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Abstract

Although human’s ability to visually understand the structure of the World plays a
crucial role in perceiving the World and making appropriate decisions, human perception
does not solely rely on vision but amalgamates the information from acoustic, verbal, and
visual stimuli. An active area of research has been revolving around designing an efficient
framework that adapts to multiple modalities and ideally improves the performance of ex-
isting tasks. While numerous frameworks have proved effective on natural datasets like
ImageNet, a limited number of studies have been carried out in the biomedical domain.
In this work, we extend the available frameworks for natural data to biomedical data by
leveraging the abundant, unstructured multi-modal data available as radiology images and
reports. We attempt to answer the question, ”For multi-modal learning, self-supervised
learning and joint learning using both learning strategies, which one improves the visual
representation for downstream chest radiographs classification tasks the most?”. Our ex-
periments indicated that in limited labeled data settings with 1% and 10% labeled data,
the joint learning with multi-modal and self-supervised models outperforms self-supervised
learning and is at par with multi-modal learning. Additionally, we found that multi-modal
learning is generally more robust on out-of-distribution datasets. The code is publicly
available online 1

Keywords: Multi-Modal Learning, Self-Supervised Learning, Out-of-Distribution, Radi-
ology

1. Introduction

Multi-modal learning(Xue et al., 2018; Miura et al., 2020; Monshi et al., 2020) has become
an extremely popular area of research in deep learning. While a good amount of multi-
modal learning research has been conducted on datasets like ImageNet (Deng et al., 2009)
which consists of natural images (Radford et al., 2021; Kim et al., 2021; Bardes et al.,
2022b; He et al., 2020; Chen et al., 2020a; Grill et al., 2020; Zbontar et al., 2021; Bao et al.,
2022b; Li et al., 2021b; Bardes et al., 2022a; Mu et al., 2022; Caron et al., 2020), a limited
number of research have been conducted in the biomedical domain (Boecking et al., 2022;
Tiu et al., 2022; Zhang et al., 2020; Chaitanya et al., 2020; Haghighi et al., 2022; Azizi et al.,
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2021; Seibold et al., 2022). In biomedical domain, the choice between multi-modal and self-
supervised learning is still unclear for learning better visual representations. Although few
studies similar to ConVIRT (Zhang et al., 2020) have looked into the quality of visual
representation for biomedical images on multi-modal vs. self-supervised learning, their
evaluations are conducted only on a small fraction of dataset for self-supervised learning
on a part of most important pathology, which is not guaranteed to see which methods
generally perform better. Hence, we believe it is important to compare the performances of
multi-modal, self-supervised learning and their joint training in a more comprehensive way.

Biomedical data can effortlessly take advantage of multi-modal learning. For example,
there is a paired report for a given radiograph, and MRI scans generally contain multiple
contrasts and reports. While many multi-modal models can be used off-the-shelf (Jaegle
et al., 2021; Mu et al., 2022; Radford et al., 2021), they are usually trained on natural image
datasets which are ten orders of magnitude larger than the available biomedical datasets.
While several groups have conducted experiments on biomedical multi-modal learning (Tiu
et al., 2022; Boecking et al., 2022; Seibold et al., 2022), their main focus was limited on
evaluating the model performance with multi-modal input. To our knowledge, comparative
research has yet to be conducted among multi-modal, self-supervised, and joint training on
the out-of-distribution (OOD) chest radiograph classification tasks. The aim is to identify
the optimal approaches for large scale unlabelled multi-modal radiograph datasets. Our
contributions are summarized as follows:

• For OOD chest radiographs, we observe that multi-modal learning generally provides
higher quality visual representation.

• Under limited supervised training data, we empirically identify multi-modal and joint
training have better performance than self-supervised for chest radiographs. Under
large scale supervised training data, the performance of self-supervised learning is at
par with multi-modal learning and joint training.

• Provided a benchmark for contrastive learning-based self-supervised, multi-modal
learning and their joint training for chest radiographs with code available for further
investigation.

2. Related Works

Multi-modal learning (Radford et al., 2021; Zhang et al., 2020; Li et al., 2021a, 2022;
Yu et al., 2022) learn representations for both image and text data concurrently. One of
the most popular approaches of multi-modal learning is learning from image and text data
contrastively, where the representation for paired image and text are aligned closer and
unpaired image and text are dispelled further. Approaches like CLIP (Radford et al., 2021)
and ConVIRT (Zhang et al., 2020) are considered be the representative work of contrastive
multi-modal learning for natural and medical images, respectively.

Self-supervised learning is a recent popular topic in representation learning, where the
model learns the patterns by training on unlabeled data. Three different self-supervised
learning approaches, SimCLR (Chen et al., 2020a), MoCoV2 (Chen et al., 2020b), and
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VICReg (Bardes et al., 2022b) were evaluated in our paper. The general idea of the self-
supervised learning methods we evaluated is that they train the model to learn the invariant
representation of the same image by applying different augmentations. Although Masked
Image Modeling based self-supervised learning such as MAE (He et al., 2022), BEiT (Bao
et al., 2022a), etc. become popular in recent years, we did not evaluate their performance
in this study because their objective is not consistent with the idea of enforcing invariant
representation for the self-supervised and multi-modal learning we experimented with.

Application in biomedical domain: CheXzero (Tiu et al., 2022) explored the per-
formance of CLIP on radiology chest scan diagnosis by taking in language and vision input
together with zero-shot prompting. BioVLP (Boecking et al., 2022) explored the perfor-
mance of contrastive self-supervised learning with masked language modeling on radiology
chest scan diagnosis. ConVIRT (Zhang et al., 2020) explored if multi-modal learning on radi-
ology image-text pair can learn strong image representation. GLoRIA (Huang et al., 2021)
shows adding local representation during multi-modal learning on radiology image-text
pair can improve performance upon ConVIRT. (Azizi et al., 2021) shows image representa-
tions learned from the medical images by SimCLR can improve downstream performance.
REMEDIS (Azizi et al., 2022) performed a large-scale evaluation on both in-distribution
(ID) and OOD medical images with SimCLR.

3. Methods

The diagram of the experimental process is shown in Figure 1. For pre-training, we train the
model with multi-modal learning, self-supervised learning or joint training by optimizing
over both multi-modal learning and self-supervised learning as proposed by (Mu et al.,
2022). For evaluating the pre-trained model quality, we finetune the pre-trained model
with additional classification heads. Specifically, we performed linear probing (LP), fine-
tuning (FT) or fine-tuning after linear probing (LPFT) (Kumar et al., 2022).

3.1. Self-Supervised and Multi-Modal Pretraining

We used the following pretraining strategies for the comparative study: we chose CLIP
(Radford et al., 2021) and ConVIRT (Zhang et al., 2020) as they are two earliest repre-
sentative works on contrastive multi-modal learning. We chose three most representative
categories for self-supervised learning that enforcing invariant of representations as SimCLR
(Chen et al., 2020a) (traditional contrastive learning), VICReg (Bardes et al., 2022b) (re-
dundancy reduction) and MoCoV2 (Chen et al., 2020b) (caching negative representations
with dictionary for contrastive learning).

CLIP (Radford et al., 2021): Given image representation u and text representation
v, CLIP loss is formulated as

L = Li2t + Lt2i (1)

where

Li2t = −
∑
i∈B

log
exp(τuivi)∑

j∈B exp(τuivj)
, Lt2i = −

∑
j∈B

log
exp(τuivi)∑
i∈B exp(τuivj)

(2)

where B is batch size and τ is temperature hyperparameter .
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Figure 1: Experimental Process: a) Contrastive multi-modal learning training. b) Con-
trastive self-supervised learning training. c) Downstream linear probing (LP).
d) Downstream fine-tuning (FT).

ConVIRT (Zhang et al., 2020): ConVIRT followed the same loss as CLIP, but it is
more fine-grained toward medical imaging with more specific augmentations (we adopted
these augmentations as our general multi-modal learning augmentation mentioned in Ap-
pendix B.3) and architecture design choices that freeze top six layers of text encoder and
use shallower projection heads.

SimCLR (Chen et al., 2020a): Given two input representations zi and zj in a given
batch. The NT-Xent loss by SimCLR is formulate as

li,j = − log
exp(sim(zi, zj)/τ)∑2N

k=1 1k ̸=i exp(sim(zi, zk)/τ)
(3)

where τ is temperature hyperparameter, N is number of in batch samples, sim is the
similarity metric set to be a dot product following the original implementation.

MoCoV2 (Chen et al., 2020b): We followed the original proposal of MoCo that creates a
very large memory bank to cache image representations with InfoNCE (van den Oord et al.,
2018) in order to introduce more negative samples within a single batch. The InfoNCE loss
is formulated as

L = − log
exp(q · k+/τ)∑K
i=0 exp(q · ki/τ)

(4)
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where q is the representation for anchor input, k+ is the representation for positive input,
ki is the representation for all cached input in memory bank and τ is a temperature param-
eter. The sample representations in the memory bank is gradually updated by a separate
encoder that is update by trained encoder with Exponential Moving Average (EMA).

VICReg (Bardes et al., 2022b): Given two input representations Z and Z ′ obtained by
passing two transformed views of same image, VICReg loss is computed as

ℓ(Z,Z ′) = λs(Z,Z ′) + µ[v(Z) + v(Z ′)] + ν[c(Z) + c(Z ′)] (5)

where s(Z,Z ′) = 1
n

∑
i ∥zi − z′i∥22 is the invariance term for calculating the feature-wised

mean-squared euclidean distance with given feature size n. v(Z) = 1
d

∑d
j=−1max(0, γ −

S(zj , ϵ)) is the variance term for given number of samples d, S(x, ϵ) =
√

Var(x) + ϵ is the
regularized standard deviation with γ as a constant target standard deviation value, ϵ as a
scalar to enforce numerical stability. C(Z) = 1

n−1

∑n
i=1(zi − z̄)(zi − z̄)T is the covariance

term where z̄ = 1
nzi. λ, µ, ν are hyperparameters to control the contribution of each loss

term.

Joint Training: The joint training of multi-modal and self-supervised learning was pro-
posed by SLIP (Mu et al., 2022) for natural image training. Given image and text represen-
tations u and v from CLIP projector, and two projected augmented image representations
from some self-supervised learning projector zi and zj , SLIP is trained by minimizing

ℓslip = c · ℓssl(zi, zj) + ℓclip(u, v) (6)

where ℓssl is the loss for some self-supervised method and c is a hyperparameter to control
the contribution of self-supervised loss. In our experiments, we chose multi-modal learn-
ing methods to be CLIP and ConVIRT, self-supervised learning methods to be SimCLR,
MoCoV2 and VICReg. While SimCLR and MoCoV2 with CLIP was experimented in the
original SLIP paper, VICReg and ConVIRT were not experimented in the original work.

4. Experimental Setup

See Appendix B for details on hyperparameters for both pre-training and downstream train-
ing.

4.1. Dataset

Our multi-modal frameworks were trained on MIMIC-CXR (Johnson et al., 2019) dataset,
which consists of 377,110 pairs of chest X-ray image-report pairs collected from Beth Israel
Deaconess Medical Center in Boston, MA, USA. Radiology reports, although an excellent
source of information, carry redundant information. Findings and impressions are richer in
content. Findings present the diagnosis from the given radiology image, and impressions
presents the complete narrative description from doctors according to multiple radiology
images of the same patient. In our experiment, we only chose impressions as our text input
because impressions have more concise description of the patients diagnosis, where we found
it introduced less noise than findings.

Our trained models were evaluated on CheXpert (Irvin et al., 2019) and NIH-ChestX-
ray14 (Wang et al., 2017) dataset with LP on 100% data, LPFT on 100% data and FT
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on 1%, 10% and 100% data (Kumar et al., 2022). CheXpert dataset consists of 224,316
chest radiographs of 65,240 patients from Stanford Hospital in Palo Alto, CA, USA. There
are 14 observed pathologies labeled by the radiologist as positive, negative, or uncertain.
The classification here is multi-class(14 pathologies) and multi-label(each image can belong
to multiple pathalogies). For our experiments, we followed the train-validation (224,316-
200) split used in official paper. Our final results are on the validation dataset as the
test set is hidden for leader-board. The NIH-ChestX-ray14 (Wang et al., 2017) dataset
consists of 112,120 frontal-view X-ray images of 30,805 collected at the National Institutes
of Health Clinical Center, MD, USA, with unique patients and the text-mined fourteen
common disease labels. This datasets is also multi-class and multi-label. We followed the
train-validation-test split (70%-10%-20%).

The medical domain also faces the problem of OOD, in which even though the input data
from two different datasets is chest radiographs, however, the origin, extraction methods and
target population affect the distribution. In our case, both CheXpert(Irvin et al., 2019) and
NIH-ChestXray 14(Wang et al., 2017) are OOD with MIMIC-CXR (Johnson et al., 2019),
which we used for pre-training, because they are collected from very different regions.

4.2. Backbone Encoders

For all frameworks, we fixed the image encoder to be ResNet-50 (He et al., 2016). For the
text encoder, we used BERT-base (Devlin et al., 2019). The image encoder was initialized
with ImageNet pre-trained weights, and the text encoder was initialized with CXR-BERT-
general pre-trained weights (Boecking et al., 2022).

4.3. Data Preprocessing

We loaded MIMIC-CXR images from corresponding DICOM files, and the images were re-
sized to 224×224. Only impressions were used as text input. Samples with missing impres-
sions were removed from training. For data augmentation, we used random resized crop,
random horizontal flip, color jittering, gaussian blur, and solarization for self-supervised
learning methods. In addition to the augmentations for self-supervised methods, for multi-
modal approaches we used random affine transform. ImageNet normalization was used in
all experiments.

5. Results

We show our benchmarking result in Table 1. All results were evaluated with the mean
AUROC from all pathology. Mean AUROC: we first calculate AUROC for each individual
pathology and then take the average over the AUROC of 14 pathologies for each of the
datasets. We further explain them in section 5.1. We picked one method from multi-modal
learning (CLIP), self-supervised learning (SimCLR) and joint training (SimCLR-CLIP) to
analyze per pathology performance shown in Appendix D. Generally, we observed that using
multi-modal learning or joint training improved the performance of pathologies that have
low prevalence and the trend is more prominent with limited data. We further visualize
some of our classification results with GradCam (Selvaraju et al., 2017) in Appendix C.
In the original SimCLR paper, a significant performance improvement was observed as the
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(a)

Methods CheXpert (AUROC)

LPFT LP FT (1%) FT (10%) FT (100%)
Random Init. 77.35 ± 0.61 62.91 ± 0.62 62.88 ± 1.13 70.36 ± 0.98 78.28 ± 1.10
ImageNet Init. 83.67 ± 0.88 67.12 ± 0.24 69.33 ± 0.15 77.98 ± 0.28 82.29 ± 2.79
CLIP 85.06 ± 0.85 78.17 ± 0.23 78.19 ± 1.80 82.90 ± 1.46 84.36 ± 3.07
ConVIRT 84.34 ± 0.99 79.92 ± 0.11 76.96 ± 2.34 82.89 ± 2.40 85.20 ± 1.44
MoCoV2 81.95 ± 1.78 71.37 ± 0.17 74.33 ± 1.53 79.58 ± 1.30 84.12 ± 1.08
SimCLR 84.24 ± 0.95 68.70 ± 0.39 72.83 ± 0.91 78.33 ± 0.88 84.74 ± 0.96
VICReg 82.81 ± 0.67 71.05 ± 0.48 72.16 ± 1.83 78.51 ± 1.18 85.40 ± 1.63
MoCoV2-CLIP 83.43 ± 2.21 76.89 ± 0.16 77.61 ± 1.57 80.29 ± 0.71 82.92 ± 1.24
MoCoV2-ConVIRT 84.81 ± 1.82 77.02 ± 0.14 77.93 ± 1.43 83.45 ± 1.79 83.51 ± 1.37
SimCLR-CLIP 85.10 ± 0.72 78.02 ± 0.13 77.84 ± 0.99 81.67 ± 2.76 84.33 ± 0.79
SimCLR-ConVIRT 83.95 ± 1.66 75.97 ± 0.10 76.68 ± 1.61 82.57 ± 1.55 84.39 ± 1.09
VICReg-CLIP 82.72 ± 1.71 69.01 ± 0.27 75.06 ± 1.64 81.17 ± 1.61 82.11 ± 1.34
VICReg-ConVIRT 83.05 ± 1.25 71.72 ± 0.36 74.93 ± 2.27 81.17 ± 2.34 83.05 ± 1.76

(b)

Methods NIH-ChestX-Ray14 (AUROC)

LPFT LP FT (1%) FT (10%) FT (100%)
Random Init. 78.97 ± 0.13 62.54 ± 0.34 58.30 ± 2.06 70.06 ± 1.02 78.52 ± 0.17
ImageNet Init. 82.96 ± 0.12 75.46 ± 0.78 67.18 ± 0.07 76.44 ± 0.63 82.70 ± 0.23
CLIP 83.84 ± 0.19 83.80 ± 0.16 72.95 ± 1.31 79.80 ± 0.67 83.74 ± 0.22
ConVIRT 83.80 ± 0.05 83.48 ± 0.04 71.20 ± 0.98 79.24 ± 0.89 83.92 ± 0.13
MoCoV2 83.20 ± 0.18 77.90 ± 0.31 68.50 ± 0.99 77.22 ± 0.67 83.10 ± 0.37
SimCLR 82.82 ± 0.19 77.00 ± 0.10 69.01 ± 0.41 76.52 ± 0.56 82.76 ± 0.32
VICReg 82.80 ± 0.26 75.14 ± 0.65 69.06 ± 0.47 75.98 ± 0.87 82.74 ± 0.24
MoCoV2-CLIP 83.68 ± 0.12 81.42 ± 0.04 71.28 ± 0.57 79.02 ± 0.52 83.32 ± 0.46
MoCoV2-ConVIRT 83.62 ± 0.40 81.00 ± 0.02 71.10 ± 0.81 78.58 ± 0.70 83.62 ± 0.13
SimCLR-CLIP 83.80 ± 0.12 80.98 ± 0.09 71.33 ± 0.99 79.30 ± 0.69 83.66 ± 0.18
SimCLR-ConVIRT 83.38 ± 0.10 80.40 ± 0.09 70.90 ± 0.67 78.52 ± 0.67 83.45 ± 0.08
VICReg-CLIP 83.30 ± 0.18 78.02 ± 0.11 70.76 ± 0.94 78.22 ± 0.60 83.32 ± 0.34
VICReg-ConVIRT 83.24 ± 0.20 76.92 ± 0.04 70.80 ± 0.76 78.38 ± 0.90 83.20 ± 0.25

Table 1: We report the 95% confidence interval (CI) obtained from 5 different seeds in the
form of (Mean ± CI range ) for the AUROC score of the chosen datasets with
fine-tuning after linear probing (LPFT), linear probing (LP) (LPFT and LP are
both on 100% data), 1%, 10% and 100% of labeled data fine-tuning (FT)

batch size increased. To further investigate this, we conducted additional experiments with
SimCLR using batch sizes of 1024 and 2048. These results were then compared to those
obtained from CLIP models trained with the same batch sizes, as shown in Appendix E.
However, our findings reveal a consistent trend with our primary experiments.

5.1. Downstream Evaluation

For both OOD datasets we evaluated on, we observed that either FT with 100% data or
LPFT has a comparable performance on self-supervised, multi-modal, and joint training.
For FT with 1% and 10% data, self-supervised methods decay on performance fast, but
multi-modal and joint training have much slower decay. For LP, we observed the same
trend as fine-tuning on limited data: multi-modal and joint training perform much better
than self-supervised learning. Empirically, we observed that results from NIH-ChestX-Ray
with LP was very close to 100% FT and LPFT, which signifies that the two datasets
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have a very similar distribution compared to CheXpert dataset. Another trend that we
observed was introducing the additional information from radiology report helped the model
to learn better visual representation than directly performing self-supervised learning. This
phenomenon can be attributed to radiology reports, because they are very precise, clear
and in a consistent format. Thus they contain highly semantic and dense information which
complements the visual representation from images. This explanation is also identified by
(Santurkar et al., 2023), where they found that the descriptiveness and variability (a.k.a
style consistency among the text data) directly determine how well the models pre-trained
by multimodal learning transfer learned information.

(a) CLIP-NIH (b) SimCLR-NIH (c) SimCLR-CLIP-NIH

(d) CLIP-CHEXPERT (e) SimCLR-CHEXPERT (f ) SimCLR-CLIP-
CHEXPERT

Figure 2: Figures for t-SNE embedding with LPFT downstream training strategies with
CLIP, SimCLR, SimCLR-CLIP pretrained backbone

5.2. t-SNE visualization

To identify the extent of OOD among the chosen datasets. We visualized the embedding
of the backbone by t-SNE (van der Maaten and Hinton, 2008). For this experiment, we
randomly picked 10, 000 samples of each dataset and plotting the output of the backbone
trained with LPFT. The visualizations are shown in Figure 2. In the figure, the first row is
trained on the NIH dataset, so the model learns to classify/identify the elements of the NIH.
And with the addition of MIMIC dataset it is for classification into two classes. We can see
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a visible boundary between MIMIC and NIH. Which justifies that the two datasets are from
different distributions. If they were from the same distribution the learned backbone would
not be able to create two clusters. Similar is the case for the second row with CheXpert data.
Another observation is less separability when using self-supervised methods and a clear
separation with multi-modal and joint training. This finding is coherent with our previous
statement that multi-modal learning and joint training generate better representations.
Additional visualizations in Appendix F shows more visualization on MoCoV2.

6. Conclusion

In this work, we observed that multi-modal learning and joint training performs better
than self-supervised learning with limited supervised data, but the performance difference
among all methods is largely decreased when data size scales up. In addition, classes that
have fewer labels in the training data tend to experience greater benefits from multi-modal
learning when applied to downstream tasks. For NIH-ChestX-ray 14 datasets, we found
that initial representation learned by multi-modal learning and joint training is very strong
with LP to be getting very close performance as 100% FT which implies that the two
datasets have more similar distribution compared to CheXpert dataset. We hope our work
would provide a good reference for future research on both multi-modal and self-supervised
learning for medical imaging.
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Aäron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive
predictive coding. CoRR, abs/1807.03748, 2018. URL http://arxiv.org/abs/1807.

03748.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal of
Machine Learning Research, 9:2579–2605, 2008. URL http://www.jmlr.org/papers/

v9/vandermaaten08a.html.

Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, Mohammadhadi Bagheri, and Ronald M
Summers. Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-
supervised classification and localization of common thorax diseases. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 2097–2106, 2017.

Yuan Xue, Tao Xu, L Rodney Long, Zhiyun Xue, Sameer Antani, George R Thoma, and
Xiaolei Huang. Multimodal recurrent model with attention for automated radiology
report generation. In Medical Image Computing and Computer Assisted Intervention–
MICCAI 2018: 21st International Conference, Granada, Spain, September 16-20, 2018,
Proceedings, Part I, pages 457–466. Springer, 2018.

Jiahui Yu, Zirui Wang, Vijay Vasudevan, Legg Yeung, Mojtaba Seyedhosseini, and Yonghui
Wu. Coca: Contrastive captioners are image-text foundation models. Transactions on
Machine Learning Research, 2022. ISSN 2835-8856. URL https://openreview.net/

forum?id=Ee277P3AYC.

Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stephane Deny. Barlow twins: Self-
supervised learning via redundancy reduction. In Marina Meila and Tong Zhang, editors,
Proceedings of the 38th International Conference on Machine Learning, volume 139 of
Proceedings of Machine Learning Research, pages 12310–12320. PMLR, 18–24 Jul 2021.
URL https://proceedings.mlr.press/v139/zbontar21a.html.

Yuhao Zhang, Hang Jiang, Yasuhide Miura, Christopher D. Manning, and Curtis P. Lan-
glotz. Contrastive learning of medical visual representations from paired images and text.
CoRR, abs/2010.00747, 2020. URL https://arxiv.org/abs/2010.00747.

14

https://doi.org/10.1038/s41551-022-00936-9
http://arxiv.org/abs/1807.03748
http://arxiv.org/abs/1807.03748
http://www.jmlr.org/papers/v9/vandermaaten08a.html
http://www.jmlr.org/papers/v9/vandermaaten08a.html
https://openreview.net/forum?id=Ee277P3AYC
https://openreview.net/forum?id=Ee277P3AYC
https://proceedings.mlr.press/v139/zbontar21a.html
https://arxiv.org/abs/2010.00747


Short Title

Appendix A. Computational Cost

We trained all models on four NVIDIA Tesla V100 GPUs with 32GB RAM for MIMIC-
CXR pre-training. For all downstream experiments on CheXpert and NIH-ChestXRay-14
dataset, we used one NVIDIA Tesla V100 GPUs with 16GB RAM. The pre-training took
roughly 1.5 to 2 days and fine-tuning took roughly 0.5 days.

Appendix B. Hyperparameters Details

B.1. Pre-Training

For pre-training, we trained all methods with a learning rate 1e-4, batch size 256 with
ResNet-50 backbone. We used AdamW optimizer (Loshchilov and Hutter, 2019) with cosine
scheduling as optimizer scheduler (Loshchilov and Hutter, 2016) without warmup steps,
beta2 of AdamWwas set to be 0.98 for more stable training. The total number of epochs was
set to 50 for training. Early stopping was used based on the loss on validation set. Weight
Decay was set to be 1e-5 for self-supervised learning and 0.01 for multi-modal learning. For
fairness of comparisons, all self-supervised learning and multi-modal learning used the same
augmentations as mentioned in Section 4.3. We did not perform any augmentation on text
data.

B.2. Downstream Training

For downstream training, we used 1e-4 learning rate and Adam optimizer for both datasets.
We set the batch size to 64 for CheXpert and 16 for NIH-Chest-Xray14. Random Horizontal
Flip and Center Crop were performed on CheXpert and no augmentation was applied to
NIH-Chest-Xray14. We trained CheXpert for 5 epochs and picked the epoch with highest
AUROC. We trained NIH-Chest-Xray14 for 30 epochs and picked the epoch based on vali-
dation loss. For LPFT, we trained upon best epoch on LP with additional 5 or 30 epochs
and picked the best epoch after FT based on corresponding dataset. We set temperature
for loss function as 0.07 for CLIP and MoCoV2, 0.1 for ConVIRT and SimCLR. We set the
self-supervised loss contribution weight hyperparameter c in joint training to be 1.0.

B.3. Data Augmentation Details

For multi-modal learning, we performed Random Resized Crop with size 224 and scale from
0.6 to 1.0, Random Horizontal Flip with probability 0.5, Random Affine with degree −20
to 20, translation 0.09 to 0.10 and scale 0.95 to 1.05, Color Jitter with brightness 0.6 to
1.4 and contrast 0.6 to 1.4 with probability 0.5, Gaussian Blur with min 0.1, max 3.0 and
probability 0.5.

For self-supervised learning, we performed Random Resized Crop with size 224 and scale
from 0.75 to 1.0, Random Horizontal Flip with probability 0.5, Color Jitter with brightness
0.4 contrast 0.4 and probability 0.8, Gaussian Blur with probability either 1.0 or 0.1 with
min 0.1 and max 2.0. Solarization with probability either 0.2 or 0.
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B.4. Feature Projection Details

The image embeddings were originally projected to 2048 dimension and then further pro-
jected to 512 dimension for calculating CLIP loss. The text embeddings were originally
extracted from last layer of [CLS] token and then projected to 512 dimension as well. For
SimCLR and MoCoV2, the image representations were re-projected to 512 dimension and
then projected to 128 dimensions. For VICReg, the image representations were re-projected
to 8192 dimensions with three linear layers that all have 8192 dimensions. We used batch
normalization (Ioffe and Szegedy, 2015) for all projectors as in-between layers.

Appendix C. Sample Classification Visualization

Figure 3: CheXpert Classification Visualizations

Figure 4: NIH-ChestXray-14 Classification Visualization

Appendix D. Performance on Different Pathology

This section shows per pathology performance on the two datasets with different methods.
The AUROC score here is picked by taking mean around each pathology across seeds.
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D.1. 100% label fraction

Pathologies CheXpert (AUROC)

100% fine-tuning ImageNet CLIP SimCLR SimCLR-CLIP Prevalence (%)
No Finding 90.07 87.52 86.64 88.13 7.41
Enlarged Cardiomediastinum 64.72 52.21 55.14 50.72 8.55
Cardiomegaly 86.10 81.80 82.90 82.16 13.20
Lung Lesion 32.80 66.66 86.06 96.01 3.53
Lung Opacity 89.01 89.49 91.65 91.66 43.25
Edema 93.91 91.99 93.16 94.97 26.96
Consolidation 88.53 87.59 89.44 88.75 16.36
Pneumonia 88.59 82.53 72.93 74.42 9.02
Atelectasis 81.07 79.16 83.61 85.07 26.17
Pneumothorax 91.64 85.05 86.73 78.38 8.91
Pleural Effusion 93.23 92.73 93.80 93.08 37.94
Pleural Other 95.02 92.03 80.09 97.01 1.88
Fracture 93.51 92.76 94.90 96.46 3.46

Table 2: Per Pathology Performance for different pre-training methods after 100% fine-
tuning

Pathologies NIH-ChestX-Ray14 (AUROC)

100% fine-tuning ImageNet CLIP SimCLR SimCLR-CLIP Prevalence (%)
Atelectasis 80.92 82.10 80.05 82.19 10.79
Cardiomegaly 89.89 90.71 90.05 90.75 2.59
Effusion 87.25 87.36 87.35 87.45 12.28
Infiltration 69.90 70.50 70.11 70.58 17.56
Mass 82.97 83.39 82.53 84.32 5.05
Nodule 76.88 77.17 77.19 77.33 5.95
Pneumonia 74.35 76.14 74.81 76.33 1.08
Pneumothorax 85.05 86.86 86.16 87.44 4.85
Consolidation 79.74 80.63 79.61 80.80 4.27
Edema 88.99 89.47 88.06 89.56 1.84
Emphysema 91.91 92.57 91.63 92.69 2.27
Fibrosis 82.70 81.64 81.09 83.07 1.61
Pleural Thickening 77.12 78.62 76.50 77.71 3.27
Hernia 93.20 93.81 91.54 95.08 0.19

Table 3: Per Pathology Performance for different pre-training methods after 100% fine-
tuning
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D.2. 10% label fraction

Pathologies CheXpert (AUROC)

10% fine-tuning ImageNet CLIP SimCLR SimCLR-CLIP Prevalence
No Finding 85.51 90.01 89.44 90.10 7.41
Enlarged Cardiomediastinum 57.46 67.77 57.66 67.72 8.55
Cardiomegaly 73.67 85.20 77.76 86.16 13.20
Lung Opacity 86.23 90.79 87.99 91.50 3.53
Lung Lesion 48.76 56.21 46.26 55.72 43.25
Edema 90.65 93.13 89.76 93.49 26.96
Consolidation 82.57 87.83 75.45 89.39 16.36
Pneumonia 71.65 82.73 81.82 78.67 9.02
Atelectasis 76.03 85.56 77.72 85.92 26.17
Pneumothorax 70.55 89.96 74.65 89.45 8.91
Pleural Effusion 84.23 92.50 90.37 92.75 37.94
Pleural Other 86.57 96.01 99.50 97.01 1.88
Fracture 81.91 91.65 82.63 90.64 3.46

Table 4: Per Pathology Performance for different pre-training methods after 10% fine-
tuning

Pathologies NIH-ChestX-Ray14 (AUROC)

10% fine-tuning ImageNet CLIP SimCLR SimCLR-CLIP Prevalence
Atelectasis 76.68 78.46 75.68 78.69 10.79
Cardiomegaly 83.07 89.36 85.40 88.14 2.59
Effusion 85.33 87.18 85.75 86.42 12.28
Infiltration 66.70 68.16 65.13 67.79 17.56
Mass 76.13 81.93 75.62 80.47 5.05
Nodule 68.35 73.12 65.65 72.57 5.95
Pneumonia 70.35 73.13 68.73 70.96 1.08
Pneumothorax 81.37 84.77 80.61 81.90 4.85
Consolidation 78.09 78.58 76.44 78.56 4.27
Edema 86.19 86.85 86.28 86.76 1.84
Emphysema 87.20 86.30 78.08 87.18 2.27
Fibrosis 75.39 77.55 73.69 75.56 1.61
Pleural Thickening 72.89 73.09 73.69 75.34 3.27
Hernia 81.85 81.90 78.89 77.94 0.19

Table 5: Per Pathology Performance for different pre-training methods after 10% fine-
tuning
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D.3. 1% label fraction

Pathologies CheXpert (AUROC)

1% fine-tuning ImageNet CLIP SimCLR SimCLR-CLIP Prevalence
No Finding 82.65 93.39 93.00 91.63 7.41
Enlarged Cardiomediastinum 48.95 51.00 69.63 46.29 8.55
Cardiomegaly 70.35 74.45 77.94 79.28 13.20
Lung Opacity 72.70 90.57 83.64 86.05 3.53
Lung Lesion 40.30 28.35 32.83 49.25 43.25
Edema 82.54 89.68 81.26 89.47 26.96
Consolidation 82.76 84.70 85.47 86.63 16.36
Pneumonia 59.99 79.12 73.00 83.24 9.02
Atelectasis 75.43 83.47 80.30 78.47 26.17
Pneumothorax 80.88 83.07 67.17 67.54 8.91
Pleural Effusion 78.53 87.74 82.30 91.50 37.94
Pleural Other 78.11 95.52 68.65 95.52 1.88
Fracture 75.20 89.77 65.76 88.66 3.46

Table 6: Per Pathology Performance for different pre-training methods after 1% fine-tuning

Pathologies NIH-ChestX-Ray14 (AUROC)

1% fine-tuning ImageNet CLIP SimCLR SimCLR-CLIP Prevalence
Atelectasis 65.17 76.14 74.18 76.25 10.79
Cardiomegaly 53.90 68.52 68.87 65.49 2.59
Effusion 80.12 84.87 81.45 84.37 12.28
Infiltration 63.23 66.95 64.65 65.66 17.56
Mass 67.69 79.79 63.77 74.39 5.05
Nodule 56.40 69.54 59.79 64.61 5.95
Pneumonia 62.14 65.86 62.39 61.75 1.08
Pneumothorax 77.00 82.91 76.47 78.86 4.85
Consolidation 75.38 78.33 75.09 75.93 4.27
Edema 80.58 79.52 84.38 82.29 1.84
Emphysema 73.18 85.38 72.01 68.55 2.27
Fibrosis 69.56 72.83 64.23 68.22 1.61
Pleural Thickening 67.80 71.60 64.37 70.94 3.27
Hernia 52.92 68.31 60.08 79.13 0.19

Table 7: Per Pathology Performance for different pre-training methods after 1% fine-tuning

Appendix E. SimCLR and CLIP Performance Trained with Larger
Batch Size

We further show performance evaluation on SimCLR and CLIP trained with 1024 and 2048
batch size respectively. Because NVIDIA Tesla V100 32GB GPU does not fit such large
batch size, we conducted these experiments on four NVIDIA Tesla A100 GPUs 80GB with
rest of the settings to be the same as our previous experiments.
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(a)

Methods CheXpert (AUROC)

LP FT (1%) FT (10%) FT (100%)
Random Init. 62.91 ± 0.62 62.88 ± 1.13 70.36 ± 0.98 78.28 ± 1.10
ImageNet Init. 67.12 ± 0.24 69.33 ± 0.15 77.98 ± 0.28 82.29 ± 2.79
CLIP 78.13 ± 0.24 78.38 ± 1.60 79.75 ± 2.36 85.91 ± 1.39
SimCLR 74.83 ± 0.06 76.17 ± 2.03 79.09 ± 1.67 84.63 ± 0.70

(b)

Methods NIH-ChestX-Ray14 (AUROC)

LP FT (1%) FT (10%) FT (100%)
Random Init. 62.54 ± 0.34 58.30 ± 2.06 70.06 ± 1.02 78.52 ± 0.17
ImageNet Init. 75.46 ± 0.78 67.18 ± 0.07 76.44 ± 0.63 82.70 ± 0.23
CLIP 83.08 ± 0.07 70.06 ± 0.84 77.64 ± 0.37 82.88 ± 0.14
SimCLR 77.84 ± 0.10 68.26 ± 0.41 77.07 ± 0.23 82.88 ± 0.21

Table 8: Downstream results for CLIP and SimCLR with 1024 batch size. The experiment
in this section is exactly following Table 1

(a)

Methods CheXpert (AUROC)

LP FT (1%) FT (10%) FT (100%)
Random Init. 62.91 ± 0.62 62.88 ± 1.13 70.36 ± 0.98 78.28 ± 1.10
ImageNet Init. 67.12 ± 0.24 69.33 ± 0.15 77.98 ± 0.28 82.29 ± 2.79
CLIP 77.86 ± 0.29 79.00 ± 2.46 81.67 ± 0.14 84.65 ± 0.29
SimCLR 74.91 ± 0.37 77.67 ± 1.71 79.31 ± 1.37 83.04 ± 0.66

(b)

Methods NIH-ChestX-Ray14 (AUROC)

LP FT (1%) FT (10%) FT (100%)
Random Init. 62.54 ± 0.34 58.30 ± 2.06 70.06 ± 1.02 78.52 ± 0.17
ImageNet Init. 75.46 ± 0.78 67.18 ± 0.07 76.44 ± 0.63 82.70 ± 0.23
CLIP 82.60 ± 0.18 73.20 ± 1.14 79.62 ± 0.44 83.56 ± 0.29
SimCLR 77.32 ± 0.11 69.18 ± 0.83 78.49 ± 0.52 83.45 ± 0.40

Table 9: Downstream results for CLIP and SimCLR with 2048 batch size. The experiment
in this section is exactly following Table 1
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Appendix F. Additional Visualization for t-SNE

(a) ConVIRT-NIH (b) MoCoV2-NIH (c) MoCoV2-ConVIRT-
NIH

(d) ConVIRT-CheXpert (e) MoCoV2-CheXpert (f ) MoCoV2-ConVIRT-
CheXpert

Figure 5: Figures for t-SNE embedding with LPFT downstream training strategies for Con-
VIRT, MoCoV2, MoCoV2-ConVIRT pretrained backbone
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