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Abstract

Diffusion models have significantly advanced the field of generative modeling.
However, training a diffusion model is computationally expensive, creating a
pressing need to adapt off-the-shelf diffusion models for downstream generation
tasks. Current fine-tuning methods focus on parameter-efficient transfer learning
but overlook the fundamental transfer characteristics of diffusion models. In
this paper, we investigate the transferability of diffusion models and observe a
monotonous chain of forgetting trend of transferability along the reverse process.
Based on this observation and novel theoretical insights, we present Diff-Tuning,
a frustratingly simple transfer approach that leverages the chain of forgetting
tendency. Diff-Tuning encourages the fine-tuned model to retain the pre-trained
knowledge at the end of the denoising chain close to the generated data while
discarding the other noise side. We conduct comprehensive experiments to evaluate
Diff-Tuning, including the transfer of pre-trained Diffusion Transformer models
to eight downstream generations and the adaptation of Stable Diffusion to five
control conditions with ControlNet. Diff-Tuning achieves a 24.6% improvement
over standard fine-tuning and enhances the convergence speed of ControlNet
by 24%. Notably, parameter-efficient transfer learning techniques for diffusion
models can also benefit from Diff-Tuning. Code is available at this repository:
https://github.com/thuml/Diffusion-Tuning.

1 Introduction

Diffusion models [45, 17, 47] are leading the revolution in modern generative modeling, achieving
remarkable successes across various domains such as image [11, 39, 12], video [43, 19, 55], 3D
shape [34], audio generation [25], etc. Despite these advances, training an applicable diffusion model
from scratch often demands a substantial computational budget, exemplified by the thousands of
TPUs needed, as reported by [55]. Consequently, fine-tuning well pre-trained, large-scale models for
specific tasks has become increasingly crucial in practice [54, 60, 56].

During the past years, the deep learning community has concentrated on how to transfer knowledge
from large-scale pre-trained models with minimal computational and memory demands, a process
known as parameter-efficient fine-tuning (PEFT) [20, 59, 54, 7, 21, 32]. The central insight of these
approaches is to update as few parameters as possible while avoiding performance decline. However,
the intrinsic transfer properties of diffusion models have remained largely unexplored, with scant
attention paid to effectively fine-tuning from a pre-trained diffusion model.

Previous studies on neural network transferability, such as those by [33, 57], have demonstrated
that lower-level features are generally more transferable than higher-level features. In the context of
diffusion models, which transform noise into data through a reverse process, it is logical to assume
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that the initial stages, which are responsible for shaping high-level objects, differ in transferability
from later stages that refine details. This differential transferability across the denoising stages
presents an opportunity to enhance the efficacy of fine-tuning.

In this work, we investigate the transferability within the reverse process of diffusion models. Firstly,
we propose that a pre-trained model can act as a universal denoiser for lightly corrupted data, capable
of recognizing and refining subtle distortions (see Figure 1). This ability leads to improved generation
quality when we directly replace the fine-tuned model with the original pre-trained one under low
distortion. The suboptimality observed with fine-tuned models suggests potential overfitting, mode
collapse, or undesirable forgetting. Then we extend the experiments by gradually increasing the
denoising steps replaced, to cover higher-level noised data, observing the boundaries of zero-shot
generalization capability. This indicates that the fine-tuning objective should prioritize high-level
shaping, associated with domain-specific characteristics. We term this gradual loss of adaptability
the chain of forgetting, which tends to retain low-level denoising skills while forgetting high-level,
domain-specific characteristics during the transfer of the pre-trained model. We further provide novel
theoretical insights to reveal the principles behind the chain of forgetting.

Since the chain of forgetting suggests different denoising stages lead to different forgetting preferences,
it is reasonable to develop a transfer strategy that balances the degrees of forgetting and retention.
Technically, based on the above motivation, we propose Diff-Tuning, a frustratingly simple but
general fine-tuning approach for diffusion models. Diff-Tuning extends the conventional fine-
tuning objectives by integrating two specific aims: 1) knowledge retention, which retains general
denoising knowledge; 2) knowledge reconsolidation, which tailors high-level shaping characteristics
to specific downstream domains. Diff-Tuning leverages the chain of forgetting to balance these two
complementary objectives throughout the reverse process.

Experimentally, Diff-Tuning achieves significant performance improvements over standard fine-
tuning in two mainstream fine-tuning scenarios: conditional generation and controllable generation
with ControlNet [60]. Our contributions can be summarized as follows:

• Motivated by the transferable features of deep neural networks, we explore the transferability
of diffusion models through the reverse process and observe a chain of forgetting tendency.
We provide a novel theoretical perspective to elucidate the underlying principles of this
phenomenon for diffusion models.

• We introduce Diff-Tuning, a frustratingly simple yet effective transfer learning method that
integrates two key objectives: knowledge retention and knowledge reconsolidation. Diff-
Tuning harmonizes these two complementary goals by leveraging the chain of forgetting.

• As a general transfer approach, Diff-Tuning achieves significant improvements over its stan-
dard fine-tuning counterparts in conditional generation across eight datasets and controllable
generation using ControlNet under five distinct conditions. Notably, Diff-Tuning enhances
the transferability of the current PEFT approaches, demonstrating the generality.

2 Related Work

2.1 Diffusion Models

Diffusion models [17] and their variants [47, 48, 23] represent the state-of-the-art in generative
modeling [12, 3], capable of progressively generating samples from random noise through a chain
of denoising processes. Researchers have developed large-scale foundation diffusion models across
a broad range of domains, including image synthesis [17], video generation [19], and cross-modal
generation [43, 42]. Typically, training diffusion models involves learning a parametrized function f
to distinguish the noise signal from a disturbed sample, as formalized below:

L(θ) = Et,x0,ϵ

[∥∥ϵ− fθ
(√
αtx0 +

√
1− αtϵ, t

)∥∥2] (1)

where x0 ∼ X represents real samples, ϵ ∼ N (0, I) denotes the noise signal, and xt =
√
αtx0 +√

1− αtϵ is the disturbed sample at timestep t. Sampling from diffusion models follows a Markov
chain by iteratively denoising from xT ∼ N (0, I) to x0.

Previous research on diffusion models primarily focuses on noise schedules [36, 23], training
objectives [44, 23], efficient sampling [46], and model architectures [39]. In contrast to these existing
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Figure 1: Case study of directly replacing the denoiser with the original pre-trained model on lightly
disturbed data (left). The changes in Fréchet Inception Distance (FID) as the denoising steps are
incrementally replaced by the original pre-trained model (right).

works, our method investigates the transferability of diffusion models across different denoising
stages and enhances the transfer efficacy in a novel and intrinsic way.

2.2 Transfer Learning

Transfer learning [38] is an important machine learning paradigm that aims to improve the perfor-
mance of target tasks by leveraging knowledge from source domains. Transferring from pre-trained
models, commonly known as fine-tuning, has been widely proved effective in practice, especially for
the advanced large-scale models [5, 1, 12]. However, directly fine-tuning a pre-trained model can
cause overfitting, mode collapse, and catastrophic forgetting [24]. Extensive prior work has focused
on overcoming these challenges to ultimately enhance the utilization of knowledge from pre-trained
models [2, 8, 61]. However, effective transfer of diffusion models has received scant attention.

Parameter-Efficient Fine-tuning (PEFT) With significant advancements in the development of
large-scale models [10, 5, 1, 12], research in transfer learning has increasingly concentrated on
PEFT methods that minimize the number of learnable parameters. The primary goal of PEFT is to
reduce time and memory costs associated with adapting large-scale pre-trained models. Techniques
such as incorporating extra adapters [20, 60, 35] and learning partial or re-parameterized parameters
[59, 21, 22, 14] are employed for their effectiveness in reducing computational demands. Nevertheless,
the reliance on deep model architectures and the necessity of carefully selecting optimal placements
present substantial challenges. Intuitively, PEFT approaches could potentially mitigate catastrophic
forgetting by preserving most parameters unchanged; for a detailed discussion, refer to Section 4.3.

Mitigating Catastrophic Forgetting Catastrophic forgetting is a long-standing challenge in the
context of continual learning, lifelong learning, and transfer learning, referring to the tendency of
neural networks to forget previously acquired knowledge when fine-tuning on new tasks. Recent ex-
ploration in parameter regularization approaches [24, 28, 27, 8] have gained prominence. Approaches
such as [58, 29, 52] propose the data-based regularization, which involves distilling pre-trained
knowledge into a knowledge bank. However, efforts to mitigate forgetting within the framework of
diffusion models remain notably scarce.

3 Method

3.1 Chain of Forgetting

Compared with one-way models, diffusion models specify in a manner of multi-step denoising
and step-independent training objectives. Inspired by prior studies on the transferability of deep
neural features [57, 33], we first explore how the transferability of diffusion models varies along the
denoising steps.

Pre-trained Model Serves as a Zero-Shot Denoiser Modern large-scale models are pre-trained
with a large training corpus, emerging powerful zero-shot generalization capabilities. We begin by
analyzing whether the pre-trained diffusion models hold similar zero-shot denoising capabilities. In
particular, we utilize a popular pre-trained Diffusion Transformer (DiT) model [39] as our testbed. We
fine-tune the DiT model on a downstream dataset. When the reverse process comes to the the last 10%
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steps, we switch and continue the remaining denoising steps with the fine-tuned model, the original
pre-trained model, and our Diff-Tuning model respectively. We visualize a case study in Figure 1
(left) with corresponding replacement setups. Surprisingly, the results reveal that replacement by the
pre-trained model achieves competitive quality, even slightly better than the fine-tuned one, indicating
that the pre-trained diffusion model indeed holds the zero-shot denoising skills. On the other side,
some undesirable overfitting and forgetting occur when fine-tuning diffusion models.

Forgetting Trend Next, we delve deeper into investigating the boundary of generalization capabili-
ties for the pre-trained model. Figure 1 (right) illustrates the performance trend when we gradually
increase the percentage of denoising steps replaced from 0 to 100%. Initially, this naive replacement
yields better generation when applied towards the end of the reverse process. However, as more
steps are replaced, performance begins to decline due to domain mismatch. This trend suggests the
fine-tuned model may overfit the downstream task and forget some of the fundamental denoising
knowledge initially possessed by the pre-trained model when t is small. Conversely, as t increases, the
objects desirable in the new domain are distorted by the pre-trained model, resulting in a performance
drop. Based on these observations, we conceptually separate the reverse process into two stages: (1)
domain-specific shaping, and (2) general noise refining. We claim that the general noise refining
stage is more transferable and can be reused across various domains. In contrast, the domain-specific
shaping stage requires the fine-tuned model to forget the characteristics of the original domain and
relearn from the new domains.

Theoretic Insights Beyond empirical observations, we provide a novel theoretical perspective of
the transfer preference for the pre-trained diffusion model. Following the objectives of diffusion
models, a denoiser F (an x0-reparameterization [23] of f in Eq. (1)) is to approximate the posterior
expectation of real data over distribution D. This is formalized by:

F (xt) = Ex0∼p(x0|xt) [x0] =

∫
x0

N
(
xt;

√
αtx0, (1− αt)I

)
· x0 · pD(x0)dx0∫

x0
N
(
xt;

√
αtx0, (1− αt)I

)
· pD(x0)dx0

, (2)

where pD(x0) represents the distribution of real data from D, and N denotes the Gaussian distribu-
tions determined by the forward process. Notably, a larger variance of Gaussian distribution indicates
a more uniform distribution. Through a detailed investigation of these Gaussian distributions under
varying timesteps t, we derive the following theorem. All proofs and derivations are provided in
Appendix A.

Theorem 1 (Chain of Forgetting) Suppose a diffusion model with lim
t→0

αt = 1 and lim
t→T

αt = 0

over finite samples, then the ideal denoiser F satisfies

1. lim
t→0

F (xt) = argmin
p(x0)>0

{∥x0 − xt∥}, i.e., the closest sample in dataset.

2. lim
t→T

F (xt) = Ex0∼pD(x0)[x0], i.e., the mean of data distribution.

Theorem 1 elucidates the mechanism behind the chain of forgetting. On one hand, when t → 0,
a model optimized on a training dataset D can perform zero-shot denoising within the vicinity of
the support set supp(D). As the training dataset scale expands, so does the coverage of supp(D),
enabling diffusion models to act as general zero-shot denoisers for data associated with small t. On
the other hand, as t→ T , the model’s generalization is significantly influenced by the distribution
distance dist(ED[x0],EDnew [x

new
0 ]), where Dnew denotes the dataset of the new domain. This theorem

highlights the necessity for further adaptation in the new domain.

3.2 Diff-Tuning

Based on the above observations and theoretical insights, we introduce Diff-Tuning, which incor-
porates two complementary strategies to leverage the chain of forgetting in the reverse process: 1)
knowledge retention, and 2) knowledge reconsolidation. Diff-Tuning aims to retain general denoising
skills from the pre-trained model while discarding its redundant, domain-specific shaping knowl-
edge. This enables the model to adapt more effectively to the specific characteristics of downstream
tasks. Diff-Tuning harmonizes the retention and reconsolidation via the chain of forgetting tendency.
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Figure 2: The conceptual illustration of the chain of forgetting (Left). The increasing forgetting
tendency as t grows. (a) Build a knowledge bank for the pre-trained model before fine-tuning. (b)
Diff-Tuning leverages knowledge retention and reconsolidation, via the chain of forgetting.

Without loss of generality, we present Diff-Tuning under the standard DDPM objective, omitting
conditions in the formulations. The general conditional generation setup will be discussed later.

Knowledge Retention As discussed earlier, retaining pre-trained knowledge during the latter
general noising refining proves beneficial. However, the classic parameter-regularization-based
approaches [24, 8, 27] mitigate forgetting uniformly across the reverse process, primarily due to the
parameter-sharing design inherent in diffusion models. To address this, Diff-Tuning constructs an
augmented dataset X̂ s = {x̂s, · · · }, pre-sampled from the pre-trained model. This dataset acts as
a repository of the retained knowledge of the pre-trained model. We define the auxiliary training
objective, Lretention, as follows:

Lretention(θ) = Et,ϵ,x̂s
0∼X̂ s

[
ξ(t)

∥∥ϵ− fθ
(√
αtx̂

s
0 +

√
1− αtϵ, t

)∥∥2] , (3)

where ξ(t) is the retention coefficient. In accordance with the principles of the chain of forgetting,
ξ(t) decreases monotonically with increasing t, promoting the retention of knowledge associated
with small t values and the discarding of knowledge related to large t values. Knowledge Retention
shares a similar formulation with the pre-training objective but without the reliance on the original
pre-training dataset.

It is important to note that the concept of Knowledge Retention in Diff-Tuning is anchored in the
principle of the chain of forgetting. This approach encourages the model to recall how to denoise
samples with low levels of disturbance, as reflected by the retention coefficient ξ(t). While the
proposed augmented dataset serves as an easy-to-implement example of this concept, given the
flexibility of Diff-Tuning, various other methods can also effectively facilitate knowledge retention.
An alternative approach involving knowledge distillation is detailed in Appendix C.

Knowledge Reconsolidation In contrast to knowledge retention, knowledge reconsolidation fo-
cuses on adapting pre-trained knowledge to new domains. The intuition behind knowledge reconsoli-
dation is to diminish the conflict between forgetting and adaptation by emphasizing the tuning of
knowledge associated with large t. This adaptation is formalized as follows:

Ladaptaion(θ) = Et,ϵ,x0∼X

[
ψ(t)

∥∥ϵ− fθ
(√
αtx0 +

√
1− αtϵ, t

)∥∥2] , (4)

where ψ(t) is the reconsolidation coefficient, a monotonic increasing function within the range [0, 1],
reflecting increased emphasis on domain-specific adaptation as t increases. Similar to Knowledge
Retention, the principle behind Knowledge Reconsolidation involves adapting the model to effectively
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handle samples that are heavily disturbed, which are more significantly influenced by the distance
between the pre-trained and target distributions. Reweighting by ψ(t) serves as one of the simplest
implementations of this concept.

A Frustratingly Simple Approach Overall, we reach Diff-Tuning, a general and flexible fine-
tuning framework for effective transferring pre-trained diffusion models to downstream generations,
the overall objective is as follows:

min
θ
Lretention(θ) + Ladaptation(θ), (5)

where Lretention(θ) and Ladaptation(θ) are described before, θ represents the set of tunable parameters.
Notably, Diff-Tuning is architecture-agnostic and seamlessly integrates with existing PEFT methods.
Further details are discussed in Section 4.3.

Choices of ξ(t) and ψ(t) For clarity and simplicity, we define ξ(t) = 1 − ψ(t), ensuring equal
weighting for each t, following the original DDPM configuration. This complementary design
excludes the influences of recent studies on the t-reweighting techniques [23, 12, 9]. From the above
discussion, we can choose any monotonically increasing function whose range falls in [0, 1]. In this
work, we scale the variable t to the interval [0, 1], and apply a simple power function group ψ(t) = tτ

for practical implementation. In our experiments, we report the main results with τ = 1, and the
variations of the choice are explored in Section 4.4.

Conditional Generation Classifier-free guidance (CFG) [18] forms the basis for large-scale con-
ditional diffusion models. To facilitate sampling with CFG, advanced diffusion models such as
DiT [39] and Stable Diffusion [12] are primarily trained conditionally. CFG is formulated as
ϵ = (1 + w)ϵc − wϵu, where w, ϵc, ϵu are the CFG weight, conditional output, and unconditional
output. As a general approach, Diff-Tuning inherits the conditional training and sampling setup
to support a wide range of transfer tasks. Due to the mismatch between the pre-training domain
and downstream tasks in the conditional space, we apply knowledge retention Lretention on the un-
conditional branch and knowledge reconsolidation Ladaptation on both unconditional and conditional
branches.

4 Experiments

To fully verify the effectiveness of Diff-Tuning, we extensively conduct experiments across two main-
stream fine-tuning scenarios: 1) Class-conditional generation, which involves eight well-established
fine-grained downstream datasets, and 2) Controllable generation using the recently popular Control-
Net [60], which includes five distinct control conditions.

4.1 Transfer to Class-conditional Generation

Setups Class-conditioned generation is a fundamental application of diffusion models. To fully
evaluate transfer efficiency, we adhere to the benchmarks with a resolution of 256× 256 as used in
DiffFit [54], including datasets such as Food101 [4], SUN397 [53], DF20-Mini [40], Caltech101 [13],
CUB-200-2011 [50], ArtBench-10 [30], Oxford Flowers [37], and Stanford Cars [26]. Our base
model, the DiT-XL-2-256x256 [39], is pre-trained on ImageNet at 256× 256 resolution, achieving a
Fréchet Inception Distance (FID) [16] of 2.27 2. The FID is calculated by measuring the distance
between the generated images and a test set, serving as a widely used metric for evaluating generative
image models’ quality. We adhere to the default generation protocol as specified in [54], generating
10K instances with 50 sampling steps (FID-10K). βcfg weight is set to 1.5 for evaluation. For the
implemented DiffFit baseline, we follow the optimal settings in [54], which involve enlarging the
learning rate ×10 and carefully placing the scale factor to 1 to 14 blocks. For each result, we fine-tune
24K iterations with a batch size of 32 for standard fine-tuning and Diff-Tuning, and a batch size
of 64 for DiffFit, on one NVIDIA A100 40G GPU. For each benchmark, we recorded the Relative
Promotio of FID between Diff-Tuning and Full Fine-tuning ( Diff-Tuning−Full Fine-tuning

Full Fine-tuning ) to highlight the
effectiveness of our method. More implementation details can be found in Appendix B.

2https://dl.fbaipublicfiles.com/DiT/models/DiT-XL-2-256x256.pt
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Table 1: Comparisons on 8 downstream tasks with pre-trained DiT-XL-2-256x256. Methods with "†"
are reported from the original Table 1 of [54]. Parameter-efficient methods are denoted by "*".

Method
Dataset Food SUN DF-20M Caltech CUB-Bird ArtBench Oxford

Flowers
Standard

Cars
Average

FID

Full Fine-tuning 10.93 14.13 15.29 23.84 5.37 19.94 16.67 6.32 14.06
AdaptFormer†∗[7] 11.93 10.68 19.01 34.17 7.00 35.04 21.36 10.45 18.70
BitFit†∗[59] 9.17 9.11 17.78 34.21 8.81 24.53 20.31 10.64 16.82
VPT-Deep†∗[22] 18.47 14.54 32.89 42.78 17.29 40.74 25.59 22.12 26.80
LoRA†∗[21] 33.75 32.53 120.25 86.05 56.03 80.99 164.13 76.24 81.25
DiffFit∗[54] 7.80 10.36 15.24 23.79 4.98 16.40 14.02 5.81 12.21

Diff-Tuning 6.05 9.01 13.64 23.69 3.50 13.85 12.63 5.37 11.08
Relative Promotion 44.6% 36.2% 10.8% 0.6% 34.8% 30.5% 24.2% 15.0% 24.6%

Results Comprehensive results are presented in Table 1 with the best in bold and the second
underlined. Compared with other baselines, our Diff-Tuning consistently exhibits the lowest FID
across all benchmarks, outperforming the standard fine-tuning by a significant margin (relative 24.6%
overpass), In contrast, some PEFT techniques do not yield improved results compared to standard
fine-tuning. A detailed comparison with DiffFit is discussed in subsequent sections.

4.2 Transfer to Controllable Generation

Sudden
convergence

picked
threshold

Figure 3: An example of evaluating dissimilari-
ties between conditions (the Normal condition)
to infer the occurrence of sudden convergence.

Setups Controlling diffusion models enables per-
sonalization, customization, or task-specific im-
age generation. In this section, we evaluate Diff-
Tuning on the popular ControlNet [60], a state-of-
the-art controlling technique for diffusion models,
which can be viewed as fine-tuning the stable dif-
fusion model with conditional adapters at a high
level. We test Diff-Tuning under various image-
based conditions provided by ControlNet3, includ-
ing Sketch [51], Edge [6], Normal Map [49], Depth
Map [41], and Segmentation on the COCO [31] and
ADE20k [62] datasets at a resolution of 512× 512.
We fine-tune ControlNet for 15k iterations for each
condition except 5k for Sketch and 20k for Segmen-
tation on ADE20k, using a batch size of 4 on one
NVIDIA A100 40G GPU. For more specific training
and inference parameters, refer to Appendix B.

Evaluation through Sudden Convergence Steps Due to the absence of a robust quantitative
metric for evaluating fine-tuning approaches with ControlNet, we propose a novel metric based on the
sudden convergence steps. In the sudden convergence phenomenon, as reported in [60], ControlNet
tends not to learn control conditions gradually but instead abruptly gains the capability to synthesize
images according to these conditions after reaching a sudden convergence point. This phenomenon
is observable in the showcases presented in Figure 4 throughout the tuning process. We propose
measuring the (dis-)similarity between the original controlling conditions and the post-annotated
conditions of the corresponding controlled generated samples. As depicted in Figure 3, a distinct
“leap” occurs along the training process, providing a clear threshold to determine whether sudden
convergence has occurred. We manually select this threshold, combined with human assessment,
to identify the occurrence of sudden convergence. The detailed setup of this metric is discussed in
Appendix F.

Results As demonstrated in Table 2, Diff-Tuning consistently requires significantly fewer steps
to reach sudden convergence across all controlling conditions compared to standard fine-tuning of

3https://github.com/lllyasviel/ControlNet
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Figure 4: Qualitative compare Diff-Tuning to the standard ControlNet. Red boxes refer to the
occurence of “sudden convergence”.

Table 2: Sudden convergence steps on controlling Stable Diffusion with 5 conditions.

Method Sketch Normal Depth Edge Seg. (COCO) Seg. (ADE20k) Average

ControlNet [60] 3.8k 10.3k 9.9k 6.7k 9.2k 13.9k 9.0k

ControlNet +Diff-Tuning 3.2k 7.8k 8.8k 5.3k 6.3k 8.3k 6.6k
Relative Promotion 15.8% 24.3% 11.1% 20.9% 31.5% 40.3% 24.0%

ControlNet, indicating a consistent enhancement in the transfer efficiency. In Figure 4, we display
showcases from the training process both with and without Diff-Tuning. It is observed that Diff-
Tuning achieves sudden convergence significantly faster, enabling the generation of well-controlled
samples more quickly. By comparing the images from the final converged model at the same step, it
is evident that our proposed Diff-Tuning achieves superior image generation quality.

4.3 Discussion on Parameter-Efficient Transfer Learning

The initial motivation behind adapter-based approaches in continual learning is to prevent catastrophic
forgetting by maintaining the original model unchanged [20]. These methods conceptually preserve
a separate checkpoint for each arriving task, reverting to the appropriate weights as needed during
inference. This strategy ensures that knowledge from previously learned tasks is not overwritten. In
transfer learning, however, the objective shifts to adapting a pre-trained model for new, downstream
tasks. This adaptation often presents unique challenges. Prior studies indicate that PEFT methods
struggle to match the performance of full model fine-tuning unless modifications are carefully
implemented. Such modifications include significantly increasing learning rates, sometimes by more
than tenfold, and strategically placing tunable parameters within suitable blocks [21, 7, 54]. Consider
the state-of-the-art method, DiffFit, which updates only the bias terms in networks, merely 0.12% of
the parameters in DiT equating to approximately 0.83 million parameters. While this might seem
efficient, such a small proportion of tunable parameters is enough to risk overfitting downstream
tasks. Increasing the learning rate to compensate for the limited number of trainable parameters can
inadvertently distort the underlying pre-trained knowledge, raising the risk of training instability and
potentially causing a sudden and complete degradation of the pre-trained knowledge, as observed in
studies like [54].

Elastic Weight Consolidation (EWC) [24] is a classic parameter-regularized approach to preserve
knowledge in a neural network. We calculate the L2-EWC values, which are defined as EWC =
∥θ − θ0∥2, for the tunable parameters in the evaluated approaches [28]. The EWC value quantifies
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Figure 5: The compatibility of Diff-Tuning with PEFT (a), and catastrophic forgetting analysis (b-c).

how far the fine-tuned model deviates from the pre-trained model, indicating the degree of knowledge
forgetting from the perspective of parameter space.

Figure 5(b) reveals that DiffFit leads to EWC values that are 2.42 times larger with only 0.12% tunable
parameters, indicating heavy distortion of the pre-trained knowledge. Figure 5(c) illustrates the
averaged EWC over tunable parameters, showing that each tunable bias term contributes significantly
more to the EWC. In contrast, Diff-Tuning achieves lower EWC values. Diff-Tuning does not
explicitly focus on avoiding forgetting in the parameter space but rather harmonizes the chain of
forgetting in the parameter-sharing diffusion model and only retains knowledge associated with small
t rather than the entire reverse process.

Diff-Tuning can be directly applied to current PEFT approaches, and the comparison results in
Figure 5 demonstrate that Diff-Tuning can enhance the transfer capability of DiffFit and significantly
improve converged performance.

4.4 Analysis and Ablation

Fine-tuning Convergence Analysis To analyze converging speed, we present a concrete study on
the convergence of the FID scores for standard fine-tuning, DiffFit, Diff-Tuning, and Diff-Tuning∗

(DiffFit equipped with Diff-Tuning) every 1,500 iterations in the SUN 397 dataset, as shown in Figure
6(a). Compared to standard fine-tuning and DiffFit, Diff-Tuning effectively leverages the chain of
forgetting, achieving a balance between forgetting and retaining. This leads to faster convergence
and superior results. Furthermore, the result of Diff-Tuning∗ indicates that PEFT methods such like
DiffFit still struggle with forgetting and overfitting. These methods can benefit from Diff-Tuning.

Ablation Study We explore the efficacy of each module within Diff-Tuning, specifically focusing
on knowledge retention and knowledge reconsolidation. We assess Diff-Tuning against its variants
where: (1) Only reconsolidation is applied, setting ξ(t) ≡ 0 and ψ(t) = t; and (2) Only retention is
employed, setting ξ(t) = 1− t and ψ(t) ≡ 1. The results, illustrated in Figure 6(b) demonstrate that
both knowledge retention and knowledge reconsolidation effectively leverage the chain of forgetting
to enhance fine-tuning performance. The FID scores reported on the DF20M dataset clearly show
that combining these strategies leads to more efficient learning adaptations.
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(a) Convergence analysis on SUN 397 (b) Ablation study on DF20M (c) The sensitivity of 𝜏	in 𝜓 𝑡 on Car (d) Analysis on the #samples in memory on Car

𝜓 𝑡 =
1

1 + SNR(𝑡)

Standard fine-tuning

1.5K 4.5K 7.5K 10.5K 13.5K 16.5K 19.5K 22.5K

Figure 6: Transfer convergence analysis (a), ablation study (b), and sensitivity analysis (c-d).

Tradeoff the Forgetting and Retraining with the Chain of Forgetting For simplicity and ease of
implementation, Diff-Tuning adopts a power function, ψ(t) = t, as the default reconsolidation coeffi-
cient. To explore sensitivity to hyperparameters, we conduct experiments using various coefficient
functions ψ(t) = tτ with τ values from the set {0, 0.3, 0.5, 0.7, 1, 1.5}, and a signal-to-noise ratio
(SNR) based function ψ(t) = 1/(1 + SNR(t)) [9]. Results on the Stanford Car dataset, shown in
Figure 6(c), a carefully tuned coefficient can yield slightly better results. To keep the simplicity, we
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Figure 7: The influence of the quality of the augmented dataset (a), sensitivity with respect to different
sampling steps (b), and application of Diff-Tuning in a continual learning setup (c).

keep the default setting τ = 1. Notably, when τ = 0, Diff-Tuning reduces to the standard fine-tuning
baseline.

Analysis on Knowledge Retention In Diff-Tuning, knowledge is retained using pre-sampled data
from pre-trained diffusion models before fine-tuning. We evaluate the impact of varying sample sizes
(5K, 50K, 100K, 200K, and the entire source dataset) on the performance of the DiT model on the
Stanford Car dataset, as illustrated in Figure 6(d). Notably, using the entire source dataset, which
comprises 1.2M ImageNet images, results in suboptimal outcomes. This observation underscores
that pre-sampled data serve as a more precise distillation of pre-trained knowledge, aligning with our
goal of retraining knowledge rather than merely introducing extra training data.

Beyond the size of the augmented dataset, the quality of the samples can also influence knowledge
retention. Therefore, we further analyze the impact of different sampling steps during the pre-
sampling stage, as depicted in Figure 7(a). The findings demonstrate that Diff-Tuning exhibits
consistent performance, indicating that the knowledge retention process is robust to variations in the
sampling process of the augmented dataset.

Sensitivity to Sampling Steps We evaluate Diff-Tuning using various sampling parameters, specif-
ically settings of 25, 50, 100, and 500 steps. As depicted in Figure 7(b), there is a consistent
improvement in performance across these configurations. Notably, Diff-Tuning shows a more sig-
nificant enhancement with fewer steps, suggesting that it builds a more precise denoising model
compared to standard fine-tuning.

4.5 Extend Diff-Tuning to Continual Learning

In dynamic target domains like online systems that continually collect new data, continual learning is
essential as models must undergo iterative fine-tuning to adapt to evolving datasets. To evaluate the
adaptability of Diff-Tuning in this context, we extend out method and conduct experiments on the
Evolving Image Search dataset [63], which includes images from 10 categories collected over three
phases: 2009-2012, 2013-2016, and 2017-2020. We apply transfer learning sequentially across these
temporal splits, and measure FID on the cumulative test set. For Diff-Tuning, we retain 40% of the
initially sampled augmented data and generated the remaining 60% using the fine-tuned model before
proceeding to the next phase. As shown in Figure 7(c), the results demonstrate that Diff-Tuning
consistently improves and sustains robust performance as the dataset evolves.

5 Conclusion

In this paper, we explore the transferability of diffusion models and provide both empirical obser-
vations and novel theoretical insights regarding the transfer preferences in their reverse processes,
which we term the chain of forgetting. We present Diff-Tuning, a frustratingly simple but general
transfer learning approach designed for pre-trained diffusion models, leveraging the identified trend
of the chain of forgetting. Diff-Tuning effectively enhances transfer performance by integrating
knowledge retention and knowledge reconsolidation techniques. Experimentally, Diff-Tuning shows
great generality and performance in advanced diffusion models, including conditional generation
and controllable synthesis. Additionally, Diff-Tuning is compatible with existing parameter-efficient
fine-tuning methods.
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A Proofs of Theoretical Explanation in Section 3.1

In this section we provide the formal definitions and proofs for theoretical explanation of chain
of forgetting. From the setup of diffusion model training and previous works [23], we suppose
the dataset consists of finite bounded samples D = {x(1)

0 ,x
(2)
0 , ...,x

(n)
0 }, and f is the denoiser to

minimize L(θ) as in Eq. (1) under ϵ-parameterization. For convenience, we first convert the denoiser
into x0-parameterization by F (xt) =

xt−
√
1−αtf(xt)√

αt
and the objective becomes

L = Et,x0,xt

[
∥x0 − F (xt)∥2

]
. (6)

Ideal Denoiser in Eq. (6). An ideal denoiser F should minimize the value F (xt) for all t,xt

almost surely, implying an objective for F (xt):

Lt,xt
(F (xt)) = Ex0∼p(x0|xt)

[
∥x0 − F (xt)∥2

]
. (7)

By taking a derivative, it holds that

0 = ∇F (xt)Lt,xt
(F (xt)) = Ex0∼p(x0|xt) [−2 (x0 − F (xt))] , (8)

and finally,

F (xt) = Ex0∼p(x0|xt)[x0] (9)

=

∫
x0

x0 · p(x0|xt)dx0 (10)

=

∫
x0

x0 · pD(x0)p(xt|x0)dx0

pD(xt)
(11)

=

∫
x0

x0 · pD(x0)p(xt|x0)dx0∫
x0
pD(x0)p(xt|x0)dx0

(12)

=

∫
x0

N
(
xt;

√
αtx0, (1− αt)I

)
· x0 · pD(x0)dx0∫

x0
N
(
xt;

√
αtx0, (1− αt)I

)
· pD(x0)dx0

(13)

=

∑
x0∈D N

(
xt;

√
αtx0, (1− αt)I

)
· x0∑

x0∈D N
(
xt;

√
αtx0, (1− αt)I

) (14)

Remark. This ideal denoiser is exactly the same one as [23] under DDPM-style definition.

Case when t→ 0. When t→ 0, αt → 1. For simplicity suppose the closest sample to xt is unique.
Let

xclosest
0 = argminx0∈D∥

√
αtx0 − xt∥2, (15)

d = min
x0∈D\{xclosest

0 }
∥
√
αtx0 − xt∥2 − ∥

√
αtx

closest
0 − xt∥2 > 0, (16)

then

0 ≤

∥∥∥∥∥
∑

x0∈D N
(
xt;

√
αtx0, (1− αt)I

)
· x0

N
(
xt;

√
αtx

closest
0 , (1− αt)I

) − xclosest
0

∥∥∥∥∥ (17)

≤
∑

x0∈D\{xclosest}

∥∥∥∥∥ 1√
2π(1− αt)

exp

(
−∥

√
αtx0 − xt∥2 + ∥

√
αtx

closest
0 − xt∥2

2(1− αt)

)∥∥∥∥∥ (18)

≤
∑

x0∈D\{xclosest}

∥∥∥∥∥ 1√
2π(1− αt)

exp

(
− d

2(1− αt)

)∥∥∥∥∥ → 0 (19)

as αt → 1, i.e., ∑
x0∈D N

(
xt;

√
αtx0, (1− αt)I

)
· x0

N
(
xt;

√
αtx

closest
0 , (1− αt)I

) → xclosest
0 . (20)
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Similarly ∑
x0∈D N

(
xt;

√
αtx0, (1− αt)I

)
N
(
xt;

√
αtx

closest
0 , (1− αt)I

) → 1, (21)

and thus F (xt) → xclosest
0 , which completes the proof. Notably, when there are multiple closest

samples, through similar analysis it is clear that F (xt) converges to their average.

Case when t→ T . When t→ T , αt → 0, and thus N
(
xt;

√
αtx0, (1− αt)I

)
→ N

(
xt;0, I

)
, a

constant for varying x0. Bringing this back to Eq. (14) and it holds that

F (xt) =
1

n

∑
x0∈D

x0, (22)

which completes the proof.

B Implementation Details

We provide the details of our experiment configuration in this section. All experiments are imple-
mented by Pytorch and conducted on NVIDIA A100 40G GPUs.

B.1 Benchmark Descriptions

This section describes the benchmarks utilized in our experiments.

B.1.1 Class-conditional Generation Tasks

Food101 [4] The dataset consists of 101 food categories with a total of 101,000 images. For each
class, 750 training images preserving some amount of noise and 250 manually reviewed test images
are provided. All images were rescaled to have a maximum side length of 512 pixels.

SUN397 [53] The SUN397 benchmark contains 108,753 images of 397 well-sampled categories
from the origin Scene UNderstanding (SUN) database. The number of images varies across categories,
but there are at least 100 images per category. We evaluate the methods on a random partition of the
whole dataset with 76,128 training images, 10,875 validation images and 21,750 test images.

DF20M [40] DF20 is a new fine-grained dataset and benchmark featuring highly accurate class
labels based on the taxonomy of observations submitted to the Danish Fungal Atlas. The dataset
has a well-defined class hierarchy and a rich observational metadata. It is characterized by a highly
imbalanced long-tailed class distribution and a negligible error rate. Importantly, DF20 has no
intersection with ImageNet, ensuring unbiased comparison of models fine-tuned from ImageNet
checkpoints.

Caltech101 [50] The Caltech 101 dataset comprises photos of objects within 101 distinct categories,
with roughly 40 to 800 images allocated to each category. The majority of the categories have around
50 images. Each image is approximately 300×200 pixels in size.

CUB-200-201 [50] CUB-200-2011 (Caltech-UCSD Birds-200-2011) is an expansion of the CUB-
200 dataset by approximately doubling the number of images per category and adding new annotations
for part locations. The dataset consists of 11,788 images divided into 200 categories.

Artbench10 [30] ArtBench-10 is a class-balanced, standardized dataset comprising 60,000 high-
quality images of artwork annotated with clean and precise labels. It offers several advantages over
previous artwork datasets including balanced class distribution, high-quality images, and standardized
data collection and pre-processing procedures. It contains 5,000 training images and 1,000 testing
images per style.

Oxford Flowers [37] The Oxford 102 Flowers Dataset contains high quality images of 102
commonly occurring flower categories in the United Kingdom. The number of images per category
range between 40 and 258. This extensive dataset provides an excellent resource for various computer
vision applications, especially those focused on flower recognition and classification.
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Figure 8: Samples show of different datasets.

Stanford Cars [26] In the Stanford Cars dataset, there are 16,185 images that display 196 distinct
classes of cars. These images are divided into a training and a testing set: 8,144 images for training
and 8,041 images for testing. The distribution of samples among classes is almost balanced. Each
class represents a specific make, model, and year combination, e.g., the 2012 Tesla Model S or the
2012 BMW M3 coupe.

B.1.2 Controllable Generation

COCO [31] The MS COCO dataset is a large-scale object detection, segmentation, key-point
detection, and captioning dataset. We adopt the version of 2017 where 164k images are split into
118k/5k/41k for training/validation/test. For each image, we randomly select one of its corresponding
captions, and use detectors of Canny edge, (binarized) HED sketch, MIDAS depth/normal and
Uniformer segmentation implemented in ControlNet to obtain the annotation control, and final
construct the dataset of image-text-control pairs for training and evaluation. All controling condition
has channel 1 except normal map and segmentation mask with channel 3.

Ade20k [62] The Ade20k dataset is a semantic segmentation dataset containing nearly 21k/2k
training/validation images annotated with pixel-wise segmentation mask of 149 categories of stuff
and objects. For each image, we use the “default prompt” “a high-quality, detailed, and professional
image” as adopted in ControlNet, and use Uniformer implemented in ControlNet to obtain the
segmentation mask as the control to obtain the dataset of image-text-control pairs.

16



B.2 Experiment Details

Detailed Algorithm Process For all experiments, we first generate images of memory bank with the
pre-trained model. We then construct conditioned dataset from memory bank with default condition
(unconditional for class-conditional generation task and “default prompt” with generated control for
controllable generation task). Considering instability of weighted training loss with ξ(t) and ψ(t), for
each iteration, we instead first uniformly sample timestep t according to the property ξ(t)+ψ(t) = 1,
then determine whether sample x0 from the downstream dataset or the augmented dataset, and finally
calculate the diffusion loss L(θ) with the simple form. The pseudo-code of the overall algorithm
process is shown in Algorithm 1.

Algorithm 1 Pseudo-code of Diff-Tuning
Input: Downstream dataset X , pre-trained model parameter θ0
Output: Fine-tuned parameter θ.
Collect pre-sampled data X̂ s for knowledge reconsolidation using θ0.
Initialize θ ← θ0.
while not converged do

Initialize mini-batch X = {}.
for i in {1, 2, ..., B} do

Sample t(i) from uniform distribution U ({1, 2, ..., T}).
if with probability ξ(t(i)) then

Sample x
(i)
0 ∼ X̂ s. {Retention loss Lretention}

else
Sample x

(i)
0 ∼ X . {Adaptation loss Ladaption}

end if
Add (x

(i)
0 , t(i)) to mini-batch X .

end for
Calculate

L(θ)← 1

B

B∑
i=1

Eϵ

[∥∥∥ϵ− fθ
(√

αt(i)x
(i)
0 +

√
1− αt(i)ϵ, t

(i)
)∥∥∥2

]
Update θ according to∇θL(θ).

end while
return θ

Hyperparameters We list all hyperparameters in our experiments in Table 3.

Table 3: Hyperparameters of experiments.
Class-conditional Controlled

Backbone DiT Stable-diffusion v1.5
Image Size 256 512
Batch Size 32 4
Learning Rate 1e-4 1e-5
Optimizer Adam Adam
Training Steps 24,000 15,000
Validation Interval 24,000 100
Sampling Steps 50 50
Augmented Dataset Size 200,000 30,000

C Knowledge Distillation Implementation of Knowledge Rentention

There exist many possible methods that can achieve a similar effect to Knowledge Retention, provided
they adhere to the principle of the chain of forgetting. In this section, we introduce a variant that
utilizes knowledge distillation (KD), which avoids the need to pre-sample an augmented dataset and
presents a more elegant solution. The KD variant can be formalized as follows:

LKD
retention(θ) = Et,ϵ,x∼X

[
ξ(t)

∥∥fθ0 (√αtx+
√
1− αtϵ, t

)
− fθ

(√
αtx+

√
1− αtϵ, t

)∥∥2] , (23)
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where fθ0 represents the original pre-trained model. The results, depicted in Table 4, indicate that
both techniques should be effective within the framework of Diff-Tuning. The practical decision
can be informed by the specific scenario. Below, we summarize reasons why KD was not our initial
choice:

• GPU Memory: KD requires maintaining a copy of the pre-trained model alongside the
fine-tuning model. For large models, this significantly increases memory costs. For example,
we can run Diff-Tuning with a batch size of 32 on a single A100 40GB GPU, whereas the
KD variant decreases to a batch size of 24.

• Computational Cost: KD doubles the forward computation cost by necessitating the
matching of output distributions between two models. Notably, pre-computing the KD
labels is not feasible due to the inherent noise in diffusion training. For instance, for a batch
size of 24, we achieve 2.1 training steps per second, compared to 1.34 for the KD variant.

• Training Instability: Transferring a pre-trained model to a domain significantly different
from its training data can introduce out-of-distribution corruption during distillation, poten-
tially causing instability in the fine-tuning process. We invested considerable effort to tune a
suitable trade-off for the KD loss (0.05), and sometimes the training is easily disrupted due
to an unsuitable KD loss setting.

• Implementation Difficulty: An elegant KD implementation requires users to be familiar
with the code framework and introduces a large design space. In contrast, an augmented
replay buffer introduces only a small set of extra source data and changes the training data
sampled related to t, which is considerably easier to implement across various fine-tuning
scenarios.

Table 4: The FID results comparison of the KD varient. KD loss is trade-off by 0.05.

Methods CUB-Bird Standard Cars

Vanilla Fine-tuning 5.37 6.32
Diff-Tuning with augmented data 3.50 5.37
Diff-Tuning with KD 3.75 4.97

D Discussion on Time-Reweighting Techniques

Table 5: Comparison with existing timestep weighting strategies.

Methods CUB-Bird Standard Cars

Vanilla Fine-tuning 5.37 6.32
P2 4.68 9.31
MIN-SNR-1 7.12 7.29
MIN-SNR-5 9.44 9.31

Diff-Tuning 3.50 5.37

Diff-Tuning+P2 3.56 4.95
Diff-Tuning+MIN-SNR-1 3.76 5.56
Diff-Tuning+MIN-SNR-5 5.84 6.50

As mentioned above, we ensure ψ(t) + ξ(t) = 1 in our Diff-Tuning, which maintains the overall loss
in Eq. (5) with the default DDPM weight (uniform weight across timesteps). In our experimental
implementation, we uniformly sample timesteps and then sample training data from either the memory
buffer or target dataset according to ψ(t) and ξ(t), respectively. Unlike [9, 15], which tailor weights
or develop separate models for each timestep. We do not alter the weights of individual timesteps in
Diff-Tuning, which is significantly different from existing works.

To further underscore that the weighting strategies from [9] and [15] are orthogonal to our Diff-Tuning
approach, we have implemented these strategies alongside our method. The results demonstrate that
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while these existing methods can be applied to Diff-Tuning, their integration shows varied impacts on
performance.

These results in Table 5 indicate that while existing methods can be adapted to our Diff-Tuning, the
performance varies, especially with MIN-SNR strategies, which may not align with the principles of
the chain of forgetting, thereby potentially undermining the transfer learning efficacy.

E Fine-tuning EDM with Diff-Tuning

In the main expeirments, we have fine-tuned the DiT-XL-2 model (pre-trained using a VP-SDE
approach [48]) and Stable Diffusion. We employed the same diffusion training strategy used for
the pre-trained models. Additionally, we have evaluated EDM on publicly available repositories4.
Since EDM incoporates continuous σ instead of discrete t in the training state, we extend to use
ψ(σ) = cdf(σ) and ξ(σ) = 1− ψ(σ), aligning our standard Diff-Tuning. Results are shown below:

Table 6: Results of fine-tuning EDM

Method EDM: ImageNet 64x64 → CIFAR-10 64x64

Vanilla 14.75
Diff-Tuning 6.04
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(f) Seg. (ADE20k)

Figure 9: Validation metrics on each task. For Depth and Normal, lower indicates better, and
conversely for other tasks.

Sudden convergence is a phenomenon observed when tuning ControlNet [60] due to its specific
zero-convolution design. As demonstrated in Figure 4, ControlNet does not gradually learn to adhere
to control conditions. Instead, it abruptly begins to follow the input conditions. To identify a simple
signal indicating sudden convergence, we pre-collected a validation set of real images and compared
the (dis-)similarity between their annotations and the corresponding generated controlled images.
Figure 9 illustrates a noticeable “leap” during the training process, providing a clear indicator of
sudden convergence. We established thresholds for quantitative evaluation based on test annotation

4https://github.com/NVlabs/edm

19



similarity curves and combined them with qualitative human assessment to determine the number of
steps as a metric for all tasks.

F.1 Quantitative Metrics’ Details

To efficiently and generally compare the (dis-)similarity between the original controlling conditions
and the post-annotated conditions of the corresponding controlled generated samples, we employ
the simplest reasonable metrics for each vision annotation, irrespective of task specificities such
as label imbalance or semantic similarity. Specifically, we use Structural Similarity Index (SSIM)
with Gaussian blurring for sparse classification (Edge and Sketch), mean-square error (MSE) for
dense regression (Depth and Normal), and accuracy for dense classification (Segmentation). Detailed
settings of the metrics and thresholds are provided in Table 7.

Table 7: Detailed setting of quantitative metrics for controlled generation tasks.
Edge Sketch Depth Normal Seg. (COCO) Seg. (ADE20k)

Metric SSIM w/ Blurring (↑) MSE (↓) Pixel Accuracy (↑)
Threshold 0.55 0.75 0.04 0.06 0.5 0.4

ControlNet 6.7k 3.8k 9.9k 10.3k 9.2k 13.9k
ControlNet+Diff-Tuning 5.3k 3.2k 8.8k 7.8k 6.3k 8.3k

F.2 More Qualitative Analysis for Human Assessment

We present more case studies to validate the steps for convergence. By generating samples throughout
the training process using a consistent random seed, we focus on identifying when and how these
samples converge to their corresponding control conditions. As shown in Figure 10, our selected
thresholds provide reasonable convergence discrimination across all six tasks, with Diff-Tuning
consistently outperforming standard fine-tuning.

Similarities Alone Are Imperfect It is important to note that our proposed similarity metric
serves only to indicate the occurrence of convergence and does not accurately reflect sample quality
or the degree of control, especially for converged samples. For example, Figure 11 compares
generated samples from standard fine-tuning and our Diff-Tuning approach with edge controlling.
The generated samples from Diff-Tuning are richer in detail but may score lower on edge similarity
metrics, highlighting the limitations of similarity metrics and underscoring the necessity of human
assessment.

G Limitations and Future Works

Diff-Tuning consistently outperforms standard fine-tuning and parameter-efficient methods, demon-
strating its efficacy across various downstream datasets and tasks. This section also discusses some
limitations of Diff-Tuning and explores potential future directions to address these limitations.

Necessity of a Pre-sampled Dataset Diff-Tuning involves constructing a pre-sampled augmented
dataset for knowledge reconsolidation, which requires additional computational resources. As
discussed in Section 4.4, the impact of the sample size indicates that even the smallest set of generated
images outperforms baseline methods and the original source data, underscoring the value of this
approach. Future work could focus on developing large-scale open-source generated samples and
creating more sample-efficient augmented datasets.

Extra Hyperparameters Diff-Tuning introduces additional hyperparameters, ξ(t) and ψ(t), as
loss weighting coefficients based on the principle of the chain of forgetting. These introduce extra
hyperparameter spaces. As detailed in Section 4.4, our analysis shows that simple designs for these
coefficients perform well and robustly. Future research could aim to design more effective weighting
coefficients to further enhance performance.
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Figure 10: Qualitative analysis. Red boxes refer to the occurrence of “sudden convergence”
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Figure 11: Generated images using standard ControlNet (SSIM of 0.82) and Diff-Tuning ControlNet
(SSIM of 0.76). Analyzing these cases, Diff-Tuning generates images with higher quality and more
details hence results in a lower similarity, indicating the limitation of similarity metrics and the
necessity of human assessment.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Please refer to Section 1 of main text

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Please refer to Appendix G.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Please refer to Appendix A
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The method design have been fully described in the main text and Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: Code is available at this repository: https://github.com/thuml/Diffusion-Tuning.
We also provide the pseudo-code in Appendix B.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Please refer to Appendix B

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Error bars are not reported because it would be too computationally expensive.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Please refer to Section 4.1 of main text.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: All researches work around open-source data or models and no ethic issues are
involved.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The paper focuses mainly on the machine learning intrinsicities within views
of transferrability, and no societal impacts are newly involved.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No new data or pretrained models are proposed.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All creators of datasets are properly credited by citations.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [No]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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