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“Two video clips. Person1: Woman with short brown hair… Person2: Man with curly hair… 
First clip: Person1 inside a space station… Second clip: Person2 in the same cabin…”

Camera Movement Control

“Two distinct streams of tears trail down her cheeks as she speaks with an angry expression…”

“A medium shot of a man interacting warmly with an elephant. the man talks to the camera…"

“A tilt up shot of a man standing in a dimly lit room, speaking to the camera…”

Action Control

Multi-Character Turn-based Talk

Talking Character “Close-up shot of a doctor in a white lab coat over blue scrubs, speaking…”

Emotion Control

Figure 1: MoCha is an end-to-end dialogue-centric video generation model that takes only speech
and text as input, without requiring any auxiliary conditions. More videos are available at
https://congwei1230.github.io/MoCha/

Abstract

Recent advancements in video generation have achieved impressive motion realism,
yet they often overlook character-driven storytelling, a crucial task for automated
film, animation generation. We introduce Talking Characters, a more realistic
task to generate talking character animations directly from speech and text. Unlike
talking head, Talking Characters aims at generating the full portrait of one or
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more characters beyond the facial region. In this paper, we propose MoCha, the
first of its kind to generate talking characters. To ensure precise synchronization
between video and speech, we propose a localized audio attention mechanism
that effectively aligns speech and video tokens. To address the scarcity of large-
scale speech-labelled video datasets, we introduce a joint training strategy that
leverages both speech-labeled and text-labeled video data, significantly improving
generalization across diverse character actions. We also design structured prompt
templates with character tags, enabling, for the first time, multi-character conver-
sation with turn-based dialogue—allowing AI-generated characters to engage in
context-aware conversations with cinematic coherence. Extensive qualitative and
quantitative evaluations, including human evaluation studies and benchmark com-
parisons, demonstrate that MoCha sets a new standard for AI-generated cinematic
storytelling, achieving superior realism, controllability and generalization.

1 Introduction

Automating film production holds immense commercial potential, promising to democratize
cinematic-level storytelling by enabling content creators to effortlessly generate films through natural
language [1–4]. In film, dialogue plays a central role in conveying narratives. Ideally, creators should
be able to specify rich storylines involving multiple characters—whether realistic humans or stylized
cartoons—that engage in meaningful dialogue, express emotions, and perform full-body actions.
Such talking characters serve as powerful mediums for delivering impactful messages, communi-
cating ideas, and engaging audiences. Beyond film, they also enable a wide range of downstream
applications, including digital assistants, virtual avatars, advertising, and educational content.

Despite impressive progress in video generation, current video foundation models are primarily
designed for narration-style, non-dialogue scenes. Models such as SoRA, Pika, Luma, Hailuo, and
Kling [5–12] produce characters with arbitrary lip movements and disconnected facial expressions,
lacking control over actual speech content. As a result, these characters appear lifeless and fail to
deliver messeage to the audience, limiting the models’ applicability in real-life cinematic production.

Meanwhile, speech-conditioned video generation is still in its infancy, primarily focused on simplified
talking-head scenarios. Models such as Loopy, Hallo3, and EMO [13–19] are limited to cropped face
regions with static cameras, ignoring essential elements such as full-body actions, camera motion,
and multi-character interactions. These limitations hinder their characters’ expressiveness and make
them unsuitable for realistic, engaging storytelling.

To bridge the gap between non-dialogue video generation and constrained talking-head synthesis,
we introduce the novel task of Talking Characters, which directly targets the goal of automating
dialogue-centric film production. The task is defined as generating lifelike digital characters from
natural language and speech inputs that express synchronized speech, realistic emotions, and full-body
actions under dynamic camera movements (see section 2). To tackle this task, we propose MoCha, the
first end-to-end Diffusion Transformer (DiT) model designed to produce high-quality, movie-grade
talking character videos. MoCha demonstrates compelling storytelling capabilities. As shown on the
project website ahttps://congwei1230.github.io/MoCha/, we lightly edited MoCha-generated clips
into a 1-minute, emotionally engaging narrative, illustrating its potential for real-world filmmaking.

MoCha introduces several key technical innovations tailored for this task:

• First End-to-End DiT Without Auxiliary Control Signals: MoCha is the first DiT-based
model to demonstrate that high-quality lip synchronization and natural character motion can
be achieved using only text and speech—without relying on external control signals such as
reference images, pose skeletons, or facial keypoints [14, 15, 20, 13, 16, 21, 17]. Contrary
to the dominant belief that audio alone is insufficient, we show that strong audio-visual
alignment can emerge purely from end-to-end training.

• Localized Audio Attention: We propose a attention mechanism tailored for DiT-based
dialogue-diven video generation, which addresses the temporal mismatch between com-
pressed video tokens and high-resolution audio inputs (see Sec. 3.2). This design signifi-
cantly improves lip-sync accuracy and speech-video alignment.
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• Curriculum-Based Multimodal Training: We introduce a training strategy that combines
limited speech-labeled and large-scale text-only video data through a modality-aware cur-
riculum. By mixing multimodal and unimodal supervision and progressively increasing
visual complexity, our approach improves convergence, enhances generalization, and enables
MoCha’s universal controllability via natural language prompts—supporting fine-grained
control over character expressions, actions, interactions, camera movement, and scene
composition without relying on auxiliary signals.

• Multi-Character Conversational Video Generation: MoCha is the first model to support
coherent, turn-based dialogue among multiple characters—overcoming the single-speaker
limitation of prior methods. This capability enables cinematic, story-driven video synthesis
with dynamic character interactions.

To evaluate MoCha’s performance, we further curated MoCha-Bench, a benchmark tailored for
Talking Characters generation tasks. Both human evaluations and automatic metrics demonstrate
that MoCha set a new standard for talking character video generation and represents a significant
step toward achieving controllable, narrative-driven video synthesis, with broad applications in film
production, animation, virtual assistants, and beyond.

2 Problem Definition: Talking Characters

We introduce a novel task, Talking Characters, which focuses on generating digital characters that
exhibit realistic, human-like behaviors from natural language and speech input. The task is motivated
by the goal of automating dialogue-centric film production, going beyond traditional video generation
that typically focuses on non-dialogue, narration-based scenes.

Talking Characters differs from conventional talking-head generation—which is restricted to a single
face, fixed camera, and square crop—by enabling full-body character synthesis across a range of shot
sizes (e.g., close-up, medium, wide) with dynamic camera motion. It supports the generation of one
or more characters situated within a contextually appropriate scene.

The task is formally defined by the input-output specification and evaluation protocol, in Table 1.

Aspect Description

Input Text Prompt y: Natural language description including (1)environment, (2)character appearance and
(3)actions, (4)facing direction and emotion, (5)frame position, (6)camera movement, and (7)shot size.
Speech Audio a ∈ RL: Raw waveform signal that drives characters’ lip movements, facial expressions,
and body motions.

Output Video ν ∈ RT×H×W×3: A rendered video of one or more talking characters (human, 3D cartoon, or
animal), where T is the number of frames and (H,W ) is the spatial resolution.

Eval The generated characters are expected to perform well across the following five axes:
(1) Lip-Sync Quality: Accurate and temporally aligned lip movements with respect to α.
(2) Expression Naturalness: Expressive and coherent facial emotions that align with both y and a.
(3) Action Naturalness: Realistic body gestures reflect described actions in y, synchronized with a.
(4) Text Alignment: Coherence between visual content and y, including Visual layout, character
appearance, and camera motion.
(5) Visual Quality: High fidelity and temporal consistency, free from visual artifacts.

Table 1: Task definition of Talking Characters: formalized inputs (y, a), output ν, and evaluation criteria.

3 Model: MoCha

In this section, we introduce the MoCha model, the first model to generate talking characters. We begin
by outlining its architecture in subsection 3.1, followed by the localized audio attention mechanism in
subsection 3.2. Next, we describe the method of generating multiple clips in subsection 3.3. Finally
we provide explanation of the training strategy in subsection 3.4.
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“A close-up shot of a woman 
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Figure 2: MoCha Architecture. MoCha is an end-to-end Diffusion Transformer(DiT) that generates video
frames from the joint conditioning of speech and text, without relying on any auxiliary signals. Both speech and
text inputs are projected into token representations and aligned with video tokens through cross-attention.

3.1 Audio + Text to Video Diffusion Transformers

Figure 2 presents the overall architecture of MoCha. Unlike prior works that employ text-to-image
(T2I) U-Net [14, 15, 17, 22] for talking head generation, MoCha is a diffusion transformer (DiT) [23].

Model Architecture. MoCha adopts a fully tokenized design, where both text and speech inputs
are projected into token sequences and integrated with video tokens through cross-attention. Given
an video ν ∈ RT×H×W×3 with T frames, we encode it into a latent representation x0 ∈ Rτ×h×w×c

using a 3D VAE, which down-samples the video spatially and temporally. We define the temporal
down-sampling ratio as r = T

τ . Next, x0 is flattened into a sequence of tokens of size (τ ×h×w)× c
and passed to the DiT model fθ(·). Within each DiT block, the model first applies self-attention
to the video tokens x0, followed by sequential cross-attention with the text condition tokens y and
audio condition tokens α. The audio tokens α ∈ RT×c is derived from raw waveforms a using
Wav2Vec2 [24] and processed through MLPs to align its feature dimension with the video tokens.

Training Objective. We adopt Flow Matching [25], which enables efficient simulation of
continuous-time dynamics, to train our model. Given a latent video representation x1 ∈ Rτ×h×w×c

(encoded from the input video), random noise ϵ ∼ N (0, I), and a continuous time step t ∈ [0, 1], we
construct an intermediate latent xt by interpolating between ϵ and x1:

xt = (1− t) ϵ+ t x1. (1)
The model is trained to predict the velocity, defined as the difference between the data and noise:

vt =
dxt

dt
= x1 − ϵ. (2)

The training loss is then:

L = Eϵ∼N (0,I), x1, y, α, t∈[0,1]

∥∥∥fθ(xt, y, α, t
)
− (x1 − ϵ)

∥∥∥2
2
, (3)

where x1 is the latent video, y and α are text and audio conditions, and fθ(·) is the DiT model. Unlike
prior works [10, 14, 15, 20, 13, 16, 21, 17], MoCha does not rely on auxiliary objectives such as
face or body masking. Instead, it learns speech-video correlations purely from data, using a fully
tokenized and end-to-end training approach.

3.2 Localized Audio Attention

Most existing talking head generation models rely on 2D diffusion architectures (e.g., U-Net) that
generate T frames autoregressively, with each frame νi conditioned directly on its corresponding
audio token αi ∈ Rc. This one-to-one mapping between audio and video timesteps naturally ensures
tight synchronization. In contrast, diffusion transformer (DiT) architectures depart from this design
in two critical ways that complicate temporal alignment:
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Figure 3: MoCha’s Localized
Audio Attention. To address
the mismatch between com-
pressed video tokens and high-
resolution audio, MoCha em-
ploys a localized attention strat-
egy where each video token at-
tends only to a narrow window
of nearby audio tokens. This
promotes precise lip-sync and
improves temporal coherence.

1. Temporal Resolution Mismatch: DiT-based models operate on latent representations produced by
a 3D VAE, which temporally compresses videos by a factor of r (commonly r = 4 or 8 in recent
T2V models [8, 10]). As a result, video tokens span only τ = T/r steps, while audio remains at
the original resolution T , eliminating direct alignment.

2. Fully Parallel Decoding: Unlike autoregressive designs, DiT generates all τ latent frames in
parallel. Without constraints, naïve cross-attention permits each video token to attend globally to
the full audio sequence, which can lead to incorrect associations.

To address these challenges, we propose a Localized Audio Attention mechanism that introduces
a temporal inductive bias. Inspired by the observation that lip movements depend on short-term
phonetic patterns while body gestures and expressions reflect longer-term textual semantics, we
constrain each video token’s attention to a limited audio span.

Specifically, for a latent video frame x(i) ∈ Rh×w×c at timestep i ∈ {1, . . . , τ}, we restrict its
cross-attention to audio tokens α(j) in the window:

j ∈ [max(1, (i−1)r−1), min(T, ir+1)] . (4)

This r+2-token window corresponds to the uncompressed temporal segment that x(i) summarizes,
with one token of padding on each side for context smoothing. This simple yet effective constraint
encourages alignment between speech and video while preserving local continuity across frames.

3.3 Multi-character Turn-based Conversation

Thanks to the clean and fully tokenized design of MoCha (see subsection 3.1), the model supports
multi-clip video generation in exactly the same way as single-clip generation—without any addi-
tional architectural modifications. As illustrated in Figure 4, unlike video extension methods that
rely on autoregressive generation conditioned on previously generated content, MoCha generates
all clips in parallel. It leverages self-attention across video tokens to maintain character consistency
across clips and preserve coherence in the surrounding environment.

Assuming only one character speaks at a time, we observe that speaker changes in the audio implicitly
guide MoCha to transition between clips—without requiring any explicit indicators such as clip
tokens [26]. Simultaneously, the text condition y specifies the content of each clip.

Formally, given an audio sequence α = {α1, α2, . . . , αT }, where the tokens correspond to two
speakers segmented as α = [α1, . . . , αrk] ∥ [αrk+1, . . . , αT ], with r being the VAE temporal down-
sampling ratio and k being an integer index. The model generates the latent video sequence in parallel
as: x = fθ(y, α), where x = {x1, x2, . . . , xτ}, τ = T/r. The output sequence x can be segmented
into two clips aligned with the respective speaker turns:

x = [x1, . . . , xk] ∥ [xk+1, . . . , xτ ].

While MoCha supports seamless multi-clip generation, a challenge lies in prompting—ensuring that
character attributes are consistently grounded across clips. This becomes especially difficult when
characters interact or reappear in different clips. Naive captioning models typically rely on visual
descriptions to refer to characters. As a result, they must repeat detailed appearance descriptions each
time a character is mentioned, leading to long, redundant, and confusing prompts. For example in
Figure 5. This verbosity not only increases the risk of exceeding token limits (e.g., 256 tokens) but
also confuses the model during generation—especially in multi-clip scenarios.
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“ Two video clips. 
Characters: 
- Person1: Woman with short grey hair, 

medium skin tone, wearing a maroon 
sweater and apron. 

- Person2: Man with a beard, darker skin 
tone, wearing a black t-shirt and jeans.

First clip: Person1 stands in a cozy 
kitchen, facing left, speaking warmly 
while preparing food on the counter. Pots 
and pans hang in the background. The 
camera gradually zooms in on Person1’s 
face.
Second clip: Person2 stands on the other 
side of the counter, facing left, smiling 
and replying to Person1. The camera 
remains static.”
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Figure 4: Multi-character Conversation and Character Tagging. MoCha supports generating multi-character
conversion with scene cuts. We design a specialized prompt template: it first specifies the number of clips, then
introduces the characters along with their descriptions and tags. Each clip is subsequently described using only
the character tags, simplifying the prompt while preserving clarity. MoCha leverages self-attention across
video tokens to ensure character and environment consistency. The audio signal implicitly guides MoCha when
the transition between clips happens.

“The first video clip captures a girl aged 10-15 in a 
green dress waving to another girl dressed in a green 
shirt with braided hair holding a book... another girl 
dressed in a green shirt in the middle of the frame 
responds with a smile... Nearby, another girl aged 
10-15 in a blue hoodie points toward the whiteboard 
while looking at the girl dressed in the girl in a 
green shirt with braided hair.

Clip1

Clip2 naïve captioning is long, redundant, and confusing 😊😔

“Two Video Clip. 
Characters: 
(Person1)A girl aged 10-15 in a green dress 
(Person2)A girl in a green shirt with braided hair  
(Person3)A girl aged 10-15 in a blue hoodie 

First Clip: Person1 waves to Person2 holding a 
book. Person2 responds with a smile... Nearby, 
Person3 points toward the whiteboard while looking 
at Person1. 

Second Clip: Person1 is gone. Person2 hands a book 
to Person3. Person3 gently takes the book with a 
soft smile.” 

(Ours) character tagging is clean and compact

The second video clip captures the girl in a green 
dress who stands on the left side of the frame is 
gone. The girl in a green shirt with braided hair 
hands a book to another girl in a blue hoodie. The 
girl in the blue hoodie gently takes the book with a 
soft smile…” token#: 145 token#:108

Figure 5: Character tagging provides more compact and structured prompts compared to naïve captioning.

We address this by introducing a structured prompt template with fixed keywords and a character
tagging mechanism that promotes clarity, compactness, and consistency:

• “Two Video Clip. Characters:" Defines a list of characters, each described by visual attributes
and assigned a unique tag [27] (e.g., Person1, Person2).

• “First clip", “Second clip" Each video segment is described using only the defined character tags.

This design significantly reduces redundancy and helps the model reliably associate visual attributes
with character actions, even across multiple clips.

3.4 MoCha Training Strategy

We identify two key challenges in training high-quality talking character models: (i) Data Scarcity
and Limited Diversity: Speech-annotated video datasets are relatively scarce and often lack sufficient
visual and semantic diversity, making it difficult to directly train a MoCha model on them. (ii)
Varying Speech Influence Across Shot Types: The impact of speech on video generation differs
between spatial scales: it strongly governs lip and facial movements in close-up shots but has a
diminishing influence in medium or wide shots involving full-body motion. Training across all
shot types simultaneously may lead to slow convergence. To address both issues, we propose a
Curriculum-based Multi-modal Training strategy that integrates modality-aware supervision with
progressive visual complexity.

Mixed-Modal Sampling. Our data consists of a balanced mix of multimodal and unimodal data:

• 80% Multimodal (speech+text): The majority enables fine-grained audiovisual grounding.
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Figure 6: Progressive Curriculum
for Multimodal Training in MoCha.
MoCha is first pretrained on text-only
video data to acquire general visual gen-
eration capability. The model is then pro-
gressively exposed to speech-conditioned
data across different task difficulties.

• 20% Unimodal (text-only): Text-only video samples offer broader visual diversity and varied
camera movements, helping the model retain strong generalization capabilities. In this setting, the
speech embedding is replaced with a zero vector before the audio projector.

Shot-Type-Based Curriculum. We organize training into multiple stages based on shot complexity:

• Stage 0: We pretrain on large-scale text-only datasets to establish strong visual priors.
• Stages 1–N: We begin with close-up shots, which have high speech-visual correlation, and pro-

gressively incorporate more challenging scenarios such as medium/wide shots and multi-character
scenes. At each stage, we halve the share of easier examples from the previous stage while
maintaining the 80%/20% multimodal-unimodal ratio.

This combined strategy allows MoCha to benefit from both abundant text-only data and limited
multimodal supervision while progressively mastering harder generation tasks.

4 Experiment

In this section, we first describe the details of our model in subsection 4.1. We then introduce MoCha-
Bench for Talking Characters task and benchmark MoCha against baseline methods in subsection 4.2,
and finally, we present an ablation study to analyze the impact of key design choices in Table 4.2.
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Lip-Sync Quality Facial Expression Naturalness Action Naturalness Text Alignment Visual Quality

MoCha(Ours) Hallo3 SadTalker AniPortrait

N/A N/A

3.85 3.82 3.82 3.85 3.72

2.45 2.25 2.13 2.35 2.36

2.95

1.45
1.21 1.16 1.14 1.12 1.00 1.00

Figure 7: Human evaluation scores with SoTA on MoCha-Bench. Scores range from 1 to 4 across five
evaluation axes, where a score of 4 reflects performance that is nearly indistinguishable from real video or
cinematic production. Participants rated each method on five aspects: lip-sync quality, facial expression
naturalness, action naturalness, text-prompt alignment, and visual qualit. MoCha significantly outperforms all
baselines across all axes. SadTalker and AniPortrait consistently received a score of 1 for action naturalness,
as these methods only perform head movements. Text alignment is marked as not applicable (N/A) for these
baselines since they do not accept text input. (see appendix for table version)

4.1 Implementation Details

MoCha builds upon a pretrained 30B-parameter MovieGen backbone [8, 10], which we extend for
speech-conditioned video generation in a fully tokenized, end-to-end setting. The model is configured
to produce 128 frames at 24 frames per second, resulting in 5.3-second video clips. Training data
is standardized to a spatial resolution of approximately 720 × 720, with flexible aspect ratios to
support various shot types. To enable multimodal learning, we curate two complementary datasets:
(1) a large-scale collection of O(100) million text-captioned videos and (2) a smaller set of O(800)
thousand speech-annotated samples [28]. Training is distributed across 64 compute nodes. More
details of the implementation and the data processing pipeline are provided in the Appendix.
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Prompt: “A close-up shot of a young woman embracing her cat outdoors. She is speaking while facing 
slightly to the right of the frame with an frustrating expression. The background is… she continues 
speaking, her expression remaining tense with anger while still facing slightly to the right…”

/fiːl/ /laɪk//sʌm/ /taɪ/ /tʃɛs/

t = 1 2 3 4 5

Figure 8: Qualitative comparison with SoTA on MoCha-Bench. MoCha not only produces lip movements that
align closely with the input speech—enhancing the clarity and naturalness of articulation—but also generates
expressive facial animations and realistic, complex actions that faithfully follow the textual prompt. In contrast,
SadTalker and AniPortrait exhibit minimal head motion and limited lip synchronization. Hallo3 mostly follows
the lip-syncing but suffers from inaccurate articulation, erratic head movements, and noticeable visual artifacts.
Since the baselines operate in an image-to-video (I2V) setting, we provide them with the first frame generated
by MoCha as input for comparison. The first frame is cropped and resized as needed to meet the requirements of
each baseline.

Method Sync-C ↑ Sync-D ↓
SadTalker 4.727 9.239
AniPortrait 1.740 11.383
Hallo3 4.866 8.963
Ours 6.333 (+1.47) 8.185 (-0.78)

Table 2: Comparison with SoTA on MoCha-Bench.
We report lip-sync metrics, and MoCha outperforms
baselines with superior lip-sync quality.

Ablation Sync-C ↑ Sync-D ↓
Ours 6.333 8.185

w/o Curriculum Training 5.659 8.435
w/o Localized Audio Attn. 5.103 8.851

Table 3: Ablation on MoCha-Bench. Removing Local-
ized Audio Attn. degrades lip-sync, Curriculum Training
improves generalization.

4.2 Evaluation

Baselines. We compare our method with state-of-the-art audio-driven talking face generation models,
including SadTalker [29], AniPortrait [30], and Hallo3 [28]. These models generate talking faces
conditioned on audio and auxiliary signals, such as the first frame, facial keypoints, or pose skeletons.
In contrast, MoCha generates talking characters directly from raw speech and text.

Benchmark. We introduce MoCha-bench, a benchmark tailored for the Talking Character generation
task. It contains 200 diverse samples, each comprising a text prompt and corresponding audio
clip. The dataset spans various camera shot angles and camera movement—for example, close-
up shots emphasize facial expressions and lip-sync, while medium shots highlight hand gestures
and body movement. Scenes cover a wide range of human activities and object interactions (e.g.,
woman holding a coffee cup, professor talking to student), with characters speaking
with various emotions and facing directions. All prompts were manually curated and further enriched
using the publicly released LLaMA-3 [31] model to enhance expressiveness and diversity.

Qualitative Experiments We present qualitative results of MoCha in Figure 1, demonstrating its
ability to generate diverse and realistic human motion while maintaining precise speech synchro-
nization, even during complex actions. Contrary to the traditional view that treats audio as a weak
conditioning signal requiring auxiliary supervision (e.g., pose annotations), our results show that
strong audio-visual alignment can emerge purely from end-to-end training. More examples can be
found in Appendix and the https://congwei1230.github.io/MoCha/.
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Figure 8 illustrates a side-by-side evaluation of MoCha against baseline methods on MoCha-Bench.
Since MoCha generates video directly from speech and text, while baselines operate in an image-
to-video (I2V) setup, we ensure fair comparison by providing each baseline with the first frame
generated by MoCha (cropped/resized to focus on the head region as needed ). Additional results
are provided in the Appendix. MoCha not only produces lip movements that closely align with the
speech—enhancing both articulation and naturalness—but also generates expressive facial emotion
that accurately follow the textual prompt. In contrast, SadTalker and AniPortrait exhibit minimal
head motion and limited lip synchronization. While Hallo3 achieves mostly consistent lip-syncing, it
suffers from inaccurate articulation and erratic head movements.

Quantitative Experiments We evaluate video quality using the automatic metrics to measure the
lip-sync quality. Table 2 presents a comparison on the MoCha-Bench. Our model achieves the
best scores across all lip-sync metrics, demonstrating the effectiveness of MoCha ’s end-to-end DiT
design. These results further confirm that strong audio-visual alignment can emerge purely from
audio conditioning without any auxiliary signal.

Human Evaluations. We conduct a comprehensive human evaluation to compare MoCha against
baseline methods on the MoCha-Bench dataset. The evaluation is based on five axes tailored for
the Talking Characters task (see section 2), with scores ranging from 1 to 4 (see Appendix). Each
model output received 5 independent ratings per example, resulting in over 1000 responses per model.
As illustrated in Figure 7, MoCha significantly outperforms all baselines across all five axes, with
average scores approaching 4—indicating performance that is nearly indistinguishable from real
video or cinematic production.

Ablation Studies We conduct ablation experiments to assess the individual contributions of MoCha
’s core components. Table 3 presents the impact of each component. (i)We disable our localized
audio attention mechanism during training, which results in a noticeable drop in Sync-C and increased
Sync-D. We also have design variant comparison with RoPE + global audio attention in the Appendix.
(ii)We train MoCha exclusively on speech-annotated data. This results in a noticeable drop in lip-sync
quality, indicating degraded generalization due to the reduced diversity of the dataset.

5 Related Work

5.1 Talking Head Generation

Given an audio sequence and a reference face, pioneer talking-head generation works typically utilize
biometric signals such as facial keypoints [32–35], or 3D priors [36–40, 29, 41] as intermediate
motion representation to animate the reference face while ensuring lip synchronization. For example,
SadTalker [29] first extracts 3DMM coefficients from audio and then renders the face in a 3D-aware
manner. AniPortrait [30] predicts 2D facial landmarks from audio and then uses diffusion models to
generate a portrait video from the 2D landmark maps. VLOGGER [42] predicts both 3D expression
coefficient and 3D body pose from speech and enables the simultaneous generation of talking-face
animations and upper-body gestures. Although effective, videos generated by these methods often
lack expressiveness and naturalness due to the limited representation of 2D/3D priors. Recently
works, such as EMO [18] and Hallo [17], generate audio-driven portrait videos end-to-end using
diffusion models, which eliminate intermediate facial representations and learn natural motion from
data [18, 17, 22, 16, 43]. Hallo3 [28] builds upon pretrained transformer-based video diffusion
models to animate faces with dynamic head poses and background elements. Although these methods
can generate natural expressions, they rely on complex auxiliary signals—such as reference images
or keypoints—which not only limit the naturalness and flexibility of facial expressions and body
movements but also limit the generalization ablity of those methods.

5.2 Video Diffusion Model

Recent diffusion-based video models have focused on improving visual quality and temporal co-
herence, particularly in text-guided synthesis. Early works such as Make-A-Video [44], Tune-A-
Video [45], Video LDM [46], MagicVideo [47], and AnimateDiff [48] adapt text-to-image (T2I)
backbones to model motion dynamics. More recent methods based on diffusion transformers—such
as HunyuanVideo [10], CogVideoX [7], MovieGen [8]—along with open-source frameworks like
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VideoCrafter [6], ModelScopeT2V [49], and Pyramidal Flow [50], further enhance spatio-temporal
consistency and generation fidelity.

However, these models lack mechanisms for aligning speech with character behavior, often producing
disjointed lip motions or gestures that fail to reflect spoken content. In contrast, MoCha pioneers a
new direction by jointly conditioning on both speech and text to drive character animation—bridging
the gap between realistic motion synthesis and dialogue-driven storytelling.

6 Conclusion

In summary, our work pioneers the task of Talking Characters Generation, pushing beyond traditional
talking head synthesis to enable full-body, multi-character animations directly driven by speech
and text. We present MoCha, the first framework to address this challenging task, introducing key
innovations such as the localized audio attention mechanism for precise audio-visual alignment and a
curriculum-based multi-modal training strategy that leverages both speech- and text-labelled data
for enhanced generalization. Additionally, our structured prompt design unlocks multi-character,
turn-based dialogues with contextual awareness. Comprehensive experiments and human evaluations
demonstrate that MoCha delivers state-of-the-art performance in dialogue-driven video generation,
marking a significant step toward scalable, cinematic AI storytelling.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We provide extensive qualitative, quantitative, and human evaluation to support
our claims.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provide a Limitations and Broader Impact in the Appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
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tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Justification: Our paper focuses on empirical results supported by extensive experiments.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have a detailed discussion about the new model architecture.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]

Justification: We publicly release the evaluation benchmark, but the code is not yet available.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide a detailed discussion of the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report error bars in our quantitative evaluations based on repeated human
ratings.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide a detailed discussion of the compute resources.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research conform in every respect, with the NeurIPS Code of Ethics

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have border impacts paragraph.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: We have a paragraph about this.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cited the original paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide a document for the public available benchmark.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: We have a paragraph for the instructions.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [No]

Justification: Our study includes human evaluations of model outputs. Participants were
volunteers from our institution, informed of the task, and no sensitive or personal data was
collected. Given the low-risk nature of the study, IRB approval was not required under our
institution’s policy.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We use an LLM to enrich video descriptions and prompts for our evaluation
benchmark and training data. We describe our data processing pipeline in appendix.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Technical Appendices and Supplementary Material

In this appendix, we provide details of the model architecture in Appendix B, training setting in
Appendix C, data processing pipeline in Appendix D, and we provide comprehensive ablation studies
and experiment results in Appendix A. We discuss limitations and broader impact in Appendix E and
Appendix F

A Experiments

A.1 Audio Cross-Attention Design Ablation

To better understand how to inject audio conditioning into DiT-based video diffusion models, we
conduct a systematic design study comparing multiple audio cross-attention mechanisms. Due
to the high computational cost of training the full 30B MoCha model, we perform our ablation
using a smaller 4B DiT backbone pretrained on MovieGen [8], and fine-tune it on 400K close-up,
single-character clips with audio annotations for 200K training steps.

All models share identical training hyperparameters and differ only in the design of the audio cross-
attention module. We evaluate lip-sync quality on MoCha-Bench using the SyncNet-based metrics
Sync-C (↑) and Sync-D (↓). Results are summarized in Table 4.

Variants. Below, we define the attention query q ∈ RN×d as the video tokens, and key/value
k, v ∈ RT×d as the audio tokens. We denote A(q, k, v) as the standard attention function.

• Naive Audio Cross-Attention: Each video token attends to all audio tokens without
positional encoding:

z = A(q, k, v).

• + Learnable Positional Embedding: Audio tokens are augmented with learnable positional
embeddings pj initialized to zero:

z = A(q, k + p, v).

• + Sinusoidal Positional Embedding: Instead of learned pj , we add fixed sinusoidal embed-
dings:

z = A(q, k + Sinusoidal(j), v).

• + Rotary Positional Embedding (RoPE): RoPE is applied by rotating the queries and keys:

z = A(RoPE(q),RoPE(k), v).

• Localized Audio Attention (proposed): Each video token qi attends only to a window of
audio tokens k[j0:j1] centered on its corresponding temporal segment (see Section 3.2):

zi = A(qi, k[j0:j1], v[j0:j1]),

where j0 = max(1, (i−1)r−1) and j1 = min(T, ir+1).

• Localized Audio Attention + RoPE: We additionally apply RoPE to q and k within the
window.

Findings. As shown in Table 4, the naive attention baselines perform poorly in lip-sync accu-
racy. Adding positional information—especially sinusoidal or RoPE embeddings—significantly
improves performance, suggesting that positional priors are critical for learning speech-video align-
ment. However, our proposed Localized Audio Attention consistently outperforms all other variants,
demonstrating the effectiveness of constrained temporal windows for resolving the resolution mis-
match between video and audio tokens.

Interestingly, adding RoPE to the Localized Attention variant slightly degrades performance, indicat-
ing potential interference between the inductive bias introduced by RoPE and the explicit temporal
alignment imposed by windowing.
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Method Sync-C ↑ Sync-D ↓
DiT-4B + Localized Audio Attention (MoCha-4B) 5.692 8.403
DiT-4B + Localized Audio Attention + RoPE 5.027 9.038
DiT-4B + Naive Audio Attention + RoPE 4.872 8.893
DiT-4B + Naive Audio Attention + Sinusoidal Embedding 4.747 8.986
DiT-4B + Naive Audio Attention + Learnable Embedding 2.540 10.363
DiT-4B + Naive Audio Attention 2.364 10.385

Table 4: Comparison of Audio Cross-Attention Variants on MoCha-Bench. We report lip-sync
metrics. The proposed Localized Audio Attention achieves the best performance.

A.2 Ablation of Curriculum-Based Multimodal Training Strategy

We conduct an ablation study to assess the effectiveness of our proposed Curriculum-based Multi-
modal Training strategy (described in Section 3.4), which is designed to address two core challenges:
(i) data scarcity and limited diversity in speech-annotated datasets, and (ii) varying speech relevance
across spatial scales in different shot types.

To evaluate this strategy, we compare the full MoCha-30B model with two ablated variants:

• w/o Curriculum Training: Trained on mixed modalities (speech and text-only) but without
curriculum progression (i.e., trained directly on mixed data with full shot-type complexity
from the beginning).

• w/o Mixed Multimodal Training: Trained solely on speech-annotated videos, without any
text-only data or curriculum scheduling.

All models use the same architecture and are trained for an equal number of steps.

We report both automatic lip-sync metrics (Sync-C ↑, Sync-D ↓) and three human evaluation metrics
from MoCha-Bench: Text Alignment, Visual Quality, and Action Naturalness (detailed in Section A.4).
Qualitative examples can be found on the https://congwei1230.github.io/MoCha/.

As shown in Table 5, removing the curriculum phase (w/o Curriculum Training) causes a moderate
performance drop across all metrics, confirming the benefit of staged training that gradually increases
visual complexity. Although trained for the same number of steps, the non-curriculum baseline
converges more slowly and underperforms.

The w/o Mixed Multimodal Training variant—trained only on limited speech-annotated
data—performs significantly worse, especially on Text Alignment and Action Naturalness. This
confirms that unimodal speech-driven training causes overfitting to front-facing talking-face data,
impairing the model’s ability to generalize to diverse prompts for diverse scenes and full-body
activities.

These results validate the necessity of both modality mixing and curriculum progression for robust
and generalizable talking character generation.

Method Sync-C ↑ Sync-D ↓ Text Alignment ↑ Visual Quality ↑ Action Naturalness ↑
MoCha-30B (with Curriculum) 6.333 8.185 3.85 3.72 3.82
w/o Curriculum Training 5.659 8.435 3.17 3.31 3.27
w/o Mixed Multimodal Training 5.798 8.231 2.71 2.91 2.97

Table 5: Ablation of Curriculum-Based Multimodal Training Strategy on MoCha-Bench. We
report lip-sync metrics (Sync-C ↑, Sync-D ↓) and human evaluation scores across three axes.

A.3 Ablation of Character Tagging Strategy

We ablate the effectiveness of the Character Tagging strategy introduced in Section 4 for handling
multi-character conversations with turn-based dialogue. This strategy is particularly important in
multi-clip scenes, where multiple characters appear across different segments and speaker transitions
are inferred from the audio input alone.
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Our tagging mechanism assigns a unique identifier (e.g., Person1, Person2) to each character intro-
duced at the beginning of the prompt. These tags are then reused across individual clip descriptions,
allowing for clear, consistent references without repeating verbose appearance descriptions. This
structured prompting significantly reduces prompt length and improves character consistency (see
Figure 5).

To evaluate the impact of character tagging, we compare the full MoCha-30B model (with tagging) to
a baseline trained with naïve captioning—where detailed character descriptions are repeated verbosely
in each clip. Both models are evaluated on the turn-based dialogue subset of MoCha-Bench.

As shown in Table 6, removing character tagging results in a drastic drop in Text Alignment, indicating
the model often confuses which character appears in which scene. Qualitative examples show that,
without tagging, the model may generate scene-swap artifacts, fail to transition characters correctly
between clips, or maintain similar lip-sync for mismatched dialogue.

We also observe degradation in Visual Quality, as the model occasionally blends inconsistent character
features across clips. Overall, these results highlight that character tagging is essential for multi-
character consistency and semantic alignment in dialogue-driven video generation.

Method Sync-C ↑ Sync-D ↓ Text Alignment ↑ Visual Quality ↑ Action Naturalness ↑
MoCha-30B (with Character Tagging) 4.951 8.601 3.81 3.64 3.69
w/o Character Tagging 4.465 8.792 2.01 2.15 3.03

Table 6: Ablation of Character Tagging on MoCha-Bench (Turn-Based Dialogue Category).
We report lip-sync metrics (Sync-C ↑, Sync-D ↓) and human evaluation scores. Character tagging
improves semantic consistency and reduces scene confusion in multi-clip dialogue scenarios.

A.4 MoCha-Bench Human Evaluation

We conduct a comprehensive human evaluation to compare MoCha against baseline methods on the
MoCha-Bench dataset. The evaluation is based on five axes tailored for the Talking Characters task
, with scores ranging from 1 to 4. Each model output received 5 independent ratings per example,
resulting in over 1000 responses per model. We provide the evaluation guidance as below. Besides
the text guideline, we also include some visual examples to better help the annotators to judge.

This document provides evaluation guidelines, including axis definitions, scoring rubrics, and instruc-
tions for annotators. Visual examples are provided separately to support consistent judgments.

Task Overview

Each evaluation sample consists of:

• A generated video with audio,
• A text prompt describing the scene and character behavior.

Your task is to evaluate how well the generated video across five dimensions.

Evaluation Axes

• Lip-Sync Quality: Measures how accurately the character’s lip movements align with the
spoken audio.
Scale: 1 – Not aligned at all, 2 – Weak alignment, 3 – Mostly aligned, 4 – Perfectly aligned.

• Facial Expression Naturalness: Evaluates whether facial expressions and lip-sync appear
natural and contextually appropriate, without seeming robotic or exaggerated.
Scale: 1 – Completely unnatural, 2 – Noticeably synthetic or stiff, 3 – Mostly natural and
believable, 4 – Indistinguishable from real or cinematic performance.

• Action Naturalness: Assesses how naturally the character’s body movements and gestures
align with the audio.
Scale: 1 – Completely unnatural, 2 – Noticeably unnatural, 3 – Mostly natural, 4 – Indistin-
guishable from real movie or TV characters.
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• Text Alignment: Measures how well the generated actions, expressions, and presence of
characters follow the behaviours described in the prompt.
Scale: 1 – No alignment (e.g., missing character or major misbehavior),
2 – Partial alignment, 3 – Mostly aligned, 4 – Perfect alignment with the prompt.

• Visual Quality: Evaluates the overall visual fidelity, including image sharpness, coherence,
and absence of rendering issues such as artifacts, glitches, or anatomical distortions (e.g.,
broken limbs or unnatural body proportions).
Scale: 1 – Severe artifacts, 2 – Noticeable artifacts, 3 – Mostly artifact-free, 4 – Flawless
visuals.

Annotation Instructions

1. Review the prompt and watch the full video at least once.
2. Evaluate each axis independently. Use the provided 1–4 scale. Do not assign the same

score across all axes unless truly justified.

3. Use the full scale range. Assign low or high scores as needed. Avoid defaulting to the
midpoint.

4. If no character is present in the video, assign a score of 1 for Text Alignment.

FAQ

Q: What if the same scene includes multiple characters?
A: Focus your evaluation on the central or speaking character as described in the prompt. Other
characters may be present, but your ratings should reflect the behavior and alignment of the primary
subject.

Q: What if the video does not include a character?
A: If the generated video fails to include the main character described in the prompt (e.g., an empty
scene or wrong subject), you should assign a score of 1 for Text Alignment.

Method Lip-Sync
Quality

Facial Expression
Naturalness

Action
Naturalness

Text
Alignment

Visual
Quality

Hallo3 [17] 2.45 2.25 2.13 2.35 2.36
SadTalker [29] 1.21 1.14 1.00 N/A 2.95
AniPortrait [30] 1.16 1.12 1.00 N/A 1.45

MoCha (Ours) 3.85 (+1.40) 3.82 (+1.57) 3.82 (+1.69) 3.85 (+1.50) 3.72 (+1.36)

Table 7: Human evaluation scores on MoCha-Bench. Scores range from 1 to 4 across five
evaluation axes, where a score of 4 reflects performance that is nearly indistinguishable from real
video or cinematic production. Participants rated each method on five aspects: lip-sync quality,
facial expression naturalness, action naturalness, text-prompt alignment, and visual quality. MoCha
significantly outperforms prior methods across all categories. Green numbers indicate absolute
improvements (∆) over the second-best method (underlined). SadTalker and AniPortrait consistently
received a score of 1 for action naturalness, as these methods only perform head movements.

A.5 MoCha-Bench Qualitative Comparison

Figure 8 presents a direct comparison between MoCha and baseline methods on MoCha. All baselines
require a reference image as an auxiliary input. To ensure fairness, we first generate a video using
MoCha and then use its first frame as the reference image for all baseline models. For models that do
not support arbitrary aspect ratios, we crop the first frame to focus on the head region before feeding it
into their networks. We provide two groups of qualitative comparisons: one featuring close-up shots
and the other medium shots. The close-up group emphasizes lip-sync quality, head movement, and
facial expressions, while the medium shot group focuses on hand movements during speech. MoCha
not only produces lip movements that closely align with the input speech—enhancing both articulation
and naturalness—but also generates expressive facial animations and realistic, coordinated actions
that accurately follow the textual prompt. In contrast, SadTalker and AniPortrait exhibit minimal
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head motion and limited lip synchronization. While Hallo3 achieves mostly consistent lip-syncing, it
suffers from inaccurate articulation and erratic head movements. In the medium shot comparisons,
Hallo3 also introduces noticeable visual artifacts, particularly during complex actions.

B MoCha Model Architecture

B.1 3D VAE

Our 3D-VAE is based on a variational autoencoder and compresses the input pixel space video ν
of shape ∈ RT×H×W×3 into a lower-dimensional, continuous latent representation x0 of shape
τ × h × w × c, . In our implementation, we compress the input 8× across the spatial dimension
while 4× across the temporal dimension, i.e., H/h = W/w = 8 and T/τ = 4 The latent channel
dimensionality is fixed at c = 16 for all experiments reported herein.

B.2 Text Encoder

We employ a triad of text encoding architectures—UL2, ByT5, and a Long-prompt variant of
MetaCLIP—to equip the backbone with both high-level semantic and fine-grained character-level
textual comprehension. Each encoder generates a sequence of 256 token embeddings. To unify
these heterogeneous representations, we apply dedicated linear projection layers and LayerNorm
to each encoder’s output, transforming them into the model dimension 6144-dimensional feature
space. The resulting normalized embeddings from all three streams are then concatenated to produce
the final comprehensive text representation fed into the backbone. Among these, the MetaCLIP
encoder specializes in generating text features inherently aligned with visual modalities, optimizing
performance for cross-modal generation tasks. UL2, conversely, excels at encoding deep linguistic
reasoning and semantics, While ByT5 captures character-level details, making it effective for encoding
visual text.

B.3 Audio Encoder

Our audio pipeline is powered by Wav2Vec2, but instead of relying solely on its final output, we
extract and stitch together the embeddings from all 12 internal layers. This approach gives us a
deeper, layered view of the audio content, with each layer contributing a 768-dimensional slice to the
overall representation. After running the audio through Wav2Ve2’s tokenizer, we stretch or compress
the resulting sequence using linear interpolation before Before the audio hits Wav2Vec2. So that we
end up with the same number of audio features as there are video frames—effectively assigning a
unique audio token to each frame. To provide each frame’s audio token with extra context, we expand
its feature vector by gluing on the tokens from the five frames before and after it. So for any given
frame f , the final embedding is built as A(f) = [A(f − 5), . . . , A(f), . . . , A(f + 5)]. This chunky,
context-aware audio feature then passes through a straightforward two-layer neural net (an MLP with
a hidden size of 512) which reshapes it into the 6144-dimensional token α(f) needed by our model’s
backbone.

B.4 DiT Architecture

The core architectural hyperparameters of our MoCha-30B DiT backbone are provided in Table 8.

Localized Audio Cross-Attention. To incorporate temporal locality in the audio stream, we adopt
a windowed cross-attention mechanism with a window size of r+2 = 6, where r = 4 is the temporal
downsampling factor of the video encoder. For a latent video frame x(i) ∈ Rh×w×c at timestep
i ∈ {1, . . . , τ}, attention is restricted to audio tokens α(j) falling within the interval:

j ∈ [max (1, (i− 1)r − 1) , min (T, ir + 1)] , (5)

which corresponds to the original (pre-downsampled) temporal span of x(i) with one token of padding
on each side to enable smoother context transitions at boundaries.

Modality Integration Pathway. Each attention block integrates modalities in a sequential manner.
It begins with video self-attention, followed by localized audio cross-attention and then text cross-
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Layers Model Dimension FFN Dimension Attention Heads Activation Function Normalization

48 6144 16384 48 SwiGLU RMSNorm

Table 8: Core architecture hyperparameters for the MoCha-30B Transformer. The model has 30
billion parameters in the Transformer stack alone, excluding auxiliary components such as text
embedding models, speech embedding models, and the 3D-VAE.

attention. Each stage incorporates a residual connection, modulated by a scalar weight. In our
implementation, these residual weights are fixed to 1. The full process is given by:

(1) zout
video = SelfAttnvideo(zin)

(2) zout
text = CrossAttntext(z

out
video,y) + λtext · zout

video

(3) zout
audio = CrossAttnaudio(z

out
text,α) + λaudio · zout

text

where:

• zin is the input latent sequence.
• SelfAttnvideo denotes self-attention over video tokens.
• CrossAttnaudio(·,α) performs localized cross-attention with audio tokens α.
• CrossAttntext(·,y) performs cross-attention with global text tokens y.
• λaudio and λtext are residual weights, both set to 1 in our implementation.

This staged fusion enables progressive enrichment of the video representation by incorporating
auditory and textual information, while preserving intermediate features through residual addition.

C MoCha Training

We provide the training details for our MoCha-30B model in Table 9. We used a constant learning
rate scheduler with 2000 warm-up steps. We use a Progressive Curriculum for Multimodal Training
as describe in subsection 3.4.

Mixed-Modal Sampling. Our data consists of a balanced mix of multimodal and unimodal data:

• 80% Multimodal (speech+text): The majority enables fine-grained audiovisual grounding.
• 20% Unimodal (text-only): Text-only video samples offer broader visual diversity and varied

camera movements, helping the model retain strong generalization capabilities. In this setting, the
speech embedding is replaced with a zero vector before the audio projector.

Shot-Type-Based Curriculum. We organize training into multiple stages based on shot complexity:

• Stage 0: We pretrain on large-scale text-only datasets to establish strong visual priors.
• Stages 1–N: We begin with close-up shots, which have high speech-visual correlation, and pro-

gressively incorporate more challenging scenarios such as medium/wide shots and multi-character
scenes. At each stage, we halve the share of easier examples from the previous stage while
maintaining the 80%/20% multimodal-unimodal ratio.

This combined strategy allows MoCha to benefit from both abundant text-only data and limited
multimodal supervision while progressively mastering harder generation tasks.

We build MoCha based on Movie Gen Backbone. The Stage 0 training is included in the Movie Gen
backbone pertaining. Then we add the speech cross attention and speech projector to the Movie Gen
backbone to build MoCha. During Stages 1-N training, We full-finetuning the entire 30B MoCha
model while freezing the text encoder and speech encoder and text projector. Throughout training, all
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input examples are resized to a resolution of approximately 720 px, preserving their original aspect
ratios.

Stage #GPUs Global bs LR Shot Types #Iters #Audio Samples #Text Samples

0 1024 512 1e-5 Images / Videos 200K 100M –

1 512 512 1e-5 Close-Up (1 Char) 200K 400k 100M

2 512 512 1e-5 Close-Up / Medium Close (1 Char) 200K 300k 100M

3 512 512 1e-5 Close-Up / Medium / Medium Close (1 Char) 100K 200k 100M

4 512 512 1e-5 Close / Medium / Multi-Char / Multi-Clip 100K 100k 100M

Table 9: Progressive Curriculum for Multimodal Training in MoCha. Stages gradually increase in
temporal and compositional complexity, progressing from static images and short clips to multi-shot,
multi-character, dialogue-driven video. Residual text supervision is maintained throughout.

D Data Processing Pipeline

Step 1. Speech Scene Filter Step 2. Prominent Characters Filter by LLM.

 

Reason:  
The video shows a group of men in a bar.  
But none of them appear to be the main 
focus of the scene or occupy a 
significant portion of the frame. 

Decision: False 

 Prompt: Any Prominent Characters?

Step 3. Captioning

⑤  Llama3

② Noise/Music Remover

Prompt: 
1. Begin with a general description of the scene.   
2. Description of Character’s APPEARANCE and POSITION 
from Left to right.
3. For each character  
   - Description whether they are SPEAKING or NOT.  
   - Description of their EMOTIONS and BODY language.
   - Description of their ACTIONS.
4. Description of Background 
5. Conclusion of CAMERA Movements 

③Llama3

“… 
The man sits to the RRIGHT SIDE of 
the frame. 

… 
The man is NOT speaking. He is 
looking down at his phone, 
occasionally raising his head 

… 
The woman appears ANGERY and WORRIED. 

… 
The woman's HANDS are GESTURING in 
front of her as she speaks, and she 
is LOOKING directly toward the man 
…”

 ③  Speech Detector

①  Scene Separator

 ③  Speech Detector

② Noise/Music Remover

⑥ Motion Filter

 ⑦ Lip Sync Filter

 ⑧ Llama3

 ④  Wav2Vec2

Figure 9: Data Processing Pipeline. Our four-stage pipeline includes: (1) Speech Scene Filtering,
(2) Prominent Character Filtering, (3) Motion and Lip-Sync Verification, and (4) Scene Cap-
tioning. Together, these steps produce high-quality, speech-aligned training samples.

To ensure high-quality supervision for speech-conditioned video generation, we develop a four-stage
data processing pipeline, as illustrated in Figure 9. Each stage is designed to filter noisy data and
produce rich, structured annotations for training.

• (1) Speech Scene Filtering: Raw videos are first segmented into scenes using PySceneDe-
tect [51]. We then detect and retain segments containing clean, spoken audio by removing
clips with excessive background noise or dominant music. For valid segments, we apply
noise suppression and extract speech embeddings using Wav2Vec2 [52, 24].
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• (2) Prominent Character Filtering: To focus on scenes with clearly visible speakers,
we use an LLM-based filter that analyzes visual cues and removes clips lacking a central
character figure. This step emphasizes narrative relevance and visual clarity.

• (3) Motion and Lip-Sync Verification: We further refine the data by checking for facial
and body motion aligned with speech. Segments without meaningful movement or with
weak audio-visual correspondence are excluded.

• (4) Scene Captioning: Finally, a large language model [53] is used to generate structured
captions for each clip. These include detailed descriptions of character appearance, spatial
layout, speaking behavior, emotional expression, and physical gestures—enabling rich
conditioning during training.

This pipeline results in a curated dataset of approximately 300 hours of high-quality, speech-aligned
video content, totaling around 800K annotated samples.

E Limitations

Despite the strong performance of our model across various talking character scenarios, we identify
several limitations that affect generation quality under certain conditions. We provide corresponding
examples on the https://congwei1230.github.io/MoCha/.

Failure to Lip Sync in Wide or Extreme Wide Shots: When the input caption is too vague—particularly
lacking details about facial attributes or shot type—the model may default to generating a wide
or extreme wide shot. In such cases, the character often appears too far from the camera, and
the lip region contains only a few pixels. As a result, the model may fail to perform accurate lip
synchronization. Example prompt: “A man playing skateboard at a skatepark.”

Multiple Characters in Scene: While the model is generally capable of making the intended character
speak in scenes with multiple characters, we observed occasional confusion about which character
should be speaking once both characters’ face are visible in a single shot. This can lead to degraded
lip-sync quality. The limitation likely stems from a scarcity of similar multi-character examples in
the training data, where two or more characters appear in the same shot and speak to the camera.
Example prompt: “A medium shot set in a dimly lit tavern. The central figure, a rugged man with
long, wet-looking hair and a thick beard, sits on a rustic wooden bench. He wears a weathered wool
cloak over leather armor, evoking the image of a battle-hardened warrior. His expression is intense
as he speaks, holding a short sword in his right hand. To his left, another man with tied-back hair
and fur-lined garments watches him closely.”

Over-Expression with High Speech CFG: Increasing the speech classifier-free guidance (CFG) value
beyond the default (e.g., from 7.5 to 12) can cause the model to generate characters with overly
expressive facial and body motions. While this can improve speech emphasis, it may also reduce
realism or break immersion in otherwise grounded scenes. Example prompt: “A tracking shot circling
around the man as he ties a tie over his blue suit. He speaks to the camera while adjusting the knot,
maintaining eye contact throughout.”

F Broader Impact

The goal of MoCha is to advance the field of dialogue-centric video generation and enable creative pro-
fessionals—such as filmmakers, animators, educators, and content creators—to produce emotionally
engaging character-driven videos using natural language and speech inputs. By lowering the barrier
to cinematic-quality storytelling, this technology democratizes digital media production and unlocks
new possibilities for interactive entertainment, educational content, and virtual communication.

However, as with any powerful generative technology, there are important societal and ethical
considerations to address.

Misuse and Synthetic Media Risks. The use of speech-driven character generation raises concerns
around the potential misuse of synthetic media. While MoCha synthesizes characters and scenes
entirely from noise, without cloning real human identities or voices, there is still a risk that the gener-
ated videos could be misrepresented as real footage—particularly if aligned with real-world audio.
This raises issues of misinformation, media authenticity, and potential psychological manipulation.
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Prompt: “A medium shot of a man speaking while adjusting his glasses… As he talks, he first 
takes off his glasses, then puts them back on…”

Prompt: “A close-up shot of a young woman embracing her cat outdoors. She is speaking while 
facing slightly to the right of the frame with an frustrating expression. The background is… she 
continues speaking, her expression remaining tense with anger while still facing slightly to the 
right…”
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Figure 10: Qualitative comparison between MoCha and baselines on MoCha-Bench. MoCha not
only produces lip movements that align closely with the input speech—enhancing the clarity and
naturalness of articulation—but also generates expressive facial animations and realistic, complex
actions that faithfully follow the textual prompt. In contrast, SadTalker and AniPortrait exhibit
minimal head motion and limited lip synchronization. Hallo3 mostly follows the lip-syncing but
suffers from inaccurate articulation, erratic head movements, and noticeable visual artifacts. Since the
baselines operate in an image-to-video (I2V) setting, we provide them with the first frame generated
by MoCha as input for comparison. The first frame is cropped and resized as needed to meet the
requirements of each baseline.

Unlike deepfake systems that typically manipulate real people’s faces, MoCha does not operate on
real identity inputs. All visual content is generated from scratch using text and speech prompts.
Nevertheless, the audio guidance—if paired with sensitive or impersonated speech—could still be
used to create misleading portrayals. To mitigate this risk, we recommend responsible disclosure
practices and support for watermarking or synthetic media detection tools.

Privacy and Consent. Although MoCha does not require real human images or voices for generation,
broader deployment of similar technologies in the future may prompt privacy concerns, especially if
adapted to personalized avatars or voice-based likenesses. To ensure responsible use, it is critical
to uphold strict data privacy standards, including transparent data usage policies, informed consent
when training on human likenesses, and tools for individuals to opt out of potential misuse.
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Prompt: “A close-up shot of a man sitting on a dark gray couch… Behind the man are three white cylindrical light 
fixtures with yellow lights inside them… the man continues to speak to the camera while he holds a lit cigar, the 
smoke curling gently into the air…”

Prompt: “A medium shot of a young man aged 25 to 35 is sitting in the living room in a leisurely environment… He is 
live-streaming, sitting in front of a desk with a laptop in front of him. His demeanor is relaxed and friendly, 
gesturing with his hands while speaking…”

Prompt: “A close-up shot of a young blonde woman sitting in an airplane seat, facing slightly to the right as she 
talks on the phone with a worried expression. As the video progresses, she continues speaking and eventually turns 
to look out the window…”

Figure 11: Qualitative results of MoCha on MoCha-Bench. MoCha not only generates lip move-
ments that are well-synchronized with the input speech, but also produces natural facial expressions
that reflect the prompt along with realistic hand gestures and action movements

Bias and Representation. As with many generative models, outputs from MoCha may reflect biases
present in the underlying training data—particularly in terms of character appearance, behavior, or
cultural representation. Careful dataset curation and evaluation are needed to ensure diversity and
inclusiveness, and to avoid reinforcing harmful stereotypes or excluding underrepresented groups in
generated media.

Ethical Deployment. We encourage deployment of MoCha only in contexts that respect consent,
truthfulness, and creative integrity. As the technology matures, we advocate for the establishment of
community-driven ethical guidelines, collaboration with media regulators, and public education on
the capabilities and limits of AI-generated video.

By proactively identifying and addressing these risks, we aim to support the safe and beneficial
advancement of talking character technologies and ensure they are developed and applied in ways
that are ethical, inclusive, and socially responsible.
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