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ABSTRACT

This paper describes a gesture generation model based on state-
of-the-art diffusion models. Novel adaptations were introduced to
improve motion appropriateness relative to speech and human-
likeness. Specifically, the main focus was to enhance gesture re-
sponsiveness to speech audio. We explored using a pre-trained
Voice Activity Detector (VAD) to obtain more meaningful audio
representations. The proposed model was submitted to the GE-
NEA Challenge 2023. Perceptual experiments compared our model,
labeled SH, with other submissions to the challenge. The results
indicated that our model achieved competitive levels of human-
likeness. While appropriateness to the agent’s speech score was
lower than most entries, there were no statistically significant dif-
ferences from most models at the confidence level.
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1 INTRODUCTION

Human communication is composed of verbal and nonverbal be-
haviours. Co-speech gestures are one of these behaviours. They are
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visible actions of any body part produced while speaking and may
serve different purposes, such as to provide emphasis or to depict
some physical property [30]. Being such a key part of human com-
munication, gestures are employed in embodied agents to simulate
real interactions and create believable characters [29]. Otherwise,
these agents may be perceived as lifeless or dull.

Recent research focused on automatic gesture generation (or
synthesis) through deep learning. Such systems are able to ani-
mate embodied agents much faster and less time-demanding than
traditional techniques such as hand-crafted animations or motion
capture. Additionally, these techniques may not be suited for appli-
cations whose speech content is unknown beforehand, such as an
avatar being controlled by a human or an embodied agent powered
by a language model.

Most research on gesture generation has a cross-modal mapping
approach to this problem, similar to a translation between different
behaviour modalities [4]. Also, gestures are correlated with prosody
and may be associated with semantics [21]. Thus, most systems use
speech audio, speech text, or both to guide gesture generation [23].

However, synthetic data still struggles to appear human-like and
appropriate to speech if compared to real human data [33]. More
challenging scenarios could widen the gap between synthetic and
real data. For example, in dyadic interactions, people are expected to
take turns being the active speaker for brief or long moments. Most
research has not addressed such situations. We propose a monadic
gesture generation model that considers the voice activity for better
alignment and responsiveness of gestures given speech audio. The
model is based on a composition of the DiffuseStyleGesture [32],
a speech-driven diffusion model and the Motion Diffusion Model
(MDM) [26], which is text-driven. The main contributions of this
paper to the aforementioned models are:

e the integration of voice activity information to improve
turn-taking and speech audio synchrony while using only
monadic inputs;

o the employment of aligned speech text as input through a
pre-trained CLIP model, thus supporting the generation of
gestures semantically related to speech;

o the use of speech audio representations suited for content-
related tasks from a pre-trained WavLM model.

Our code can be accessed via https://github.com/AI-Unicamp/
ggvad-genea2023.

This article is structured as follows: Section 2 presents related
works on gesture generation and diffusion; the data processing is
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detailed in Section 3; Section 4 describes the proposed model and
qualitative evaluations of our model are presented in Section 5;
the results of the proposed model compared to other entries to the
GENEA Challenge 2023 are detailed in Section 6; and Section 7
presents the conclusion and final remarks.

2 BACKGROUND AND PRIOR WORK

Generative models enable the capture of the one-to-many nature
of gestures. Studies using VAEs [9], GANs [8], and Normalizing
Flows [10] show that such models surpass deterministic ones. How-
ever, these approaches still suffer from generalized problems such
as mean pose convergence and training instability. Recently, diffu-
sion models arose as a new class of promising generative models
achieving state-of-the-art results across a wide range of multimodal
tasks validated by perceptual evaluations without the same pitfalls
as the generative models mentioned before. Additionally, these
models were shown to be capable of handling data with special
structures, efficient sampling and providing improved likelihood
estimation [31].

Denoising Diffusion Probabilistic Models (DDPMs) [12] are a
type of generative model that synthesize new samples from an
underlying data distribution by learning how to reconstruct infor-
mation. During the training process, the model takes one noisy data
point (x;), obtained by applying ¢t Gaussian noise addition steps to
the original data (x), with 0 < ¢t < T, as T is the size of the complete
diffusion noise-adding chain, and is set to equivalently predict either
a one-step denoised sample (x;—1), a fully reconstructed data point
(x0), or the noise contained (¢). On inference, the process is started
from a pure Gaussian noise distribution and the reconstruction is
performed iteratively T times, generating a new sample [12].

Diffusion models exhibited state-of-the-art performance in sev-
eral different tasks. On image synthesis, diffusion models achieved
superior performance to the at the time GAN-based state-of-the-
art synthesis [7], and were also proven to be able to generate and
edit hyper-realistic images [22, 25]. In the audio domain, diffusion
models have been successfully exploited for audio generation [15]
and text-to-audio [19] tasks, obtaining higher performance when
compared to other current staple models. Recently, diffusion models
have also been explored on the task of video generation, which
were demonstrated to synthesize high-fidelity videos with a high
degree of controllability and world knowledge [11].

In the context of human motion generation, text-based models
aim to control the movements via natural language semantically.
The MotionDiffuse model [35] is the first model to exploit DDPMs
for this task, combining these models with a cross-modal Trans-
former based architecture. In another approach, denominated Mo-
tion Diffusion Model (MDM) [26], textual representations extracted
from a pre-trained CLIP [24] are combined with a Transformer
model in a classifier-free guidance diffusion training process [13].
Other works tackle the dance generation task, which intends to
generate dances given music as audio input. The EDGE [27] method
pairs a diffusion model with Jukebox, a generative model for music,
whereas the Listen, Denoise and Action! [1] model adapts Dif-
fWave [15] to generate poses and synthesize dances in various
styles.
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More recently, diffusion models have also been applied to the
gesture generation task. DiffMotion [34] is the first approach that
applies DDPMs to generate gestures. It leverages an autoregressive
temporal encoder based on an LSTM that processes context repre-
sented by spectral audio features and previous poses to condition a
diffusion process, generating each pose individually.

The DiffGesture [37] model uses a convolutional audio encoder
to extract representations directly from the raw audio. A Trans-
former model then uses these representations that undergoes an
implicit classifier-free guidance diffusion training.

The GestureDiffuCLIP [2] model introduces a multimodal (text,
motion or video) prompt-conditioned style-controlled gesture gen-
eration via mode-specific pre-trained CLIP encoders. Also, they use
a contrastive learning strategy to learn semantic correspondences
between textual transcripts of the input speech and gestures, al-
lowing for the generation of semantically-aware gestures. These
contributions, along with a denoiser network based on Transform-
ers, attention, and AdaIN layers [14] to incorporate style guidance,
compose a latent diffusion training process [25].

Finally, the DiffuseStyleGesture [32] model combines layers of
cross-local and global attention to better capture the localized as-
pects of gestures. With representations extracted from the self-
supervised WavLM model [6], the authors perform a diffusion train-
ing process and are able to generate and control gestures based on
a style label.

Although the increasing interest in the field, the synthesized
motions from most models are still far from being indistinguishable
from real human motion [33]. Moreover, research often concen-
trates on monadic scenarios in which only one participant actively
communicates. Consequently, crucial behaviours of real-life inter-
actions, such as listening, reciprocal expression, and interruptions,
are disregarded during development and evaluation.

3 DATA AND DATA PROCESSING

The dataset used by the 2023 GENEA Challenge is an adaptation of
the Talking With Hands 16.2M (TWH) data [18]. Pre-processing,
data augmentation, and selection are described in the challenge’s
main paper [17]. The available dataset presents a dyadic scenario,
i.e., it is composed of data from two people having a conversation,
referred to as the main agent and interlocutor. Entries to the chal-
lenge should only generate movements for the main agent, and
using the interlocutor’s data was optional. Available data includes
motion, speech audio, speech text (audio transcripts with times-
tamps), and speaker label. We only used data from the main agent;
thus, our model depends on monadic information alone despite the
dyadic scenario. Speaker labels were also ignored.

The dataset motions are BVH files with movements composed of
30 poses per second represented by Euler angles. We extracted each
pose and composed a feature vector g = [pp,p'p,pr,p'r] where
Py € R%/ and Py € R3/ are the global 3D joint positions and
positional velocities, p, € RS/ and p, € R3J are the local 6D
joint rotations [36] and the local 3D joint rotational velocities, j
represents the number of joints. The 30 frames per second rate of
the original data and all 83 joints of the skeleton were preserved,
thus g € R!?Y for each pose. Each dimension of motion data
is normalized to zero mean and unit standard deviation over the
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challenge training set. Audio files were resampled from 44.1 kHz to
16 kHz.

4 METHOD

Our approach consists of a combination of the MDM [26] and
the DiffuseStyleGestures [32] models, with modifications aiming
for improved responsiveness of gestures given speech audio. The
architecture is shown in Figure 1. Our model generates sequences of
120 poses simultaneously, corresponding to 4 seconds. We consider
inputs to be divided into global and fine-grained information. The
first corresponds to information relevant to the 4-second sequence
as a whole, which includes the words spoken (text), seed poses, and
timestep embedding. On the other hand, fine-grained information
is considered to be relevant at the frame level; thus, it includes
audio and speech activity.

4.1 Global Information

Since gestures can be semantically related to speech, providing
text information could improve gesture appropriateness. As textual
features, we use spoken words within a motion sequence. Words
timestamps from the audio transcript are used for extracting the
corresponding words. As in the MDM [26] model, the speech text
contained in the sequence of poses passes by a pre-trained CLIP [24]
model! and then processed from the clip output dimension of 512
to a dimension of 64 by a fully connected layer.

For the motion between consecutive generated sequences to
have cohesion, 10 previous seed poses are used as conditional input.
These poses are flattened and then projected to a dimension of
192, and then concatenated with the textual information, forming
a vector with the defined latent dimension of 256. Additionally,
the timestep embedding of the diffusion process, which indicates
which denoising step is being performed, is a sinusoidal positional
embedding that is passed through two fully connected layers with
a Sigmoid Linear Unit (SiLU) activation layer in between and pro-
jected to latent dimension. With this, the embedding that represents
global conditioning information (the one that is invariant to the
pose sequence) is obtained by summing the time-step embedding
with the concatenation of the textual and seed poses embedding.

4.2 Fine-grained Information

We work with chunks of sequences of 120 poses corresponding to
4 seconds of motion. The noisy poses for the diffusion process are
obtained by adding t steps of Gaussian noise on a sequence. These
poses are then projected via a linear layer from the pose dimension
of 1245 to the latent space dimension. For the audio information,
we use the resampled audio data and pass it through the WavLM [6]
model?. Differently from the DiffuseStyleGestures [32], we use the
representations extracted from the 11th layer instead of the 12th.
The 11th layer is reported to perform better at content-related tasks,
such as phoneme recognition and automatic speech recognition.
These representations are first interpolated to match the length of
the corresponding pose sequence and then projected to a dimension
of 64 by a linear layer.

Version ‘ViT-B/32’ obtained from https://github.com/openai/CLIP
ZVersion ‘Base+’ obtained from https://github.com/microsoft/unilm/tree/master/
wavlm
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Figure 1: Model architecture.
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4.2.1 Speech Activity Information. Due to the dyadic nature of the
dataset, some sections of the data are composed of moments in
which the main agent is not the active speaker, such as listening
and turn-taking moments. Gestures performed in active or non-
active moments may play different roles in human interaction and,
thus, differ from those performed in other moments. For example,
beat gestures occur during articulations of speech and may serve
to emphasize what is being said [21]; differently, mimicry, often
performed automatically, may enhance helpfulness and strengthen
social bonds [28]. Although our model only uses monadic data, we
introduce the use of speech activity information. This information,
otherwise embedded in audio representations such as spectrograms
and MFCCs, may be lost in the abstract WavLM representations.
Furthermore, the interpolation of representations to match the pose
sequence can blend moments with and without speech activity.
Thus, the contribution of such inclusion is believed to be two-fold.
First, it provides more straightforward access to fine-grained speech
energy. Second, it helps to stress, during training, the difference
between gestures in the aforementioned moments, not in terms of
functionality, but dynamics.

Speech activity can be inferred through analytical approaches
such as energy and F0. However, the dataset audios contain noise
that could affect computing these parameters: various speakers,
different speech volumes, and background noise such as speech
from the interlocutor and breathing. Thus, we consider two sce-
narios for acquiring speech activity information. The first is based
on a pre-trained Voice Activity Detector (VAD)? that consists in

30Obtained from https://huggingface.co/speechbrain/vad-crdnn-libriparty
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a small CRDNN (A combination of convolutional, recurrent and
deep neural network) trained on the Libriparty dataset?, which is
a synthetic cocktail-party scenario derived from the Librispeech
dataset. When speech is detected, the model outputs a 1 and other-
wise a 0. The second approach is taken from the annotated speech
text timestamps provided in the dataset. When there is any text,
we consider the respective timestamps as 1 and otherwise as 0.
The major difference between these approaches is that the pre-
trained model can detect intra-text pauses, whereas audio tran-
scripts provide word-level timestamps granularity. A comparison
of both is shown in Figure 2. From the figure, it is noticeable that
VAD provides closer alignment with speech energy. Besides, the
pre-trained VAD removes the need for audio-aligned annotated
speech text, which is sensitive to human perception or error.

— \/AD == Text

Frequency (Hz)

Frame

Figure 2: Scaled speech activities from timed audio tran-
scripts (red) and from the VAD (black) overlapped with a
spectrogram of an eight-second audio sample in the back-
ground.

The speech information sequence extracted from the VAD is
used to select two embeddings with latent dimensions representing
the presence of speech or no speech for each pose. This sequence
of embeddings is then concatenated with the noisy poses and the
audio embeddings forming the fine-grained information.

4.3 Training

The fine-grained information is concatenated with the global infor-
mation along the latent dimension. Then, all the input information
is projected back to the latent dimension by an input linear layer
and fed to the cross-local attention layer to capture local relations
between the features. Then, we concatenate the global information
embedding one more time with the output along the sequence di-
mension before passing the sequence to the transformer encoder
to capture the global context. Then, we ignore the first token of
the output sequence and project the outputs to the pose dimen-
sion, which finally represents the denoised pose (xo) itself. We use
positional embeddings to add sequence information on both the
cross-local attention and the transformer encoder.

On inference, a sequence at a time is generated. The model
outputs a vector G = [gy, gy, " - , g190]- The last 10 poses from the
previously generated sequence are used to condition the generation
of the next sequence; mean poses are used for conditioning the first
sequence.

“https://github.com/speechbrain/speechbrain/tree/develop/recipes/LibriParty/
generate_dataset
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For post-processing, we use linear interpolation to impose conti-
nuity between successive sequences. To smooth motion artifacts
in the output, we also apply a Savitzky-Golay [20] filter with a
window length of 9 and polynomial order of 3.

The model was trained for 290k steps, with a batch size of 64, in
a single NVIDIA Titan Xp GPU, which took about 2.5 days.

5 EVALUATION

There still is no objective metric to measure gesture perception
reliably. Moreover, previous research has found that object met-
rics differ from subjective ones [16]. Therefore, the research team
empirically evaluated the proposed model, its variations, and the
reference models through visual inspection of their outputs.

We trained the MDM [26] and the DiffuseStyleGestures [32]
and used them as references for comparison, i.e., a starting point
for development. Although providing reasonable human-like mo-
tion, in terms of appropriateness to speech, we found the results
unsatisfactory. The outputs seemed unaware of moments such as
brief pauses, turn-taking, and listening moments. That is, the agent
would frequently make gestures in those moments that appeared
inadequate and similar to behaviours performed when it was the
active speaker. So, our main focus in developing the model for the
GENEA Challenge 2023 was to overcome those issues of disregard
for no-speak moments. Thus, a VAD was employed to leverage
speech activity information.

[ vAD=1 [ VAD=0
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Figure 3: Histograms of the rotational velocities from the
main agent’s left and right forearm joints from the training
set of the dataset (top), and the output of the proposed model
with (bottom). Red and black indicate velocities extracted
when the main agent was the active speaker and when it was
not.
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In order to examine the effectiveness of the VAD, we present
histograms of the rotational velocities of the forearms, a joint that is
very active when gesturing with the arms, on Figure 3, for the real
training set (top), and the output of the proposed model (bottom).
The figure splits each set considered in two distributions: when the
VAD indicates that there is an occurrence of speech, VAD output
equals one, and when the VAD indicates that there is no speech, its
output is zero.

For the training set, the histograms reveal distinct patterns as-
sociated with speech activity during gesticulation. Speakers in the
dataset exhibit increased forearm movements while talking versus
silence periods. These insights support our underlying assumption
that people tend to perform more gestures - or at least more abrupt
gestures - when they are speaking.

The proposed model could reproduce, to some extent, the overall
behaviour of the training set. However, it was unable to synthesize
motion that reproduced the differences seen in the training set given
speech activity, that is, a larger concentration of higher velocities
when the agent is speaking. We did an ablation study with the
proposed model without the VAD module. Its histogram was similar
to the one with VAD. However, visual inspections of the outputs
by the research team favored outputs by the proposed model with
VAD in terms of speech and gesture alignment.

We also compared outputs from models with and without text
input. However, we did not find a significant amount of semantically
related gestures in their output. Further investigation should be
carried out to indicate if there is a sufficient amount of such gestures
in the dataset for models to be able to learn from. Still, we kept
texts as input as motion quality was not impaired.

Compared to our reference models, the output of the proposed
model seems better, especially in terms of speech audio and gesture
alignment. However, we notice that some artifacts are still present
in the motions. Motions occasionally converge to an unusual or
odd-looking pose, absurd rotations still take place, and jittering is
sometimes noticeable.

6 RESULTS AND DISCUSSION

The results of the shared evaluations of the GENEA Challenge 2023
indicated that our model (condition SH) is competitive with most
conditions in terms of human-likeness but obtained relatively poor
results for appropriateness to speech [17].

Figure 4 presents human-likeness ratings. Subjects participants
gave their ratings based on how human-like the motions appeared,
from 0 (worst) to 100 (best). Real motion data (NA) achieved a
median rating of 71, the baselines 46 (BD) and 43 (BM), while our
condition scored 46. We believe that the module that contributed the
most to the human-likeness of generated gestures is the attention
mechanism. As Yang et al. [32] showed in their ablation studies,
the cross-local attention module played a significant role in terms
of human-likeness ratings.

Two evaluations were performed to assess gesture appropri-
ateness to speech: appropriateness for agent speech and for the
interlocutor speech. The first contains mainly moments where the
main agent is the active speaker, while the roles are reversed in the
latter.

ICMI ’23 Companion, October 9-13, 2023, Paris, France

100——

—_——

1
80 \
\

40

Human-

| I
| |
\
| | | |
| C Lo |
o L o o | |
[ ‘
111 Loy } E
1 1 [
T T T T N Y HO R A M|
NA SG SF SJ SL SE SH BD SD BM SI SK SA SB SC

Figure 4: Shared human-likeness rating study. Red bars are
median ratings; yellow diamonds are mean ratings. Entries
to the challenge are labeled SA-SL (ours is SH), BD and BM
are the baselines [5], and NA is real data. Extracted from
Kucherenko et al. [17].
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Figure 5: Shared appropriateness for agent speech responses.
Entries to the challenge are labeled SA-SL (ours is SH), BD
and BM are the baselines [5], and NA is real data. Extracted

from Kucherenko et al. [17].

For the appropriateness of agent speech evaluation, subjects
were presented with speech audio and two motions generated by
the model. One motion is the output generated with the speech
audio presented as input, and the other is the output from another
segment of speech audio. For our condition, subjects preferred the
matching motion 52.9% of the time, slightly above chance. Although
one of the lowest mean appropriateness scores, there is no stati-
cally significant differences in the scores of ours and another ten
conditions (conditions BM to SA, in Figure 5).

Our condition had the lowest score in the appropriateness for
the interlocutor evaluation. This means that subjects found the
mismatched stimuli more appropriate. However, our model does not
use any interlocutor information as input. Thus, from the model’s
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Figure 6: Shared appropriateness for the interlocutor re-
sponses. Entries to the challenge are labeled SA-SL (ours is
SH), BD and BM are the baselines, and NA is real data. Ex-
tracted from Kucherenko et al. [17].

perspective, the output of both matched and mismatched stimuli
for this evaluation was generated using the same inputs. Evidently,
it is not expected that the outputs be exactly the same due to the
probabilistic nature of the model. But both outputs are expected
to be equivalent in terms of human-likeness and appropriateness,
thus scoring similarly to chance (50%).

We also noticed from all three evaluations that our model had a
wide range of scores. For instance, whiskers from the box plot visu-
alization of Figure 4 span almost the entire y-axis; our condition,
along with condition SK, had the highest confidence intervals of
median and mean ratings. In the appropriateness for agent speech,
our condition had the third highest number of clear preferences for
matched stimuli, the highest for mismatched, and the second lowest
for no preferences when compared to other entries to the challenge.
Thus, we argue that the proposed model is indeed capable of gen-
erating gestures that are competitive in terms of human-likeness
and appropriateness for the main agent. However, the artifacts
mentioned in the previous section hinder gesture perception and
should be addressed before any conclusion regarding the proposed
architecture and individual modules.

7 CONCLUSION

This paper describes the proposed diffusion-based model for ges-
ture generation that uses pre-trained VAD. Incorporating speech
activity information in such models could improve responsiveness
during rapid back-and-forth interactions. Also, a VAD can explicitly
provide this information without needing human-annotated tran-
scripts, thus potentially suited for real-time dialogue. Our model has
been compared with others in the GENEA Challenge 2023, a crowd-
sourced evaluation that directly compares different methods while
controlling factors such as data and evaluation methodology. The
evaluation showed that our model is compatible with other entries
to the challenge in terms of human-likeness, but appropriateness
to speech is still unimpressive despite our efforts.

Our experiments revealed mixed results regarding the effective-
ness of the proposed implementation improvements to the gesture
generation system. While convergences to undesired poses, extreme
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joint rotations, and jittering were not frequent, they nonetheless oc-
curred. Besides, output motion was unstable, i.e., when generating
motions given the same inputs, the resulting motion quality varied
greatly. These issues may have contributed to subpar performance
in evaluations and compromised the responsiveness of generated
gestures to speaking moments. Although our adaptations hold po-
tential value for gesture generation tasks, further improvements are
needed to leverage their benefits fully. Especially the explicit use
of speech activity information that could be leveraged to address
turn-taking moments

We intend to focus primarily on improving speech and gesture
alignment for future work. An interesting approach is adapting an
external framework for alignment as the one proposed by Badlani
et al. [3]. Another obvious path is to incorporate data from the
interlocutor to capture the aspects of dyadic scenarios.
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