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Abstract

We consider an online optimization problem in a

bandit setting in which a learner chooses decisions

from a continuous decision set at discrete decision

epochs, and receives noisy rewards from the en-

vironment in response. While the noise samples

are assumed to be independent and sub-Gaussian,

the mean reward at each epoch is a fixed but un-

known linear function of a feature vector, which

depends on the decision through a known (and

possibly nonlinear) feature map. We study the

problem within the framework of best-arm identi-

fication with fixed confidence, and provide a tem-

plate algorithm for approximately learning the op-

timal decision in a probably approximately correct

(PAC) setting. More precisely, the template algo-

rithm samples the decision space till a stopping

condition is met, and returns a subset of decisions

such that, with the required confidence, every el-

ement of the subset is approximately optimal for

the unknown mean reward function. We provide

a sample complexity bound for the template al-

gorithm and then specialize it to the case where

the mean-reward function is a univariate polyno-

mial of a single decision variable. We provide an

implementable algorithm for this case by explic-

itly instantiating all the steps in the template algo-

rithm. Finally, we provide experimental results to

demonstrate the efficacy of our algorithms.

1 INTRODUCTION

Multi-arm bandits have proved to be a fertile setting for

studying various aspects of exploration and exploitation

in sequential decision-making problems. While the re-

gret minimization setting probes trade-offs between explo-

ration and exploitation [Bubeck and Cesa-Bianchi, 2012],

the pure exploration setting examines efficient exploration

for maximizing information gain [Even-Dar et al., 2002,

Bubeck et al., 2009]. Best arm identification (BAI) is one

example of a pure exploration task where the learner seeks

to identify the best arm through exploration. BAI is itself

studied in two settings, namely, the fixed budget setting

and the fixed confidence setting. In the fixed budget setting,

the learner seeks to minimize the probability of misidenti-

fying the optimal arm over a fixed number of trials [Audib-

ert et al., 2010]. In contrast, in the fixed confidence setting,

the aim of the learner is to minimize the number of trials

needed to identify the optimal arm with a given level of

confidence [Even-Dar et al., 2003].

Inclusion of additional structure in the reward environment

adds a new dimension to the bandit problem. One struc-

tured bandit setting that has been widely considered in the

literature is that of linear bandits. In a multi-arm linear ban-

dit problem, each arm is associated with a feature vector in

a finite-dimensional real vector space, and the mean reward

of the arm is an unknown linear function of the feature vec-

tor. A more general version of the linear bandit problem

results when the set of “arms" is a subset, not necessarily

finite, of a real vector space. Unlike in the case of a multi-

arm bandit where pulling one arm provides no information

about another, the linear structure of the mean reward in a

linear bandit problem opens up the possibility of learning

optimal decisions even while sampling suboptimal ones.

The linear bandit problem has received significant attention

in the regret minimization setting, both the case of finite

arms as well as continuous decision sets [Auer, 2002, Dani

et al., 2008, Agrawal and Goyal, 2013, Bartlett et al., 2008].

In contrast, the pure exploration setting for linear bandit

problems has started gaining attention only relatively re-

cently [Soare et al., 2014, Degenne et al., 2020, Garivier

and Kaufmann, 2016, Yang and Tan, 2021, Karnin, 2016,

Xu et al., 2018, Tao et al., 2018, Jedra and Proutiere, 2020].

What is more, except for the specific case of a spherical

decision set considered in Jedra and Proutiere [2020], the

literature on pure exploration in linear bandits has so far
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focused on the case of finite decision sets only.

In this paper, we consider a bandit problem in which the

mean reward is an unknown linear function of a feature

vector that depends on the decision through a known, but

possibly nonlinear, feature map. Furthermore, we do not

assume the decision set to be finite. The motivation for our

problem comes from real-life applications where the deci-

sion variable takes a large number of real values at a fine

resolution, and the mean reward depends continuously on

the decision variable. In such cases, it is more efficient to

model the decision set as a continuum rather than a finite

set. A prime example is that of dynamic pricing [Den Boer,

2015, Ganti et al., 2018, Keskin and Zeevi, 2014], where

the seller of a product faces an unknown product demand

that depends (possibly non-linearly) on the selling price

of the product. The seller seeks to learn the selling price

that results in the maximum revenue. In this case, it is com-

mon to model the selling price as a continuous variable and

the revenue as a continuous function of the selling price.

Additionally, approximating the revenue function as an un-

known linear combination of a finite number of known ba-

sis functions yields a linear-in-parameter bandit model with

a continuous decision variable.

While BAI algorithms in the finite arm case seek to find the

best arm with high confidence, finding the best decision

from a continuum of decisions can be prohibitively expen-

sive. Hence we consider a (ε, δ)-probably-approximately-

correct (PAC) formulation, where the goal of the learner is

to find a set of points which are ε-optimal with probability

at least 1−δ. By building on the work of Soare et al. [2014],

Jedra and Proutiere [2020], Kaufmann et al. [2016], we pro-

vide a lower bound on the sample complexity of (ε, δ)-PAC

algorithms in Section 3. Next, we use the notion of volumet-

ric spanners [Hazan and Karnin, 2016] to devise VSBAI, a

simple algorithm template for BAI in our setting in Section

4. We prove VSBAI to be (ε, δ)-PAC, and provide upper

bounds on its sample complexity.

In Section 5, we consider the case where the mean reward

is a polynomial function of a single decision variable. We

show that, in this case, a volumetric spanner can be com-

puted using convex optimization, and indicate how the al-

gorithm template VSBAI can be instantiated for BAI under

polynomial rewards. Finally, we present experimental re-

sults in Section 6.

Before describing the problem setup in Section 2, we intro-

duce some notation used throughout the paper. We use R

and Z+ to denote the set of real numbers and positive in-

tegers, respectively, and AT to denote the transpose of the

matrix A. The 1-norm and 2-norm on R
n are denoted by

‖·‖1 and ‖·‖2, respectively. Given a function g : D → R

and ε > 0, s ∈ D is ε-optimal for g if g(s′) ≤ g(s) + ε
for all s′ ∈ D. A set D′ ⊆ D is ε-optimal for g if every

element ofD′ is ε-optimal for g. Finally, ‖g‖∞ denotes the

sup norm of a real-valued function when its domain is clear

from the context.

2 PROBLEM SETUP

We consider a bandit optimization setting in which a learner

interacts with an environment at discrete decision epochs

t = 1, 2, . . .. At each period t ∈ Z+, the learner chooses

a decision st from a compact decision set D ∈ R
d and

receives a noisy reward yt = µTxt + ηt, where the f -

dimensional feature vector xt = φ(st) is related to the de-

cision st through a continuous feature map φ : D −→ R
f ,

µ ∈ R
f is a parameter vector, and {ηt}t∈Z+

is a noise se-

quence. Our reward model is thus given by

yt = gµ(st) + ηt, t ∈ Z+, (1)

where, for each θ ∈ R
f , gθ : D → R is defined by gθ(s) =

θTφ(s).

Without any real loss of generality, we assume that φ(D)
is not contained in any proper linear subspace of R

f . In

addition, our results make use of one or the other of the

following two assumptions on the noise sequence.

Assumption 1. The noise sequence {ηt}t∈Z+
is a sequence

of zero mean i.i.d σ-sub Gaussian random variables for

some σ > 0. Specifically, for each i ∈ Z+, ηi satisfies

E(etηi) ≤ e
σ2t2

2 for all t ∈ R.

Assumption 2. The noise sequence {ηt}t∈Z+
is a sequence

of zero mean i.i.d. Gaussian random variables with vari-

ance σ2 for some σ > 0.

Note that Assumption 2 is a special case of Assumption 1.

We assume that, in the case of either of the two assumptions

above, the learner knows σ. In addition, she also has access

to the feature map φ. However, the parameter vector µ is

unknown to the learner.

In a best-arm identification setting, the learner’s goal is to

identify a maximizer s∗ of gµ by using the observations

{(si, yi)}Ti=1 collected over a decision horizon T . However,

the presence of noise makes it impossible to identify an

optimizer with certainty over a finite horizon. Hence it is

standard practice in the literature to seek an algorithm that

returns a set that contains the desired optimizer to a high

level of confidence. Such an algorithm typically comprises

of a sampling rule π that determines the decision st ∈ D to

explore at time t given the history of observations up to t−
1, a stopping rule that decides if the exploration conducted

so far is sufficient, and an estimation rule that computes

a set that contains the desired optimizer to a high level of

confidence. We make these ideas more precise in the next

section.



3 (ε, δ)-PAC ALGORITHMS AND THEIR

SAMPLE COMPLEXITY

Complexity lower bounds on algorithms for best arm iden-

tification in a PAC setting have been studied before for the

case where the decision set is finite Soare et al. [2014], Je-

dra and Proutiere [2020], Degenne et al. [2020], Kaufmann

et al. [2016], Xu et al. [2018]. While the analysis we present

below follows similar ideas, the continuous nature of the

decision set makes it necessary to formally define the ele-

ments mentioned above using a little more machinery.

To this end, we note that a sampling rule could also make

use of internal randomization in addition to the past history

of decisions and rewards. It is easy to see that any random-

ization scheme requiring n random variables at each deci-

sion epoch can be implemented using n i.i.d. samples of a

random variable uniformly distributed on the unit interval.

Hence, to represent a general sampling rule more formally,

we consider the Cartesian product S def
= D × R × [0, 1]n,

where n ≥ 0 is a fixed integer. S is the set of triplets of de-

cision, reward, and a set of n auxiliary quantities used for

internal randomization. For each t, we denote by Ωt the set

of sequences in S of length t, and by Ω the set of all infinite

sequences in S . We use ht = {(si, yi, ui)}ti=1 to denote a

general sequence in Ωt. We assume that D is a Borel set.

By forming products of the Borel σ-algebras of D, R and

[0, 1]n, we obtain a σ-algebra Ft on Ωt for each t, as well

as a σ-algebra F on Ω. Moreover, on letting F0 denote the

trivial σ-algebra on Ω, we obtain a filtration {Ft}∞t=0 on Ω.

Next, we define a sampling rule π to be a sequence

{πt}t∈Z+
along with a Borel measure λ on [0, 1]n, where

π1 is a stochastic kernel on D given [0, 1]n and, for each

t > 1, πt is a stochastic kernel onD given Ωt−1 and [0, 1]n.

In other words, for each t > 1, the following holds: for

each ht−1 ∈ Ωt−1 and u ∈ [0, 1]n, πt(·|ht−1, u) is a mea-

sure on the Borel σ-algebra of D, while for each Borel sub-

set A of D, πt(A|·, ·) is a Borel-measurable function on

Ωt−1 × [0, 1]n. Informally speaking, λ is the measure used

to sample an element of [0, 1]n for any internal random-

ization used by the sampling rule while, for every t > 1,

the measure πt(·|ht−1, u) describes the conditional distri-

bution of the decision sampled at time t given the history

ht−1 ∈ Ωt−1 up to time t − 1 and the randomly sampled

u ∈ [0, 1]n. A similar interpretation applies for t = 1.

Any algorithm used by the learner can be represented by

the tuple A = (n, λ, π, τ,F), where n, λ and π are as de-

scribed above, τ is a stopping time with respect to the fil-

tration {Ft}∞t=0 representing the stopping condition of the

algorithm, and F is a set-valued map that maps each finite

history in Ω to a subset of D. The algorithm terminates at

the random time τ and returns the set F(hτ ) upon terminat-

ing.

It is natural to represent the environment as a stochastic

kernel Qµ on R given D, such that the measure on R given

by Qµ(·|s) describes the conditional distribution of the re-

ward (1) given the decision s ∈ D. The interaction between

the algorithm and the environment induces Borel measures

P
A,µ on Ω and P

A,µ
t on Ωt for each t ∈ Z+ (see Proposi-

tion 7.28 of Bertsekas and Shreve [1996]).

Finally, given ε > 0 and ζ ∈ R
f , we letOε(ζ) ⊆ D denote

the set of decisions that are ε-optimal for the function gζ .

We seek an algorithm (n, λ, π, τ,F) such that, given ε > 0
and δ ∈ (0, 1), the set F(hτ ) returned by the algorithm on

termination is ε-optimal for gµ and contains the true opti-

mal decision together with probability at least 1 − δ. We

make this class of algorithms more precise in the next defi-

nition.

Definition 3.1. Given ε > 0 and δ ∈ (0, 1), an algo-

rithmA = (n, λ, π, τ,F) is (ε, δ)-PAC for the environment

(1) if the stopping time τ is finite P
A,µ-almost-surely and

P
A,µ({argmaxs∈D gµ(s) ⊆ F(hτ ) ⊆ Oε(µ)}) ≥ 1− δ.

The expected sample complexity of an algorithm A =
(n, λ, π, τ,F) is the expected number of decisions explored

by the algorithm till termination, and is simply given by

E
A,µ(τ), where E

A,µ(·) denotes expectation under P
A,µ.

Next, we provide a lower bound for the expected sam-

ple complexity of a (ε, δ)-PAC algorithm. To do so, we

need one more notation. Given ζ ∈ R
f and ε > 0,

the ε-alternative of ζ is the set Altε(ζ) = {ζ ′ ∈ R
f :

Oε(ζ)∩Oε(ζ
′) = ∅}. We are now ready to state our lower

bound. The proof, which builds on ideas given in Soare

et al. [2014], Jedra and Proutiere [2020], Kaufmann et al.

[2016], is given in Appendix A in the supplementary mate-

rial.

Theorem 3.2. Suppose Assumption 2 holds. Let ε > 0 and

δ ∈ (0, 1), and suppose A = (n, λ, π, τ,F) is a (ε, δ)-PAC

algorithm for (1). Then

E
A,µ(τ) ≥ 2σ2 ln

(

1
2.4δ

)

inf
ζ∈Altε(µ)

‖gµ − gζ‖∞
. (2)

4 VSBAI: AN ALGORITHM TEMPLATE

In this section, we present VSBAI, a general template for an

(ε, δ)-PAC algorithm for the bandit optimization problem

described in Section 2, and provide a sample complexity

bound for it. We prefer to use the term template rather than

an algorithm as some of the steps of the template can only

be implemented if D and φ are specified.

VSBAI combines two ideas, namely,

1. obtain a ε-optimal set for gµ from a uniform approxi-

mation for gµ, and

2. with high probability, obtain a uniform approximation

of gµ by regressing the rewards obtained for decisions

sampled at points of a suitable exploration basis forD.



We elaborate on each of these two aforementioned ideas

next.

4.1 APPROXIMATE OPTIMIZERS FROM

UNIFORM APPROXIMATIONS

The intuition behind the first idea listed above is illustrated

in Figure 1 for the case where d = 1. The thick solid curve

in the figure depicts the graph of a uniform approximation

q̂ of an unknown function q represented by the thin solid

curve. Suppose the uniform approximation error does not

exceed ε
4 for some ε > 0, that is, ‖q − q̂‖∞< ε

4 holds. The

two dashed curves are graphs of the functions q̂± ε
4 , which

serve as upper and lower bounds on the unknown function

q. In other words, the graph of q must lie within the region

bounded by the two dashed curves. In the figure, the ap-

proximation q̂ achieves its maximum at ŝ, while s∗ is the

maximizer of q. The horizontal segment shown in the fig-

ure represents a set D′ such that the approximation q̂ does

not fall below its maximum value q̂(ŝ) by more than ε
2 on

D′. One can intuitively see from the figure that the set D′

must contain the maximizer s∗ of the unknown function q.

Moreover, the absolute difference between the values of the

unknown function q at any two points in the set D′ cannot

exceed the difference ε between the maximum and mini-

mum values on D′ of the upper and lower dashed curve,

respectively. In other words, the set D′ is ε-optimal for q.

ŝ

q

q̂

q̂ + ε
4

q̂ − ε
4

s∗

D′

ε
4

ε
4

ε
2

Figure 1: Obtaining ε-optimal points for q from its uniform
ε
4 -approximation q̂

The next proposition formalizes the intuition reflected in

Figure 1. The proof is given in Appendix B in the supple-

mentary material.

Proposition 4.1. Let ε > 0, and suppose q, q̂ : D → R are

such that ‖q̂ − q‖∞≤ ε
4 . Let ŝ ∈ argmaxs∈D q̂(s). Then

the set D′ def
= {s ∈ D : q̂(s) ≥ q̂(ŝ) − ε

2} is ε-optimal for

q, and contains argmaxs∈D q(s).

4.2 UNIFORM APPROXIMATION OF THE

REWARD FUNCTION

The Cauchy-Schwarz inequality gives |gµ̂(s) − gµ(s)|≤
‖φ(s)‖2‖µ̂ − µ‖2 for every s ∈ D and µ̂ ∈ R

f . The com-

pactness ofD now shows that any estimate µ̂ of µ yields an

uniform approximation gµ̂ of gµ. Hence, an obvious and

popular means of obtaining an approximation to the un-

known reward function gµ is to estimate µ from observed

decisions and rewards using least-squares regression. It is

not surprising, therefore, that either ordinary least squares

(OLS) or regularised least squares forms a part of almost

every algorithm available for linear bandit problems in the

stochastic as well as adversarial settings with finite arms or

continuous arms. We briefly review OLS before proceed-

ing.

At the end of t decision epochs, the learner has access to

observations {(xi, yi)}ti=1, where xi = φ(si) is the fea-

ture vector of the ith decision si, and yi is the correspond-

ing observed reward. Letting Xt
def
= [x1, . . . , xt] ∈ R

f×t

and yt
def
= [y1, . . . , yt]

T ∈ R
t, the OLS estimate µ̂t of

µ, based on the data {(xi, yi)}ti=1, is obtained by solving

minµ̂∈Rf ‖yt −XT
t µ̂‖22, and is given by

µ̂t = (XtX
T
t )

−1Xty
t. (3)

For deriving (3), it is assumed that Xt has rank f , which

necessarily implies that t ≥ f .

The parameter error µ̂t − µ clearly depends on the choice

of the decisions s1, . . . , st. Indeed, on letting ηt =
[η1, . . . , ηt]

T denote the vector of noise samples till time

t, it is easy to use (1) and (3) to show that

µ̂t − µ = (XtX
T
t )

−1Xtη
t. (4)

In a regret minimization setting, the decisions need to be

chosen in an adaptive manner so that the required trade-

off between exploration and exploitation can be achieved.

Even in the pure exploration setting of best-arm identifica-

tion in a finite multi-arm bandit problem, decisions have to

be adaptive so that the exploration budget is diverted away

from arms as and when they are revealed to be sub-optimal,

since exploring one arm gives no information about another

arm. In contrast, in the pure exploration setting that we are

considering for the linear bandit problem, each decision

that improves the estimate of µ also improves the accuracy

of the approximation of gµ over the whole decision domain

D. This suggests the possibility of using non-adaptive (that

is, deterministic) sampling of the decision space for the pur-

pose of constructing an OLS-based approximation of gµ.

In this case, it is natural to consider a volumetric spanner

as a low variance exploration basis (as defined in Hazan

and Karnin [2016]) for sampling the reward function. We

review the necessary background next.



4.3 VOLUMETRIC SPANNERS

Suppose L > 0 and m ≥ f . A (L,m)-volumetric span-

ner for φ(D) ⊆ R
f is a subset {x1, . . . , xm} of φ(D) such

that, for every z ∈ D, there exists c1, . . . , cm ∈ R satis-

fying z = c1x1 + · · · + cmxm and c21 + · · · + c2m ≤ L2.

Recall that, for every z ∈ R
f and X ∈ R

f×m with m ≥ f ,

c = XT(XXT)−1z is the minimum-2-norm solution of

the equation Xc = z. Hence, it follows from the defini-

tion that, if {x1, . . . xm} is a (L,m)-volumetric spanner for

φ(D) ⊆ R
f , then ‖XT(XXT)−1z‖2≤ L for all z ∈ φ(D),

where X = [x1, . . . , xm] ∈ R
f×m. In particular, if m = f ,

then ‖X−1z‖2≤ L for every z ∈ φ(D). The last obser-

vation implies that there exists no (L, f)-volumetric span-

ner for φ(D) for L < 1. A (1,m)-volumetric spanner was

called a volumetric spanner in Hazan and Karnin [2016]

irrespective of m. Since the cardinality of the volumetric

spanner will be required in our algorithm, we choose not to

suppress it.

It will be convenient to define p1, . . . , pm ∈ D
to be (L,m)-volumetric points for the pair (φ,D) if

{φ(p1), . . . , φ(pm)} is a (L,m)-volumetric spanner for

φ(D).
Since a volumetric spanner forms a critical component of

the algorithm that we present in the next subsection, it is

important to consider the existence of such spanners as

well as algorithms for computing them. We start with an

easy observation. Our assumption that the set φ(D) of fea-

ture vectors is not contained in a proper linear subspace of

R
f implies that φ(D) contains a set of f linearly indepen-

dent vectors. Since φ(D) is compact, it is easy to see that

any linearly independent subset of cardinality f will serve

as a (L, f) volumetric spanner for sufficiently large L. It

is separately known that, being compact, φ(D) possesses

a (1,m)-volumetric spanner for some m ≤ 12f . In addi-

tion, if φ(D) is finite, then the aforementioned volumetric

spanner can be constructed in polynomial time (see Theo-

rem 3 of Hazan and Karnin [2016] for both facts above as

well as additional details). We will see later that the sam-

ple complexity of our algorithm grows as L2m, and can be

improved if a (L,m)-volumetric spanner with lower val-

ues of L and m is chosen. It is easy to see that the union

of two (L,m)-volumetric spanners yields a (L/
√
2, 2m)-

volumetric spanner, indicating that it is possible to reduce

L by considering volumetric spanners with more elements.

In this context, the following bound proved in Appendix B

in the supplementary material is of interest.

Lemma 4.2. If L > 0 and m ≥ f are such that there exists

a (L,m)-volumetric spanner for φ(D), then L2m ≥ f .

The lower bound in Lemma 4.2 is achieved by a (1, f)-
volumetric spanner.

4.4 VSBAI: DESCRIPTION AND ANALYSIS

The template algorithm VSBAI that we present requires a

set of (L,m)-volumetric points {p1, . . . , pm} for the pair

(φ,D), for some L ≥ 1 and m ≥ f . The algorithm pro-

ceeds in rounds with each round consisting of m deci-

sion epochs. In each round, the algorithm picks the points

{p1, . . . , pm} in sequence as the decisions for that round.

In the notation of section 3, the template algorithm is given

by a tuple A∗ = (n∗, λ∗, π∗, τ∗,F∗) whose sampling rule

π∗ is defined by

π∗
t (·|u) = δpi

(·), i = 1 + (t mod m), (5)

for every t ∈ Z+ and u ∈ [0, 1]n
∗

, where δs(·) denotes

the Dirac measure at s ∈ D. Note that the sampling rule

π∗ is deterministic, and hence the choices of n∗ and λ∗ are

immaterial.

As described in subsection 4.2, our template algorithm A∗

involves obtaining successively better uniform approxima-

tions of gµ using a sequence of OLS estimates of µ obtained

through (3). Our next result gives a high probability bound

on the uniform error with which the estimate gµ̂km
obtained

after k rounds approximates gµ. The proof is given in Ap-

pendix C in the supplementary material.

Proposition 4.3. Consider an algorithm A∗ whose sam-

pling rule is described by (5). Let k ∈ Z+ and ε > 0, and

suppose Assumption 1 holds. Then

P
A∗,µ(‖gµ̂km

− gµ‖∞> ε) ≤ β
(

k,
ε

L

)

, (6)

where

β(k, ε)
def
= 2

f
2 exp

(

− kε2

4σ2

)

. (7)

Propositions 4.1 and 4.3 immediately suggest the stopping

criterion that yields an (ε, δ)-PAC algorithm under the sam-

pling rule described by (5). Indeed, by Proposition 4.3,

choosing

τ∗ = inf
{

km : β
(

k,
ε

4L

)

< δ
}

(8)

ensures that, with probability at least 1 − δ, the uniform

approximation condition required by Proposition 4.1 holds

with q = gµ and q̂ = gµ̂τ∗
. LettingDτ∗ = F(hτ∗) to be the

setD′ in Proposition 4.1 then ensures thatDτ∗ is ε-optimal

for gµ with the same probability. The resulting algorithm is

given as Algorithm 1 below.

In Algorithm 1, β is taken to be given by (7). Also, the steps

at lines 10 and 12 in the algorithm come from (20) in the

supplementary material.

The main result of this section given below states that VS-

BAI is (ε, δ)-PAC.



Algorithm 1 VSBAI

1: Input: ε > 0, δ ∈ (0, 1), sub-Gaussianity parameter σ,

(L,m)-volumetric points p1, . . . , pm for (φ,D)
2: Set BL,m = [φ(p1), . . . , φ(pm)]
3: Initialize k ← 1, r ← 0
4: Set STOP = False

5: while STOP == False do

6: Initialize reward vector ȳk = []
7: for t = 1, . . . ,m, do

8: Apply decision s(k−1)m+t ← pt
9: Observe reward y(k−1)m+t

10: Augment reward vector

ȳk ← [(ȳk)T; y(k−1)f+t]
T

11: end for

12: Update total reward vector r ← r + ȳk

13: if β(k, ε
4L ) < δ then

14: STOP = True

15: else

16: k = k + 1
17: end if

18: end while

19: τ∗ ← km
20: µ̂τ∗ ← 1

k
(BL,mBT

L,m)−1BL,mr
21: Pick ŝ ∈ argmaxs∈D gµ̂τ∗

(s).
22: Dτ∗ = {s ∈ D : gµ̂τ∗

(s) ≥ gµ̂τ∗
(ŝ)− ε

2}
23: Output: Dτ∗

Theorem 4.4. Suppose Assumption 1 holds. Then Al-

gorithm 1 terminates in at most τ∗ ≤ m[1 −
64L2σ2ε−2 ln(2−

f
2 δ)] decision epochs. Furthermore, with

P
A∗,µ-probability at least 1 − δ, the set Dτ∗ returned by

the algorithm is ε-optimal for gµ and contains all the max-

imizers of gµ. In particular, Algorithm 1 is (ε, δ)-PAC.

Proof. Let τ∗ be as computed by Algorithm 1, and let

k = τ∗/m. The upper bound for τ∗ comes from using

(7) in the stopping condition (8). Next, consider the event

E = {‖gµ̂τ
− gµ‖∞> ǫ

4}. By Proposition 4.3 and the defi-

nition (8) of τ∗, it follows that PA∗,µ(E) < β(k, ε
4L ) < δ.

Proposition 4.1 now implies that, on the complement of the

event E , Dτ∗ is ε-optimal for gµ and contains all the maxi-

mizers of gµ. This completes the proof.

Note that three critical steps in the algorithm depend on

the pair (φ,D), namely, computation of the (L,m) volu-

metric points used as inputs to the algorithm, computation

of an optimizer ŝ for the approximation gµ̂τ∗
at line 21,

and computation of the set Dτ∗ at line 22 of the algorithm.

Hence we view the algorithm more as a template requir-

ing the three aforementioned steps to be worked out for

specific problem instances. We present a simple example

considered in Jedra and Proutiere [2020] to illustrate these

steps.

4.5 LINEAR BANDIT ON THE UNIT SPHERE

Let f > 1, and choose D to be the unit sphere Sf−1 def
=

{s ∈ R
f : ‖s‖2= 1}. Let φ : Sf−1 → R

f be the inclusion

map. Then the reward function in (1) becomes gµ(s) =
µTs.

Any set of f orthonormal vectors is seen to be a set of

(1, f)-volumetric points for the pair (φ, Sf−1). For every

non-zero θ ∈ R
f , argmaxs∈Sf−1 gθ(s) equals {‖θ‖−1

2 θ}.
Line 21 of Algorithm 1 thus returns ŝ = ‖µ̂τ∗‖−1

2 µ̂τ∗ ,

while the set Dτ∗ at line 22 of Algorithm 1 is given by

the “spherical cap” {s ∈ Sf−1 : ŝTs ≥ 1− ε
2‖µ̂τ‖2

}.
Under Assumption 2, Theorem 4 of Jedra and Proutiere

[2020] gives a lower bound for the sample complexity

of any (ε, δ)-PAC algorithm A for the case of the unit

sphere considered here. On using inequality (3) of Kauf-

mann et al. [2016], the lower bound given by Jedra and

Proutiere [2020] may be written as

E
A,µ(τ) ≥ σ2(f − 1)

20ε‖µ‖2
ln

(

1

2.4δ

)

(9)

for ε < ‖µ‖2/5. Jedra and Proutiere [2020] also provide an

algorithm for this case, and show that the sample complex-

ity of their algorithm recovers the dependence on ε, f and

δ seen in the lower bound (9) asymptotically as δ → 0 (see

Theorem 5 of Jedra and Proutiere [2020]). Interestingly,

the sampling rule given by Jedra and Proutiere [2020] for

their algorithm involves choosing f orthogonal vectors in

a round-robin manner just as mentioned above. However,

their stopping rule is more intricate.

On using L = 1 and m = f , the upper bound provided by

Theorem 4.4 for Algorithm 1 under Assumption 2 reduces

to

τ∗ ≤ f

[

1 +
64σ2

ε2
ln

(

2
f
2

δ

)]

. (10)

On comparing (9) and (10), we see that while the depen-

dence of the sample complexity of Algorithm 1 on δ com-

pares favourably with the lower bound (9), the dependence

on ε does not, at least for small values of ε. This could

indicate that either the lower bound is conservative (for

δ > 0), or that Algorithm 1 is sub-optimal. Closing this

gap remains an open problem.

Before proceeding, we comment on the possible reason for

the suboptimality of VSBAI in relation to the sample com-

plexity lower bound (9), as well as the difference in the

sample complexities of VSBAI and the algorithm of Jedra

and Proutiere [2020]. As mentioned above, while the sam-

pling rule used in both algorithms is the same, the stopping

rules are different. The stopping rule in Jedra and Proutiere

[2020] is designed to stop the exploration as soon as the ac-

cumulated data is sufficient to confidently distinguish the

true linear function from the closest linear function that has



a completely different set of approximate optimizers (that

is, functions corresponding to parameter vectors from the

so called alternative set). In contrast, the stopping rule in

VSBAI stops the exploration only when, with high proba-

bility, the true linear function is approximated sufficiently

well uniformly everywhere by the OLS estimate without

any reference to the alternative set. We believe that this dif-

ference in the nature of the stopping rules is the reason for

both, the superiority of the asymptotic sample complexity

(as δ → 0) of the algorithm of Jedra and Proutiere [2020]

over that of VSBAI, as well as the suboptimality of VS-

BAI. We add, however, that the stopping rule from Jedra

and Proutiere [2020] requires solving an optimization prob-

lem at every decision epoch, and is therefore difficult to

implement.

It is easy to see from Theorem 4.4 that the best sample com-

plexity for Algorithm 1 results when L = 1 and m = f ,

that is, when a set of (1, f)-volumetric points is available

for the pair (φ,D). The unit sphere example considered in

this subsection provided a simple setting in which a set of

(1, f)-volumetric points is available. In the next section, we

will see a nontrivial setting where such a set of volumetric

points exists, and can be computed easily.

5 UNIVARIATE DECISION VARIABLE

WITH POLYNOMIAL REWARD

As a concrete instance of the general problem setup de-

scribed in Section 2, we consider the case where the re-

ward function gµ in (1) is a univariate polynomial of de-

gree f − 1 > 0 on an interval [pmin, pmax] ⊂ R for some

pmax > pmin. To cast this case of polynomial rewards in

our general setup, we let D def
= [pmin, pmax] and define

φ : [pmin, pmax]→ R
f by φ(s)

def
= [1, s, . . . , sf−1]T. Then,

for each θ ∈ R
f , gθ is the univariate polynomial in s of de-

gree f−1 with coefficients given by the parameter vector θ.

Our next result shows that a set of (1, f) volumetric points

for the pair (φ,D) exists. The proof is given in Appendix

D in the supplementary material.

Proposition 5.1. Suppose pmin ≤ p1 ≤ · · · ≤ pf ≤ pmax.

Then the following two statements are equivalent.

1. The points p1, . . . , pf ∈ D are (1, f) volumetric

points for the pair (φ,D).
2. The points p1, . . . , pf satisfy pmin = p1 < p2 · · · <

pf = pmax and

∑

1≤j≤f,j 6=i

1

pi − pj
= 0, i = 2, . . . , f − 1. (11)

Equations (11) also appear in Amballa et al. [2021], where

it is shown that (11) provide necessary and sufficient con-

ditions for the points φ(p1), . . . , φ(pf ) to form a barycen-

tric spanner for the set φ(D). Proposition 5.1 above thus

implies that, in the case of univariate polynomial reward

functions, a barycentric spanner is also a volumetric span-

ner. Amballa et al. [2021] also show that the equations (11)

possess a unique solution, and this solution may be com-

puted efficiently either by numerically solving the algebraic

equations (11) or by solving a convex optimization prob-

lem. Furthermore, volumetric points for the general case

D = [pmin, pmax] can be easily recovered from volumet-

ric points for the special case D = [0, 1]. This means that,

effectively, the solution of (11) needs to be computed just

once for a given f .

Proposition 5.1 enables us to implement the initialisa-

tion step on line 1 of Algorithm 1. The optimization

argmaxs∈D gµ̂τ∗
(s) at line 21 of the algorithm may be per-

formed by finding the roots of the derivative of the polyno-

mial gµ̂τ∗
and picking the maximizer of gµ̂τ∗

among them

by evaluation. Note that the set Dτ∗ at line 22 may be a

disjoint union of multiple closed intervals. The endpoints

of these intervals may be found by numerically computing

roots of the polynomial s 7→ gµ̂τ∗
(s) − gµ̂τ∗

(ŝ) + ε
2 . A

sequence of easy checks can then be used to pair the roots

to yield the actual intervals whose union equals Dτ∗ . Thus,

VSBAI can be implemented rather easily for the case where

the mean reward is a polynomial function of a single deci-

sion variable. The algorithm VSBAI-Poly in Appendix E

of the supplementary material provides an instantiation of

VSBAI for the case of polynomial rewards and a single de-

cision variable.

6 EXPERIMENTAL RESULTS

In this section we present experiments comparing VSBAI

with other recent algorithms in various settings described

below. We first consider the toy example considered in Fiez

et al. [2019] and Jedra and Proutiere [2020], and compare

the sample complexities along with run-times in different

scenarios. We also present in Appendix G in the supple-

mentary material some experimental results for the polyno-

mial setting described in Section 5. All the results that we

present were computed on an AMD Ryzen 5 2500U CPU

with Radeon Vega mobile gfx × 8 with 12GB memory.

6.1 MULTI-ARM SETTING

We consider the “finitely many arms with moderate gaps”

example first presented in Fiez et al. [2019] and further

used in Jedra and Proutiere [2020]. The decision set is

a finite collection of n 2-dimensional unit vectors given

by D = {[0, 1]T, [cos(3π/4), sin(π/4)]T} ∪ {[cos(π/4 +
φi), sin(π/4 + φi)]

T : i = 3, . . . , n}, where n ≥ 3. Each

choice of the angles {φi}ni=3 represents a problem instance.

In order to examine robustness across different problem in-

stances, our experiments involve randomly sampling sets

of these angles to generate different problem instances. The



results we present below use N (0, .09) for generating the

angles {φi}ni=3. We also report the results from using the

uniform distribution on the interval [0, 0.1] in Appendix G

in the supplementary material. Typical arm configurations

obtained by sampling the angles are depicted in figures 3

and 4 in Appendix F (see the supplementary material).

The feature map φ is taken to be the identity map, and

the reward is given by (1) with µ = [1, 0]T. Also,

Assumption 2 holds with σ = 1. To implement VS-

BAI on a problem instance, we first find the index j of

the arm which has the least inner product with the arm

[cos(3π/4), sin(π/4)]T. We then find a value of L such

that the arms [cos(3π/4), sin(π/4)]T and j form a set of

(L, 2)-volumetric points for the decision set. These (L, 2)
volumetric points are used to initialize VSBAI, which is

run with ε = 0.1 and δ = 0.05.

For drawing a comparison, we consider the LAZYTS (av-

eraged) algorithm proposed in algorithm 1 in Jedra and

Proutiere [2020], the RAGE algorithm given as algorithm 1

in Fiez et al. [2019], and the ORACLE algorithm given by

equations (4) and (5) of Soare et al. [2014]. For each choice

of the size of the decision set, we generate 20 instances of

the problem by sampling as many sets of the angles using

either the normal distribution or the uniform distribution as

described above. In addition to comparing sample complex-

ities, we also compare run-times as a measure of efficiency.

The results that we present below for sample complexity

and run time were obtained by averaging these quantities

over all 20 problem instances for each algorithm.

Table 1 gives the sample complexities of the three base-

lines along with the VSBAI algorithm as the number of

arms increase. We observe that, for all the baselines, the

sample complexity grows with the number of arms, but

the sample complexity of VSBAI remains almost constant.

This is not surprising. While the other algorithms need to

know the number of arms, VSBAI is independent of the

number of arms. We also note the standard deviation (over

the randomly generated problem instances) of the sample

complexity for VSBAI decreases as the number of arms in-

crease. In contrast, it increases for the baselines. This can

be explained by observing that the value of L used by VS-

BAI can be expected to be closer to 1 as the number of arms

increase.

In Table 2, we present the run-times of the algorithms com-

pared in Table 1. As in Table 1, the run-times are aver-

aged over 20 problem instances. We note that VSBAI takes

roughly a constant time to terminate whereas the run time

of all the other algorithms increases as the number of arms

increase. This is because all the three baselines attempt to

find the best arm among all the arms. As a consequence,

they can end up sampling the best two arms a large num-

ber of times in a scenario where the best two arms are very

close to each other. VSBAI does not suffer from this draw-
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Figure 2: Run-time of VSBAI for polynomial reward func-

tions

back as it seeks to find the best arm only to a certain degree

of approximation, and this is a task that does not increase

in difficulty with the number of arms. Also, in situations

where the run-time is of importance, VSBAI makes it pos-

sible to use ε as an additional tuning parameter to balance

accuracy and speed.

6.2 POLYNOMIAL SETTING

Next, we present results for the case of polynomial rewards

considered in section 5 with the decision set chosen to be

the interval [1, 10]. As described in that section, the algo-

rithm template VSBAI specializes to VSBAI-Poly, which

is given as Algorithm 2 in Appendix E (see the supplemen-

tary material).

To implement VSBAI-Poly, we computed (1, f)-
volumetric points for this problem using (11) of Proposition

5.1 and the numerical technique suggested in Amballa

et al. [2021]. We ran the VSBAI-Poly for various degrees

ranging from 3 to 10. Although the noise sequence used

was Gaussian (that is, satisfying Assumption 2) with

σ = 10, VSBAI-Poly was run using the sub-Gaussian tail

bound (7). The error tolerance ε was fixed to be 6 while

the confidence parameter δ was chosen to be 0.1.

Figure 2 represents the run-time of VSBAI-Poly as the de-

gree of the polynomial increases. The plot shows the run

time averaged over 20 polynomials all having their maxi-

mum values around 350, but otherwise chosen randomly.

As expected, the run time increases with the degree.

7 CONCLUSION

We have considered a bandit problem in which the mean

reward is a linearly parametrized (but possibly nonlinear)

function on a continuous decision set. We have used a

(ε, δ)-PAC formulation in which the goal is to find a set

of points that are ε-optimal with probability at least 1 − δ.

We have given a lower bound on the sample complexity



Algorithm LazyTS Rage Oracle VSBAI

No. of Arms Mean Std Mean Std Mean Std Mean Std

10 3490.05 1121.99 7617.4 2989.33 3470.05 1102.36 48919.8 487.87

20 72081.1 65078.96 103903.1 85734.65 47876.4 41692.63 48075.9 226.94

100 146331.55 64260.81 623143.05 366464.09 217162.25 111605.07 47381.3 44.41

1000 1218591.27 39881.14 16235680.31 5974249.14 7500331.73 2882866.47 47239.8 3.87

Table 1: Average sample complexity for the setting described in subsection 6.1

Algorithm LazyTS Rage Oracle VSBAI

No. of Arms Mean Std Mean Std Mean Std Mean Std

10 1.75 0.48 0.27 0.05 0.01 0 1.46 0.04

20 26.79 23.58 0.81 0.2 0.2 0.18 1.38 0.03

100 63.38 27.19 2.34 0.3 2.02 0.86 1.44 0.04

1000 39141.2 1270.31 120.92 6.01 116.56 38.37 1.4 0.03

Table 2: Run-time in seconds for the setting described in subsection 6.1

of (ε, δ)-PAC algorithms. We have used the notion of vol-

umetric spanners to devise a simple (ε, δ)-PAC algorithm

template and provided an upper bound on its sample com-

plexity. As a special case of our general setting, we have

also considered the case where the mean reward is a poly-

nomial function of a single decision variable, and indicated

how all the problem-specific steps in VSBAI can be instan-

tiated to apply to this case. VSBAI showed advantages in

experiments in terms of run time and sampling complexity

when compared to recent algorithms proposed for the BAI

problem in linear bandits with finite arms.
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