance with little loss regarding the
compression ratio. This is especially important
as the SNR transmitted to the weight deriva-
tives increases quadratically to the explained
variance (Fig. 2c). The results for the other lay-
ers are presented in Appendix B.3.
Fig. 4 illustrates the results of perform-
ing HOSVD with different explained variance
thresholds ε. The results are averaged over three
different random seeds. For ε smaller than 0.8,
we observe that as it increases, we achieve sig-
nificant gains in accuracy, along with impressive compression ratios. However, when ε exceeds
0.8, the accuracy growth starts slowing down. Above the 0.9 threshold, the exponential growth of
peak memory results in a worsened tradeoff between accuracy and compression ratio. Therefore, in
subsequent experiments presented in this paper, we will use ε values of 0.8 and 0.9.

4.3 Main Results

MCUNet on classification with setup A. In this experiment, we fine-tune on CIFAR-10 an MCUNet
pre-trained on ImageNet, with the number of finetuned layers increasing from 1 to 42 (all layers). We
compare vanilla training, and gradient filtering with patch sizes of 2, 4, and 7, SVD, and HOSVD
with an explained variance threshold of 0.8. For each method, we compare the effect of fine-tuning
different model depths. Fig. 5 presents the performance curves for our experiments, with the X-axis
representing activation memory in kiloBytes (kB) on a logarithmic scale and the Y-axis representing
the highest validation accuracy. Each marker indicates the number of convolutional layers finetuned.
For example, on the yellow curve representing the HOSVD method, the marker closest to the Y-axis
shows the result when finetuning the last convolutional layer, the next marker represents finetuning
the last two convolutional layers, and so on. The most effective method is the one whose performance
curve trends towards the upper-left corner of the plot.

8



Table 1: Experimental results on ImageNet-1k. “#Layers” refers to the number of fine-tuned
convolutional layers (counted from the end of the model). Activation memory consumption is shown
in MegaBytes (MB).

Method MobileNetV2 Method ResNet18
#Layers Acc ↑ Peak Mem (MB) ↓ Mean Mem (MB) ↓ #Layers Acc ↑ Peak Mem (MB) ↓ Mean Mem (MB) ↓

Vanilla
training

All 74.0 1651.84 1651.84 ± 0.00 Vanilla
training

All 72.8 532.88 532.88 ± 0.00
2 62.6 15.31 15.31 ± 0.00 2 69.9 12.25 12.25 ± 0.00
4 65.8 28.71 28.71 ± 0.00 4 71.5 30.63 30.63 ± 0.00

Gradient
Filter R2

2 62.6 5.00 5.00 ± 0.00 Gradient
Filter R2

2 68.7 4.00 4.00 ± 0.00
4 65.2 9.38 9.38 ± 0.00 4 69.3 7.00 7.00 ± 0.00

SVD
(ε = 0.8)

2 61.7 4.97 4.92 ± 0.08 SVD
(ε = 0.8)

2 69.5 7.88 7.71 ± 0.21
4 65.2 14.76 14.61 ± 0.09 4 71.1 19.98 19.72 ± 0.28

SVD
(ε = 0.9)

2 62.3 8.97 8.91 ± 0.08 SVD
(ε = 0.9)

2 69.7 9.86 9.77 ± 0.13
4 65.5 20.35 20.20 ± 0.07 4 71.3 24.81 24.66 ± 0.17

HOSVD
(ε = 0.8)

2 61.1 0.15 0.15 ± 0.00 HOSVD
(ε = 0.8)

2 69.2 0.97 0.91 ± 0.05
4 63.9 0.73 0.68 ± 0.03 4 70.5 2.89 2.74 ± 0.12

HOSVD
(ε = 0.9)

2 61.8 0.43 0.43 ± 0.01 HOSVD
(ε = 0.9)

2 69.5 2.73 2.63 ± 0.10
4 64.8 1.92 1.76 ± 0.08 4 71.1 7.96 7.66 ± 0.21

Method MCUNet Method ResNet34
#Layers Acc ↑ Peak Mem (MB) ↓ Mean Mem (MB) ↓ #Layers Acc ↑ Peak Mem (MB) ↓ Mean Mem (MB) ↓

Vanilla
training

All 67.4 632.98 632.98 ± 0.00 Vanilla
training

All 75.6 839.04 839.04 ± 0.00
2 62.1 13.78 13.78 ± 0.00 2 69.6 12.25 12.25 ± 0.00
4 64.7 19.52 19.52 ± 0.00 4 72.2 24.50 24.50 ± 0.00

Gradient
Filter R2

2 61.8 4.50 4.50 ± 0.00 Gradient
Filter R2

2 68.8 4.00 4.00 ± 0.00
4 64.4 6.38 6.38 ± 0.00 4 70.9 8.00 8.00 ± 0.00

SVD
(ε = 0.8)

2 62.0 7.62 7.51 ± 0.12 SVD
(ε = 0.8)

2 69.2 6.70 6.49 ± 0.29
4 64.5 10.59 10.37 ± 0.20 4 71.8 14.68 14.24 ± 0.50

SVD
(ε = 0.9)

2 62.1 10.32 10.26 ± 0.08 SVD
(ε = 0.9)

2 69.4 9.10 8.96 ± 0.23
4 64.6 14.39 14.26 ± 0.13 4 72.0 19.11 18.83 ± 0.37

HOSVD
(ε = 0.8)

2 61.7 0.48 0.43 ± 0.04 HOSVD
(ε = 0.8)

2 68.7 0.30 0.27 ± 0.02
4 63.9 0.88 0.78 ± 0.07 4 71.1 1.11 1.02 ± 0.07

HOSVD
(ε = 0.9)

2 62.0 1.32 1.27 ± 0.06 HOSVD
(ε = 0.9)

2 69.2 0.71 0.65 ± 0.05
4 64.4 2.52 2.36 ± 0.15 4 71.9 3.24 3.09 ± 0.13

We observe that as the number of finetuned layers increases, the gradient filtering accuracy increases
up to a certain point, and then deteriorates, whereas the accuracy for SVD, HOSVD, and vanilla
training keeps improving with additional layers, along a similar trend. Intuitively, gradient filtering
might propagate errors through the layers during training, while our HOSVD method keeps the
error introduced on each individual layer confined to that specific layer as demonstrated in Sec. 3.4.
Moreover, we observe that for identical depths, SVD accuracies consistently exceed HOSVD ones.
We hypothesize that this is due to HOSVD performing SVD across all modes of the tensor: it
potentially loses information in all modes, whereas SVD only loses information in one mode.
Compared to SVD, HOSVD significantly reduces memory, given equivalent accuracy levels (up to
18.87 times). Similarly, for equivalent memory usage, HOSVD yields greatly improved accuracy
compared to SVD (up to 19.11%). When compared to methods such as gradient filtering and vanilla
training, given an equivalent memory budget, HOSVD yields significantly higher accuracies. Notably,
fine-tuning all layers with HOSVD requires much less memory than fine-tuning only the last layer
with vanilla training, which is consistent with the theoretical compression ratio shown in Fig. 2a.
Additional experiments with setup A can be found in Appendix B.5.

ImageNet Classification with setup B. Table 1 presents the classification performance and memory
consumption for MobileNetV2 [37], ResNet18, and ResNet34 [15] models using various methods,
including vanilla training, gradient filtering, HOSVD, and SVD on the ImageNet dataset. We observe
in most cases that, for the same depth, SVD and HOSVD are competitive with the gradient filtering
method in terms of performance while reaching much lower activation memory with HOSVD.

Segmentation. Table 2 reports the segmentation performance and memory consumption for a variety
of architectures as presented in Yang et al.. In general, we observe that increasing the level of
explained variance from 0.8 to 0.9 substantially increases the performance with little trade-off on
retained activation memory. This further confirms that most of the explained variance is contained in
the first few components, allowing for efficient generalization with high compression rates.

5 Conclusion

In this work, we have addressed one of the main obstacles to on-device training. Inspired by traditional
low-rank optimization approaches, we propose to compress activation maps by tensor decomposition,
using HOSVD as a supporting example (Sec. 3.2). We demonstrate that the compression error
introduced is bounded and confined to each individual layer considered, validating our approach

9



Table 2: Experimental results for semantic segmentation. mIoU is the mean Intersection over Union,
and mAcc is the micro averaged accuracy.

Method PSPNet [57] Method PSPNet-M [57]
#Layers mIoU ↑ mAcc ↑ Peak Mem (MB) ↓ Mean Mem (MB) ↓ #Layers mIoU ↑ mAcc ↑ Peak Mem (MB) ↓ Mean Mem (MB) ↓

Vanilla
training

All 54.97 68.46 920.78 920.78 ± 0.00 Vanilla
training

All 48.92 62.11 2622.49 2622.49 ± 0.00
5 39.36 51.79 128.00 128.00 ± 0.00 5 36.22 46.31 104.00 104.00 ± 0.00
10 53.17 67.18 352.00 352.00 ± 0.00 10 45.62 58.35 604.00 604.00 ± 0.00

Gradient
Filter

5 39.34 51.59 8.00 8.00 ± 0.00 Gradient
Filter

5 35.73 45.78 6.50 6.50 ± 0.00
10 51.2 65.01 22.00 22.00 ± 0.00 10 44.89 57.38 37.75 37.75 ± 0.00

SVD
(ε = 0.8)

5 38.97 50.04 90.40 85.64 ± 2.80 SVD
(ε = 0.8)

5 34.98 44.48 58.50 57.17 ± 0.77
10 52.03 65.44 238.20 232.50 ± 4.71 10 44.73 56.83 377.68 369.24 ± 6.93

SVD
(ε = 0.9)

5 39.34 50.92 111.20 108.88 ± 1.43 SVD
(ε = 0.9)

5 35.51 45.51 78.65 78.65 ± 0.00
10 52.7 66.39 295.60 292.46 ± 2.50 10 45.79 58.97 482.00 475.17 ± 4.79

HOSVD
(ε = 0.8)

5 38.11 49.29 0.47 0.32 ± 0.08 HOSVD
(ε = 0.8)

5 33.40 42.50 0.03 0.03 ± 0.00
10 49.23 62.39 1.40 1.24 ± 0.08 10 40.06 51.79 1.47 1.30 ± 0.06

HOSVD
(ε = 0.9)

5 39.03 50.29 2.26 1.70 ± 0.30 HOSVD
(ε = 0.9)

5 34.09 43.69 0.07 0.07 ± 0.00
10 52.11 65.5 8.18 6.44 ± 0.49 10 44 56.9 8.20 6.16 ± 0.62

Method DLV3 [3] Method DLV3-M [3]
#Layers mIoU ↑ mAcc ↑ Peak Mem (MB) ↓ Mean Mem (MB) ↓ #Layers mIoU ↑ mAcc ↑ Peak Mem (MB) ↓ Mean Mem (MB) ↓

Vanilla
training

All 58.44 72.03 1128.02 1128.02 ± 0.00 Vanilla
training

All 55.87 69.47 2758.01 2758.01 ± 0.00
5 40.75 52.95 336.00 336.00 ± 0.00 5 38.38 49.61 240.00 240.00 ± 0.00
10 55.04 69.07 560.00 560.00 ± 0.00 10 47.91 61.67 620.00 620.00 ± 0.00

Gradient
Filter

5 32.18 42.93 27.47 27.47 ± 0.00 Gradient
Filter

5 35.7 46.71 20.71 20.71 ± 0.00
10 47.44 60.08 83.47 83.47 ± 0.00 10 45.4 58.97 65.62 65.62 ± 0.00

SVD
(ε = 0.8)

5 39.75 51.69 242.30 240.91 ± 0.77 SVD
(ε = 0.8)

5 36.78 47.15 169.00 166.87 ± 1.26
10 52.69 66.2 381.00 376.81 ± 3.02 10 46.22 57.82 374.13 366.76 ± 5.66

SVD
(ε = 0.9)

5 40.47 52.09 291.40 291.40 ± 0.00 SVD
(ε = 0.9)

5 37.59 48.24 204.50 200.69 ± 1.80
10 53.86 67.61 472.70 466.52 ± 4.71 10 47.4 59.4 493.88 485.56 ± 5.77

HOSVD
(ε = 0.8)

5 38.52 50.14 2.66 2.62 ± 0.01 HOSVD
(ε = 0.8)

5 35.55 45.64 0.63 0.55 ± 0.03
10 50.11 63.14 1.93 1.48 ± 0.14 10 42.68 54.17 1.04 0.96 ± 0.05

HOSVD
(ε = 0.9)

5 40.19 52.3 12.64 12.35 ± 0.10 HOSVD
(ε = 0.9)

5 37.06 47.73 4.56 4.16 ± 0.15
10 52.26 65.8 9.23 7.24 ± 0.63 10 45.75 57.61 5.52 4.79 ± 0.29

Method FCN [27] Method UPerNet [48]
#Layers mIoU ↑ mAcc ↑ Peak Mem (MB) ↓ Mean Mem (MB) ↓ #Layers mIoU ↑ mAcc ↑ Peak Mem (MB) ↓ Mean Mem (MB) ↓

Vanilla
training

All 45.36 59.53 952.00 952.00 ± 0.00 Vanilla
training

All 64.71 77.32 2168.78 2168.78 ± 0.00
5 27.31 38.21 288.00 288.00 ± 0.00 5 48.05 61.66 1380.00 1380.00 ± 0.00
10 43.54 57.96 480.00 480.00 ± 0.00 10 48.9 63.1 1436.00 1436.00 ± 0.00

Gradient
Filter

5 27.24 38.1 18.00 18.00 ± 0.00 Gradient
Filter

5 46.79 60.5 33.00 33.00 ± 0.00
10 36.91 50.14 120.00 120.00 ± 0.00 10 47.89 62.44 36.50 36.50 ± 0.00

SVD
(ε = 0.8)

5 28.62 38.42 196.30 191.41 ± 2.12 SVD
(ε = 0.8)

5 46.56 59.46 804.55 784.80 ± 17.28
10 34.60 45.71 316.70 288.37 ± 13.78 10 47.70 61.02 840.70 829.13 ± 5.39

SVD
(ε = 0.9)

5 31.92 42.35 251.50 245.40 ± 1.74 SVD
(ε = 0.9)

5 47.22 59.77 1078.38 1056.52 ± 14.42
10 42.04 54.53 406.20 396.14 ± 4.89 10 48.3 61.16 1126.50 1113.98 ± 11.49

HOSVD
(ε = 0.8)

5 26.34 36.14 1.43 1.26 ± 0.08 HOSVD
(ε = 0.8)

5 45.28 57.80 1.35 1.32 ± 0.02
10 30.91 41.19 3.77 2.54 ± 0.72 10 46.44 58.93 1.68 1.63 ± 0.03

HOSVD
(ε = 0.9)

5 30.46 41.12 8.10 6.99 ± 0.38 HOSVD
(ε = 0.9)

5 46.8 59.29 4.72 4.59 ± 0.10
10 39.89 52.11 17.57 14.28 ± 1.55 10 47.94 60.7 7.81 7.51 ± 0.12

through extensive experimentations. This work paves the way for a new line of research combining
the accumulated knowledge on tensor decomposition strategies and the recent field of on-device
learning.

Acknowledgements

Part of this work was funded by Hi!PARIS Center on Data Analytics and Artificial Intelligence, by
the European Union’s HORIZON Research and Innovation Programme under grant agreement No
101120657, project ENFIELD (European Lighthouse to Manifest Trustworthy and Green AI) and by
French National Research Agency (ANR-22-PEFT-0003 and ANR-22-PEFT-0007) as part of France
2030, the NF-NAI project and NF-FITNESS project.

10



References
[1] Toru Baji. Evolution of the gpu device widely used in ai and massive parallel processing. In

2018 IEEE 2nd Electron devices technology and manufacturing conference (EDTM), pages 7–9.
IEEE, 2018.

[2] Han Cai, Chuang Gan, Ligeng Zhu, and Song Han. Tinytl: Reduce memory, not parameters for
efficient on-device learning. Advances in Neural Information Processing Systems, 33:11285–
11297, 2020.

[3] Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Rethinking atrous
convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587, 2017.

[4] Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. A survey of model compression and
acceleration for deep neural networks. arXiv preprint arXiv:1710.09282, 2017.

[5] MMSegmentation Contributors. Mmsegmentation: Openmmlab semantic segmentation toolbox
and benchmark, 2020.

[6] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic
urban scene understanding. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 3213–3223, 2016.

[7] Lei Deng, Guoqi Li, Song Han, Luping Shi, and Yuan Xie. Model compression and hardware
acceleration for neural networks: A comprehensive survey. Proceedings of the IEEE, 108(4):485–
532, 2020.

[8] Li Deng, Geoffrey Hinton, and Brian Kingsbury. New types of deep neural network learning
for speech recognition and related applications: An overview. In 2013 IEEE international
conference on acoustics, speech and signal processing, pages 8599–8603. IEEE, 2013.

[9] Sebastian Eliassen and Raghavendra Selvan. Activation compression of graph neural networks
using block-wise quantization with improved variance minimization. In ICASSP 2024 - 2024
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
7430–7434, 2024.

[10] Shahaf E. Finder, Yair Zohav, Maor Ashkenazi, and Eran Treister. Wavelet feature maps
compression for image-to-image cnns. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave,
K. Cho, and A. Oh, editors, Advances in Neural Information Processing Systems, volume 35,
pages 20592–20606. Curran Associates, Inc., 2022.

[11] Robert M. French. Catastrophic interference in connectionist networks: Can it be predicted,
can it be prevented? In Proceedings of the 6th International Conference on Neural Information
Processing Systems. Morgan Kaufmann Publishers Inc., 1993.

[12] Georgios Georgiadis. Accelerating convolutional neural networks via activation map compres-
sion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 7085–7095, 2019.

[13] Marawan Gamal Abdel Hameed, Marzieh S Tahaei, Ali Mosleh, and Vahid Partovi Nia. Con-
volutional neural network compression through generalized kronecker product decomposition.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pages 771–779,
2022.

[14] Tyler L Hayes and Christopher Kanan. Online continual learning for embedded devices. arXiv
preprint arXiv:2203.10681, 2022.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[16] Geoffrey Hinton. The forward-forward algorithm: Some preliminary investigations. arXiv
preprint arXiv:2212.13345, 2022.

11



[17] Ozlem Durmaz Incel and Sevda Ozge Bursa. On-device deep learning for mobile and wearable
sensing applications: A review. IEEE Sensors Journal, 2023.

[18] Yong-Deok Kim, Eunhyeok Park, Sungjoo Yoo, Taelim Choi, Lu Yang, and Dongjun Shin.
Compression of deep convolutional neural networks for fast and low power mobile applications.
arXiv preprint arXiv:1511.06530, 2015.

[19] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, An-
drei A. Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis
Hassabis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic
forgetting in neural networks. Proceedings of the National Academy of Sciences, 114, 2017.

[20] Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM review,
51(3):455–500, 2009.

[21] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. Advances in neural information processing systems, 25, 2012.

[22] Mark Kurtz, Justin Kopinsky, Rati Gelashvili, Alexander Matveev, John Carr, Michael Goin,
William Leiserson, Sage Moore, Nir Shavit, and Dan Alistarh. Inducing and exploiting acti-
vation sparsity for fast inference on deep neural networks. In Hal Daumé III and Aarti Singh,
editors, Proceedings of the 37th International Conference on Machine Learning, volume 119 of
Proceedings of Machine Learning Research, pages 5533–5543. PMLR, 13–18 Jul 2020.

[23] Young D Kwon, Rui Li, Stylianos I Venieris, Jagmohan Chauhan, Nicholas D Lane, and
Cecilia Mascolo. Tinytrain: Deep neural network training at the extreme edge. arXiv preprint
arXiv:2307.09988, 2023.

[24] Ji Lin, Wei-Ming Chen, Yujun Lin, john cohn, Chuang Gan, and Song Han. Mcunet: Tiny deep
learning on iot devices. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin,
editors, Advances in Neural Information Processing Systems, volume 33, pages 11711–11722.
Curran Associates, Inc., 2020.

[25] Ji Lin, Ligeng Zhu, Wei-Ming Chen, Wei-Chen Wang, Chuang Gan, and Song Han. On-device
training under 256kb memory. Advances in Neural Information Processing Systems, 35, 2022.

[26] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings
of the IEEE/CVF international conference on computer vision, pages 10012–10022, 2021.

[27] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for se-
mantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 3431–3440, 2015.

[28] Ivan Markovsky. Structured low-rank approximation and its applications. Automatica, 44(4):891–
909, 2008.

[29] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial
intelligence and statistics, pages 1273–1282. PMLR, 2017.

[30] Shervin Minaee, Yuri Boykov, Fatih Porikli, Antonio Plaza, Nasser Kehtarnavaz, and Demetri
Terzopoulos. Image segmentation using deep learning: A survey. IEEE transactions on pattern
analysis and machine intelligence, 44(7):3523–3542, 2021.

[31] Ali Bou Nassif, Ismail Shahin, Imtinan Attili, Mohammad Azzeh, and Khaled Shaalan. Speech
recognition using deep neural networks: A systematic review. IEEE access, 7:19143–19165,
2019.

[32] Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large
number of classes. In Indian Conference on Computer Vision, Graphics and Image Processing,
2008.

12



[33] German I. Parisi, Ronald Kemker, Jose L. Part, Christopher Kanan, and Stefan Wermter.
Continual lifelong learning with neural networks: A review. Neural Netw., 113, 2019.

[34] Danilo Pietro Pau and Fabrizio Maria Aymone. Suitability of forward-forward and pepita
learning to mlcommons-tiny benchmarks. In 2023 IEEE International Conference on Omni-
layer Intelligent Systems (COINS), 2023.

[35] Aël Quélennec, Enzo Tartaglione, Pavlo Mozharovskyi, and Van-Tam Nguyen. Towards on-
device learning on the edge: Ways to select neurons to update under a budget constraint. In
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pages
685–694, 2024.

[36] Berkman Sahiner, Weijie Chen, Ravi K Samala, and Nicholas Petrick. Data drift in medical
machine learning: implications and potential remedies. The British Journal of Radiology,
96(1150):20220878, 2023.

[37] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.
Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 4510–4520, 2018.

[38] Jaime Sevilla, Lennart Heim, Anson Ho, Tamay Besiroglu, Marius Hobbhahn, and Pablo
Villalobos. Compute trends across three eras of machine learning. In 2022 International Joint
Conference on Neural Networks (IJCNN), pages 1–8. IEEE, 2022.

[39] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[40] Gabriele Spadaro, Riccardo Renzulli, Andrea Bragagnolo, Jhony H Giraldo, Attilio Fiandrotti,
Marco Grangetto, and Enzo Tartaglione. Shannon strikes again! entropy-based pruning in
deep neural networks for transfer learning under extreme memory and computation budgets. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023.

[41] Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for
deep learning in nlp. arXiv preprint arXiv:1906.02243, 2019.

[42] Ian Tenney, Dipanjan Das, and Ellie Pavlick. Bert rediscovers the classical nlp pipeline. arXiv
preprint arXiv:1905.05950, 2019.

[43] Ledyard R Tucker. Some mathematical notes on three-mode factor analysis. Psychometrika,
31(3):279–311, 1966.

[44] M Alex O Vasilescu and Demetri Terzopoulos. Multilinear subspace analysis of image ensem-
bles. In 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
2003. Proceedings., volume 2, pages II–93. IEEE, 2003.

[45] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[46] Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The
caltech-ucsd birds-200-2011 dataset, 2011.

[47] Fei-Yue Wang, Jun Jason Zhang, Xinhu Zheng, Xiao Wang, Yong Yuan, Xiaoxiao Dai, Jie
Zhang, and Liuqing Yang. Where does alphago go: From church-turing thesis to alphago thesis
and beyond. IEEE/CAA Journal of Automatica Sinica, 3(2):113–120, 2016.

[48] Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and Jian Sun. Unified perceptual parsing
for scene understanding. In Proceedings of the European conference on computer vision
(ECCV), pages 418–434, 2018.

[49] Ou Xinwei, Chen Zhangxin, Zhu Ce, and Liu Yipeng. Low rank optimization for efficient deep
learning: Making a balance between compact architecture and fast training. Journal of Systems
Engineering and Electronics, 2023.

13



[50] Jian Xue, Jinyu Li, and Yifan Gong. Restructuring of deep neural network acoustic models with
singular value decomposition. In Interspeech, pages 2365–2369, 2013.

[51] Junhuan Yang, Yi Sheng, Yuzhou Zhang, Weiwen Jiang, and Lei Yang. On-device unsupervised
image segmentation. arXiv preprint arXiv:2303.12753, 2023.

[52] Yuedong Yang, Hung-Yueh Chiang, Guihong Li, Diana Marculescu, and Radu Marculescu.
Efficient low-rank backpropagation for vision transformer adaptation. In Proceedings of the
37th International Conference on Neural Information Processing Systems, pages 14725–14736,
2023.

[53] Yuedong Yang, Guihong Li, and Radu Marculescu. Efficient on-device training via gradi-
ent filtering. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3811–3820, 2023.

[54] Hui Zhang, Shenglong Zhou, Geoffrey Ye Li, and Naihua Xiu. 0/1 deep neural networks via
block coordinate descent. arXiv preprint arXiv:2206.09379, 2022.

[55] Xiangyu Zhang, Jianhua Zou, Kaiming He, and Jian Sun. Accelerating very deep convolutional
networks for classification and detection. IEEE transactions on pattern analysis and machine
intelligence, 38(10):1943–1955, 2015.

[56] Hengling Zhao, Yipeng Liu, Xiaolin Huang, and Ce Zhu. Semi-tensor product-based tensorde-
composition for neural network compression. arXiv preprint arXiv:2109.15200, 2021.

[57] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia. Pyramid scene
parsing network. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 2881–2890, 2017.

14



A Additional Theoretical Details

A.1 Forward pass Vs. Backward pass

We consider the same notations introduced in Sec. 3.1. Regarding the training of a convolutional
layer:

• There is one convolution operation in each forward pass with a computational complexity of
ΘFLOPS(D

2CC ′BH ′W ′)

• In each backward pass, there are two convolution operations, corresponding to formu-
las (2) and (3), and one weight update operation, with computational complexities of
ΘFLOPS(D

2CC ′BH ′W ′), ΘFLOPS(D
2CC ′BHW ) and ΘFLOPS(D

2CC ′), respectively.

From this, we can calculate the ratio of computational complexity between forward and backward
pass RFLOPs as follows:

RFLOPs =
D2CC ′BH ′W ′

D2CC ′BH ′W ′ +D2CC ′BHW +D2CC ′ . (13)

It is evident that RFLOPs is always smaller than one, indicating that the backward pass is always more
computationally intensive than the forward pass.

A.2 Backpropagation Derivatives in Linear Layers

With the same notations introduced in Sec. 3.1 but in the case of a linear neural network represented
as a sequence of n linear layers:

F(X) = (FWn
◦ FWn−1

◦ · · · ◦ FW2
◦ FW1

)(X), (14)

where Wi ∈ RO×I corresponds to parameters matrix of the ith layer. This layer receives an I-feature
input Ai ∈ RB×I with minibatch size B to produce an O-feature output Ai+1 ∈ RB×O. The
derivatives in that setup become:

∂L
∂Wi

=
∂L

∂Ai+1
· ∂Ai+1

∂Wi
= AT

i · ∂L
∂Ai+1

, (15)

∂L
∂Ai

=
∂L

∂Ai+1
· ∂Ai+1

∂Ai
= WT

i · ∂L
∂Ai+1

. (16)

The same conclusions as for convolutional layers can naturally be derived from these equations
for linear layers, namely that activations and weights occupy most of the space in memory when
performing backpropagation.

A.3 Details of Backpropagation with Decomposed Activation Tensors

Since the convolution operation involves other variables such as stride, dilation, and groups, we
provide a more precise description by rewriting in (2), ∂L

∂Wi
as ∆W ∈ RNout×C×D×D, Ai as

I ∈ RB×C×H×W and ∂L
∂Ai+1

as ∆Y ∈ RB×C′×H′×W ′
which gives us:

15



∆Wc′g,c,k,l
=

B∑
b=1

H′∑
h′=1

W ′∑
w′=1

Ib,cg,h,w
∆Yb,c′g,h

′,w′ ,

where:

h = h′ × Stride + k × Dilation,

w = w′ × Stride + l × Dilation,

Nout =

⌊
Groups
C ′

⌋
,

Nin =

⌊
Groups

C

⌋
,

c′g = g ×Nout + c′,

cg = g ×Nin + c,

c′ ∈ [1, Nout],

c ∈ [1, Nin],

g ∈ [1,Groups],
k and l ∈ [1, D],

I is the padded input.

(17)

In our case, before being saved in memory, I is decomposed and compressed through truncated
HOSVD as presented in (8):

Ĩb,cg,h,w =

K1∑
k1=1

K2∑
k2=1

K3∑
k3=1

K4∑
k4=1

Ŝk1,k2,k3,k4
×U

(1)
(K1)b,k1

×U
(2)
(K2)cg,k2

×U
(3)
(K3)h,k3

×U
(4)
(K4)w,k4

. (18)

Therefore, in the backward pass, its padded version can be restored using the following formula:

Ĩb,cg,h,w
=

K1∑
k1=1

K2∑
k2=1

K3∑
k3=1

K4∑
k4=1

Ŝk1,k2,k3,k4
×U

(1)
(K1)b,k1

×U
(2)
(K2)cg,k2

×U
(3)
(K3)h,k3

×U
(4)
(K4)w,k4

, (19)

where, U (3)
(K3)

and U
(4)
(K4)

are U
(3)
(K3)

and U
(4)
(K4)

with vertical padding (top and bottom edges only),
respectively. Then, we substitute (19) into (17) which gives us, after reordering and grouping:

Z(1)
k1,c′g,h

′,w′ =

B∑
b=1

∆Yb,c′g,h
′,w′U

(1)
(K1)b,k1

, (20)

Z(2)
k1,k2,h,k4

=

K3∑
k3=1

Ŝk1,k2,k3,k4
U

(3)
(K3)h,k3

, (21)

Z(3)
k1,k2,h,w

=

K4∑
k4=1

Z
(2)
k1,k2,h,k4

U
(4)
(K4)w,k4

, (22)

Z(4)
c′g,k2,k,l

=

H′∑
h′=1

W ′∑
w′=1

K1∑
k1=1

Z
(3)
k1,k2,h,w

Z
(1)
k1,c′g,h

′,w′ , (23)

∆Wc′g,c,k,l
=

K2∑
k2=1

Z
(4)
c′g,k2,k,l

U
(2)
(K2)cg,k2

. (24)

Computing (20), (21), (22) and (24) corresponds to performing 1× 1 convolutions while (23) is a
H ′ ×W ′ convolution, resulting in (11).

16



A.4 Details of Overhead, Computational Speedup and Space Complexity

Following the notations introduced in the main paper, we propose in this section to analitically study
the overhead introduced in the forward pass when performing HOSVD compression, the speedup of
efficient weight derivative computation and the required space to store the compressed activations.

1 16 32 64 128

B = C = H = W = C ′

103

106

109

1012

1015

F
or

w
ar

d
p

as
s

F
L

O
P

s

HOSVD

Vanilla training

Figure 6: Predicted evolution of FLOPs for the
forward pass of both vanilla training and HOSVD.

Overhead. During the forward pass, the over-
head of activation compression is the compu-
tational complexity of performing the tensor
decomposition, which can be calculated as fol-
lows:
The computational complexity of SVD for a ma-
trix of size m×n with m ≥ n is ΘFLOPS(m

2n).
HOSVD essentially performs SVD on each
mode of the tensor. During the forward pass,
for each convolution layer, given an activation
map of size B × C × H × W , HOSVD in-
volves performing SVD on four matrices of
sizes B × CHW , C × BHW , H × BCW ,
and W ×BCH . Therefore, the computational
complexity for decomposition in the forward
pass is:

FLOPsoverhead = ΘFLOPS

(
max(B,CHW )2 ×min(B,CHW ) + max(C,BHW )2 ×min(C,BHW )+

max(H,BCW )2 ×min(H,BCW ) + max(W,BCH)2 ×min(W,BCH)
)
.

(25)
Additionally, the amount of FLOPs that vanilla training requires to perform the forward pass is:

FLOPsVanilla = D2CC ′BHW. (26)

From this, the total FLOPs that HOSVD requires is:

FLOPsHOSVD = ΘFLOPS

(
max(B,CHW )2 ×min(B,CHW ) + max(C,BHW )2 ×min(C,BHW )+

max(H,BCW )2 ×min(H,BCW ) + max(W,BCH)2 ×min(W,BCH)
)
+D2CC ′BHW.

(27)
Based on these calculations, we represent in Fig. 6 the evolution of FLOPs in the forward pass for
both vanilla training and HOSVD, showing that our method results in an increased latency in the
forward pass.
Speedup. The key difference between HOSVD and Vanilla BP lies in computing ∆W .
For Vanilla BP, the cost of computing ∆W is ΘFLOPS(D

2CC ′BH ′W ′).
Whereas our method involves:

Computing Z(1) : ΘFLOPS(K1C
′H ′W ′B),

Computing Z(2) : ΘFLOPS(K1K2HK4K3),

Computing Z(3) : ΘFLOPS(K1K2HK4K3 +K1K2HWK4),

Computing Z(4) : ΘFLOPS(K1C
′H ′W ′B +K1K2HK4K3 +K1K2HWK4 + C ′K2D

2H ′W ′K1).

Therefore, the complexity for computing ∆W with our efficient reconstruction is:

ΘFLOPS(K1C
′H ′W ′B+K1K2HK4K3+K1K2HWK4+C ′K2D

2H ′W ′K1+C ′CD2K2). (28)

We thus deduce the speedup ratio RS for the backward pass, between vanilla training and HOSVD
(results represented in Fig. 2b):

RS = D2CC′BH′W ′

K1C′H′W ′B+K1K2HK4K3+K1K2HWK4+C′K2D2H′W ′K1+C′CD2K2
.

(29)
Space Complexity. For vanilla training, storing Ai correspond to the storage of Θspace(BCHW )
elements.

17



For HOSVD, instead of storing the entire tensor, we store its truncated principal components: S̃,
U

(1)
(K1)

, U (2)
(K2)

, U (3)
(K3)

, and U
(4)
(K4)

, which corresponds to a total of Θspace(K1K2K3K4 + BK1 +

CK2 +HK3 +WK4) elements.
Thus, we obtain the storage complexity ratio RC as follows (results represented in Fig. 2a):

RC =
BCHW

K1K2K3K4 +BK1 + CK2 +HK3 +WK4
. (30)

B Additional Experimental Details

B.1 Variance of Different Runs

We conducted classification experiments using MCUNet with setup A, fine-tuning on CIFAR-10,
and segmentation experiments using the DeepLabV3 checkpoint provided by [53], fine-tuning on
the augmented Pascal-VOC12 dataset. Both experiments employed three different random seeds
(233, 234, and 235). The results, presented in Table 3 and Table 4, indicate no significant variation in
performance across the different random seeds. Therefore, for subsequent experiments, we used a
single random seed, 233.

Table 3: Classification with MCUNet on different random seeds.
#Layers Vanilla training Gradient Filter R2 Gradient Filter R4 Gradient Filter R7 SVD (ε = 0.8) HOSVD (ε = 0.8)

2 71.82±0.36 70.75±0.19 87.68±0.01 70.42±0.18 66.84±0.18 65.46±0.09
4 83.15±0.19 82.19±0.11 89.54±0.03 80.98±0.06 80.79±0.04 77.22±0.03

Table 4: Segmentation with DeepLabV3 on different random seeds.
Method #Layers mIoU mAcc

HOSVD (ε = 0.8) 5 38.62±0.01 50.41±0.06
10 50.33±0.05 63.39±0.05

SVD (ε = 0.8) 5 39.71±0.00 51.39±0.07
10 52.47±0.04 66.09±0.01

B.2 Detailed Experimental Setup

ImageNet Classification. In this setup, we use a similar finetuning policy to [53]. Specifically,
we finetune the checkpoints for 90 epochs with L2 gradient clipping with a threshold of 2.0. We
use SGD with a weight decay of 1× 10−4 and a momentum of 0.9. The data is randomly resized,
randomly flipped, normalized, and divided into batches of 64 elements. We use cross-entropy as the
loss function. The difference from their setup lies in the initial learning rate value after the warm-up
epochs: in our case, the learning rate increases linearly over 4 warm-up epochs up to 0.005 (while
in [53] it is 0.05). After this, similarly to their approach, the learning rate decays according to the
cosine annealing method in the following epochs.

Other dataset finetuning. We use the same set of hyperparameters as described in [53] for both
setup A and setup B. For training, we use cross-entropy loss with the SGD optimizer. The learning
rate starts at 0.05 and decays according to the cosine annealing method. Momentum is set to 0, and
weight decay is set to 1× 10−4. We apply L2 gradient clipping with a threshold of 2.0.

For setup B, batch normalization layers are fused with convolutional layers before training, a common
technique for accelerating inference. We set the batch size to 128 and normalized the data before
feeding it to the model.

Semantic Segmentation. Following the policy outlined in [53], we utilized the pretrained and
calibrated checkpoints provided by the authors for our experiments. The models were pretrained on
Cityscapes using MMSegmentation, then we finetuned them on the augmented Pascal-VOC12 dataset.
The optimizer’s learning rate starts at 0.01 and decays according to the cosine annealing schedule
during training. Additionally, we set the weight decay to 5× 10−4 and momentum to 0.9. The batch
size is set to 8. For data augmentation, we randomly crop, flip, apply photometric distortions, and
normalize the images. Cross-entropy is used as the loss function. Models are finetuned for 20, 000
steps.

18



B.3 Additional Explained Variance Evolution Results

1 51 101 128
K1

0.94

0.96

0.98

1.00

E
xp

la
in

ed
V

ar
ia

n
ce

d

K
(ε=0.8)
1 =1

K
(ε=0.9)
1 =1

1st dimension

1 201 384
K2

0.90

0.95

1.00

E
xp

la
in

ed
V

ar
ia

n
ce

d

K
(ε=0.8)
2 =1

K
(ε=0.9)
2 =2

2nd dimension

1 3 5 77
K3

0.96

0.98

1.00

E
xp

la
in

ed
V

ar
ia

n
ce

d

K
(ε=0.8)
3 =1

K
(ε=0.9)
3 =1

3rd dimension

1 3 5 77
K4

0.98

1.00

E
xp

la
in

ed
V

ar
ia

n
ce

d

K
(ε=0.8)
4 =1

K
(ε=0.9)
4 =1

4th dimension

(a) Last Layer.

1 51 101 128
K1

0.6

0.8

1.0

E
xp

la
in

ed
V

ar
ia

n
ce

d

K
(ε=0.8)
1 =36

K
(ε=0.9)
1 =67

1st dimension

1 51 96
K2

0.4

0.6

0.8

1.0

E
xp

la
in

ed
V

ar
ia

n
ce

d

K
(ε=0.8)
2 =21

K
(ε=0.9)
2 =39

2nd dimension

1 3 5 77
K3

0.6

0.8

1.0

E
xp

la
in

ed
V

ar
ia

n
ce

d

K
(ε=0.8)
3 =3

K
(ε=0.9)
3 =5

3rd dimension

1 3 5 77
K4

0.8

1.0

E
xp

la
in

ed
V

ar
ia

n
ce

d

K
(ε=0.8)
4 =3

K
(ε=0.9)
4 =4

4th dimension

(b) 2nd Last Layer.

1 51 101 128
K1

0.7

0.8

0.9

1.0

E
xp

la
in

ed
V

ar
ia

n
ce

d

K
(ε=0.8)
1 =22

K
(ε=0.9)
1 =57

1st dimension

1 201 401 576
K2

0.6

0.8

1.0

E
xp

la
in

ed
V

ar
ia

n
ce

d

K
(ε=0.8)
2 =17

K
(ε=0.9)
2 =50

2nd dimension

1 3 5 77
K3

0.8

1.0

E
xp

la
in

ed
V

ar
ia

n
ce

d

K
(ε=0.8)
3 =3

K
(ε=0.9)
3 =4

3rd dimension

1 3 5 77
K4

0.7

0.8

0.9

1.0

E
xp

la
in

ed
V

ar
ia

n
ce

d

K
(ε=0.8)
4 =2

K
(ε=0.9)
4 =4

4th dimension

(c) 3rd Last Layer.

1 51 101 128
K1

0.6

0.8

1.0

E
xp

la
in

ed
V

ar
ia

n
ce

d

K
(ε=0.8)
1 =24

K
(ε=0.9)
1 =58

1st dimension

1 201 401 576
K2

0.4

0.6

0.8

1.0

E
xp

la
in

ed
V

ar
ia

n
ce

d

K
(ε=0.8)
2 =32

K
(ε=0.9)
2 =83

2nd dimension

1 3 5 77
K3

0.6

0.8

1.0

E
xp

la
in

ed
V

ar
ia

n
ce

d

K
(ε=0.8)
3 =3

K
(ε=0.9)
3 =4

3rd dimension

1 3 5 77
K4

0.8

0.9

1.0

E
xp

la
in

ed
V

ar
ia

n
ce

d

K
(ε=0.8)
4 =2

K
(ε=0.9)
4 =3

4th dimension

(d) 4th Last Layer.

Figure 7: Kj and variance for each of the last four layers of an MCUNet when fine-tuning them using
HOSVD on CIFAR-10 following setup A.

As anticipated in Sec. 4.2, Fig. 7 presents the explained variance as a function of Kj at the jth

dimension of the four fine-tuned layers of MCUNet. We observe that in the first two dimensions,
which are also the largest, more than 80% of the tensor’s energy is concentrated within the first 30%
of the principal components.

With the same experiment, Fig. 8 shows that Kj tends to gradually increase after each training epoch,
then peaks and begins to decline. Intuitively, at the beginning, the activation map energy is mainly
concentrated in the few first components. As training progresses, this energy starts to spread out to
other components, leading to an increase in the value of Kj . Over time, the model learns how to
efficiently condense the energy, leading to a gradual decrease in Kj . This instability in Kj throughout
the training process is why we had to log memory as described in Section 4.1.

19



1 21 41 50
Epoch

0.95

1.00

1.05

K
1

1st dimension
ε = 0.8

ε = 0.9

1 21 41 50
Epoch

1.0

1.5

2.0

K
2

2nd dimension

ε = 0.8

ε = 0.9

1 21 41 50
Epoch

0.95

1.00

1.05

K
3

3rd dimension
ε = 0.8

ε = 0.9

1 21 41 50
Epoch

0.95

1.00

1.05

K
4

4th dimension
ε = 0.8

ε = 0.9

(a) Last Layer.

1 21 41 50
Epoch

0

20

40

60

K
1

1st dimension

ε = 0.8

ε = 0.9

1 21 41 50
Epoch

20

40

K
2

2nd dimension

ε = 0.8

ε = 0.9

1 21 41 50
Epoch

2

4

K
3

3rd dimension

ε = 0.8

ε = 0.9

1 21 41 50
Epoch

1

2

3

4

K
4

4th dimension

ε = 0.8

ε = 0.9

(b) 2nd Last Layer.

1 21 41 50
Epoch

20

40

60

K
1

1st dimension

ε = 0.8

ε = 0.9

1 21 41 50
Epoch

20

40

60

K
2

2nd dimension

ε = 0.8

ε = 0.9

1 21 41 50
Epoch

2

3

4

K
3

3rd dimension

ε = 0.8

ε = 0.9

1 21 41 50
Epoch

2

3

4

K
4

4th dimension

ε = 0.8

ε = 0.9

(c) 3rd Last Layer.

1 21 41 50
Epoch

0

20

40

60

K
1

1st dimension

ε = 0.8

ε = 0.9

1 21 41 50
Epoch

0

50

100

K
2

2nd dimension

ε = 0.8

ε = 0.9

1 21 41 50
Epoch

2

4

K
3

3rd dimension
ε = 0.8

ε = 0.9

1 21 41 50
Epoch

1

2

3

K
4

4th dimension

ε = 0.8

ε = 0.9

(d) 4th Last Layer.

Figure 8: Behavior of Kj during training for each of the last four layers of an MCUNet when
fine-tuning them using HOSVD on CIFAR-10 dataset following setup A with two different values of
ε.

B.4 Processing Time Results

This section presents latency comparisons between vanilla training and HOSVD. We conducted the
experiments using MCUNet on a single batch of CIFAR-10 dataset with setup A and for one epoch
only.

Fig. 9 compares the execution time of the forward, backward, and total training processes between
vanilla training and HOSVD. It can be observed that the backward processing time of HOSVD is tens
of times lower than vanilla training, but the forward time is up to a thousand times higher. As a result,
when considering the total training time (the sum of forward and backward), HOSVD is on average
4.29 times slower than vanilla training. This outcome is entirely expected, as the decomposition
process introduces an overhead, as predicted and described in Fig. 6 and Appendix A.4.

20



1 2 3 4 5 6 7 8 9 10

#Layers

10−3

10−2

10−1

100

F
or

w
ar

d
T

im
e

(s
)

Vanilla training

HOSVD

(a)

1 2 3 4 5 6 7 8 9 10

#Layers

10−2

10−1

100

B
ac

kw
ar

d
T

im
e

(s
)

Vanilla training

HOSVD

(b)

1 2 3 4 5 6 7 8 9 10

#Layers

10−1

100

T
ot

al
T

im
e

(s
)

×13.33

×2.48
×4.29 in
average

Vanilla training

HOSVD

(c)

Figure 9: (a), (b), and (c) represent the time in seconds taken by the algorithm to respectively perform
Forward, Backward, and the total training process, when fine-tuning an MCUNet on one batch of
CIFAR-10 with Setup A across 1 to 10 layers.

Table 5: More results with setup A.
Model Method #Layers

CUB200 Flowers102 Pets CIFAR-10 CIFAR-100

Acc ↑ Peak
Mem (MB)↓

Mean
Mem (MB)↓ Acc ↑ Peak

Mem (MB)↓
Mean

Mem (MB)↓ Acc ↑ Peak
Mem (MB)↓

Mean
Mem (MB)↓ Acc ↑ Peak

Mem (MB)↓
Mean

Mem (MB)↓ Acc ↑ Peak
Mem (MB)↓

Mean
Mem (MB)↓

MobileNetV2

Vanilla
training

All 52.9 3303.67 3303.67 ± 0.00 80.7 3303.67 3303.67 ± 0.00 89.8 3303.67 3303.67 ± 0.00 95.3 3303.67 3303.67 ± 0.00 77.9 3303.67 3303.67 ± 0.00
2 48.4 30.63 30.63 ± 0.00 80.5 30.63 30.63 ± 0.00 88.4 30.63 30.63 ± 0.00 88.1 30.63 30.63 ± 0.00 64.7 30.63 30.63 ± 0.00
4 53.1 57.42 57.42 ± 0.00 83.0 57.42 57.42 ± 0.00 89.5 57.42 57.42 ± 0.00 89.5 57.42 57.42 ± 0.00 67.6 57.42 57.42 ± 0.00

Gradient
Filter R2

2 46.7 10.00 10.00 ± 0.00 80.9 10.00 10.00 ± 0.00 88.3 10.00 10.00 ± 0.00 87.9 10.00 10.00 ± 0.00 64.7 10.00 10.00 ± 0.00
4 50.2 18.75 18.75 ± 0.00 82.7 18.75 18.75 ± 0.00 89.2 18.75 18.75 ± 0.00 89.3 18.75 18.75 ± 0.00 67.2 18.75 18.75 ± 0.00

Gradient
Filter R7

2 46.6 0.63 0.63 ± 0.00 81.0 0.63 0.63 ± 0.00 88.7 0.63 0.63 ± 0.00 86.1 0.63 0.63 ± 0.00 63.6 0.63 0.63 ± 0.00
4 46.4 1.17 1.17 ± 0.00 81.4 1.17 1.17 ± 0.00 88.9 1.17 1.17 ± 0.00 86.3 1.17 1.17 ± 0.00 64.6 1.17 1.17 ± 0.00

HOSVD
(ε = 0.8)

2 44.2 0.14 0.10 ± 0.01 79.1 0.25 0.07 ± 0.03 88.3 0.16 0.15 ± 0.01 85.6 0.30 0.22 ± 0.03 61.3 0.16 0.15 ± 0.01
4 48.9 0.55 0.54 ± 0.00 81.5 0.66 0.49 ± 0.03 89.2 0.73 0.71 ± 0.01 88.5 0.68 0.67 ± 0.01 66.1 0.72 0.68 ± 0.03

SVD
(ε = 0.8)

2 16.2 4.15 2.47 ± 0.57 23.2 3.85 2.73 ± 0.64 88.1 3.38 3.17 ± 0.15 86.4 3.96 3.08 ± 0.42 62.7 3.30 2.84 ± 0.30
4 16.7 11.34 9.70 ± 0.53 24.8 11.63 10.46 ± 0.63 89.1 12.75 12.50 ± 0.13 89.6 13.65 12.94 ± 0.76 67.0 14.10 13.46 ± 0.89

MCUNet

Vanilla
training

All 30.8 1265.96 1265.96 ± 0.00 45.6 1265.96 1265.96 ± 0.00 75.2 1265.96 1265.96 ± 0.00 91.2 1265.96 1265.96 ± 0.00 65.6 1265.96 1265.96 ± 0.00
2 9.6 27.56 27.56 ± 0.00 39.3 27.56 27.56 ± 0.00 40.6 27.56 27.56 ± 0.00 72.3 27.56 27.56 ± 0.00 45.4 27.56 27.56 ± 0.00
4 12.4 39.05 39.05 ± 0.00 44.1 39.05 39.05 ± 0.00 49.2 39.05 39.05 ± 0.00 83.6 39.05 39.05 ± 0.00 55.3 39.05 39.05 ± 0.00

Gradient
Filter R2

2 10.0 9.00 9.00 ± 0.00 39.1 9.00 9.00 ± 0.00 40.5 9.00 9.00 ± 0.00 71.2 9.00 9.00 ± 0.00 45.1 9.00 9.00 ± 0.00
4 12.3 12.75 12.75 ± 0.00 42.6 12.75 12.75 ± 0.00 49.1 12.75 12.75 ± 0.00 82.5 12.75 12.75 ± 0.00 54.2 12.75 12.75 ± 0.00

Gradient
Filter R7

2 9.6 0.56 0.56 ± 0.00 38.3 0.56 0.56 ± 0.00 40.5 0.56 0.56 ± 0.00 70.9 0.56 0.56 ± 0.00 45.0 0.56 0.56 ± 0.00
4 10.3 0.80 0.80 ± 0.00 41.6 0.80 0.80 ± 0.00 44.2 0.80 0.80 ± 0.00 78.4 0.80 0.80 ± 0.00 51.0 0.80 0.80 ± 0.00

HOSVD
(ε = 0.8)

2 9.1 0.13 0.12 ± 0.01 35.6 0.12 0.12 ± 0.00 18.6 0.13 0.13 ± 0.00 65.5 0.07 0.05 ± 0.01 40.8 0.05 2.19 ± 0.00
4 8.2 0.23 0.18 ± 0.06 31.5 0.12 0.10 ± 0.01 18.8 0.14 0.09 ± 0.01 77.3 0.25 0.21 ± 0.05 49.4 0.19 7.69 ± 0.00

SVD
(ε = 0.8)

2 9.1 5.41 5.09 ± 0.33 36.0 4.77 4.64 ± 0.11 39.5 5.77 5.49 ± 0.28 66.9 2.11 1.65 ± 0.51 41.8 1.51 1.30 ± 0.28
4 9.6 7.32 6.06 ± 1.63 33.9 4.53 4.13 ± 0.21 46.6 7.56 6.77 ± 0.98 80.8 7.24 6.19 ± 1.21 53.7 6.36 5.55 ± 1.08

ResNet18

Vanilla
training

All 56.5 1065.75 1065.75 ± 0.00 82.4 1065.75 1065.75 ± 0.00 88.4 1065.75 1065.75 ± 0.00 95.4 1065.75 1065.75 ± 0.00 78.6 1065.75 1065.75 ± 0.00
2 55.0 24.50 24.50 ± 0.00 83.8 24.50 24.50 ± 0.00 88.9 24.50 24.50 ± 0.00 91.1 24.50 24.50 ± 0.00 70.5 24.50 24.50 ± 0.00
4 54.0 61.25 61.25 ± 0.00 84.5 61.25 61.25 ± 0.00 88.9 61.25 61.25 ± 0.00 92.5 61.25 61.25 ± 0.00 73.3 61.25 61.25 ± 0.00

Gradient
Filter R2

2 55.1 8.00 8.00 ± 0.00 83.7 8.00 8.00 ± 0.00 88.7 8.00 8.00 ± 0.00 90.4 8.00 8.00 ± 0.00 69.8 8.00 8.00 ± 0.00
4 50.2 14.00 14.00 ± 0.00 83.5 14.00 14.00 ± 0.00 88.6 14.00 14.00 ± 0.00 91.5 14.00 14.00 ± 0.00 71.6 14.00 14.00 ± 0.00

Gradient
Filter R7

2 52.5 0.50 0.50 ± 0.00 82.1 0.50 0.50 ± 0.00 88.4 0.50 0.50 ± 0.00 88.9 0.50 0.50 ± 0.00 68.7 0.50 0.50 ± 0.00
4 44.8 0.88 0.88 ± 0.00 82.3 0.88 0.88 ± 0.00 86.1 0.88 0.88 ± 0.00 90.1 0.88 0.88 ± 0.00 70.1 0.88 0.88 ± 0.00

HOSVD
(ε = 0.8)

2 54.2 1.64 1.12 ± 0.08 82.4 1.44 0.84 ± 0.13 89.1 1.93 1.61 ± 0.07 90.8 1.50 1.43 ± 0.06 70.2 1.16 1.12 ± 0.02
4 53.2 3.21 2.38 ± 0.16 83.8 3.43 2.52 ± 0.22 88.4 3.84 3.43 ± 0.13 92.2 1.93 1.83 ± 0.07 71.8 1.64 1.47 ± 0.13

SVD
(ε = 0.8)

2 54.2 12.95 10.00 ± 0.62 82.4 12.69 9.45 ± 1.03 88.7 13.58 12.42 ± 0.33 91.0 12.80 12.69 ± 0.13 70.5 11.55 11.36 ± 0.17
4 53.7 30.91 26.82 ± 0.91 83.9 32.19 27.15 ± 1.52 89.1 32.83 31.08 ± 0.82 92.4 25.47 25.16 ± 0.16 72.6 24.63 24.16 ± 0.38

ResNet34

Vanilla
training

All 60.6 1678.25 1678.25 ± 0.00 76.9 1678.25 1678.25 ± 0.00 90.3 1678.25 1678.25 ± 0.00 96.6 1678.25 1678.25 ± 0.00 82.1 1678.25 1678.25 ± 0.00
2 57.8 24.50 24.50 ± 0.00 83.5 24.50 24.50 ± 0.00 90.8 24.50 24.50 ± 0.00 91.0 24.50 24.50 ± 0.00 70.4 24.50 24.50 ± 0.00
4 60.7 49.00 49.00 ± 0.00 83.1 49.00 49.00 ± 0.00 90.5 49.00 49.00 ± 0.00 92.3 49.00 49.00 ± 0.00 72.8 49.00 49.00 ± 0.00

Gradient
Filter R2

2 57.5 8.00 8.00 ± 0.00 81.1 8.00 8.00 ± 0.00 90.9 8.00 8.00 ± 0.00 90.5 8.00 8.00 ± 0.00 70.0 8.00 8.00 ± 0.00
4 58.1 16.00 16.00 ± 0.00 82.1 16.00 16.00 ± 0.00 90.2 16.00 16.00 ± 0.00 91.6 16.00 16.00 ± 0.00 70.6 16.00 16.00 ± 0.00

Gradient
Filter R7

2 55.6 0.50 0.50 ± 0.00 81.9 0.50 0.50 ± 0.00 90.9 0.50 0.50 ± 0.00 89.8 0.50 0.50 ± 0.00 69.6 0.50 0.50 ± 0.00
4 53.3 1.00 1.00 ± 0.00 81.1 1.00 1.00 ± 0.00 90.2 1.00 1.00 ± 0.00 90.7 1.00 1.00 ± 0.00 69.2 1.00 1.00 ± 0.00

HOSVD
(ε = 0.8)

2 56.1 0.60 0.38 ± 0.03 80.0 0.62 0.25 ± 0.08 90.6 0.70 0.56 ± 0.04 90.7 0.57 0.54 ± 0.02 69.9 0.44 0.41 ± 0.02
4 58.4 1.40 0.80 ± 0.12 81.0 1.27 0.61 ± 0.18 90.5 1.78 1.34 ± 0.17 91.6 1.26 1.16 ± 0.07 70.6 1.04 0.93 ± 0.09

SVD
(ε = 0.8)

2 56.7 9.99 6.90 ± 0.60 80.7 9.75 5.99 ± 1.04 91.1 10.79 9.50 ± 0.40 91.0 10.46 10.28 ± 0.11 70.2 9.41 9.12 ± 0.24
4 58.9 19.24 13.99 ± 1.41 82.7 20.37 12.82 ± 2.36 90.5 21.63 18.79 ± 1.33 92.1 20.84 20.06 ± 0.40 71.4 19.78 18.71 ± 0.78

SwinT [26]

Vanilla
training

All 79.0 3748.88 3748.88 ± 0.00 89.6 3748.88 3748.88 ± 0.00 94.2 3748.88 3748.88 ± 0.00 98.0 3748.88 3748.88 ± 0.00 87.2 3748.88 3748.88 ± 0.00
2 61.0 73.88 73.88 ± 0.00 81.7 73.88 73.88 ± 0.00 93.4 73.88 73.88 ± 0.00 92.1 73.88 73.88 ± 0.00 74.9 73.88 73.88 ± 0.00
4 72.1 92.25 92.25 ± 0.00 86.9 92.25 92.25 ± 0.00 93.8 92.25 92.25 ± 0.00 94.2 92.25 92.25 ± 0.00 78.2 92.25 92.25 ± 0.00

HOSVD
(ε = 0.8)

2 55.1 1.91 1.85 ± 0.02 74.9 2.42 2.36 ± 0.02 93.1 4.01 3.93 ± 0.04 91.6 5.52 5.41 ± 0.11 73.5 6.39 6.19 ± 0.23
4 67.4 1.55 0.65 ± 0.17 82.5 2.58 1.21 ± 0.48 93.4 3.01 2.48 ± 0.11 93.8 6.00 5.65 ± 0.41 77.2 5.84 5.35 ± 0.73

SVD
(ε = 0.8)

2 55.3 35.85 35.65 ± 0.11 75.2 36.78 36.57 ± 0.09 93.1 40.75 40.36 ± 0.16 91.6 46.08 45.90 ± 0.19 73.5 47.37 47.05 ± 0.38
4 68.5 40.23 27.01 ± 2.85 82.6 43.78 35.71 ± 3.34 93.4 45.58 44.02 ± 0.39 93.9 56.62 56.09 ± 0.70 77.3 57.38 56.31 ± 1.84

B.5 Additional Classification Results

In addition to the main experiments, we also performed many classification experiments with setup
A on various datasets, the results are shown in Table 5. Especially, when fine-tuning SwinT on
CUB200, Pets, and CIFAR-100, applying HOSVD to the last four layers (maintaining the rest of the
architecture frozen) consumes less memory than fully fine-tuning the last two layers. This happens
because the variance of the activation maps is concentrated in few components: for the same ε, K
will be smaller.

C Limitation

While HOSVD is effective in compressing the forward signal in DNNs for gradient estimation during
backpropagation, it is just one among possible choices when dealing with tensor decomposition.
Indeed, more variants of tensor decomposition methods such as GKPD or STP could have been used
and evaluated and could have led to larger memory and computational gains. Our work opens the
door to further explorations in such direction.

21



NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We develop the theoretical aspects of tensor decomposition applied to activa-
tions in Sec. 3 (construction, practical implementation, complexity, and error bounding). In
Sec. 4 we provide experimental results on a wide variety of popular tasks, architectures, and
datasets, while also exploring the combined effect of various hyper-parameters.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations of the work are discussed in the dedicated section of the pa-
per(Sec. C).

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: In Sec. 3.1 we develop the formulas necessary to perform backpropagation in a
convolutional network using the chain rule. In Sec. 3.2, we provide explicit definition of the
tools used in this papers. The complete proof for Sec. 3.3 is provided in the supplemental ma-
terials(Sec. A.3). In Sec. 3.4 we evaluate the resulting memory required, the computational
complexity of our method, and the error introduced in the gradient computation.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Algorithmic details are developped throughout 3. Code to reproduce results
is included in the supplemental materials, alongside instructions on how to use it. The
experimental setup is described briefly in Sec. 4 and more exhaustive explicit details are
provided in the supplemental materials B.2.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: In footnote 1 on the first page of the paper, the exact code used to collect the
experimental results is provided in an open GitHub repository, along with instructions on
how to run the code.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Such details are discussed in Sec. 4 and developed further in the corresponding
section of the supplementary material (Sec. B.2).

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

22



Answer: [Yes]

Justification: Given the computational cost of the experiments, we have performed all our
experiments (even reproducing those from the literature) under the same conditions, but we
did not provide confidence intervals for all of them. In the supplementary material we show
some results providing confidence intervals, and observing a very small variance between
the results obtained from different seeds.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We detail the material used in Sec. 4 and the time of execution in the supple-
mentary materials.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Research conducted in this paper is conform with NeurIPS Code of Ethics.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Our method is meant to enable on-device learning and we discuss in the
introduction about possible impacts of such a solution in our lives (increased privacy and
security, reduced energy consumption and network overload, ...) (Sec. 1). Nevertheless, a
specific section is not devoted given that this work is very general and not specific to some
application.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The proposed approach is a generalist compression algorithm tailored for
on-device learning, thus, it does not fall in that category.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All the existing datasets, models, and code used are presented in Sec. 4, and
credit is given to the respective creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: All the details about the new assets introduced are provided in the paper. At
submission time the source code is not provided, but we commit to release it (alongside a
detailed documentation) upon acceptance of the paper.

14. Crowdsourcing and Research with Human Subjects

23

https://neurips.cc/public/EthicsGuidelines


Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]

24


	Introduction
	Related Works
	Method
	The Memory Bottleneck of Backpropagation
	Tensor Decomposition
	Backpropagation with Compressed Activations
	Complexity and Error Analyis

	Experiments
	Experimental setup
	Explained Variance Evolution
	Main Results

	Conclusion
	Additional Theoretical Details
	Forward pass Vs. Backward pass
	Backpropagation Derivatives in Linear Layers
	Details of Backpropagation with Decomposed Activation Tensors
	Details of Overhead, Computational Speedup and Space Complexity

	Additional Experimental Details
	Variance of Different Runs
	Detailed Experimental Setup
	Additional Explained Variance Evolution Results
	Processing Time Results
	Additional Classification Results

	Limitation

