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Abstract
Recent advancements in differentiable simula-
tors highlight the potential of policy optimiza-
tion using simulation gradients. Yet, these ap-
proaches are largely contingent on the continu-
ity and smoothness of the simulation, which pre-
cludes the use of certain simulation engines, such
as Mujoco. To tackle this challenge, we introduce
the adaptive analytic gradient. This method views
the Q function as a surrogate for future returns,
consistent with the Bellman equation. By analyz-
ing the variance of batched gradients, our method
can autonomously opt for a more resilient Q func-
tion to compute the gradient when encountering
rough simulation transitions. We also put forth the
Adaptive-Gradient Policy Optimization (AGPO)
algorithm, which leverages our proposed method
for policy learning. On the theoretical side, we
demonstrate AGPO’s convergence, emphasizing
its stable performance under non-smooth dynam-
ics due to low variance. On the empirical side,
our results show that AGPO effectively mitigates
the challenges posed by non-smoothness in policy
learning through differentiable simulation.

1. INTRODUCTION
Learning control policies is vital for robotics and computer
animation. Deep reinforcement learning has recently shown
great promise, excelling in games (Mnih et al., 2015; Silver
et al., 2016), animation generation (Peng et al., 2021; Zhang
et al., 2023a), and robot control (Levine et al., 2016; Lee
et al., 2020; Kaufmann et al., 2023). Yet, these methods need
extensive data to approximate policy gradients (Williams,
1992; Sutton et al., 1999) for model updates. In practice,
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the gradient estimation method based on zeroth-order sam-
pling (Schulman et al., 2017), is characterized by a low
sample efficiency. The recent rise of differentiable simu-
lations (Freeman et al., 2021; Heiden et al., 2021; Howell
et al., 2022) introduces a way to tackle the problem of ef-
ficiency. By leveraging auto-differentiation tools like Py-
Torch (Paszke et al., 2019) and JAX (Bradbury et al., 2018)
or specially crafted differentiable kernels (Xu et al., 2022),
these simulators are well-positioned to provide first-order
simulation gradients of rewards in relation to control inputs.
Such capability holds the potential to significantly speed up
the policy optimization process and to considerably enhance
policy performance.

While differentiable simulators are emerging tools, similar
ideas on utilizing first-order gradients have been investi-
gated in model-based RL. Parmas et al. (Parmas et al., 2018)
proposed to use the inverse-variance weighting (Fleiss,
1993) for blending first-order reparameterization gradi-
ents (Kingma & Welling, 2013) and zeroth-order likelihood
gradients, and showcased the problem of rough optimiza-
tion landscape. They further extended this idea to use critic-
based gradient estimates and made a scalable solution in
(Parmas et al., 2023). Akin to that, leveraging simulation
gradients may not invariably lead to improved policy learn-
ing outcomes (Metz et al., 2021; Xu et al., 2022; Suh et al.,
2022; Zhong et al., 2022), especially in scenarios involving
rich contact dynamics. Xu et al. (2022) proposed to truncate
the full task trajectory into short horizons and incorporates
a value function at the horizon’s end to signify future im-
plications. Though effective on their proposed simulation
kernels, this method may falter when horizons encompass
abrupt transitions, i.e., when the simulated dynamics are un-
even or discontinuous. Such environments, affected by the
design of the contact model, often present issues that make
it challenging to employ certain methodologies in popular
robot simulators.

This paper tackles policy learning in non-smooth differ-
entiable simulations. While previous works(Parmas et al.,
2018; Suh et al., 2022) introduced to blend zeroth-order pol-
icy gradients (PG) with first-order simulation gradients (SG),
we find that PG cannot well detect the rough region in prac-
tice. Observing PG’s challenges in control tasks, we utilize
the Q function for future returns prediction, using its gradi-
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ents (QG) to stabilize policy optimization. We show that QG
is a more stable gradient estimator than PG. Furthermore,
we propose an adaptive analytic gradient estimator that can
autonomously opt for more resilient QGs when encounter-
ing singular simulation steps. That’s to say, our method
adaptively utilizes the Q function as a shortcut to bypass the
rough landscape. Specifically, we adopt the inverse-variance
weighting scheme (Fleiss, 1993; Parmas et al., 2018; Suh
et al., 2022) to mix QG and SG. Furthermore, we propose
the adaptive-gradient policy optimization algorithm, dubbed
AGPO. It uses the proposed adaptive analytic gradient for
policy learning and presents better performance than both
pure RL baselines and existing simulation-gradient-based
methods. Theoretically, we establish the convergence of
AGPO and its reliance on the variance and bias of the gra-
dient. Moreover, AGPO has a low variance upper bound,
which does not increase significantly as in the first-order SG
when the horizon is long and the dynamics is non-smooth.

2. RELATED WORK
Differentiable Simulation. Differentiable simulation in
contacts and collisions is a burgeoning field. Approaches
range from modeling contacts as linear complementar-
ity problems (LCPs) for impulse computation (de Avila
Belbute-Peres et al., 2018; Heiden et al., 2021; Qiao et al.,
2021; Zhang et al., 2023b), to convex optimization for ve-
locity impulses based on maximum dissipation principles
(Todorov, 2011; 2014). Other methods include compli-
ant models with spring-damper systems for gradual inter-
penetration resolution (Carpentier & Mansard, 2018; Xu
et al., 2022), and position-based dynamics (PBD) for di-
rect position manipulation while conserving momentum
(Müller et al., 2007; Macklin et al., 2020). Differentiability
is achieved through implicit differentiation, automatic dif-
ferentiation, or custom numerical solvers, facilitating direct
simulation gradients for policy learning.

Policy Gradient Methods. Policy gradient methods op-
timize policies by estimating the gradient of the expected
reward w.r.t. the policy parameters. Methods like REIN-
FORCE (Williams, 1992) use Monte Carlo returns without
an explicit value function, whereas actor-critic architectures
(Sutton et al., 1999) incorporate a value function for refined
gradient estimation. For continuous action spaces, DDPG
(Lillicrap et al., 2015) implemented deterministic policy gra-
dients. TD3 (Fujimoto et al., 2018) subsequently improved
upon DDPG by addressing value overestimation concerns.
The Soft Actor-Critic (SAC) method (Haarnoja et al., 2018)
integrated entropy into the actor-critic framework, foster-
ing enhanced exploration. Proximal Policy Optimization
(PPO) (Schulman et al., 2017) sought to bolster stability
through constrained policy updates. In addition to solely
using zeroth-order gradients, PIPPS (Parmas et al., 2018)

integrated zeroth-order likelihood gradients with first-order
reparameterization gradients (Kingma & Welling, 2013),
employing inverse variance weighting (Fleiss, 1993) for
step-wise dynamic combination. Subsequent studies have
expanded on this foundation, offering comprehensive theo-
retical analysis (Parmas & Sugiyama, 2021) and extending
the methodology to more complicated model-based RL sce-
narios (Parmas & Seno, 2022; Parmas et al., 2023).

Policy Optimization with Differentiable Simulation. In
recent advancements in policy optimization, differentiable
engines have been leveraged to provide gradient informa-
tion, enhancing policy optimization. While the traditional
Backpropagation Through Time (BPTT) grapples with is-
sues such as exploding/vanishing gradients (Bengio et al.,
1994; Zhang et al., 2023c), many attempts have emerged
to refine and craft more robust algorithms. For instance,
PODS (Mora et al., 2021) taps into differentiable simula-
tors to obtain analytic gradients of a policy’s value function,
leading to effective first- and second-order policy improve-
ment strategies. SHAC (Xu et al., 2022) refines the BPTT
approach by breaking trajectories into short optimization
windows and embedding a value function at the end of each
horizon, providing smoother learning. Zhang et al.(2023b)
proposed ABS to reduce the gradient variance while con-
trolling the gradient bias using a contact-aware adaptive
central-path parameter. Nonetheless, the reliability of gra-
dients from simulations remains a concern. To combat this,
Suh et al. (2022) followed previous works (Parmas et al.,
2018; Metz et al., 2021) to blend simulation gradients with
zeroth-order policy gradients while additionally addressing
the empirical bias phenomenon. Nonetheless, these existing
algorithms cannot work well on complex continuous control
tasks with non-smooth dynamics.

3. ADAPTIVE ANALYTIC GRADIENT
In this paper, we address the challenge posed by the non-
smoothness of a differentiable simulation in continuous-
state control problems. The problem is characterized by
states, denoted as x ∈ Rn, and control inputs, represented
as u ∈ Rm. The system dynamics are governed by transi-
tion functions ϕ(x,u) : Rn×Rm → Rn. In addition, there
exist reward functions r(x,u,x′) : Rn × Rm × Rn → R,
where x′ represents the subsequent state and is given by
x′ = ϕ(x,u). A salient feature of our study is the dif-
ferentiability of both ϕ and r w.r.t. x and u. This dif-
ferentiability ensures that we can compute the subsequent
partial derivatives (Jacobians) directly from the simulator:
∂ϕ
∂x ,

∂ϕ
∂u ,

∂r
∂x ,

∂r
∂u . The non-smoothness suggests that, despite

being differentiable, these derivatives may exhibit disconti-
nuities or sudden variations across their domains. Outliers
may arise due to hard contacts or from numerical issues.
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(b) Adaptive-Gradient Policy Optimization (AGPO)

Figure 1. Computational graphs of SHAC and AGPO. For AGPO, we use Ft to denote the outcome of future trajectory starting from state
xt.

3.1. Preliminaries

In the context of reinforcement learning (RL), a primary
goal is to find an optimal policy πθ, parameterized by θ, that
maximizes the expected cumulative reward over time. This
is succinctly captured by the objective function F with a
discount factor γ. F is presented mathematically as:

F (θ) = Eπθ

[ ∞∑
t=0

γtr(xt,ut,xt+1)

]
,

where ut ∼ πθ(·|xt) and xt+1 = ϕ(xt,ut).

The value function, denoted as V (x;πθ), represents the
expected cumulative reward when starting from state x and
acting according to policy πθ:

V (x;πθ) = Eπθ

[ ∞∑
t=0

γtr(xt,ut, ϕ(xt,ut))

∣∣∣∣x0 = x

]
.

The Q-function, denoted as Q(x,u;πθ), encapsulates the
expected return starting from state x, taking action u, and
thereafter adhering to the policy πθ:

Q(x,u;πθ) = r(x,u, ϕ(x,u)) + γEπθ
[V (ϕ(x,u);πθ)] .

In the actor-critic paradigm, neural networks are commonly
used to approximate either the value function or the Q func-
tion. For clarification, the approximated value and Q func-
tions are symbolized as V̂ and Q̂ respectively. For brevity,
we will use Vt and Qt to denote V (xt) and Q(xt,ut).

A central objective of our study is the development of an
effective gradient estimator for∇F . Since obtaining precise
gradients is challenging, our estimator aims to provide a
reliable approximation, crucial for steering the optimization
towards the maximum of F .

Zeroth-order Gradient Estimators. The zeroth-order
gradient estimators refer to the methods where∇F is esti-
mated without directly differentiating the simulation, opting
instead for learning from samples. They can be classified
primarily into two categories: Policy Gradient (PG) and

Q Gradient (QG). The PG method estimates the gradi-
ent of the expected reward w.r.t. the policy parameters, as
illustrated by the equation:

∇θJ(θ) = Eπθ(u|x)

[
∇θ log πθ(u|x)Q̂(x,u)

]
.

Conversely, the QG focuses on the Q-function’s gradient,
making it especially apt for deterministic policies or repa-
rameterized stochastic policies. Notably, QG retains its
zeroth-order character as the Q function is approximated
by learning from samples. The QG formulation stands as
∇θQ̂(x, πθ(x)).

In practice, we need a vast amount of data to approximate
the policy gradient. Given a series of sampled data, the
batched policy gradient is computed by

∇̄[0]J(θ) :=
1

N

N∑
i=1

∇θ log πθ(ui|xi)Â(xi,ui),

with Â(·) the estimated advantage function, and the batched
Q gradient is computed by

∇̄[0]Q(θ) :=
1

N

N∑
i=1

∇θQ̂(xi, πθ(xi)),

where we use ∇̄[0] to indicate the zeroth-order estimator in
sample mean.

First-order Gradient Estimator. Given the differentiabil-
ity of both the transition function ϕ and the reward function
r, the first-order Simulation Gradient (SG) is the gradient
of the objective function F w.r.t. the policy parameters θ
that leverages the direct differentiation of these functions.
To overcome the gradient explosion issue, we follow the
method proposed in (Xu et al., 2022) whose computational
graph is shown in Fig. 1. Suppose we truncate each trajec-
tory into short horizons in the length of h, the optimization
objective is defined as

L(θ;h) = 1

h

(
t0+h−1∑
t=t0

γt−t0r(xt,ut,xt+1) + γhV (xt0+h)

)
.

3



Adaptive-Gradient Policy Optimization: Enhancing Policy Learning in Non-Smooth Differentiable Simulations

Then the batched simulation gradient is

∇̄[1]F (θ;h) :=
1

N

N∑
i=1

∇̂[1]Fi(θ;h) =
1

N

N∑
i=1

∇θL(θ;h)

where ∇̂ symbolizes the gradient estimation derived from a
single sample and ∇̄ denotes the sample mean of batched
gradients.

3.2. Validity of Gradient Estimates

Recent studies have underscored the importance of empiri-
cal variance as a metric for assessing the precision of gra-
dient estimates (Parmas et al., 2018; Metz et al., 2021; Suh
et al., 2022; Zhong et al., 2022). Here, we will further
demonstrate that the Q-function Gradient (QG) serves as a
more reliable and stable gradient estimator, particularly for
outlier detection and gradient smoothing.

Definition 3.1 (Empirical Variance). Empirical variance is
calculated using the formula:

σ̂2
[k] =

1

N − 1

N∑
i=1

∥∥∇̂[k]Fi(θ;h)− ∇̄[k]F (θ;h)
∥∥2,

where k can be either 0 or 1. Specifically, ∇[0]F refers
to the zeroth-order gradient estimators: PG (∇[0]J) or QG
(∇[0]Q).

Case Study. To assess the efficacy of the SG method
on intricate tasks, we employed the canonical Ant task
from Brax (Freeman et al., 2021). Initiating from 64 start-
ing states, we concurrently simulated 128 steps within the
Ant task. Within each step, the empirical variances of
PG, QG, and SG were evaluated. For brevity, we set the
horizon length to 1 when computing SG, simplifying it to
∇θ(rt(πθ) + γQ̂t+1(πθ)). As depicted in Fig. 2, QG’s vari-
ance remains stable, outshining both SG and PG by several
orders of magnitude in consistency. While the majority of
SG’s variances are relatively small, outliers do exist and
will cause unreliable gradients for policy learning. PG, on
the other hand, exhibits a higher variance. To delve deeper
into the impact of SG’s large variance during training, we
pinpointed two states from the rollout, emblematic of low
and high variance. Starting with a random policy, we itera-
tively employed optimization for the same state using SG
gradients, monitoring alterations in returns (rt + γQ̂t+1).
Notably, the optimized return is erratic in high variance
states, underscoring the challenges faced by the SG method
in such scenarios. It highlights the importance of identifying
and replacing the high-variance SG during training.

Different from previous works that combine first-order gra-
dients with PG (Parmas et al., 2018; Suh et al., 2022), our
experiments reveal that PG can exhibit significantly larger

Figure 2. Empirical variance (in log scale) between SG, QG, and
PG in a rollout (upper) and iterated optimization process using SG
method in low(down left)/high(down right) variance states.

fluctuating empirical variance during policy rollouts. In-
stead, we posit that the Q function offers a more consistent
proxy for predicting future returns, making QG a superior
gradient estimator. Given the prevalence of Q functions in
RL algorithms for policy learning (Lillicrap et al., 2015; Fu-
jimoto et al., 2018), QG emerges as a compelling alternative
gradient estimator. Our findings demonstrate the stability of
QG, establishing it as a baseline for detecting deviations in
SG.

3.3. Adaptive Gradient Estimator

We’ve demonstrated that outliers in SG can lead to policy
collapse and empirical variance is an effective indicator for
outliers. At the same time, QG consistently showcases low
variance. This observation leads us to strategically blend
SG and QG to address the challenge of non-smoothness. To
this end, we introduce an adaptive analytic gradient, which
merges SG and QG and adjusts their respective weights
adaptively. When SG becomes unreliable, the weighting
shifts in favor of QG. This moderates the impact of SG out-
liers and leads to stable policy optimization. Drawing from
prior studies (Parmas et al., 2018; 2023; Suh et al., 2022),
we employ a closed-form formula for blending gradients
via inverse variance weighting. Specifically, we compute
the mixture ratio with single-step SG and QG, as shown
in Fig. 4. Importantly, the estimated Q value acts as a sur-
rogate for expected returns, facilitating its use in place of
multi-step returns in multi-step SG optimization.

Adaptive Mixture Ratio. Let the 1-step SG for ratio com-
putation be represented as

∇̂[1]F (θ;h = 1) = ∇θ
[
r(x,u,x′;πθ) + γQ̂(x′,u′;πθ)

]
,

(1)
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0.678 0.999 0.989 0.997 0.012 0.995

0.852 0.852 0.009 0.001 2.79 × 10−5 0.012

Figure 3. A comparison of the optimization landscapes among three types of gradient estimators: pure simulation gradient (SG), a mixture
of simulation gradient and policy gradient (SG+PG), and a mixture of simulation gradient and Q-function gradient (SG+QG).

where u ∼ πθ(x), u′ ∼ πθ(x
′), and x′ = ϕ(x,u). QG is

computed at the current state by

∇̂[0]Q(θ) = ∇θQ̂(x,u;πθ), u ∼ πθ(x) (2)

We follow previous works (Parmas et al., 2018; Parmas &
Seno, 2022; Parmas et al., 2023) to compute the adaptive
mixture ratio for inverse variance weighting, via

α =
σ̂2
[0]

σ̂2
[0] + σ̂2

[1]

. (3)

Thus, the adaptive analytic gradient is estimated by the
weighted mixture of SG and QG as

∇[α]F (θ;h) = α∇[1]F (θ;h) + (1− α)∇[0]Q(θ).

Case Study. To assess the effects of different gradient mix-
tures, we follow a similar approach to previous works (Par-
mas et al., 2018; Xu et al., 2022), in which the objective
landscapes are plotted to study issues with the gradients.
We ran simulations across 64 Ant task environments us-
ing pre-trained policies and Q functions. Fig. 3 contrasts
the optimization landscapes of six random simulation steps
between the 1-step SG method and adaptive SG+PG and
SG+QG mixtures. Each step involved random selection
of two policy parameter space directions and plotting their
loss landscapes. SG alone produced noisy landscapes with
significant outliers, while SG+PG struggled to consistently
address this issue. In contrast, our SG+QG mixture achieved
smoother landscapes, showing our method’s ability to navi-
gate challenges and leverage SG effectively. During steps
where SG was stable, the mixture inclined towards SG for
optimization, resulting in similar landscapes between SG
and the adaptive mixtures in stable scenarios.

4. ADAPTIVE-GRADIENT POLICY
OPTIMIZATION

In this section, we further introduce a practical policy op-
timization algorithm that leverages the proposed adaptive
analytic gradients, termed as Adaptive-Gradient Policy Op-
timization (AGPO). Fig. 1 compares the computational
graphs of ours and the previous SHAC (Xu et al., 2022) al-
gorithm. In line with SHAC, we segment the trajectory into
shorter horizons to address gradient vanishing/explosion
challenges. To account for future trajectory influences in
policy learning, the Q value of the terminal state serves as
an approximation for potential outcomes. For more stable
transitions within these horizons, we estimate the Q value at
every step rather than just at the end of the segment. Then
we can compute the adaptive mixture ratio to evaluate the
reliability of each transition.

In Fig. 4, we illustrate how both SG and QG are calculated
at every step. Here, an important point is the node w.r.t.
which we calculate the gradients. Early works (Parmas et al.,
2018; Suh et al., 2022) calculated gradients w.r.t. policy
parameters, while Parmas et al. (2023) showed that better
scalability and computational efficiency can be obtained by
computing the gradient variances at the last shared node
between the gradient estimators (which in their case was the
state node). Similarly, we achieve computational efficiency
by computing gradient variances at the action node. To
better determine whether the variance in gradients is caused
by discontinuities in dynamics rather than differences in a
specific action dimension due to varying actions taken in
different environments, we calculated the L2 norm of the
gradientss along the action dimension. Then, we compute a
single adaptive mixture ratio across parallel environments
with Eq. (3) , denoted as αi, for the i-th step. This ratio acts
as a gauge for the dependability of the current transition
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Figure 4. Detailed computational graphs of QG (left) and 1-step
SG (right) for calculating α.

and its associated SG. When αi is close to zero, it implies
that the transition might be abrupt, potentially leading to
inconsistencies in SG. Therefore, the SG associated with this
transition becomes suspect for policy optimization. Such
a scenario would consequently allocate lower credit to the
left trajectory. During back-propagation, a near-zero ratio
proficiently diminishes the influence of this rough step.

Throughout the truncated trajectory, we iteratively deter-
mine αi as the credit assigned to future steps. For the t-th
step, the cumulative credit, βt, is given by βt =

∏t
k=0 αk.

If βt descends below a specified threshold, the trajectory
undergoes early truncation. Assuming β−1 = 1, the opti-
mization objective for the policy πθ is formulated as Eq. (4).
The corresponding proof can be found in the Appendix.

ℓ(θ;h) =
1

h

(h−1∑
i=0

γi
(
(1−αi)βi−1Q̂i+βiri

)
+γhβh−1Q̂h

)
.

(4)
Our algorithm’s pseudocode can be found in Alg. 1.

4.1. Theoretical Properties

In what follows, we establish the theoretical results of the
proposed AGPO algorithm.

To begin, we impose a common regularity condition on the
policy functions following previous studies (Agarwal et al.,
2021; Zhang et al., 2023b).

Assumption 4.1 (Lipschitz and Bounded Score Function).
We assume that the score function of policy πθ is Lipschitz
continuous and has bounded norm, i.e.,∥∥ log πθ1(u |x)− log πθ2(u |x)

∥∥
2
≤ L1 · ∥θ1 − θ2∥2,∥∥ log πθ(u |x)∥∥2 ≤ Bθ.

Now we characterize the convergence of AGPO with the
following theorem.

Theorem 4.2 (Convergence to Stationary Points). Denote
by bm and vm the gradient bias and variance at epoch

Algorithm 1 Adaptive-Gradient Policy Optimization

Input: Initialize policy πθ0 , Q function Qψ0
, the target

Q function Qψ′
0
, and the learning rate η

repeat
# Policy Rollout and Data Collection
for step i = 1 to h do

Sample actions u ∼ πθm(x)
x′, r, done← env.step(x,u)
Compute Qψ′

m
(x,u) and Qψ′

m
(x′,u′)

Compute a single αi using Eqs. (1) to (3)
Add experience tuple for this step to buffer
x← x′

end for
# Update Policy
θm+1 ← θm + η · ∇θℓ(θm;h)
# Update Q function and its moving average
Compute Bellman target Q′ as r + γQψ′

m
(x′,u′)

ψm+1 ← ψm + η · ∇ψMSE(Qψm
, Q′)

ψ′
m+1 ← τψm+1 + (1− τ)ψ′

m

until termination condition is met

m ∈ [1,M ], respectively, defined as

bm =
∥∥∇θℓ(θm)− E

[
∇̂θℓ(θm)

]∥∥
2
,

vm = E
[∥∥∇̂θℓ(θm)− E

[
∇̂θℓ(θm)

]∥∥2
2

]
.

Suppose the absolute value of the reward is bounded by
|r(x,u)| ≤ rm. Let δ = sup ∥θ∥2, L0 = rm ·L1/(1−γ)2+
(1 + γ) · rm ·B2

θ/(1− γ)3, and c = (η − L0η
2)−1. Under

Assumption 4.1, it holds for M ≥ 4L2 that

min
m∈[1,M ]

E
[∥∥∇θℓ(θm)

∥∥2
2

]
≤ 4c

M
· E
[
ℓ(θM )− ℓ(θ1)

]
+

4

N

( M∑
m=1

c(2δ · bm +
η

2
· vm) + b2m + vm

)
.

Besides, for a large enough N , vm ≤ 32L2
Q̂
L2
θ/h and

bm ≤ ϵm(
∑h−1
i=0 γ

i(1− αi)βi−1 + γhβh−1)/h.
Here, LQ̂ = supψ,x1,x2,u1,u2

∥Q̂ψ(x1,u1) −
Q̂ψ(x2,u2)∥2/∥(x1 − x2,u1 − u2)∥2, Lθ =

supθ,x ∥∇θπθ(x)∥2, and ϵm = maxi ∥∇θQ̂(xi,ui) −
∇θQπθm (xi,ui)∥2.

Theorem 4.2 provides the variance and bias upper bound
of the AGPO gradient and reveals the reliance between the
convergence of AGPO and the variance, bias of the gradient
estimators.

Notably, compared to the results in (Metz et al., 2021; Zhang
et al., 2023b;c), their variance upper bounds exhibit an ex-
ponential dependency on h and the dynamics Lipschitz,
resulting in chaotic optimization procedures and highly non-
smooth optimization landscapes with exploding gradient
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Figure 5. Experiment results on classic control tasks.

variance, causing slow convergence. This is especially the
case when the dynamics are non-smooth and the horizon h is
large. On the contrary, AGPO addresses this issue by adap-
tively mixing SG and QG, whose variance is low. Therefore,
increasing the horizon h leads to a faster convergence with
lower upper bound of the gradient variance and bias.

Finally, we establish the convergence rate of AGPO.

Corollary 4.3 (Convergence Rate). Let ε(M) =
∑M
m=1 bm.

Suppose that LQ̂ and Lθ are bounded. Then we have for
M ≥ 4L2 that

min
m∈[1,M ]

E
[∥∥∇θℓ(θm)

∥∥2
2

]
≤ 16δ · ε(M)/

√
M

+ 4ε2(M)/M +O
(
1/
√
M
)
.

4.2. Implementation Details

We implemented our algorithm using JAX (Bradbury et al.,
2018) for empirical analysis. Although compatible with
both reparameterized stochastic and deterministic policies,
we opted for a reparameterized Gaussian stochastic policy,
incorporating entropy regularization to enhance exploration.
To counteract Q learning’s overestimation bias, we used
double Q functions and stabilized training by employing
the moving average of Q functions for QG computation and
setting Bellman targets. A KL penalty, or “trust region”
approach, was applied to moderate policy updates. We
standardize gradients by the median of batched gradients
before calculating αi to manage scale differences between
estimators.1

1We normalize the gradient magnitudes when computing the
empirical variance during the calculation of αi, then use the raw
gradients for blending. As shown in (Parmas et al., 2023), rescaling
gradient magnitudes for ratio estimation may lead to suboptimal
performance. However, we find empirically that it works reason-
ably well in our tasks, leaving a deeper exploration for future
work.

5. EXPERIMENTS
In this section, we conduct extensive experiments to answer
these research questions: (1) How does AGPO’s perfor-
mance compare to pure RL methods and others utilizing dif-
ferentiable simulation? (2) What effect does horizon length
have on learning? (3) Does our adaptive method surpass
other rule-based techniques in addressing SG outliers? (4)
Is our method consistently effective across various simula-
tion backends, encompassing both smooth and non-smooth
differentiability?

5.1. Experiment Setup

Unless otherwise specified, all experiments are conducted
in the Brax environment (Freeman et al., 2021) using its
generalized backend, which computes motion via gen-
eralized coordinates similar to Mujoco (Todorov et al.,
2012), resolving contact impulses through a constraint
solver. Episodes are set to a length of 1000, with early
termination possible based on task-specific conditions. We
compare our AGPO algorithm with the following baselines:

• Backpropagation Through Time (BPTT): This is the
most straightforward method to leverage simulation
gradients, which directly optimizes cumulative rewards.
As in (Freeman et al., 2021), we truncate the horizon
into short segments to avoid gradient issues.

• Short-Horizon Actor-Critic (SHAC) (Xu et al., 2022)
and Alpha-order Batched Gradient (AoBG) (Suh et al.,
2022): We implement JAX-based SHAC and AoBG
for Brax tasks, which improve the vanilla BPTT with
either a value function or policy gradients.

• Pure RL methods: PPO (Schulman et al., 2017),
SAC (Haarnoja et al., 2018), and TD3 (Fujimoto et al.,
2018). We utilize the implementations provided by Sta-
ble Baselines3 (Raffin et al., 2021) and add a custom
wrapper for our simulation environments.
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Figure 6. Comparison of performance for AGPO on the Ant task
with increasing horizon lengths.

5.2. Continuous Control Benchmarks

We select five representative control tasks to evaluate the
performance of our method, spanning from the control-
less Hopper to the control-rich Humanoid. We run each
method for five individual runs to report the average perfor-
mance on each problem. The results are shown in the Fig. 5,
in which the solid line indicates the average performance
and the shaded area is the variance over random seeds.

Across all tasks, SHAC consistently outperforms the naive
BPTT. However, both methods are surpassed by others,
indicating that optimization solely relying on leveraging dif-
ferentiability faces challenges in this testbed. The presence
of hard contacts and solver-based contact modeling poses
difficulties. In contrast, our proposed AGPO method not
only significantly outperforms both SHAC and BPTT but
also competes favorably with widely-recognized methods
such as PPO, SAC, and TD3.

PPO, as an on-policy RL method, requires many samples
for good performance and struggles with limited data, as
our results show. In contrast, our method improves sample
efficiency by exploiting the simulation’s differentiability
and outperforms PPO. SAC and TD3, as off-policy methods,
train effectively with less data and converge faster than PPO,
but do not use the simulation’s differentiability. Our method
surpasses both SAC and TD3, highlighting the advantages
of differentiable simulation for policy learning.

Additionally, we compare our method against two fixed-
ratio variants, where the mixture ratio α is set as a constant
(either 0 or 1), to highlight the benefits of adaptivity. With
α ≡ 1, relying solely on SG leads to subpar performance
across all tasks. Conversely, α ≡ 0 shows improvement, em-
phasizing QG’s adaptability. However, the adaptive mixture
of SG and QG outperforms both, showcasing the strengths
of SG’s efficacy and QG’s adaptability combined.

5.3. Ablation Study

To further probe the nuances of AGPO, we conduct several
ablation studies in this section. We run each trial for three
different seeds and present the average results.
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Figure 7. Rule-based methods to regulate SG outliers.
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Figure 8. Experiments with fixed intermediate mixture ratio α.

Horizon length h. We conduct controlled experiments
in the Ant environment to examine the impact of different
horizon lengths. The results are illustrated in Fig. 6. We
observe that as the horizon increases from h = 8 to h =
128, the performance monotonically improves under the
same number of updates. This observation aligns with our
theoretical findings that a large horizon leads to a faster
convergence to the stationary points. Balancing training
efficiency w.r.t. timesteps and w.r.t. update times, we choose
h = 32 as the default value for other experiments.

Rule-based regulation and fixed-ratio mixture. To fur-
ther assess the effect of the proposed adaptive analytic gra-
dient, we compare our method with two rule-based outlier
elimination methods as well as several fixed-ratio variants.
For rule-based regulators, we devise two outlier elimination
methods: MaxNorm, which clips the SG norm, and Quantile,
using gradients within a specific quantile range. However,
as Fig. 7 shows, neither method effectively overcomes non-
smoothness in policy learning. While hard clipping removes
outliers and prevents model collapse, it also discards crucial
task information. Our approach, in contrast, leverages QG
to compensate for outlier removal and employs zeroth-order
methods to bypass non-smooth first-order optimization, re-
sulting in more effective policy training. In addition, we
carried out experiments to compare our method with some
fixed-ratio variants using intermediate values of α (0.3, 0.6,
0.9) in Ant and Humanoid. These experiments were de-
signed in a manner akin to those described in Sec. 5.3, where
α was set to 0 and 1. Here, however, α was set to 0.3, 0.6,
and 0.9 for the entire duration of the training process. As
depicted in Fig. 8, the results suggest that consistently in-
corporating a fixed ratio of QG to SG can mitigate some
challenges associated with the SG method to a certain de-
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Figure 10. Analysis on computational efficiency and scalability.

gree. Nonetheless, the performance of these fixed-ratio
approaches still falls short when compared to the adaptive
ratio method.

Computational efficiency and scalability. We conducted
experiments to benchmark the computational efficiency of
our proposed method against existing algorithms. These
evaluations were carried out across 64 parallel environments,
ensuring a fair comparison. The results on Ant are shown
in Fig. 10 while more results can be found in the Appendix.
Despite the integration of an extra backpropagation oper-
ation within our method, it demonstrated wall-clock effi-
ciency on par with established methods such as SAC and
TD3. Furthermore, an intriguing aspect of our method is
its scalability: as we augmented the number of parallel en-
vironments, our approach exhibited enhanced wall-clock
efficiency. This scalability suggests that our method is not
only competitive under current testing conditions but also
stands to gain significantly from increased parallelism, high-
lighting its potential for future applications requiring high
computational efficiency.

Simulation backends. To demonstrate our method’s ver-
satility, we evaluate AGPO in three additional simula-
tions, including Brax’s positional and spring back-
ends (Freeman et al., 2021) and the DFlex simulator used
in SHAC (Xu et al., 2022). The positional backend,
based on Position-based Dynamics (Müller et al., 2007),
balances speed and stability, differing in complexity from
generalized and spring. The spring backend uses
simple impulse-based methods for cost-effective simula-

tion. DFlex features a frictional contact model, enhanc-
ing contact dynamics smoothness, where SHAC has shown
significant improvements compared to existing PG- or SG-
based methods. We select two representative tasks, Ant and
Humanoid, from Brax and high-dimensional control tasks,
Humanoid and HumanoidMTU, from DFLex. As illus-
trated in Fig. 9, AGPO consistently surpasses or matches
SHAC across these simulations, maintaining comparable
performance even in the smoothly differentiable DFlex en-
vironments with high-dimensional action spaces.

Our experiments across different simulation backends re-
veal that SHAC struggles in simulations that lack smooth
differentiability. This suggests that SG-based methods are
significantly influenced by the specific design of the simula-
tor. On the other hand, AGPO shows both adaptability and
consistent performance across various simulation environ-
ments, underscoring its ability to handle diverse scenarios.

6. CONCLUSION
In this paper, we tackle policy learning in non-smooth dif-
ferentiable simulations by introducing an adaptive analytic
gradient that adeptly mixes unreliable simulation gradients
(SG) with more reliable Q gradients (QG). Our adaptive-
gradient policy optimization (AGPO) algorithm demon-
strates resilience with proven convergence and low variance
in non-smooth scenarios. Empirical results indicate that our
method surpasses existing algorithms in non-smooth set-
tings. Ablation studies further validate our approach’s effec-
tiveness, highlighting its reduced reliance on the smoothness
of differentiable simulations and its capacity to navigate non-
smooth landscapes for consistent policy improvement. This
advancement marks significant progress in resilient policy
learning across various differentiable simulations.

Limitations and future directions. Our method requires
additional backpropagation steps to compute the mixture
ratio, which could be accelerated with improved engi-
neering. More advanced gradient composition techniques,
such as incorporating covariance and using tensor-valued
weights (Parmas et al., 2023), could potentially further en-
hance performance, significantly improving our approach’s
efficiency and effectiveness.
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Impact Statement
This paper presents advancements in machine learning
through the Adaptive-Gradient Policy Optimization (AGPO)
algorithm, primarily impacting fields involving simulation-
based learning and decision-making for robotic applications.
Our work does not introduce specific ethical challenges
beyond those already established in machine learning.
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A. Proofs
A.1. Proof of Theorem 4.2

The theorem contains three results: the convergence rates to stationary points, the bound of the gradient variance, and the
bound of the gradient bias.

We refer to Theorem 4.2 of (Zhang et al., 2023b) for the proof of the first result, i.e., the convergence rates to stationary
points. Below we give the proof of the bound of the gradient variance and bias, respectively.

Proof. For the bound of the gradient variance, we first upper-bound the variance of the QG σ2
[0] = E[∥∇̂[0]Q(θ) −

E[∇̂[0]Q(θ)]∥22], we characterize the norm inside the outer expectation.

Consider an arbitrary action sampled from the policy πθ at a fixed state x. We denote its QG ∇̂[0]Q(θ) as g′. Then we have

σ2
[0] ≤ max

g′

∥∥∥g′ − E
[
∇̂[0]Q(θ)

]∥∥∥2
2
=
∥∥∥g − E

[
∇̂[0]Q(θ)

]∥∥∥2
2
=
∥∥∥E[g − ∇̂[0]Q(θ)

]∥∥∥2
2
,

where g is the pathwise gradient ∇̂[0]Q(θ) of action u such that the maximum is achieved.

Using the fact that ∥E[·]∥2 ≤ E[∥ · ∥2], we further obtain

σ2
[0] ≤ E

[∥∥g − ∇̂θℓ(πθ)∥∥2]2
≤ Eu

[∥∥∇uQ̂(x,u)∇θu−∇Q̂(x,u)∇θu
∥∥
2

]2
= Eu

[∥∥∇uQ̂(x,u)∇θu−∇uQ̂(x,u)∇θu+∇uQ̂(x,u)∇θu−∇uQ̂(x,u)∇θu
∥∥
2

]2
≤ 16L2

Q̂
L2
θ.

When N is large enough, we have

∇[α]F (θ;h) = α∇[1]F (θ;h) + (1− α)∇[0]Q(θ)

=
σ2
[0]

σ2
[0] + σ2

[1]

∇[1]F (θ;h) +
σ2
[1]

σ2
[0] + σ2

[1]

∇[0]Q(θ).

Therefore, we obtain for the variance that

vm ≤
1

h

(
σ2
[0]

σ2
[0] + σ2

[1]

σ2
[1] +

σ2
[1]

σ2
[0] + σ2

[1]

σ2
[0]

)

=
2σ2

[1]

h(σ2
[0] + σ2

[1])
σ2
[0]

≤
32σ2

[1]

h(σ2
[0] + σ2

[1]

L2
Q̂
L2
θ

≤ 32L2
Q̂
L2
θ/h,

where the terms in the brackets of the first inequality are the variance of each time step in the h-horizon.

The bias can be upper bounded by establishing the error of the gradient of the state-action value function at each timestep in
(4) with ϵm.
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A.2. Proof of Corollary 4.3

Proof. We let the learning rate η = 1/
√
M . Then for M ≥ 4L2, we have c = (η − L0η

2)−1 ≤ 2
√
T and L0η ≤ 1/2. By

setting N = O(
√
T ), we obtain

min
m∈[1,M ]

E
[∥∥∇θℓ(θm)

∥∥2
2

]
≤ 4

M
·
(M−1∑
m=0

c · (2δ · bm +
η

2
· vm) + b2m + vm

)
+

4c

T
· E
[
ℓ(θM )− ℓ(θ1)

]
≤ 4

M

(M−1∑
m=0

4
√
Mδ · bm + b2m + 2vm

)
+

8√
M
· E
[
ℓ(θM )− ℓ(θ1)

]
≤ 4

M

(M−1∑
m=0

4
√
Tδ · bm + b2m

)
+O

(
1/
√
M
)

≤ 16δ√
M
ε(M) +

4

M
ε2(M) +O

(
1/
√
M
)
.

This concludes the proof.

A.3. Proof of Eq. (4)

Proof. Let βt =
∏t
k=0 αk, β−1 = 1, and Fm:n denote the first-order optimization objective for the trajectory from state

xm to xn.

Starting with the mixture strategy for a horizon of length h, the objective is:

ℓ(θ;h) = (1− α0)Q̂0 + α0F0:h.

Utilizing the Bellman equation to expand F0:h:

ℓ(θ;h) = (1− α0)Q̂0 + α0(r0 + γQ1).

By recursively applying the mixture strategy and Bellman equation, the expression evolves to:

ℓ(θ;h) = (1− α0)Q̂0 + γα0(1− α1)Q̂1 + α0r0 + γα0α1F1:h.

Iterating for all states up to h, the objective consolidates to:

ℓ(θ;h) =

h−1∑
i=0

γi
(
(1− αi)βi−1Q̂i + βiri

)
+ γhβh−1Q̂h.

B. Details of PG implementation
For the case studies in Sec 3.2 and Sec 3.3, we utilized policy function π and Q-function selected from a successful run of our
AGPO algorithm. The policy function can be represented as a Gaussian policy, µ(x) + σ(x) ∗ N (0, I). For computing the
advantage function in PG, we use Q̂(x, µ(x)) to serve as the baseline instead of using the value function in PPO (Schulman
et al., 2017). This modification is based on two assumptions. Firstly, if V̂ = V ∗ and Q̂ = Q∗, where * denotes the optimal
value and Q-function, then we have V ∗(x) = maxaQ

∗(x,u). Secondly, based on most experimental results, we observe
that the optimal value of Q often occurs when the action is chosen as µ(x).

C. Comparison with AoBG (Suh et al., 2022)
In this section, we expanded our experimental scope to include a direct comparison with the method proposed by Suh et
al.(2022), on the Ant task. Due to the absence of open-source code from Suh et al.(2022), we implemented their method by

13
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Figure 11. Comparison with (Suh et al., 2022) on Ant task.
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Figure 12. Computational efficiency comparison on classic control tasks in Brax.

ourselves. Specifically, we define SG as described in the main body

∇̄[1]F (θ;h) :=
1

N

N∑
i=1

∇θL(θ;h).

For PG, we implemented as

∇̄[0]F (θ;h) :=
1

M

M∑
i=1

A(xi, ui)∇θ log π(ui|xi; θ),

where M denotes the number of transitions sampled, and A(xi, ui), representing the advantage, follows the same definition
as in PPO. To combine SG and PG, we use the adaptive ratio define as Eq (5) in (Suh et al., 2022). By denote τ = γ − ϵ,
we test the performance of algorithms with setting τ = 0, 0.01, 1, 100 and γ =∞. Importantly, when γ =∞, it will fall
back to the original inverse-variance weighting scheme used by Parmas et al. (2018). Our findings reveal that (Suh et al.,
2022) exhibits poor performance on the Brax environment (Fig. 11a). Furthermore, we plotted the adaptive ratio α∞ in the
experiment with γ =∞ in the PG+SG method. For comparison, we also provided the change of the average adaptive ratio
α when AGPO was run in the Ant task. Notably, we found α∞ to be almost equal to 1 (Fig. 11b), indicating that the PG
method itself has a large variance. This finding is consistent with the result in Fig. 2 and 3. Conversely, the average α in
AGPO is reasonable, suggesting that QG has a greater ability to detect and complement SG outliers.

D. Computational Efficiency
Here, we evaluate the computational efficiency of our proposed method against existing algorithms across all five tasks. The
results in Fig. 12 show that the wall-clock efficiency of our AGPO is on par with established methods such as SAC and TD3.

E. More Intermediate Fixed-alpha Experiments
In addition to the experiments in Fig. 8, we conducted further fixed-alpha experiments with α ∈ 0.1, 0.2, 0.3, encompassing
the range of the learned adaptive ratio. As shown in Fig. 13, while a carefully selected fixed-ratio gradient can achieve
comparable final performance, our AGPO consistently demonstrates superior efficiency due to its adaptive mixture schedule.
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Figure 13. Experiments with fixed intermediate mixture ratio α.

Ant Humanoid Hopper Walker2d Half-Cheetah
num envs 64 64 64 64 64

num eval envs 128 128 128 128 128
truncation length 32 32 32 32 32
actor hidden sizes [256, 128, 64] [256, 128, 64] [256, 128, 64] [256, 128, 64] [256, 128, 64]
critic hidden sizes [256, 128, 64] [256, 128, 64] [256, 128, 64] [256, 128, 64] [256, 128, 64]
stochastic policy True True True True True
reward scaling 0.1 0.1 0.1 0.1 0.1

discounting factor γ 0.99 0.99 0.99 0.99 0.99
soft update rate τ 0.8 0.2 0.8 0.8 0.2

learning rate 7e-4 7e-4 2e-4 2e-4 2e-4
actor max grad norm 1 1 1 1 1
critic max grad norm 10 10 10 10 10

KL penalty coef 0.3 0.3 0.3 0.3 0.3
entropy coef 0.01 0.01 0.01 0.01 0.01

critic num minibatch 8 8 8 8 8
critic num iteration 16 16 16 16 4

critic buffer size 64× 32 64× 32 64× 32 64× 32 64× 32
β truncation threshold 0.1 0.1 0.1 0.01 0.1

Table 1. Training hyper-parameters for AGPO.

F. Experiment Details
F.1. Computation Resources

We conducted our experiments on one NVIDIA GeForce RTX 3090 GPU with 24 GB GDDR6X memory. We implemented
our codes on the JAX framework, supporting XLA and automatic differentiation.

F.2. Hyper-parameters

We carried out our experiments using the Brax environment. For more specific implementation details related to each task,
please refer to (Freeman et al., 2021). Below are the hyper-parameters for our proposed AGPO algorithm applied to each
task.
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