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Abstract

Sparse Mixture of Experts (SMoE) improves001
the efficiency of large language model train-002
ing by directing input tokens to a subset of003
experts. Despite its success in generation tasks,004
its generalization ability remains an open ques-005
tion. In this paper, we demonstrate that current006
SMoEs, which fall into two categories: (1) To-007
ken Choice ;and (2) Expert Choice, struggle008
with tasks such as the Massive Text Embedding009
Benchmark (MTEB). By analyzing their mech-010
anism through the lens of competitive learn-011
ing, our study finds that the Token Choice ap-012
proach may overly focus on irrelevant experts,013
while the Expert Choice approach risks dis-014
carding important tokens, potentially affecting015
performance. Motivated by this analysis, we016
propose Unified Competitive Learning SMoE017
(USMoE), a novel and efficient framework de-018
signed to improve the performance of existing019
SMoEs in both scenarios: with and without020
training. Extensive experiments across various021
tasks show that USMoE achieves up to a 10%022
improvement over traditional approaches or re-023
duces computational inference costs by 14%024
while maintaining strong performance.025

1 Introduction026

Sparse Mixture of Experts (SMoE) models have027

achieved notable success in natural language pro-028

cessing (NLP) and visual representation learn-029

ing tasks (Du et al., 2022; Fedus et al., 2022;030

Riquelme et al., 2021a; Shen et al., 2023). These031

advancements build on the Transformer architec-032

ture (Vaswani et al., 2017) and its variants (Child033

et al., 2019; Dai et al., 2019b), which leverage large034

datasets and significant compute resources. How-035

ever, training large Transformer models can be pro-036

hibitively expensive, requiring extensive compute037

hours (Kaddour et al., 2023). To overcome this is-038

sue, SMoE models activate only a subset of experts039

for each input, reducing inference time compared040

to dense models (Shazeer et al., 2017a; Zoph et al.,041

Figure 1: We compare the performance of USMoE
(ours) with the Expert Choice and Token Choice ap-
proaches on the Massive Text Embedding Benchmark
(MTEB). The results demonstrate that our method out-
performs traditional approaches across six tasks using
OLMoE-7B (Muennighoff et al., 2024) without addi-
tional training.

2022; Artetxe et al., 2022; Krajewski et al., 2024). 042

The SMoE architecture can be categorized into two 043

variants: Token Choice, which assigns experts to 044

each token (Dai et al., 2024; Team, 2024; Muen- 045

nighoff et al., 2024; Jiang et al., 2024a), and Expert 046

Choice, which assigns tokens to each expert (Zhou 047

et al., 2022b). The advantage of Token Choice 048

lies in its ability to dynamically select experts for 049

each token, while Expert Choice ensures a more 050

balanced token distribution across experts. 051

Despite their promising results, SMoE models have 052

several limitations. The Expert Choice approach 053

suffers from token dropping (Zhou et al., 2022b), 054

while the Token Choice approach struggles with 055

unbalanced expert loading (Shazeer et al., 2017b). 056

Additionally, both approaches are prone to repre- 057

sentation collapse, where either a few experts dom- 058

inate the routing or all experts learn similar rep- 059

resentations (Chi et al., 2022a; Chen et al., 2022). 060

Recent research has explored improving router poli- 061

cies (Chi et al., 2022b; Chen et al., 2023a; Do et al., 062

2023a) to mitigate these issues. However, existing 063

methods face two key challenges: (1) the use of 064

auxiliary losses requires balancing router loss and 065

task loss, leading to trade-offs, and (2) they still 066

struggle with the fundamental limitations of either 067
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the Token Choice or Expert Choice approach.068

Which approach is better for SMoE - Token Choice069

or Expert Choice - in terms of generalization070

across multiple tasks, both with and without train-071

ing?072

In this paper, we address this question by reex-073

amining SMoE through the lens of Competitive074

Learning (Rumelhart and Zipser, 1985; Kaski and075

Kohonen, 1994; Srivastava et al., 2013; Pham et al.,076

2024a). From this perspective, Token Choice can077

be seen as horizontal competitive learning, where078

the most similar expert is selected for each token,079

while Expert Choice represents vertical competi-080

tive learning, where each expert selects the most081

similar tokens. This viewpoint reveals a key trade-082

off: Expert Choice risks dropping important tokens,083

whereas Token Choice must process both relevant084

and irrelevant tokens.085

Building on this analysis, we propose Unified086

Competitive Learning SMoE (USMoE), a robust087

and efficient framework comprising two key com-088

ponents: (1) Unified Competitive Score and (2)089

Unified Competitive Mechanism. These compo-090

nents enable the SMoE model to dynamically prior-091

itize tokens or experts while ensuring the selection092

of the most similar token-expert pair, enhancing093

both robustness and effectiveness. To demonstrate094

the effectiveness of our approach, we evaluate US-095

MoE across multiple scenarios, including pretrain-096

ing and both fine-tuned and non-fine-tuned settings.097

USMoE consistently outperforms baseline meth-098

ods across these scenarios, with particularly strong099

gains in tasks that require deep input understanding,100

such as semantic textual similarity, classification,101

and clustering. Extensive experiments across vari-102

ous benchmarks show that USMoE achieves up to103

a 10% improvement over traditional approaches or104

reduces inference computational costs by 14%, all105

while maintaining high performance.106

In summary, this paper makes the following key107

contributions:108

• We introduce a Competitive Learning per-109

spective on SMoE, highlighting the weak-110

nesses of existing approaches.111

• We propose USMoE, a robust and efficient112

framework that addresses the limitations of113

both Token Choice and Expert Choice.114

• We theoretically demonstrate that USMoE115

effectively mitigates representation collapse,116

outperforming baseline methods.117

• We conduct extensive experiments on large 118

language models, covering pretraining and 119

both fine-tuned and non-fine-tuned settings, 120

providing a detailed analysis of USMoE’s per- 121

formance and effectiveness. 122

2 Related Work 123

Sparse Mixture of Experts (SMoE). Sparse Mix- 124

ture of Experts (SMoE), an extension of the Mix- 125

ture of Experts framework (Jacobs et al., 1991; 126

Jordan and Jacobs, 1994), has gained traction with 127

large language models and has since been applied 128

in various domains, including computer vision and 129

speech recognition (Zhou et al., 2022c; Riquelme 130

et al., 2021b). The SMoE architecture consists of 131

two main variants: Token Choice, where experts 132

are assigned to each token (Shazeer et al., 2017b; 133

Fedus et al., 2022; Jiang et al., 2024b; Do et al., 134

2024b), and Expert Choice, where tokens are as- 135

signed to specific experts (Zhou et al., 2022b). 136

Token Choice treats all tokens equally, which has 137

raised concerns among researchers (Wu et al., 2021; 138

Hou et al., 2022; Lin et al., 2025), while Expert 139

Choice suffers from token-dropping issues. Addi- 140

tionally, SMoE faces the challenge of representa- 141

tion collapse, where experts produce similar out- 142

puts. Various solutions have been proposed, such 143

as XMoE, which employs low-dimensional rout- 144

ing scores (Chi et al., 2022b), and SMoE-dropout, 145

which gradually activates more experts (Chen et al., 146

2023a). Other approaches, including HyperRouter 147

(Do et al., 2023a) and StableMoE (Dai et al., 148

2022a), focus on enhancing router stability and 149

robustness. Although these advancements have 150

improved SMoE models, representation collapse 151

remains a persistent issue (Pham et al., 2024a; Do 152

et al., 2024a). Our approach addresses this by opti- 153

mizing the alignment between tokens and the most 154

suitable experts, expanding expert specialization 155

and mitigating collapse. 156

Competitive Learning. Competitive learning is 157

an unsupervised learning approach where compu- 158

tational units compete to respond to a given in- 159

put, enabling feature discovery (McClelland and 160

Rumelhart, 1987; Andersen et al., 1969; Stefanis 161

and Jasper, 1969). Inspired by the biological brain, 162

this concept has recently been leveraged to en- 163

hance the efficiency of Large Language Models 164

(LLMs) (Cai et al., 2024; Zhao et al., 2024). Fur- 165

thermore, competitive learning has been shown to 166

enhance the efficiency of Mixture of Experts (MoE) 167

models (Ahn and Sentis, 2021; Cai et al., 2023). 168
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The most relevant work to our work is CompeteS-169

MoE (Pham et al., 2024b), which frames competi-170

tion through expert outputs and employs a router171

trained to predict competition outcomes in a sched-172

uled manner. However, it shares a key limitation173

with traditional competitive learning frameworks,174

activating all experts, which becomes infeasible175

for large-scale models with millions of parameters.176

In contrast, we redefine competition among expert177

embeddings into two categories: Token Choice178

SMoE, which represents horizontal competitive179

learning, and Expert Choice SMoE, which rep-180

resents vertical competitive learning. Building on181

this perspective, we introduce two novel scoring182

methods and mechanisms - Unified Competitive183

Score and Unified Competitive Mechanism - that184

enhance traditional SMoE in both performance and185

efficiency.186

3 Methodology187

We introduce Unified Competitive Learning SMoE188

(USMoE), a novel and efficient Sparse Mixture of189

Experts framework designed to address the limi-190

tations of both Token Choice and Expert Choice191

through a unified competitive learning mechanism.192

As shown in Section 3.2, our approach consists of193

two key components:194

• Unified Competitive Score – a scoring func-195

tion that balances expert selection.196

• Unified Competitive Mechanism – a struc-197

tured routing strategy that ensures efficient198

and effective expert allocation.199

3.1 Preliminaries200

Sparse Mixture of Experts. The Sparse Mixture201

of Experts (SMoE) is typically a transformer ar-202

chitecture that replaces the multi-layer perceptron203

(MLP) layers in standard transformers with Mix-204

ture of Experts (MoE) layers, inspired by (Shazeer205

et al., 2017a). Given x ∈ Rb×d as the output of206

the multi-head attention (MHA) layer, the result207

of the SMoE with n experts is a weighted sum of208

each expert’s computation, Ei(x), weighted by the209

router function S(x):210

fSMoE(x) =

n∑
i=1

S(x)i · Ei(x) (1)211

Where S(x) is computed by TopK function as be-212

low the Equation 2, and We is a learnable experts213

embeddings.214

S(x) = TopK(softmax(We · x), k) (2) 215

TopK(v, k) =

{
vi if vi is in the top k largest of v,
−∞ otherwise.

216

3.2 Unified Competitive Learning SMoE 217

(USMoE) 218

Unified Competitive Score. As illustrated in Fig- 219

ure 2, the Token Choice approach selects and pro- 220

motes the best expert by comparing the similarity 221

scores between a token and the available experts. 222

Given a representation x ∈ Rb×l×d, which is the 223

output of the multi-head attention (MHA) layer, 224

and a router matrix We ∈ Rd×n, where n repre- 225

sents the number of experts, the similarity score st 226

in the Token Choice approach is computed as: 227

st = softmax(We · x, d = −1) (3) 228

where d denotes the dimension along which the 229

softmax function is applied. In contrast, the Expert 230

Choice approach selects and promotes the best to- 231

kens by comparing the similarity scores between 232

an expert and the available tokens. The similarity 233

score se in the Expert Choice approach is computed 234

as: 235

se = softmax(We · x, d = 1) (4) 236

While Expert Choice ensures an equal distribution 237

of tokens across experts, Token Choice guarantees 238

that each token is fairly processed by the model. To 239

leverage the strengths of both approaches, we in- 240

troduce the Unified Competitive Score, a soft com- 241

bination of the Token Choice and Expert Choice 242

scores, defined as: 243

su = α · se + (1− α) · st (5) 244

where α ∈ [0, 1] is a tunable control parameter that 245

can be adjusted based on the data. In practice, we 246

find that α ≈ 0.5 is an appropriate choice. 247

Unified Competitive Mechanism. Token Choice 248

selects experts using horizontal competitive learn- 249

ing, where each token is assigned to the most simi- 250

lar expert. This approach performs well when there 251

is a highly relevant expert for a given token. How- 252

ever, its effectiveness diminishes when the simi- 253

larity scores between the token and all experts are 254

low. In contrast, Expert Choice selects tokens using 255

vertical competitive learning, where each expert is 256

assigned the most similar tokens. This approach 257

is effective when the similarity score distribution 258

across experts is well-structured. However, this 259
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condition is difficult to achieve due to the issue260

of representation collapse (Chi et al., 2022b). As261

a result, Expert Choice may either discard impor-262

tant tokens or lead to multiple experts selecting the263

same token. USMoE addresses these challenges by264

introducing the Unified Competitive Mechanism,265

which treats expert and token selection as a joint266

(expert, token) pairing process. As demonstrated267

in Algorithm 1, we first flatten the similarity ma-268

trix and then select the top-N highest-scoring pairs,269

representing the most similar expert-token combi-270

nations.271

Let the ordered array (St
1, S

t
2, . . . , S

t
N ) represent272

the top-N token scores selected using the Token273

Choice approach, where St
1 ≤ St

2 ≤ · · · ≤ St
N .274

Similarly, let (Se
1, S

e
2, . . . , S

e
N ) denote the top-N275

token scores selected using the Expert Choice ap-276

proach, where Se
1 ≤ Se

2 ≤ · · · ≤ Se
N . Finally, let277

(Su
1 , S

u
2 , . . . , S

u
N ) represent the top-N token scores278

selected using the Unified Competitive Score ap-279

proach, where Su
1 ≤ Su

2 ≤ · · · ≤ Su
n . We derive280

the following inequalities, with a detailed proof281

provided in the Appendix A.1:282

St
i ≤ Su

i , ∀i ∈ [1, N ]

Se
i ≤ Su

i , ∀i ∈ [1, N ]
(6)283

Based on Inequality 6, the Unified Competitive284

Mechanism ensures that the selected expert-token285

pairs are at least as optimal as those chosen by the286

Token Choice approach. Moreover, this mechanism287

addresses the limitations of Expert Choice, which288

may drop important tokens, and Token Choice,289

which may select irrelevant tokens.290

3.3 Theoretical Analysis for Representation291

Collapse of Sparse Mixture of Experts292

Following (Chi et al., 2022a) and (Do et al.,293

2023b), we illustrate the representation collapse294

issue using the Jacobian matrix approach. Specifi-295

cally, the Jacobian matrix of the SMoE with respect296

to x ∈ Rb×d is given as:297

JSMoE = S(x)kJFFN +
∑n

j=1 S(x)k (δkj − Sj)E(x)ie
⊤
j298

299 =⇒ JSMoE = S(x)kJFFN +

n∑
j=1

cje
⊤
j , (7)300

where cj = S(x)k (δkj − Sj)E(x)i. The first301

part of Equation 7, S(x)kJFFN, represents the302

contribution from the input token and experts to303

the final output. The second part, (2)
∑n

j=1 cje
⊤
j304

relates to learning an improved gating function305

to minimize task loss. Furthermore, Equation 7306

Algorithm 1 USMoE Layer

Require: X ∈ RB×L×D, router weights R ∈
RD×N , experts, controlling factor α

Ensure: Output Y
1: Compute logits:

logits← X ·R ▷ Dot product Similarity
2: Compute token choice score:

tc_score← softmax(logits, axis = −1)
3: Compute expert choice score:

ex_score← softmax(logits, axis = 1)
4: Compute unified score:

U ← α · ex_score + (1− α) · tc_score
5: Reshape score:

U ← reshape(U,B,−1)
6: Compute top-N indices and values:

topn_val, topn_idx←
TopK(U, topn, dim = 1)

7: Compute output using SMoE:
Y ←
SMoE(X, experts, topn_val, topn_idx)

8: return Y

should be updated as a linear combination of expert 307

embeddings. Due to n << d in practice, the above 308

equation illustrates the representation. 309

Given S(x) = α×Se(x)+(1−α)×St(x), where 310

Se(x) and St(x) represent the similarity score func- 311

tions for expert choice and token choice, respec- 312

tively, the Jacobian matrix of USMoE with respect 313

to x ∈ Rb×d is expressed as: 314

JU = S(x)kJFFN +

n∑
j=1

Se(x)k (δkj − Se(x)j)E(x)ke
⊤
j

+
n∑

j=1

St(x)k (δkj − St(x)j)E(x)ke
⊤
j .

315

=⇒ JU = J1 +
n∑

j=1

cje
⊤
j +

n∑
j=1

dje
⊤
j (8) 316

where 317

J1 = S(x)kJFFN, (9) 318
319

cj = Se(x)k (δkj − Se(x)j)E(x)ke
⊤
j , (10) 320

321
dj = St(x)k (δkj − St(x)j)E(x)k. (11) 322

Similar to the Jacobian matrix of SMoE as Equa- 323

tion 7, the Jacobian matrix of USMoE also con- 324

sists of two terms: (1) J1, which depends on the 325

input token and experts for the final output; and (2) 326∑2n
j=1 oje

⊤
j indicates to learn better gating func- 327

tion to minimize the task loss. Since 2n >> n, 328
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Figure 2: An illustration of our USMoE framework, which enhances existing SMoE models through a Unified
Competitive Learning approach. The method first flattens the score matching between tokens and experts into a 1D
representation, then selects the Top-N best pairs, and finally maps the results back to the original 2D matching
scores. Best viewed in color.

USMoE is more effective than SMoE in addressing329

the representation collapse issue.330

4 Experiments331

We evaluate our method in two scenarios: (1)332

without additional training and (2) with train-333

ing. For the first scenario, inspired by (Li and334

Zhou, 2024), we test our method as a plug-in335

framework on well-trained SMoE models, includ-336

ing OLMoE-1B-7B (Muennighoff et al., 2024):,337

DeepSeekMoE-16B (Dai et al., 2024), Qwen1.5-338

MoE-A2.7B (Team, 2024). We evaluate perfor-339

mance on a subset of tasks from the Massive Text340

Embedding Benchmark (MTEB) (Muennighoff341

et al., 2023), which covers key downstream appli-342

cations for sentence embeddings, including Classi-343

fication, Clustering, Pair Classification, Re-ranking,344

Retrieval, Semantic Textual Similarity (STS), and345

Summarization. Following the MTEB evaluation346

framework, we use Accuracy for Classification,347

V-Measure for Clustering, Average Precision for348

Pair Classification, Mean Average Precision for349

Re-ranking, nDCG for Retrieval, and Spearman’s350

correlation for STS and Summarization.351

For the second scenario, we perform language352

model pre-training on diverse datasets, includ-353

ing Enwik8, Text8 (Mahoney, 2011), Wikitext-354

103 (Merity et al., 2017), and One Billion355

Words (Chelba et al., 2014). To assess perfor-356

mance, we fine-tune the pre-trained models on var-357

ious downstream benchmarks.358

4.1 Experiment Setting 359

We evaluate our method against two conventional 360

SMoE approaches: (1) the Token Choice approach 361

and (2) the Expert Choice approach, under three 362

different settings: (1) without additional training, 363

(2) pre-training, and (3) fine-tuning. 364

Without Training. We evaluate our approach 365

on three state-of-the-art Sparse Mixture of Ex- 366

perts (MoE) models: (1) OLMoE-1B-7B (Muen- 367

nighoff et al., 2024), which has 7B parameters, 368

16 layers, and 64 experts per layer; (2) Qwen1.5- 369

MoE-A2.7B (Team, 2024), comprising 7B param- 370

eters, 24 layers, and 60 experts per layer; and 371

DeepSeekMoE-16B which consists of 16B parame- 372

ters, 28 layers, and 64 experts per layer. We evalu- 373

ate these models on the Massive Text Embedding 374

Benchmark (MTEB) without additional fine-tuning. 375

Additionally, we compare methods both with and 376

without prompts, including PromptEOL (Jiang 377

et al., 2024c). Inspired by (Li and Zhou, 2024), 378

we also compare our method with an approach that 379

uses the similarity score between router and expert 380

embeddings as the hidden representation, which we 381

refer to as "Router Embedding" or simply "Router" 382

Additionally, we evaluate against MoEE (Li and 383

Zhou, 2024), which leverages both Router Embed- 384

ding and the hidden representation of the SMoE 385

model as embeddings. 386

Pre-training. To assess the effectiveness of our 387

method, we compare USMoE with the Token 388

Choice approaches, including SMoE (Jiang et al., 389

2024b), SMoE-Dropout (abbreviated as "SMoE- 390

DR"), XMoE (Chi et al., 2022b), and Stable- 391

MoE (Dai et al., 2022a), as well as the Expert 392
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Choice approach (Zhou et al., 2022a) for pre-393

training and fine-tuning tasks. We follow the394

approach of Chen et al. (2023b) and use a base395

Transformer-XL (Dai et al., 2019a) with four de-396

coder layers. We train both base and large-scale397

versions of Transformer-XL on four datasets (En-398

wik8, Text8, Wikitext-103, and One Billion Words)399

for 100k iterations, following the implementation400

in (Chen et al., 2023b).401

Fine-tuning. We fine-tune the pre-trained402

weights for text classification tasks, including403

SST-2 (Socher et al., 2013), SST-5 (Socher et al.,404

2013), IMDB (Maas et al., 2011), and BANKING77405

(Casanueva et al., 2020). More implementation406

details and additional results are provided in the407

Appendix A.408

4.2 Without Training409

Our method consistently demonstrates perfor-410

mance improvements across a range of MTEB411

tasks in two scenarios: (1) with PromptEOL (Jiang412

et al., 2023) (denoted as "with prompts" for413

brevity), as shown in Table 1, and (2) without414

prompts, as shown in Table 2. Detailed results415

for datasets under each task type are provided in416

Appendix A. USMoE outperforms both the Expert417

Choice and Token Choice approaches in most cases,418

underscoring the complementary nature of these419

two methods.420

Figure 1 illustrates the effectiveness of our method421

across various MTEB tasks using the OLMoE-1B-422

7B model, in comparison to both the Expert Choice423

and Token Choice approaches. For tasks eval-424

uated with prompts, USMoE achieves the high-425

est average performance across models, show-426

ing notable improvements of 4.2%, 9.1%, and427

6.6% for OLMoE-1B-7B, Qwen1.5-MoE-A2.7B,428

and DeepSeekMoE-16B, respectively, without re-429

quiring any additional training, as detailed in Ta-430

ble 1. Notably, DeepSeekMoE-16B demonstrates431

a significant improvement from 50.1% (Token432

Choice) to 64.3% (USMoE), reflecting a 14.2%433

gain in the STS task.434

For tasks evaluated without prompts, USMoE435

proves even more effective at enhancing the Token436

Choice approach, delivering notable gains of 9.3%,437

7.0%, and 8.0% for OLMoE-1B-7B, Qwen1.5-438

MoE-A2.7B, and DeepSeekMoE-16B, respectively,439

across MTEB tasks without additional training.440

Specifically, OLMoE-1B-7B achieves a remarkable441

improvement from 24.1% (Token Choice) to 47.5%442

(USMoE), representing a 23.4% gain. This trend443

Model Task Router TC EC MoEE USMoE

OLMoE-1B-7B

Classification 43.1 57.7 56.2 51.7 59.2
Clustering 16.2 24.8 26.9 23.2 30.5

PairClassification 53.5 62.0 58.9 66.0 66.8
Reranking 41.7 51.3 51.0 53.2 54.7

STS 49.4 63.5 44.2 67.8 71.1
Summarization 25.6 28.9 29.7 30.4 30.9

Average 38.3 48.0 44.5 48.7 52.2

Qwen1.5-MoE-A2.7B

Classification 48.8 58.0 35.2 54.0 59.2
Clustering 14.3 34.2 29.2 30.1 35.8

PairClassification 51.9 60.5 56.0 60.3 63.4
Reranking 41.0 46.6 45.0 51.1 53.7

STS 48.3 50.1 50.0 64.3 66.3
Summarization 27.0 23.0 21.9 27.3 48.4

Average 38.6 45.4 39.6 47.9 54.5

DeepSeekMoE-16B

Classification 48.6 56.4 55.4 53.0 57.3
Clustering 17.8 29.0 20.3 28.5 31.9

PairClassification 57.4 59.8 53.8 63.3 65.3
Reranking 43.8 45.7 40.9 50.6 52.1

STS 52.8 49.0 37.1 63.4 66.0
Summarization 29.1 24.4 25.7 29.2 30.9

Average 41.6 44.0 38.9 48.0 50.6

Table 1: Performance comparison of USMoE, Token
Choice (TC), Expert Choice (EC), and MoEE across
across MTEB Tasks with PromptEOL (Jiang et al.,
2023). The best result for each row is highlighted in
bold.

persists across Qwen1.5-MoE and OLMoE, where 444

USMoE consistently outperforms both the Token 445

Choice and Expert Choice approaches. 446

Interestingly, Router Embedding is less affected by 447

prompting on the Classification dataset, as shown 448

in Figure 3a, while Token Choice, Expert Choice, 449

and USMoE (ours) achieve significant performance 450

improvements in the prompting setting. Figure 3a 451

also demonstrates that our method is not only more 452

effective but also more stable than the baselines, 453

as indicated by a lower standard deviation. Addi- 454

tionally, Figure 3b illustrates the distribution of our 455

method across MTEB tasks in both prompted and 456

non-prompted scenarios. Overall, our approach 457

outperforms the baselines in terms of performance 458

while exhibiting lower variance across multiple 459

tasks and different runs. 460

4.3 Pre-training Result 461

Base models training. Table 3 summarizes the 462

pre-training results across four datasets (enwik8, 463

text8, WikiText-103, and One Billion Words). 464

USMoE consistently outperforms the expert choice 465

baseline and token choice routing methods such 466

as XMoE (Chi et al., 2022a) and StableMoE (Dai 467

et al., 2022b) on all four datasets. The strength of 468

USMoE lies in its inference efficiency, achieved 469

by leveraging fewer experts. Notably, on text8, 470

USMoE surpasses SMoE while utilizing only one 471

and a half experts. Additionally, it outperforms 472

SMoE-Dropout (which employs two experts) on 473

One Billion Words, lowering perplexity from 474
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(a) Performance comparison of USMoE, Token Choice (TC),
and Expert Choice (EC) on Classification Task.

(b) Results distribution of USMoE, Token Choice (TC),
Expert Choice (EC), and MoEE across MTEB Tasks

Figure 3: Illustration of comparing the performance of USMoE, Token Choice (TC), Expert Choice (EC), and
MoEE across MTEB tasks and three SMoE models. Each benchmark is run 10 times, reporting both the mean and
standard deviation to highlight the performance and stability of our method compared to the baselines.

Model Task Router TC EC MoEE USMoE

OLMoE-1B-7B

Classification 41.2 43.4 44.9 41.8 47.0
Clustering 13.7 14.7 12.0 14.5 16.9

PairClassification 45.3 39.1 35.5 45.7 50.1
Reranking 37.5 37.4 35.3 39.5 43.1

STS 39.9 24.1 18.2 39.9 47.5
Summarization 28.4 20.9 21.1 29.8 30.8

Average 34.3 29.9 27.8 35.2 39.2

Qwen1.5-MoE-A2.7B

Classification 43.8 50.3 25.5 47.7 51.2
Clustering 13.6 27.4 23.2 25.2 26.7

PairClassification 45.9 46.9 43.4 51.5 53.1
Reranking 39.6 45.3 41.6 48.5 48.2

STS 38.8 38.0 35.6 51.8 54.8
Summarization 28.3 13.4 15.1 31.2 29.7

Average 35.0 36.9 30.7 42.6 43.9

DeepSeekMoE-16B

Classification 43.4 46.6 44.7 44.4 46.8
Clustering 13.4 18.1 13.5 17.8 21.9

PairClassification 45.5 40.9 37.1 46.1 51.9
Reranking 38.5 38.9 35.1 42.2 45.7

STS 37.7 26.3 23.3 40.2 45.9
Summarization 24.9 22.0 18.5 24.4 28.4

Average 33.9 32.1 28.7 35.9 40.1

Table 2: Performance comparison of USMoE, Token
Choice (TC), Expert Choice (EC), and MoEE across
MTEB Tasks without prompts and models. The best
result for each row is highlighted in bold.

Transformer-XL(20M) Enwik8 Text8 WikiText-103 lm1b

USMoE (Topk=2) 1.18 1.20 29.20 56.90

(Topk=1.5) 1.19 1.28 30.67 57.55

TC (Topk=2)

SMoE 1.20 1.29 30.16 58.00

SMoE-DR 1.56 1.56 58.37 93.17

XMoE 1.21 1.28 30.34 58.33

StableMoE 1.20 1.28 29.97 58.25

EC (Topk=2) 1.18 1.24 29.83 58.60

Table 3: Performance comparison of USMoE, Token
Choice (TC), and Expert Choice (EC) across multiple
datasets, with BPC on the Enwik8 and Text8 test sets,
and perplexity on the WikiText-103 and One Billion
Word test sets. Lower values are better, with the best
results highlighted in bold.

93.17 to 57.55 with the same reduced expert count.475

Furthermore, with only one and a half experts, US-476

MoE reduces FLOPs by 14% compared to SMoE477

and SMoE-Dropout, which rely on two experts, all478

while maintaining strong performance. 479

Large models training. USMoE not only deliv- 480

ers strong performance in base model training but 481

also remains highly competitive at a large scale. 482

Table 4 presents perplexity (PPL) results on the 483

WikiText-103 and One Billion Words datasets 484

using a large Transformer-XL model with 15 SMoE 485

layers, 16 experts, and 420M parameters. The per- 486

formance gap between USMoE and the baselines 487

becomes even more pronounced at this scale, high- 488

lighting its strong scalability with increasing model 489

complexity. Regardless of backbone size or the 490

number of activated experts, USMoE consistently 491

outperforms all baselines, demonstrating its effec- 492

tiveness in scaling up large language models. 493

Transformer-XL(420M) WikiText-103 lm1b

Topk TC EC USMoE TC EC USMoE

1 31.70 35.52 25.48 58.65 65.43 56.90
2 22.42 23.30 22.06 44.56 43.39 40.53
4 23.57 23.60 22.65 45.52 43.70 40.90
8 24.20 24.37 22.88 46.36 44.22 43.24

Table 4: Large Scale performance comparison of
USMoE, Token Choice (TC), and Expert Choice
(EC) across multiple datasets, with perplexity on the
WikiText-103 and One Billion Word test sets. Lower
values are better, with the best results highlighted in
bold.

4.4 Fine-tuning Result 494

Fine-tuning. We report the results of the fine- 495

tuning experiment on the SST-2, SST-5, IMDB, and 496

BANKING77 datasets in Table 5, using Transformer- 497

XL pre-trained on enwik8. Overall, USMoE con- 498

sistently achieves higher accuracy compared to 499

other baselines across all datasets. The results 500

demonstrate that our method is not only effective 501

for pre-training tasks but also performs effectively 502

on existing pre-trained models. 503
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Transformer-XL(20M) FLOPs(x1010) SST-2 SST-5 IMDB BANKING77

USMoE (Topk=2) 7.7620 81.5 40.1 88.5 87.8

(Topk=1.5) 6.6753 83.8 39.6 88.3 83.0

TC (Topk=2)

SMoE

7.7620

77.1 35.1 84.4 69.2

SMoE-DR 78.6 34.4 83.5 66.7

XMoE 76.7 35.3 83.3 67.4

StableMoE 77.7 34.3 83.9 60.8

EC (Topk=2) 7.7620 81.5 39.3 88.0 75.6

Table 5: Accuracy performance comparison of USMoE,
Token Choice (TC), and Expert Choice (EC) after fine-
tuned on various datasets. Higher is better, best results
are in bold.

4.5 Ablation Studies504

We investigate the effectiveness and robustness of505

USMoE to the different hyper-parameter settings.506

4.5.1 Competitive Learning Strategy507

Comparison508

Model Dataset TC EC USMoE-Sequence USMoE-Batch

DeepSeekMoE-16B

Emotion 27.4 26.5 27.8 27.4

Toxic 60.4 58.1 60.1 59.2

Tweet 51.9 49.5 52.5 51.7

Table 6: Competitive Learning Strategy comparison of
USMoE, Token Choice (TC), and Expert Choice (EC)
on the classification task. Higher values are better, with
the best results highlighted in bold.

The Unified Competitive Mechanism is imple-509

mented using two approaches: (1) a sequence-510

based method that compares all tokens within a511

sequence (referred to as "USMoE-Sequence") and512

(2) a batch-based method that compares all to-513

kens within a batch or mini-batch (referred to as514

"USMoE-Batch"). We evaluate both approaches515

on the Classification task, with results presented in516

Table 6. The findings indicate that both methods517

outperform the Expert Choice and Token Choice518

approaches, demonstrating the effectiveness of our519

method. Notably, the sequence-based approach520

achieves superior performance in the Classifica-521

tion task, as it ensures that no important tokens are522

missed within a sequence - an assurance that the523

batch/mini-batch implementation may not always524

provide.525

4.5.2 Robustness to the controlling factor α526

The Unified Competitive Score (α) enables the527

model to adjust its scoring mechanism, either fa-528

voring a diverse set of experts per sequence or dis-529

tributing experts more evenly across tokens. We530

evaluate the robustness of the controlling factor α531

Model Dataset α

0.0 0.3 0.5 0.7 0.9 1.0

DeepSeekMoE-16B
Emotion 27.4 27.1 27.8 27.6 27.7 26.5

Toxic 60.4 60.0 60.1 56.8 57.3 58.1
Tweet 51.9 53.2 52.5 53.3 52.9 49.5

Table 7: Performance comparison of DeepSeekMoE-
16B across different classification datasets with varying
α values. Higher is better; best results are in bold.

on the classification task using the DeepSeekMoE- 532

16B model, with results presented in Table 7. When 533

α = 0.0, the scoring mechanism aligns with Token 534

Choice, while at α = 1.0, it follows Expert Choice. 535

Overall, USMoE demonstrates strong effective- 536

ness within the range of α ∈ (0.3, 0.7), striking 537

a balance between expert diversity and token im- 538

portance. This range provides an optimal trade- 539

off between enforcing SMoE’s competition policy 540

and enhancing traditional approaches for the task, 541

leading to superior overall performance. Notably, 542

all tested α configurations outperform the Expert 543

Choice approach (α = 1.0). 544

Summary and hyper-parameter configuration 545

guidelines. Our experiments demonstrate that US- 546

MoE not only excels in pre-training and transfer 547

learning but also achieves superior generalization 548

compared to traditional approaches, all without re- 549

quiring additional training. Ablation studies in Sec- 550

tion 4.5 indicate that USMoE is highly effective 551

within the range of α ∈ (0.3, 0.7). This finding 552

provides a practical guideline for efficiently tuning 553

USMoE through cross-validation. 554

5 Conclusion 555

In this research, we reformulate Token Choice and 556

Expert Choice Sparse Mixture of Experts from a 557

competitive learning perspective, highlighting their 558

limitations. Building on this analysis, we introduce 559

Unified Competitive Learning SMoE (USMoE) - a 560

novel and efficient framework that enhances SMoE 561

through a unified competitive learning approach. 562

We theoretically prove that USMoE achieves supe- 563

rior expert selection compared to traditional meth- 564

ods, effectively improving expert learning capacity 565

while mitigating expert collapse. As a result, US- 566

MoE learns more robust expert representations and 567

overcomes the representation collapse issues com- 568

monly observed in conventional SMoE training. 569

Experiments across both training-free and training- 570

based settings (including pre-training and fine- 571

tuning) demonstrate that USMoE enables more effi- 572

cient and effective training and inference compared 573

to state-of-the-art routing strategies. 574
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Limitations575

Our study focuses on enhancing the efficiency and576

effectiveness of Large Language Models (LLMs)577

through SMoE. Our approach proves effective in578

both training and non-training settings. While579

the results are promising, our pre-training ex-580

periments were constrained by computational re-581

sources, limiting us to medium-scale datasets and582

a base Transformer-XL model. Consequently, fur-583

ther empirical evaluation is required to assess the584

scalability of USMoE beyond 100B parameters and585

compare it with other SMoE strategies in modern586

LLMs.587

Ethics Statement588

Despite encouraging results, training large-scale589

LLMs remains highly resource-intensive, requiring590

careful management of computational costs. Ad-591

ditionally, our study relies on web-sourced data,592

which is known to contain gender and racial bi-593

ases, highlighting the need for further efforts to594

mitigate these issues. Lastly, while our work rep-595

resents a significant step toward advancing LLMs596

development, it also emphasizes the importance of597

robust regularization to prevent potential misuse in598

harmful applications.599

References600

Junhyeok Ahn and Luis Sentis. 2021. Nested mixture of601
experts: Cooperative and competitive learning of hybrid602
dynamical system. Preprint, arXiv:2011.10605.603

Richard A. Andersen, John C. Eccles, and Thomas A.604
Sears. 1969. Participation of inhibitory burst neurons605
in the generation of oculomotor commands. Journal of606
Neurophysiology, 32(3):356–372.607

Mikel Artetxe, Shruti Bhosale, Naman Goyal, Todor Mi-608
haylov, Myle Ott, Sam Shleifer, Xi Victoria Lin, Jingfei609
Du, Srinivasan Iyer, Ramakanth Pasunuru, Giri Anan-610
tharaman, Xian Li, Shuohui Chen, Halil Akin, Mandeep611
Baines, Louis Martin, Xing Zhou, Punit Singh Koura,612
Brian O’Horo, Jeff Wang, Luke Zettlemoyer, Mona613
Diab, Zornitsa Kozareva, and Ves Stoyanov. 2022. Ef-614
ficient large scale language modeling with mixtures of615
experts. Preprint, arXiv:2112.10684.616

Shenghong Cai, Yiqun Zhang, Xiaopeng Luo, Yiu-Ming617
Cheung, Hong Jia, and Peng Liu. 2024. Robust categori-618
cal data clustering guided by multi-granular competitive619
learning. In 2024 IEEE 44th International Conference620
on Distributed Computing Systems (ICDCS), pages 288–621
299.622

Yinqiong Cai, Yixing Fan, Keping Bi, Jiafeng Guo, Wei623
Chen, Ruqing Zhang, and Xueqi Cheng. 2023. Came:624

Competitively learning a mixture-of-experts model for 625
first-stage retrieval. Preprint, arXiv:2311.02834. 626

Iñigo Casanueva, Tadas Temčinas, Daniela Gerz, 627
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intent detection with dual sentence encoders. In Pro- 629
ceedings of the 2nd Workshop on Natural Language 630
Processing for Conversational AI, pages 38–45, Online. 631
Association for Computational Linguistics. 632

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, 633
Thorsten Brants, Phillipp Koehn, and Tony Robinson. 634
2014. One billion word benchmark for measuring 635
progress in statistical language modeling. Preprint, 636
arXiv:1312.3005. 637

Tianlong Chen, Zhenyu Zhang, Ajay Jaiswal, Shiwei 638
Liu, and Zhangyang Wang. 2023a. Sparse moe as the 639
new dropout: Scaling dense and self-slimmable trans- 640
formers. Preprint, arXiv:2303.01610. 641

Tianlong Chen, Zhenyu Zhang, AJAY KUMAR 642
JAISWAL, Shiwei Liu, and Zhangyang Wang. 2023b. 643
Sparse MoE as the New Dropout: Scaling Dense and 644
Self-Slimmable Transformers. In The Eleventh Interna- 645
tional Conference on Learning Representations. 646

Zixiang Chen, Yihe Deng, Yue Wu, Quanquan Gu, and 647
Yuanzhi Li. 2022. Towards Understanding the Mixture- 648
of-Experts Layer in Deep Learning. In Advances in 649
Neural Information Processing Systems. 650

Zewen Chi, Li Dong, Shaohan Huang, Damai Dai, 651
Shuming Ma, Barun Patra, Saksham Singhal, Payal Ba- 652
jaj, Xia Song, Xian-Ling Mao, Heyan Huang, and Furu 653
Wei. 2022a. On the Representation Collapse of Sparse 654
Mixture of Experts. In Advances in Neural Information 655
Processing Systems. 656

Zewen Chi, Li Dong, Shaohan Huang, Damai Dai, 657
Shuming Ma, Barun Patra, Saksham Singhal, Payal 658
Bajaj, Xia Song, Xian-Ling Mao, Heyan Huang, and 659
Furu Wei. 2022b. On the representation collapse of 660
sparse mixture of experts. Preprint, arXiv:2204.09179. 661

Rewon Child, Scott Gray, Alec Radford, and Ilya 662
Sutskever. 2019. Generating long sequences with sparse 663
transformers. Preprint, arXiv:1904.10509. 664

Damai Dai, Chengqi Deng, Chenggang Zhao, R. X. Xu, 665
Huazuo Gao, Deli Chen, Jiashi Li, Wangding Zeng, 666
Xingkai Yu, Y. Wu, Zhenda Xie, Y. K. Li, Panpan 667
Huang, Fuli Luo, Chong Ruan, Zhifang Sui, and Wen- 668
feng Liang. 2024. Deepseekmoe: Towards ultimate ex- 669
pert specialization in mixture-of-experts language mod- 670
els. Preprint, arXiv:2401.06066. 671

Damai Dai, Li Dong, Shuming Ma, Bo Zheng, Zhifang 672
Sui, Baobao Chang, and Furu Wei. 2022a. Stablemoe: 673
Stable routing strategy for mixture of experts. Preprint, 674
arXiv:2204.08396. 675

Damai Dai, Li Dong, Shuming Ma, Bo Zheng, Zhifang 676
Sui, Baobao Chang, and Furu Wei. 2022b. StableMoE: 677
Stable Routing Strategy for Mixture of Experts. In 678

9

https://arxiv.org/abs/2011.10605
https://arxiv.org/abs/2011.10605
https://arxiv.org/abs/2011.10605
https://arxiv.org/abs/2011.10605
https://arxiv.org/abs/2011.10605
https://arxiv.org/abs/2112.10684
https://arxiv.org/abs/2112.10684
https://arxiv.org/abs/2112.10684
https://arxiv.org/abs/2112.10684
https://arxiv.org/abs/2112.10684
https://doi.org/10.1109/ICDCS60910.2024.00035
https://doi.org/10.1109/ICDCS60910.2024.00035
https://doi.org/10.1109/ICDCS60910.2024.00035
https://doi.org/10.1109/ICDCS60910.2024.00035
https://doi.org/10.1109/ICDCS60910.2024.00035
https://arxiv.org/abs/2311.02834
https://arxiv.org/abs/2311.02834
https://arxiv.org/abs/2311.02834
https://arxiv.org/abs/2311.02834
https://arxiv.org/abs/2311.02834
https://doi.org/10.18653/v1/2020.nlp4convai-1.5
https://doi.org/10.18653/v1/2020.nlp4convai-1.5
https://doi.org/10.18653/v1/2020.nlp4convai-1.5
https://arxiv.org/abs/1312.3005
https://arxiv.org/abs/1312.3005
https://arxiv.org/abs/1312.3005
https://arxiv.org/abs/2303.01610
https://arxiv.org/abs/2303.01610
https://arxiv.org/abs/2303.01610
https://arxiv.org/abs/2303.01610
https://arxiv.org/abs/2303.01610
https://openreview.net/forum?id=w1hwFUb_81
https://openreview.net/forum?id=w1hwFUb_81
https://openreview.net/forum?id=w1hwFUb_81
https://openreview.net/forum?id=MaYzugDmQV
https://openreview.net/forum?id=MaYzugDmQV
https://openreview.net/forum?id=MaYzugDmQV
https://openreview.net/forum?id=mWaYC6CZf5
https://openreview.net/forum?id=mWaYC6CZf5
https://openreview.net/forum?id=mWaYC6CZf5
https://arxiv.org/abs/2204.09179
https://arxiv.org/abs/2204.09179
https://arxiv.org/abs/2204.09179
https://arxiv.org/abs/1904.10509
https://arxiv.org/abs/1904.10509
https://arxiv.org/abs/1904.10509
https://arxiv.org/abs/2401.06066
https://arxiv.org/abs/2401.06066
https://arxiv.org/abs/2401.06066
https://arxiv.org/abs/2401.06066
https://arxiv.org/abs/2401.06066
https://arxiv.org/abs/2204.08396
https://arxiv.org/abs/2204.08396
https://arxiv.org/abs/2204.08396
https://doi.org/10.18653/v1/2022.acl-long.489
https://doi.org/10.18653/v1/2022.acl-long.489
https://doi.org/10.18653/v1/2022.acl-long.489


Proceedings of the 60th Annual Meeting of the Associ-679
ation for Computational Linguistics (Volume 1: Long680
Papers), pages 7085–7095, Dublin, Ireland. Association681
for Computational Linguistics.682

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car-683
bonell, Quoc Le, and Ruslan Salakhutdinov. 2019a.684
Transformer-XL: Attentive Language Models beyond685
a Fixed-Length Context. In Proceedings of the 57th686
Annual Meeting of the Association for Computational687
Linguistics, pages 2978–2988, Florence, Italy. Associa-688
tion for Computational Linguistics.689

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car-690
bonell, Quoc V. Le, and Ruslan Salakhutdinov. 2019b.691
Transformer-xl: Attentive language models beyond a692
fixed-length context. Preprint, arXiv:1901.02860.693

Giang Do, Hung Le, and Truyen Tran. 2024a. Simsmoe:694
Solving representational collapse via similarity measure.695
Preprint, arXiv:2406.15883.696

Giang Do, Khiem Le, Quang Pham, TrungTin Nguyen,697
Thanh-Nam Doan, Bint T. Nguyen, Chenghao Liu,698
Savitha Ramasamy, Xiaoli Li, and Steven Hoi. 2023a.699
Hyperrouter: Towards efficient training and inference of700
sparse mixture of experts. Preprint, arXiv:2312.07035.701

Giang Do, Khiem Le, Quang Pham, TrungTin Nguyen,702
Thanh-Nam Doan, Bint T. Nguyen, Chenghao Liu,703
Savitha Ramasamy, Xiaoli Li, and Steven Hoi. 2023b.704
Hyperrouter: Towards efficient training and inference of705
sparse mixture of experts. Preprint, arXiv:2312.07035.706

Giang Do, Kha Pham, Hung Le, and Truyen Tran.707
2024b. On the effectiveness of discrete repre-708
sentations in sparse mixture of experts. Preprint,709
arXiv:2411.19402.710

Nan Du, Yanping Huang, Andrew M Dai, Simon Tong,711
Dmitry Lepikhin, Yuanzhong Xu, Maxim Krikun, Yanqi712
Zhou, Adams Wei Yu, Orhan Firat, Barret Zoph, Liam713
Fedus, Maarten P Bosma, Zongwei Zhou, Tao Wang,714
Emma Wang, Kellie Webster, Marie Pellat, Kevin715
Robinson, Kathleen Meier-Hellstern, Toju Duke, Lu-716
cas Dixon, Kun Zhang, Quoc Le, Yonghui Wu, Zhifeng717
Chen, and Claire Cui. 2022. GLaM: Efficient Scaling718
of Language Models with Mixture-of-Experts. In Pro-719
ceedings of the 39th International Conference on Ma-720
chine Learning, volume 162 of Proceedings of Machine721
Learning Research, pages 5547–5569. PMLR.722

William Fedus, Barret Zoph, and Noam Shazeer. 2022.723
Switch Transformers: Scaling to Trillion Parameter724
Models with Simple and Efficient Sparsity. Journal725
of Machine Learning Research, 23(120):1–39.726

Le Hou, Richard Yuanzhe Pang, Tianyi Zhou, Yuexin727
Wu, Xinying Song, Xiaodan Song, and Denny Zhou.728
2022. Token dropping for efficient bert pretraining.729
Preprint, arXiv:2203.13240.730

Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan,731
and Geoffrey E. Hinton. 1991. Adaptive mixtures of732
local experts. Neural Computation, 3(1):79–87.733

Albert Q. Jiang, Alexandre Sablayrolles, Antoine 734
Roux, Arthur Mensch, Blanche Savary, Chris Bam- 735
ford, Devendra Singh Chaplot, Diego de las Casas, 736
Emma Bou Hanna, Florian Bressand, Gianna Lengyel, 737
Guillaume Bour, Guillaume Lample, Lélio Renard 738
Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre 739
Stock, Sandeep Subramanian, Sophia Yang, Szy- 740
mon Antoniak, Teven Le Scao, Théophile Gervet, 741
Thibaut Lavril, Thomas Wang, Timothée Lacroix, and 742
William El Sayed. 2024a. Mixtral of experts. Preprint, 743
arXiv:2401.04088. 744

Albert Q. Jiang, Alexandre Sablayrolles, Antoine 745
Roux, Arthur Mensch, Blanche Savary, Chris Bam- 746
ford, Devendra Singh Chaplot, Diego de las Casas, 747
Emma Bou Hanna, Florian Bressand, Gianna Lengyel, 748
Guillaume Bour, Guillaume Lample, Lélio Renard 749
Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre 750
Stock, Sandeep Subramanian, Sophia Yang, Szy- 751
mon Antoniak, Teven Le Scao, Théophile Gervet, 752
Thibaut Lavril, Thomas Wang, Timothée Lacroix, and 753
William El Sayed. 2024b. Mixtral of experts. Preprint, 754
arXiv:2401.04088. 755

Ting Jiang, Shaohan Huang, Zhongzhi Luan, Deqing 756
Wang, and Fuzhen Zhuang. 2023. Scaling sentence 757
embeddings with large language models. Preprint, 758
arXiv:2307.16645. 759

Ting Jiang, Shaohan Huang, Zhongzhi Luan, Deqing 760
Wang, and Fuzhen Zhuang. 2024c. Scaling sentence 761
embeddings with large language models. In Findings of 762
the Association for Computational Linguistics: EMNLP 763
2024, pages 3182–3196, Miami, Florida, USA. Associ- 764
ation for Computational Linguistics. 765

Michael Jordan and Robert Jacobs. 1994. Hierarchical 766
mixtures of experts and the. Neural computation, 6:181– 767
. 768

Jean Kaddour, Joshua Harris, Maximilian Mozes, Her- 769
bie Bradley, Roberta Raileanu, and Robert McHardy. 770
2023. Challenges and applications of large language 771
models. Preprint, arXiv:2307.10169. 772

Samuel Kaski and Teuvo Kohonen. 1994. Winner-take- 773
all networks for physiological models of competitive 774
learning. Neural Networks, 7(6):973–984. Models of 775
Neurodynamics and Behavior. 776

Jakub Krajewski, Jan Ludziejewski, Kamil Adam- 777
czewski, Maciej Pióro, Michał Krutul, Szymon 778
Antoniak, Kamil Ciebiera, Krystian Król, Tomasz 779
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A Appendix912

Supplementary Material for913

“Sparse Mixture of Experts as914

Unified Competitive Learning”915

This document is organized as follows: Ap-916

pendix A.1 provides the theoretical proof support-917

ing the discussion in Section 3.2. Following this,918

Appendix A.3 offers a detailed analysis of the919

SMoE router and explains why our method out-920

performs the baseline approaches. Appendix A.2921

presents supplementary experimental results, and922

Appendix A.4 describes the implementation details923

in full.924

A.1 Theoretical Proof for Section 3.2925

Let x ∈ RN×d represent an input token embedding926

and E ∈ Rd×n represent the expert embeddings,927

where d is the dimension of the SMoE model and928

n is the number of experts. The similarity score S929

between the input token and the expert embeddings930

is computed using a dot product:931

S = x · E . (12)932

Since the softmax function is monotonic, the se-933

lection of top-k values remains unchanged under934

softmax transformation. Formally, we have:935

TopK(softmax(S), k) = TopK(S, k). (13)936

By setting k = 1, the top similarity score for a937

given token using the Token Choice approach is:938

St
j = max(Sik), ∀k ∈ [1, n]. (14)939

Since this operation is performed independently for940

each input token i, we extend this to all tokens q in941

the batch:942

St
j ≤ max(Sqk), ∀k ∈ [1, n], ∀q ∈ [1, N ].

(15) 943

By definition, the Unified Competitive Mecha- 944

nism approach selects the highest similarity score 945

across all tokens and experts: 946

Su
j = max(Sqk), ∀k ∈ [1, n], ∀q ∈ [1, N ].

(16) 947

Thus, we establish the first inequality: 948

St
i ≤ Su

i , ∀i ∈ [1, N ]. (17) 949

Similarly, in the Expert Choice approach, each 950

expert selects the best matching token, leading to: 951

Se
i ≤ Su

i , ∀i ∈ [1, N ]. (18) 952

Therefore, we conclude: 953

St
i ≤ Su

i , Se
i ≤ Su

i , ∀i ∈ [1, N ]. (19) 954

This completes the proof. □ 955

A.2 Additional Results 956

We provide a detailed evaluation of three state- 957

of-the-art SMoE models: OLMoE-1B-7B (Ta- 958

ble 8), Qwen1.5-MoE-A2.7B (Table 9), and 959

DeepSeekMoE-16B (Table 10). Our results 960

demonstrate the effectiveness of our method across 961

various models and prompts, comparing its perfor- 962

mance against baseline approaches such as Token 963

Choice (TC) and Expert Choice (EC). 964

A.3 In-depth Analysis 965

We visualize the router behavior of USMoE in Fig- 966

ure 6 and contrast it with the router behaviors of the 967

Token Choice approach (Figure 4) and the Expert 968

Choice approach (Figure 5). Notably, the router in 969

the OLMoE-1B-7B model exhibits a strong pref- 970

erence for specific experts. For instance, in the 971

Emotion Classification task, Experts 8, 30, and 972

58 are consistently prioritized in both the Token 973

Choice and Expert Choice approaches. This bias 974

limits the model’s adaptability and effectiveness for 975

downstream tasks. USMoE tackles this challenge 976

by introducing the Unified Competitive Mecha- 977

nism, which promotes more balanced and diverse 978

expert selections, as illustrated in Figure 6. This 979

enhancement enables USMoE to outperform the 980

baselines on the Emotion Classification task. 981
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Figure 4: Token Choice Router visualization for the OLMoE-1B-7B model on the Emotion Classification task.
The scores of selected experts are replaced with -10.0 (lower than the minimum score) to enhance visualization.
Best viewed in color.

Figure 5: Expert Choice Router visualization for the OLMoE-1B-7B model on the Emotion Classification task.
The scores of selected experts are replaced with -10.0 (lower than the minimum score) to enhance visualization.
Best viewed in color.

We track the number of unique experts utilized982

by the OLMoE-1B-7B model for each sequence983

in the Emotion Classification task as Figure 7a.984

Our analysis reveals that the Expert Choice ap-985

proach employs 11 out of 16 experts, indicating a986

lower level of specialization among experts. In con-987

trast, both USMoE and the Token Choice approach988

use an average of 0.9 to 1 expert per sequence,989

demonstrating superior expert specialization. Fur-990

thermore, we analyze the token dropping behavior991

of the Expert Choice approach and observe a sig-992

nificant increase in dropping rates when scaling to993

larger datasets or models, such as pre-training the994

Transformer-XL Large model on the One Billion995

Word dataset, as shown in Figure 7b. This increase996

in dropping rates may negatively impact model997

performance. In contrast, our method maintains a998

consistently low dropping rate (<0.1), demonstrat-999

ing its superiority over the Expert Choice approach1000

for scalability. Additionally, our method proves1001

more robust than the Token Choice approach, as it 1002

effectively drops irrelevant tokens without compro- 1003

mising performance. 1004

A.4 Implementation Details 1005

For the Without Training experiments, we imple- 1006

ment our method based on the publicly available 1007

MoEE implementation (Li and Zhou, 2024)1. Due 1008

to resource constraints, we validate our method and 1009

the baselines using 4-bit quantization with a batch 1010

size of 128. For the OLMoE-1B-7B model, we con- 1011

duct experiments on a single H100 GPU, while for 1012

the Qwen1.5-MoE-A2.7B and DeepSeekMoE-16B 1013

models, we utilize two H100 GPUs. 1014

The base Transformer-XL variant (Chen et al., 1015

2023b) comprises four Transformer decoder layers, 1016

each with an input dimension of 256. Each layer 1017

includes a self-attention mechanism with eight at- 1018

tention heads, followed by a Feed-forward Neural 1019

1https://github.com/tianyi-lab/MoE-Embedding
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Figure 6: USMoE Router visualization for the OLMoE-1B-7B model on the Emotion Classification task. The
scores of selected experts are replaced with -10.0 (lower than the minimum score) to enhance visualization. Best
viewed in color.

(a) Number Experts per Sequence of USMoE, TC,
and EC on Emotion dataset.

(b) Token Dropping of USMoE, Token Choice (TC), Expert Choice
(EC) for Pre-training on One Billion Word dataset.

Figure 7: Comparison of the number of experts per sequence for USMoE, Token Choice (TC), and Expert Choice
(EC) on the Emotion dataset using the OLMoE-1B-7B model, along with a comparison of token dropping rates for
USMoE, TC, and EC during pre-training on the One Billion Word dataset.

Network (FFN) that has an inner dimension of 512.1020

The dropout ratio is set at 0.1. We divide the FFN1021

into 16 experts, each with the same dimensions.1022

For the larger variants, we scale the model up to1023

twelve layers.1024

Our experiments are based on the publicly avail-1025

able SMoE-Dropout implementation (Chen et al.,1026

2023b)2. The pre-training experiments were con-1027

ducted using a single H100 GPU, while the fine-1028

tuning experiments were performed on a single1029

A100 GPU. It is important to note that parallel1030

training on multiple GPUs may produce different1031

results.1032

A.4.1 Pre-training Experiments1033

We provide the USMoE implementation details for1034

pre-training our Transformer-XL base and large on1035

enwik8, text8, WikiText-103, and One Billion1036

Word in Table 11.1037

2https://github.com/VITA-Group/
Random-MoE-as-Dropout

A.4.2 Fine-tuning Experiments 1038

To perform the fine-tuning experiments, we utilize 1039

the same model architecture as in the pre-training 1040

phase. Table 12 presents the implementation details 1041

for the fine-tuning experiments conducted across 1042

four different datasets. 1043
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Category Model Dataset Setting Router TC EC MoEE USMoE

Classification OLMoE-1B-7B Emotion None 24.1 24.5 26.3 25.1 28.2
Prompt 27.6 49.9 49.0 44.5 51.7

Toxic None 51.9 58.9 59.9 51.9 60.6
Prompt 52.3 65.2 61.3 53.4 66.6

Tweet None 47.7 46.8 48.3 48.4 52.1
Prompt 49.5 58.0 58.4 57.2 59.2

Clustering OLMoE-1B-7B Medrxiv None 15.0 17.6 14.8 17.4 21.2
Prompt 15.8 23.9 27.7 22.0 26.3

20Groups None 12.4 11.8 9.2 11.5 12.6
Prompt 16.7 25.7 26.2 24.4 34.6

Pair Classification OLMoE-1B-7B SemEval None 43.6 35.8 31.3 43.6 45.7
Prompt 45.7 46.7 40.9 53.8 54.2

URLCorpus None 47.0 42.4 39.7 47.8 54.5
Prompt 61.4 77.4 76.9 78.2 79.5

Reranking OLMoE-1B-7B Ask None 41.3 41.0 39.0 41.4 42.4
Prompt 43.4 51.9 49.9 50.2 51.8

SciDocs None 45.5 46.3 46.9 50.8 59.9
Prompt 53.6 69.6 73.1 75.1 76.6

StackOver None 25.8 24.8 20.1 26.4 27.0
Prompt 28.1 32.5 30.0 34.3 35.6

STS OLMoE-1B-7B Biosses None 39.3 13.6 7.7 29.7 45.4
Prompt 51.2 61.8 67.6 70.2 74.3

SickR None 50.3 46.3 26.4 53.0 55.1
Prompt 51.9 65.7 37.6 66.1 67.9

STS12 None 40.1 8.6 11.1 37.8 44.6
Prompt 51.3 53.8 37.5 63.6 67.1

STS13 None 40.5 21.1 18.2 43.4 49.8
Prompt 52.5 66.5 40.4 72.7 76.2

STS14 None 29.5 13.4 13.3 31.7 38.7
Prompt 41.1 56.8 33.9 64.2 67.3

STS15 None 30.8 27.8 22.5 33.3 43.3
Prompt 46.4 69.3 38.4 66.4 71.7

STS16 None 46.5 38.9 28.9 45.8 51.7
Prompt 52.4 70.1 49.4 68.3 72.7

STSBen None 42.2 23.4 17.5 44.5 51.1
Prompt 48.6 63.6 48.9 70.7 71.4

Summarization OLMoE-1B-7B Medrxiv None 28.4 20.9 21.1 29.8 30.8
Prompt 25.6 28.9 29.7 30.4 30.9

Table 8: Performance comparison of USMoE, Token Choice (TC), Expert Choice (EC), and MoEE across MTEB
Tasks with OLMoE-1B-7B models. The best result for each row is highlighted in bold.
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Category Model Dataset Setting Router TC EC MoEE USMoE

Classification Qwen1.5-MoE-A2.7B Emotion None 27.2 33.9 30.1 34.3 35.7
Prompt 37.0 48.5 47.4 47.2 49.9

Toxic None 53.0 61.1 21.3 52.9 61.4
Prompt 53.4 64.5 19.8 54.1 66.2

Tweet None 51.1 55.9 25.1 55.9 56.5
Prompt 56.1 61.1 38.6 60.7 61.5

Clustering Qwen1.5-MoE-A2.7B Medrxiv None 15.3 23.3 21.3 23.0 23.4
Prompt 14.2 24.6 19.8 21.8 25.1

20Groups None 12.0 31.5 25.1 27.4 30.0
Prompt 14.4 43.8 38.6 38.4 46.4

Pair Classification Qwen1.5-MoE-A2.7B SemEval None 42.0 38.8 34.7 42.5 44.2
Prompt 47.0 52.4 46.3 52.4 54.1

URLCorpus None 49.8 54.9 52.1 60.6 62.1
Prompt 56.7 68.7 65.8 68.2 72.7

Reranking Qwen1.5-MoE-A2.7B Ask None 43.1 45.8 43.4 47.3 47.5
Prompt 43.3 48.3 49.1 49.5 51.4

SciDocs None 49.6 60.6 55.3 67.0 65.6
Prompt 50.9 60.1 55.8 68.7 73.0

StackOver None 26.2 29.5 26.2 31.1 31.4
Prompt 28.8 31.3 30.2 35.2 36.6

STS Qwen1.5-MoE-A2.7B Biosses None 33.8 32.5 34.7 49.6 52.6
Prompt 55.1 55.8 48.5 68.4 66.2

SickR None 51.0 55.5 40.4 61.0 63.6
Prompt 50.2 59.7 51.1 64.3 66.3

STS12 None 40.2 16.9 18.6 46.3 48.3
Prompt 49.3 25.0 31.8 59.2 61.4

STS13 None 38.1 42.9 44.2 56.7 61.8
Prompt 53.3 57.5 54.6 73.4 75.7

STS14 None 28.1 26.5 25.6 45.4 48.9
Prompt 40.4 38.8 40.7 60.0 62.7

STS15 None 34.8 40.5 38.4 46.1 48.0
Prompt 40.7 52.3 54.2 58.8 62.5

STS16 None 47.6 51.0 48.1 58.1 59.6
Prompt 51.6 64.2 65.1 65.7 68.2

STSBen None 37.0 37.7 34.7 50.9 55.5
Prompt 45.6 47.8 54.5 64.5 67.3

Summarization Qwen1.5-MoE-A2.7B Medrxiv None 28.3 13.4 15.1 31.2 29.7
Prompt 27.0 23.0 21.9 27.3 48.4

Table 9: Performance comparison of USMoE, Token Choice (TC), Expert Choice (EC), and MoEE across MTEB
Tasks with Qwen1.5-MoE-A2.7B models. The best result for each row is highlighted in bold.
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Category Model Dataset Setting Router TC EC MoEE USMoE

Classification DeepSeekMoE-16B Emotion None 26.1 27.4 26.5 27.6 27.8
Prompt 37.9 48.3 46.1 46.4 48.8

Toxic None 53.3 60.4 58.1 53.1 60.1
Prompt 53.1 62.4 62.5 53.6 64.2

Tweet None 51.0 51.9 49.5 52.6 52.5
Prompt 54.9 58.4 57.5 58.9 58.9

Clustering DeepSeekMoE-16B Medrxiv None 15.1 23.0 17.3 22.0 25.0
Prompt 17.0 25.7 20.9 24.0 25.8

20Groups None 11.7 13.2 9.7 13.7 18.7
Prompt 18.6 32.3 19.8 33.0 37.9

Pair Classification DeepSeekMoE-16B SemEval None 44.6 40.2 32.6 43.5 46.0
Prompt 48.4 47.2 46.6 51.3 54.6

URLCorpus None 46.4 41.7 41.6 48.6 57.9
Prompt 66.5 72.4 61.1 75.4 75.9

Reranking DeepSeekMoE-16B Ask None 41.7 41.1 40.1 42.3 45.0
Prompt 43.5 43.8 44.7 46.9 49.9

SciDocs None 48.2 50.6 44.7 57.1 61.9
Prompt 58.3 65.6 55.3 72.6 72.9

StackOver None 25.7 24.9 20.4 27.3 30.2
Prompt 29.7 27.6 22.6 32.3 33.6

STS DeepSeekMoE-16B Biosses None 29.5 31.7 27.7 26.8 35.4
Prompt 47.0 40.1 41.5 57.6 55.3

SickR None 50.4 47.4 29.4 53.1 56.7
Prompt 56.0 61.9 38.7 65.8 67.7

STS12 None 44.0 4.3 13.9 45.0 46.9
Prompt 57.8 31.0 28.4 64.0 64.2

STS13 None 36.0 28.4 27.5 41.1 49.1
Prompt 55.3 56.0 41.2 70.9 75.2

STS14 None 25.4 12.0 13.0 28.2 37.3
Prompt 44.9 41.0 31.1 58.6 63.8

STS15 None 34.8 33.9 25.6 38.7 40.7
Prompt 49.7 46.5 33.0 58.5 63.0

STS16 None 44.9 34.4 33.1 46.9 55.7
Prompt 56.7 58.0 44.2 64.5 69.7

STSBen None 36.6 18.3 15.8 42.1 45.6
Prompt 54.9 57.7 39.0 67.8 69.2

Summarization DeepSeekMoE-16B Medrxiv None 24.9 22.0 18.5 24.4 28.4
Prompt 29.1 24.4 25.7 29.2 30.9

Table 10: Performance comparison of USMoE, Token Choice (TC), Expert Choice (EC), and MoEE across MTEB
Tasks with DeepSeekMoE-16B models. The best result for each row is highlighted in bold.
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Table 11: Implementation details for pre-training ex-
periments on enwik8, text8, WikiText-103, and One
Billion Word datasets.

Dataset Input length Batch size Optimizer Lr # Iterations

enwik8 512 48 Adam 2.5e-4 100k
text8 512 48 Adam 2.5e-4 100k
WikiText-103 512 22 Adam 2.5e-4 100k
One Billion Word 512 11 Adam 2.5e-4 100k

Table 12: Implementation for fine-tuning experiments
on downstream tasks.

Dataset Input length Batch size Optimizer Lr # Epochs

SST-2 512 16 Adam 1e-4 15
SST-5 512 16 Adam 1e-4 15
IMDB 512 4 Adam 1e-4 15
BANKING77 512 16 Adam 1e-4 15
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