
Reproducibility report for ML Reproducibility Challenge 2022

Anonymous Author(s)
Affiliation
Address
email

Scope of Reproducibility1

The goal of this replication study is to find out to what extend the results of the paper "Robust Counterfactual2

Explanations on Graph Neural Networks" [1] are reproducable. We investigate this matter by evaluating the following3

claims:4

• Using the trained RCExplainer and baseline RCExplainer-NoLDB, does it deliver the same performance on5

fidelity as stated in the paper?6

• Using the trained RCExplainer and baseline RCExplainer-NoLDB, does it deliver the same performance on7

robustness as stated in the paper?8

Methodology9

In order to reproduce the results as stated in the original paper of Bajaj et al. [2021] [1], we used the originally provided10

source code. However, contrary to our expectations, the provided source code on its own was not enough to redo the11

experiments. Therefore, the main approach of this reproducibility paper was to adjust the provided source code in order12

to execute some of the the conducted experiments. The source code and our adjustments are written in Python and used13

the PyTorch library.14

Results15

The first claim in the scope of reproducibility was not accepted in terms of this paper. The RCExplainer was close to16

the results found by manual training but outside of the range provided by the standard deviation of manual training.17

The performance of the RCExp-NoLDB model showed a major difference from the results reported in the paper.18

The robustness results were hard to compare due to lack of actual numbers, but qualitative analysis found it to be19

reproducible, as values lied within margin of the standard deviation of manually trained models.20

What was easy21

The original paper [1] was very understandably written which made it very accessible. As a result, our vision towards22

the conducted experiments and their execution became easily clear to us. The straight forward vision of the paper made23

it easy to understand what we were aiming to reproduce.24

What was difficult25

As the source code was provided, we implied that it would be trouble-free to run the experiments and evaluate the26

results. However, we quickly found out that this was not the case. The source code contained a large number of code27

files containing of various bugs, such as; duplicate functions, missing arguments when calling functions and missing28

files. This and the large number of code lines made it difficult to debug.29

Communication with original authors30

When investigating the source code we encountered some difficulties, which made us reach out to the original authors31

via email. In here, we asked for clarification on the RCExplainer without linear decision boundaries (No-LDB), as we32

doubted our obtained results. Unfortunately, the authors did not come back to us.33

Submitted to ML Reproducibility Challenge 2020. Do not distribute.

1 Introduction34

Graph Neural Networks (GNNs) have shown to be of great success in the field of be graph representation learning [4].35

GNNs exploit the structure of graph data by integrating node information in terms of position and its neighbouring36

nodes [2]. The proven potential of GNNs call for better explainability of the models, which are otherwise considered as37

black boxes [9]. Numerous attempts in GNN explainability have been made [8, 5, 6]. However, Bajaj et al. [2021]38

[1] argue that these methods lack in robustness and counterfactuality. Therefore, they proposed their paper "Robust39

Counterfactual Explanations on Graph Neural Networks" [1], which attempts to tackle these problems.40

The paper proposes the RCExplainer, which is a novel method to produce robust and counterfactual explanations on41

GNNs. The RCExplainer attempts to model the decision logic of a GNN, by modelling its decision regions using42

linear decision boundaries (LDBs). The paper explores the common decision logic encoded in those boundsaries, so43

that they are able to produce counterfactual and robust explanations. The key concept of the RCExplainer are the44

proposed decision regions derived by the LDBs. In order to demonstrate the effectiveness of this method, the authors45

also proposed a RCExplainer-NoLDB (no linear decision boundaries). The RCExplainer-NoLDB follows the same46

framework as the RCExplainer, however it did not use the LDBs to generate explanations.47

The paper tests the RCExplainer and RCExplainer-NoLDB against three other state-of-the-art GNN explainers (GN-48

NExplainer [8], PGExplainer [5] and PGM-Explainer [6]). The paper conducted two main experiments. One of them49

focused on counterfactuality (measured in fidelity), whereas the other experiment focused on robustness. The results of50

their experiments show that the RCExplainer defeats all other mentioned explainers in terms of fidelity and robustness.51

In addition to this, the RCExplainer’s efficiency is either the same or outperforms the efficiency of the other explainers.52

This paper will investigate these results in means of a replication study.53

2 Scope of reproducibility54

The focus of this replication study is on the reproducibility of the experiments conducted by Bajaj et al. [2021]55

[1]. More specifically, we will focus on reproducing the results of the RCExplainer and RCExplainer-NoLDB. The56

effectiveness of the aforementioned models is tested in two experiments, which are elaborated on in section 4. The57

original paper conducted more experiments which are presented in their appendix. However, due to time limitations,58

this reproducibility paper will only focus on the experiments as presented in the result section of their paper.59

The paper publicly offers the original code used to implement the RCExplainer and RCExplainer-NoLDB. Using this60

code, we are testing the reproducibility of the paper by firstly training both models from scratch. Additionally, we will61

use the source code in order to evaluate both models. Both models will be evaluated by the same means as mentioned62

in their paper, so that the circumstances will be the same as in their presented experiments. Our paper focusses on63

accepting/rejecting the following statements:64

1. Using the trained RCExplainer and RCExplainer-NoLDB, does it deliver the same performance on fidelity as65

stated in the paper?66

2. Using the trained RCExplainer and RCExplainer-NoLDB, does it deliver the same performance on robustness67

as stated in the paper?68

In the following sections we will first discuss the RCExplainers and RCExplainer-NoLDBs workings, after which the69

experimental setup needed to run the tests checking the reproducibility of the paper. Following, the methodology will70

be discussed in which the methods used to get the code provided in the paper to work are mentioned. Finally, we will71

discuss the results of the tests and whether these support the paper. Thereafter, a discussion is provided to look back72

upon the process of producing this reproducibility report.73

3 RCExplainer74

The authors start the construction of the RCExplainer by modelling decision regions. The decision regions are described75

as convex polytopes, which are formed by Linear Decision Boundaries (LDBs). In order to satisfy the desired fidelity76

and robustness the polytopes are required to have the following properties:77

1. The decision region should be induced by a subset of the LDBs in H. Here, H is the set of LDBs induced by78

ϕfc, and ϕfc is the mapping function that maps the finalized graph embeddings to a predicted distribution over79

the classes.80

2

2. The decision region should cover many graph instances in the training dataset D, and all the covered graphs81

should be predicted as the same class.82

The first property enables the counterfactual explanations from the LDBs to correspond with the real decision logic of83

the GNN. The second property ensures the decision region to capture the common decision logic on all graphs covered84

by the decision region, i.e. the explainer will not overfit on singular data inputs. The decision regions are extracted by85

optimizing the following equation:86

max
P ⊆ H

g(P, c), s.t h(P, c) = 0, (1)

in which P is a subset of LDBs in H, g(P , c) is the number of graphs covered by P that are in class c, and h(P , c) is87

the number of graphs covered by P that are not in class c. The P ⊆ H satisfies the first property. In addition to this, the88

maximization of g(P, c) while keeping h(P, c) zero satisfies the second property.89

Following, the decision regions were used to train a model fϕ that produces the desired counterfactual and robust90

explanations on input graphs. Say we have input graph G with two connected vertices vi and vj . We get the following91

equation:92

Mij = fϕ(zi, zj) (2)

Where zi and zj are the graph embeddings of vi and vj , produced by the last convolutional layer of a GNN and Mij93

denotes the probability of the vertice connecting vi and vj belonging to the explanation. For an input graph with n94

vertices, M ∈ Rn×n. The produced explanation for each input graph is defined by selecting all vertices where Mij >95

0.5.96

Finally, the loss function that is used to train the RCExplainer is defined in equation 3.97

L(θ) =
∑
G∈D

{λLsame(θ,G) + (1− λ)Lopp(θ,G) + βRsparse(θ,G) + µRdiscrete(θ,G)} (3)

Here, λ ∈ [0, 1], β ≥ 0 and µ ≥ 0 are hyperparameters, each controling the importance of the reported term. For the98

full definition of each loss term, see appendix A.0.1.99

3.1 RCExplainer-NoLDB100

As previously described in the introduction, the authors of the paper proposed the RCExplainer-NoLDB in order to101

prove the effectiveness of using LDBs to define decision regions. The RCExp-NoLDB uses the same framework as102

the RCExplainer, but excludes the LDBs from generating the graph explanations. In contrast to the RCExplainer, the103

RCExplainer-NoLDB solely focuses on maximizing the prediction confidence. Formally said; the RCExplainer-NoLDB104

directly maximizes the prediction confidence on class c for Gϕ and minimizes the prediction confidence of class c for105

G′
ϕ.106

The difference in maximization problem calls for a change in loss function. The RCExplainer-NoLDB uses the same107

loss function as the GNNExplainer and the PGExplainer. However, the loss of the RCExplainer-NoLDB introduces a108

second term, and is defined in equation 4.109

Lconf (θ,G) = −log(Pϕ(Y = c|X = Gθ))−
η

log(Pϕ(Y = c|X = G′
ϕ))

(4)

Here, Pϕ(Y |X = Gx) defines the conditional probability distribution learnt by the GNN model ϕ for input graph Gx.110

Y represents the random variable of the set of classes C, and X is the random variable representing possible input111

graphs for the GNN ϕ. The newly introduced loss term is minimalized together with the Rsparse and Rdiscrete term as112

described in section 3 and appendix A.0.1.113

4 Experimental setup114

The following section will discuss the experimental setup as proposed by the authors of the RCExplainer. As explained115

in the introduction, this reproducibility paper will focuss on two of the experiments as conducted in the original paper;116

3

one testing the counterfacuality and one testing the robustness of their explainer. The reported experiment test the117

fidelity and robustness of the generated explanations on the task of graph-classifications (note: the original appendix118

also includes experiments on singular node-classification, however this will not be touched in the scope of this paper).119

4.1 Counterfactuality120

The first experiment tested the degree of counterfactuality of the RCExplainer against their own RCExplainer-NoLDB,121

the GNNExplainer [8], the PGExplainer [5] and the PGM-Explainer [6]. As a measure of counterfactuality, the authors122

used fidelity. They define it as "The drop in confidence of the original predicted class, after masking the produced123

explanation in the original graph". In other words, fidelity measures the confidence of the prediction after removing124

a set of edges from the input graph. The formal definition of fidelity for input graph G and explanation S is given in125

equation 5.126

fidelity(S,G) = Pϕ(Y = c|X = G)− Pϕ(Y = c|X = GE\S) (5)

Here, c denotes the class predicted by ϕ. The fidelity was plotted against sparsity. Sparsity is defined as the percentage127

of edges remaining after the explanation is removed from G. Equation 6 shows the formal definition of the sparsity of128

explanation S w.r.t input graph G = (V, E).129

sparsity(S,G) = 1− |S|
|E|

(6)

4.2 Robustness performance130

The second experiment proposed by the authors focused on the robustness of their RCExplainer. E.g. how well their131

explainer performed while adding noise to the input graph. Noise was added to the input graph G by randomly deleting132

edges or adding random noise to the node features. This was all done under the requirement that the prediction on133

the noisy G’ is consistent with the prediction on G. As a measure of robustness they used the Area Under the Curve134

(AUC) of the receiving operator characteristic (ROC). Their paper accepted the top 8 edges of S as the ground truth and135

compared these results to noisy S’. The robustness performance experiment excluded the PGM-explainer, as it did not136

output the necessary values needed to complete the experiment.137

4.3 Datasets138

The reported results made use of one synthetic dataset: BA-2Motifs [5], and two real world datasets: Mutagenicity [3]139

and NCI1 [7]. However, due to the limited timespan and the extensive hours it takes to train the models, our replication140

study will only reproduce the results based on the Mutagenicity dataset. The Mutagenicity dataset consists of 4337141

datapoints, in which each entry is a specific molecule. Every datapoint carried a label of being either mutagenic or142

non-mutagenic.143

5 Methodology; re-implementation of code144

The open source code contained a notebook which loaded the RCExplainer that was pre-trained on the Mutagenicity145

dataset. In addition to this, the notebook contained all the necessary code to evaluate the RCExplainer on fidelity and146

visualize the explanations. Furthermore, the function to train the RCExplainer from scratch was included. However,147

when running the notebook, we had issues with certain libraries not being compatible with each other (despite using the148

correct environment). In addition to this, we found some other flaws causing errors. Eventually, with some adaptions,149

we got the notebook to run fluently. However, the notebook was limited to specific datasets, models and evaluation150

tasks. In order to conduct the robustness experiment, we had to look into the source code. The provided source code151

was written in python 3.8, whereas the models used the PyTorch extension.152

The source code consisted of a numerous amount of (long) code files. The README file contained an explanation on153

how to properly run the code, e.g. what commands were needed to evaluate and train the models. However, it swiftly154

became clear that their provided instructions on how to run the code did not work as intended. This was due to the155

fact that, for example, the source code contained many out-commented lines of code that were crucial for the task. In156

4

addition to this, some of their provided code lines were inherently incorrect. Due to the many files and lacking structure,157

it was difficult to debug the code.158

As a result of this, our expected methodology changed during the process of re-implementation. Ultimately, our approach159

consisted of understanding and debugging the files in order to train the models and run the desired experiments.160

The following alterations were made to enable the source code to run the experiments:161

• The training function as provided in the notebook was set to 0 epochs. We changed the arguments supplied to162

training method to 600 epochs.163

• Directories in supplied code were hardcoded to use creators file structure. These were changed to work on164

multiple different machines using relative paths instead of absolute paths.165

• Running code to evaluate models as described in README was not possible due to missing files (i.e.166

Mutagenicity_gt_edge_labels_new.p). The code to create those files were integrated within the training process167

of a GNN (other than the desired explainers). However, this code was commented out and thus the neccesary168

files were missing.169

• To train this GNN, a different version of PyTorch and CUDA was needed than the ones supplied in the170

environment. Therefore, the environment had to be updated.171

• Parameters for evaluating and training models were made dynamic instead of being reset to default every time,172

making it impossible to run different configurations.173

• Invalid function calls were removed on objects (i.e. .item() on a list object).174

• Missing parameters were added in function calls (i.e. stats.update(masked_adj, imp_nodes) →175

stats.update(masked_adj, imp_nodes, sub_adj, sub_feat, sub_nodes)) to prevent errors.176

• The default parameter "bloss_mode" was changed to sigmoid to prevent error: bloss_version= "sigmoid".177

• The saving of tensors was changed to the saving of tensor values. This solved a "CUDA: out of memory error"178

due to pytorch being unable to garbage collect thousands of tensors saved in a list.179

• Function calls of non existing functions were changed to existing functions (i.e. addEdges2() → addEdges()).180

• Missing parameters that were not used in their respective functions were removed.181

For sake of brevity we have excluded changes made that are duplicates of or variations on the changes above.182

6 Results183

The following section will either accept or reject the following claims as stated in section 2:184

• Using the trained RCExplainer and RCExplainer-NoLDB (as a baseline), does it deliver the same performance185

on fidelity as stated in the paper?186

• Using the trained RCExplainer and RCExplainer-NoLDB (as a baseline), does it deliver the same performance187

on robustness as stated in the paper?188

First of all we attempted to run the provided notebook properly. Setting up the correct environment was quite troubling189

on most of the devices. For example, the notebook demanded extra lines of code to make it run, as different versions of190

the torch, torchvision and torchaudio packages (other than specified in the requirements) had to be installed.191

By default, the notebook was structured around the task of evaluating the pre-trained RCExplainer on the fidelity task.192

The notebook contained a specific section on how to train the RCExplainer from scratch. However, it took some effort193

to discover how to set the correct parameters to properly activate the training process. Hereafter, an error occurred in194

which the explainer returned NoneType. The train function was wrongfully called, as train() is a void function.195

When resolved, it was possible to train the RCExplainer from scratch in the notebook. Training the RCExplainer-196

NoLDB from scratch had to be done through the source code. This involved alternations to the provided code. A197

list of these alternations is stated in section 5. Although the notebook allowed us to train the RCExplainer, we also198

investigated whether training from source code was possible. However, as explained in section 5, following the199

README instructions did not immediately allow for success.200

To conclude, it is possible to train the RCExplainer and RCExplainer-NoLDB from scratch. However, it is important to201

notice that it was quite challenging to fulfill this task. The provided source code, including the README file, created202

5

(a) Fidelity results of the paper vs
trained from scratch

(b) Fidelity results of the paper vs pre-
trained model

Figure 1: Fidelity results of several models

the false illusion that the code could run with just the correct commands. Howbeit, we managed to reach the goal of203

training the models.204

6.1 Result 1205

First of all, we conducted a smaller sub-experiment. The source code included one of their pre-trained RCExplainers206

(seed not specified). We ran the fidelity evaluation on this model and obtained the results as shown in figure 1b.207

The results show that their pre-trained model delivers almost identical results as reported in the paper. This seems208

questionable considering our results as described in the next paragraph. However the scope of this reproducibility paper209

is not wide enough to draw conclusions from this observation.210

Subsequently, we started to investigate the first claim being made in this paper; "Using the trained RCExplainer and211

RCExplainer-NoLDB, does it deliver the same performance on fidelity as stated in the paper?". In order to properly212

evaluate both models, we trained the models 3 times using different seeds. The default code in the notebook was used213

to run the fidelity experiment on both models. The final result as reported in table 1 contain the averaged fidelity and214

the corresponding standard deviation.215

Table 1: fidelity results for the RCExplainer and RCExplainer-NoLDB trained from scratch on Mutagenicity dataset

(a) RCExplainer

Sparsity Fidelity STD
78 % 0.72 0.009
84 % 0.71 0.002
88 % 0.64 0.014
95 % 0.45 0.019
98 % 0.17 0.007
100 % 0.00 0.000

(b) RCExplainer-NoLDB

Sparsity Fidelity STD
75 % 0.05 0.015
80 % 0.04 0.010
85 % 0.03 0.006
90 % 0.02 0.003
95 % 0.01 0.002
100 % 0.00 0.000

Running the experiment on fidelity requires the calculation of sparsity within. Therefore, our results differ in sparsity216

from the results reported in the original paper. The difference in x-values makes it hard to statistically test the similarities.217

The results for the RCExplainer are plotted in figure 1a. From here we can conclude that both results show very similar218

trends. However, when looking at table 1a, our reported standard deviations are quite small. Especially for sparsity219

between 0.85% and 0.95%, the difference in our results and the reported results exceed our reported standard deviation.220

We can therefore conclude that the difference in results is too large to accept the claim. Nonetheless, this could be the221

result of the use of different seeds, or the difference in number of trained models (10 vs 3).222

The results of the experiment conducted with the RCExplainer-NoLDB is shown in figure 2. The provided source code223

did not include the numbered values of their RCExplainer-NoLDB, hence we can only compare the charts in figure224

2a and 2b. Their source code also provided us with one pre-trained RCExplainer-NoLDB model (no seed specified),225

which’s result are plotted in 2a. Immediately visible is the difference between our trained model trained and their226

results. From this we started questioning if our training process ran properly. However, as later described in section227

6.2, our models did perform great on the robustness experiment. The robustness also showed big improvements when228

6

(a) Fidelity of RCExp-NoLDB pre-
trained vs from scratch (b) Fidelity results of original paper

Figure 2: Fidelity results of several models

comparing the results before and after training, confirming that the model did learn. We were not able to find the cause229

of the massive divergence in results.230

Hence, we can conclude that we were unable to reproduce the results of the RCExp-NoLDB. However, the difference in231

results is so significant that this was most likely caused by an error in the way the model was trained. The training was232

done using the supplied code without any major adjustments. Furthermore, we used the same evaluation techniques as233

for the RCExplainer. Changes made to the code were of similar scope to the changes described in section 5. Therefore234

we had no indication on what was causing the divergence in results. Another noticable result is the poor performance of235

the pre-trained RCExp-NoLDB. As the fidelity in both our performed research as well as in the original paper comes236

with a small standard deviation, it is unlikely that the pre-trained model contributed to the reported fidelity results.237

To conclude, investigating the averaged results produced by the models trained from scratch, our RCExplainer results238

seem to be close to the ones reported in the paper. Our numbers are slightly lower than the ones found in the paper, and239

are not within close enough margin to support the papers claims. In addition to this, we did not manage to reproduce240

the RCExplainer-NoLDB results.241

6.2 Result 2242

The final claim in investigation is: "Using the trained RCExplainer and RCExplainer-NoLDB, does it deliver the same243

performance on robustness as stated in the paper?". We used the same trained models as mentioned in the previous244

section, whereas the reported results are again the averaged performance. Contrary to the previous experiment, it245

was not possible to change the settings of the notebook to robustness evaluation. Therefore, we had to make more246

adjustments in the source code. The README file stated that the experiment could be run by adding ’–noise’ to a247

specific console command. Following these exact instructions, did not lead to successfully running the experiment, as248

parameters entered in the console were overwritten in the code. Besides, the code responsible for calculating the AUC249

contained many errors, among which missing parameters in function-calls and out-commented crucial code. For more250

information, see section 5. Ultimately the experiments succeeded, the results are shown in table 2.251

Table 2: Robustness results for the RCExplainer and RCExplainer-NoLDB trained from scratch on Mutagenicity

(a) RCExplainer

Noise AUC STD
0 % 1.00 0.000
5 % 0.98 0.001

10 % 0.94 0.001
15 % 0.91 0.001
20 % 0.88 0.003
25 % 0.85 0.004
30 % 0.83 0.004

(b) RCExplainer-NoLDB

Noise AUC STD
0 % 1.00 0.000
5 % 0.98 0.001

10 % 0.94 0.000
15 % 0.91 0.001
20 % 0.87 0.000
25 % 0.85 0.007
30 % 0.82 0.004

The paper did not report the actual values of their robustness experiment. Therefore, the conclusion we draw are252

statistically hard to support, as actual values are missing. We compared our results in figure 3a and 3b and see that the253

results are very similar. However, the chart as reported in the paper does not provide high enough precision to correctly254

7

(a) Robustness of several models (b) Robustness results of original paper
Figure 3: Robustness results of several models

draw a conclusion from it. Therefore, we also conducted the sub-experiment of evaluating their provided pre-trained255

model on robustness. As figure 3a displays, all of the results were very similar. Based on this observation, we conclude256

that our results are similar within the range of acceptance.257

7 Discussion258

As can be derived from section 6, it was hard to draw clear conclusions on the claims as set in 2. Respectively, we259

rejected the first claim and accepted the second claim. The first claim was rejected as their results did not fall within the260

scope of the standard deviation. However, our results were based on 3 model runs, in comparison with the original261

paper which used 10 model runs. The deviation in results could be due to this reason, which should be looked into262

further. In addition to this, more time to investigate the failures as stated in section 6.1 could possibly lead to the correct263

reproduction of the experiment. Therefore, our rejection of the first claim might be unfair, and could be looked into in264

future research. Finally, the limited time for this project restricted us from conducting the experiments as proposed265

in their appendix. The appendix contained valuable experiments and results, worth looking into. Consequently, our266

conclusion can not render a full statement on the reproducibility of their entire paper.267

7.1 What was easy268

Bajaj et al. [2021] [1] wrote a very straight forward paper. It was easy to dive into the literature of their paper, and269

we had a very clear vision on the purpose and set-up of their research. In addition to this, once we got the code to run270

properly, it was very easy to conduct the said experiments. The technical aspect of their code worked fluently. We did271

not have to rewrite any technical aspect of the models, neither did we have to adjust code in the experiments.272

7.2 What was difficult273

As previously stated, it was hard to properly test the results of the paper for reproducibility on our local machines. The274

original idea of this research was to run all experiments as stated in the paper on all datasets. In addition to that, we275

originally thrived to set-up a new experiment to test whether the models also perform outside the scope of their paper.276

However, the implementation of the two experiments required substantially more time than expected. Therefore, we did277

not manage to research the models and/or experiments outside the scope of their research.278

Furthermore, we would have liked to also take the GNNExplainer into consideration as an additional baseline. However,279

after some minor alterations in the code (similar to the ones described in section 5), we discovered that in order to280

evaluate/train the GNNExplainer adversarial data was required, which was not supplied with the code. This made281

it impossible for us to use the GNNExplainer as a baseline as described in the paper. Besides that, we attempted to282

implement the original code of the GNNExplainer as described in the paper of Ying et al. [8]. However their evaluation283

of results was very different to what we needed in order to use it for our experiments, which again, made it not possible284

to use it as a baseline during this research.285

Finally, the results that we managed to produce were very hard to analyse. As neither the paper or the source code286

contained the absolute values of the experiments, we could only examine our results by comparing charts. As the charts287

were relatively large-scaled, proper conclusions on similarities could not be made.288

8

References289

[1] M. Bajaj, L. Chu, Z. Y. Xue, J. Pei, L. Wang, P. C.-H. Lam, and Y. Zhang. Robust counterfactual explanations on290

graph neural networks. Advances in Neural Information Processing Systems, 34, 2021.291

[2] W. Fan, Y. Ma, Q. Li, Y. He, E. Zhao, J. Tang, and D. Yin. Graph neural networks for social recommendation. In292

The World Wide Web Conference, pages 417–426, 2019.293

[3] J. Kazius, R. McGuire, and R. Bursi. Derivation and validation of toxicophores for mutagenicity prediction. Journal294

of medicinal chemistry, 48(1):312–320, 2005.295

[4] M. Liu, H. Gao, and S. Ji. Towards deeper graph neural networks. In Proceedings of the 26th ACM SIGKDD296

International Conference on Knowledge Discovery & Data Mining, pages 338–348, 2020.297

[5] D. Luo, W. Cheng, D. Xu, W. Yu, B. Zong, H. Chen, and X. Zhang. Parameterized explainer for graph neural298

network. arXiv preprint arXiv:2011.04573, 2020.299

[6] M. N. Vu and M. T. Thai. Pgm-explainer: Probabilistic graphical model explanations for graph neural networks.300

arXiv preprint arXiv:2010.05788, 2020.301

[7] N. Wale, I. A. Watson, and G. Karypis. Comparison of descriptor spaces for chemical compound retrieval and302

classification. Knowledge and Information Systems, 14(3):347–375, 2008.303

[8] R. Ying, D. Bourgeois, J. You, M. Zitnik, and J. Leskovec. Gnnexplainer: Generating explanations for graph neural304

networks. Advances in neural information processing systems, 32:9240, 2019.305

[9] H. Yuan, H. Yu, J. Wang, K. Li, and S. Ji. On explainability of graph neural networks via subgraph explorations.306

arXiv preprint arXiv:2102.05152, 2021.307

9

A Appendices308

A.0.1 Loss function309

The following equations further define the loss function as described in equation 3. In all following equations, the310

following notations are used:311

• HG = the set of LDBs that induce the decision region covering G312

313

• |HG| = the number of LDBs in HG314

315

• Bi(x) = xT
i + bi for the i-th LDB hi ∈ HG, where wi and bi are the basis and bias of hi, and x ∈Od is a point316

in space Od.317

318

• Bi(x = indication of whether point x lies on the positive or negative side of hi.319

320

• |Bi(x)| = the absolute value proportional to the distance of point x from hi.321

322

• σ = the sigmoid function323

Lsame(θ,G) =
1

|HG|
∑

hi∈HG

σ(−Bi(ϕgc(G)) ∗ Bi(ϕgc(Gθ))) (7)

The loss term as shown in equation 7 encourages the graph embeddings ϕgc(G) and ϕgc(Gθ) to lie on the same side of324

every LDB in HG.325

Lopp(θ,G) = min
hi∈HG

σ(Bi(ϕgc(G)) ∗ Bi(ϕgc(G
′
θ))) (8)

Lopp(θ,G) (equation 8) optimizes the counterfactuality of the explanations. The term requires the prediction on G′
θ to326

be of significant difference of the prediction on G. It encourages the graph embeddings ϕgc(G) and ϕgc(G
′
θ) to lie on327

opposites side of (at least) one LDB in HG .328

Rsparse(θ,G) = ||M1|| (9)

Rsparse(θ,G), as shows in equation 10, is used as a L1 regularization, such that only a small number of edges in G are329

selected as the counterfactuality explanation. Matrix M is produced by fθ on an input graph G.330

Rdiscrete(θ,G) = − 1

|M|
∑
i,j

(Mij log(Mij) + (1− Mij)log(1− Mij) (10)

Equation 10 shows the final term of the loss function, and is also referred to as the entropy regularization. The function331

makes sure to push each value entry in Mij to be close to either 0 or 1, such that Gθ and G′
θ approximate GS and GES332

quite well.333

10

	Introduction
	Scope of reproducibility
	RCExplainer
	RCExplainer-NoLDB

	Experimental setup
	Counterfactuality
	Robustness performance
	Datasets

	Methodology; re-implementation of code
	Results
	Result 1
	Result 2

	Discussion
	What was easy
	What was difficult

	Appendices
	Loss function

