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ABSTRACT

To remove a designated set of undesirable knowledge from Large Language Mod-
els (LLMs), various unlearning approaches have been proposed. Existing ap-
proaches typically define the target knowledge through fixed textual expressions
and then prevent the model from using it in those specific expressions, catering
to only the textual form of the undesirable knowledge, resulting in brittle “for-
getting” as unlearnt models may still recover the same knowledge when the ex-
pressions are paraphrased or altered. This research thus revisits unlearning in the
realistic and failure-prone setting of identifier–attribute (IA) knowledge, where
undesirable knowledge cannot be fully captured by fixed expressions. We formal-
ize knowledge extraction under relaxed elicitation conditions by marginalizing
over the hidden distribution of query textual expression strategy. This reframes un-
learning as minimizing extraction risk over expression variability. Instead of infea-
sibly sampling over latent prompts, we propose ConRep, a representation-based
approach that enforces the invariants implied by the distributional formulation: re-
tains remain stable and surface-invariant, while forgets are repelled and dispersed
toward low-information regions in the model’s representation space. To evaluate
unlearning trustworthily and thoroughly, we build a benchmark ClinicIA, which
comprises comprehensive knowledge probing under diverse task formats, span-
ning unlearning across the settings of two representative knowledge-provenance
regimes. Across evaluation tasks and regimes, our approach, ConRep, outperforms
prior approaches with remarkable performance with robust forgetting, while pre-
serving the knowledge it should maintain and the LLM’s general utility.

1 INTRODUCTION

Large Language Models (LLMs) memorize vast amounts of sensitive knowledge from training data,
raising critical concerns about privacy, copyright, and safety. Machine unlearning has emerged as
a solution to remove undesirable knowledge while preserving model utility (Cao & Yang, 2015; Si
et al., 2023; Liu et al., 2025). Practically, LLM unlearning is operationilized with a set of knowledge
designated to forget (i.e. forget set) and another designated to retain (i.e. retain set), an unlearn-
ing objective trains model towards minimizing memorization of forget set knowledge while less
downgrading memorization of retain set knowledge. However, although with various unlearning ob-
jectives designed, existing unlearning approaches largely operate at the textual level, which is fun-
damentally mismatched to how LLMs manipulate knowledge. For example, supressing LLM from
generating the string “Person X died from lung cancer” does not prevent the model from recovering
the same fact under rephrased knowledge probes such as “Person X was killd by lung cancer”. Since
such factual knowledge is acquired from diverse contexts and rephrasings, its latent associations
cannot be reliably captured or removed by targeting a single fixed expression.

In this paper, we particularly consider a scenario to unlearn a typical type of knowledge, namely
identifier–attribute (IA) knowledge, where a fact formed by an entity’s identifier (e.g., “John Smith”)
and corresponding attributes (e.g., “diagnosis”: “lung cancer”), as is shown in Figure 1.

We begin by analyzing the shared intuition behind mainstream unlearning objectives. Given the
widely adopted view that the essence of a knowledge sample is usually considered as the association
between two separable parts 1, unlearning objectives perform to break the association by suppressing

1e.g. TOFU benchmark (Maini et al., 2024), MUSE benchmark (Shi et al., 2025)
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the model’s ability to produce the suffix when given the prefix (See Appendix A). This follows an
deterministic view in which memorization is not directly observable and is therefore operationalized
via discoverable knowledge extraction (Nasr et al., 2023; Carlini et al., 2021a), in which, given a
fact, a fixed query built from the prefix is posed for the fact and the model is deemed to have “re-
membered” the fact if it completes with the correct suffix. By this logic, weakening the prefix–suffix
link should reduce the risk that a prefix-based probe elicits the suffix. Notably, identifier–attribute
(IA) knowledge in common forget/retain sets is often stored as (query, answer) pairs, making this
conditional-generation view especially natural .

We argue that this point of view underestimates the empirical risk to be minimized, only accounting
for the model’s response to a single, fixed expression of a knowledge query, ignoreing the diversity
of prompts that may reveal the same underlying fact. We thus reformulate extraction as a proba-
bilistic event over a latent distribution of admissible queries, and pose unlearning as minimizing
this distributional extraction risk. Direct optimization is intractable because the query distribution is
latent and sampling is inexhaustive. Our method, ConRep, sidesteps this by acting in representation
space: we treat a knowledge sample as an anchor whose semantic neighborhood implicitly aggre-
gates many admissible expressions. ConRep enforces retain knowledge remains stable across textual
variation, while forget knowledge samples are pushed to cluster around a random noise data point
in semantically sparse regions, thereby reducing their extractability under any reasonable query.

We introduce a benchmark ClinicIA for Clinical information is a core focus due to its sensitivity and
ease of unintended reaccess. To pressure methods under realistic threats, we design probe families
based on known fragile triggers in prior probing work—e.g., context-augmented prompts that bypass
surface suppression. Evaluation tasks include multiple text generation probes and Multiple Choice
Question (MCQ) probes, diversifying knowledge extraction probing with affordable computation.
The benchmark includes both pretrained and injected IA knowledge, allowing us to modulate ex-
posure and capture scale-dependent effects. Scoring reflects retain–forget separation across prompt
styles, correcting for chance and statistical significance. In aggregate, the benchmark is not just di-
agnostic: it exposes how easily surface-level forgetting can be undone by minor changes in query or
task, and thus sets a falsifiable target for representation-level decoupling.

This work addresses identifier–attribute unlearning through a probabilistic knowledge extraction
formulation and a representation-level surrogate. Our contribution is threefold:

1. Theoretical Reformulation. We formalize unlearning’s core challenge by reframing knowledge
extraction as a stochastic event marginalized over the latent distribution of query expressions, mov-
ing beyond the deterministic single-template view. This reveals why surface-level forgetting fails:
methods optimize for specific textual forms while the underlying knowledge remains accessible
through paraphrases and reformulations.

2. Benchmark - ClinicalIA. Unlike existing benchmarks that couple evaluation to narrow templates
or test only coarse domain removal, ClinicIA approximates the true extraction risk through diverse
probe families and carry out complementary knowledge-provenance regimes. By providing statisti-
cally meaningful and comparable metrics across methods, it enables the first rigorous assessment of
whether unlearning genuinely removes knowledge or merely masks specific expressions.

3. Unlearning Appoach We propose ConRep, a representation-based unlearning approach that
leverages the insight that semantic neighborhoods in representation space naturally aggregate ex-
pression variability, dispersing forget samples toward sparse regions while stabilizing retain sam-
ples. Evaluation results on ClinicalIA shows that ConRep achieves robust forgetting that transcends
surface-form suppression, as validated by our strongest retain-forget separation results, particularly
on expression-variant probes.

2 RELATED STUDIES

LLM memorization & Knowledge Extraction Understanding LLM knowledge memorization
is fundamental to unlearning formulations. While approaches like linear probing and membership
inference can detect memorization, no universal method exists for determining whether knowledge is
memorized without supporting assumptions (Chen et al., 2024; Carlini et al., 2019; 2021b; Ishihara,
2023). Practically, a widely adopted surrogate for exact knowledge memorization quantification is
knowledge extractability, that is, whether specific knowledge can be retrieved through querying

2
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Figure 1: Illustration of IA unlearning example. A IA knowledge sample could appear with numerous
expressions in the LLM training corpus, leading to the potential of an underlying distribution of queries that
may elicit the knowledge. Ideally, the knowledge should not be extracted by queries with any expression.

(Allen-Zhu & Li, 2024). This is quantified via discoverable extraction: splitting training examples
into prefix-suffix pairs and testing whether the LLM generates matching suffixes (Hayes et al., 2025;
Nasr et al., 2025; Carlini et al., 2021b). However, empirical studies shows that memorization does
not guarantee extractability, showing that diverse presentations of the same knowledge offer the basis
of its extractability (Allen-Zhu & Li, 2024; Wang et al., 2025) . This creates fundamental uncertainty
about which queries can successfully extract specific knowledge, as the space of effective prompts
is determined by the training-time exposure patterns and cannot be exhaustively enumerated.

Most unlearning approaches are framed by how they view probing of memorized knowledge, while
most adopt deterministic discoverable extraction (Nasr et al., 2025). However, this yields a yes-or-
no determination of whether extraction was successful with respect to a single user query, most
typically executed with deterministic greedy sampling, empirical studies from (Hayes et al., 2025)
addressed this underestimates extraction risks by a notable margin.

Unlearning Evaluation Existing benchmarks differ in evaluation task formulation, but none ex-
plicitly targets identifier–attribute unlearning, thus cannot reliably rank or select methods for such
cases. WMDP (Li et al., 2024), targeting harmful domain knowledge (e.g., biosecurity, chemical
weapons), uses multiple-choice questions as a knowledge manipulation test; this provides controlled
measurement but cannot verify actual forgetting of generative knowledge. Who’s Harry Potter (El-
dan & Russinovich, 2024) evaluates domain-level forgetting on fictional content through model-
generated outputs, yet its informal setup makes distinguishing suppression from true forgetting
unclear. TOFU (Maini et al., 2024) initially formulates knowledge explicitly as synthetic identi-
fier–attribute profiles, but in evaluation, adopts a QA-based knowledge extraction format. Consider-
ing insights from memorization studies (Hayes et al., 2025; Nasr et al., 2025), such QA formulations
might underestimate the true extraction risk, as the originally structured identifier–attribute knowl-
edge could still be extractable via diverse prompting methods beyond the given QA tasks.

Recent critiques argue about these benchmarks for their insufficiency in evaluating model knowledge
preservation after unlearning. (Thaker et al., 2025) show that small prompt changes can recover sup-
posedly forgotten knowledge, questioning benchmark generalization. (Hu et al., 2025) demonstrate
benign fine-tuning can restore erased content, revealing latent persistence not captured by test met-
rics. (Zheng et al.) find that wrong answers may reflect misalignment rather than erasure, showing
that behavioral success can be spurious. Overall, current benchmarks lack robustness to probe-space
variation and cannot verify whether unlearning actually disentangles knowledge internally.

Approaches for LLM Unlearning Mainstream preexisting unlearning approaches could be divided
into two categories: LM-Loss-based approaches that directly manipulate the language modeling ob-
jective (Liu et al., 2025), and representation-based approaches that intervene in the model’s internal
representations during knowledge processing.

3
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LM-loss-based approaches directly optimize generation probabilities for target content. Gradient
Ascent (GA) (Jang et al., 2023) pioneers in applying gradient ascent on forget sequences to maxi-
mize negative log-likelihood, Zhang et al. (2024) proposed Negative Preference Optimization (NPO)
on its basis to prevent catastrophic collapse. These methods unlearn knowledge as their fixed prompt
templates, regardless diversity of possible expression, and show fragility in maintaining consistent
forget rates when prompts are rephrased or restructured, even on benchmarks where they report
impressive results (Thaker et al., 2025; Hu et al., 2025; Zheng et al.). Representation-based ap-
proaches manipulate internal model states to achieve forgetting. Representation Misdirection for
Unlearning (RMU) (Li et al., 2024; Dang et al., 2025) steers forget representations toward random
directions, while mechanistic approaches (Guo et al., 2025) use interpretability techniques to local-
ize and target specific factual recall circuits within transformer architectures. Although transcending
word-by-word unlearning limitations through representation-level interventions that capture abstract
semantics, RMU is primarily designed for coarse-grained domain knowledge removal (Li et al.,
2024; Dang et al., 2025), the performance in fine-grained knowledge forgetting, such as specific
identifier-attribute relationships in TOFU, remains limited (Dorna et al., 2025; Thaker et al., 2025).

Given these limitations, there is a clear need for unlearning approaches that can both transcend
rigid textual expressions and achieve fine-grained control over knowledge removal, particularly for
identifier-attribute unlearning scenarios.

3 PROBLEM FORMULATION

3.1 PRELIMINARIES: DETERMINISTIC EXTRACTION

Most unlearning methods work on forget/retain sets using losses defined at fixed query templates. Let
F and K denote forget and retain sets. An IA fact t = (I, p, v)—I is an identifier (such as Nelson
Mandela, p is an attribute type (such as Cause of Death, and v is an attribute value (such as
Lung Infection)—is included in either F or K. Given t, a text generaton model g builts a query
q from a fixed textual expressoin template s0: q = g(I, p; s0). A judge function J(a, v) returns 1 if
given answer a to query q and the fact v ∈ t are identical; Otherwise 0.

In general, A common objective function in LLM unlearning can be formulated as follows,

min
θ

1

|F|
∑
t∈F

ℓforget
(
M, g(I, p; s0), v

)
︸ ︷︷ ︸

lower success under the fixed query

+ λ
1

|K|
∑
t∈K

ℓretain
(
M, g(I, p; s0), v

)
,︸ ︷︷ ︸

preserve success under the fixed query

(1)

where M is the target LLM for unlearning. LM-loss methods instantiate ℓforget via (negative) LM
likelihoods (e.g., GA/NPO variants), while representation methods pull/push hidden states but still
measure success at fixed s0 (or a tiny template set S0). Thus the underlying surrogate is a point (or
few-point) estimate tied to surface text.

We refer to succesful indentification of v given I and p as extraction. The deterministic extraction
found in past work can be forumated as

Pdet(v|I, p;M, g, s0) = J
(
M(g(I, p; s0)), v

)
.

3.2 STOCHASTIC EXTRACTION: A GENERALIZED FORMULATION

For IA facts—acquired across diverse contexts and phrasings—the deterministic extraction is a de-
generate probe: minor paraphrases or backgrounding often revive “forgotten” facts. To align with
this reality, we re-define extraction as success marginalized over prompt variability randomness.
Let s be drawn from S a distribution over admissible various IA queries. We define the stochastic
extraction as

Psto(v|I, p;M, g,S) = E s∼S
[
J
(
M(g(I, p; s)), v

)]
. (2)

Deterministic extraction is the special case with S = {s0}.

4
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Mandela is Lung Infection  
...

!’#%)#&’ Nelson Mandela(% (%0IO$ 
cause of death&’)HTHP’#RFHG(‘&

!’#%)#&’ Nelson Mandela(% (%0IO$ 
died from&’)HTHP’#RFHG(‘&
...
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Figure 2: Representation-space intuition of our unlearning approach. The left side shows an example
of how we obtain the positive pair counterparts for implementing retain/forget contrastive loss; the right side
illustrates the intuition of our objective design, i.e., to let the retain sample stay and stabilize, and push forget
samples to cluster around a random gibberish noise.

3.3 UNLEARNING OBJECTIVE UNDER PROBABILISTIC EXTRACTION

We seek low extraction on the forget set and high extraction on the retain set:

1

|F|
∑
t∈F

Psto(v|I, p;M ′, g,S) ≤ ε,
1

|K|
∑
t∈K

Psto(v|I, p;M ′, g,S) ≥ σ, (3)

for a post-unlearning model M ′ and thresholds ε ≪ σ. Therefore, we minimize an objective:

J (M ′;F ,K, g, S) =
1

|F|
∑
t∈F

Psto(v|I, p;M ′, g,S)︸ ︷︷ ︸
forget risk

− λ
1

|K|
∑
t∈K

Psto(v|I, p;M ′, g,S)︸ ︷︷ ︸
retain utility

, λ > 0.

(4)

4 UNLEARNING APPROACH: CONREP

Directly minimizing J is infeasible because of the inexhaustible sampling of the underlying ad-
missible query S distribution. Inspired by representation-steering studies (Zhao et al., 2025; Singh
et al., 2024) that seek fine-grained control of LLMs in the concept level that break the limitation of
text, we introduce a representation-level surrogate that approximates the distribution of knowledge
query-answer pairs as a neighborhood reflecting knowledge semantics in the LLM’s embedding
space, and seek to remove designated knowledge while preserving other by reshaping the geometry
of the model’s representation space driven by contrastive loss (Wu et al., 2022; Rimsky et al., 2024).
The intuitive illustration of our approach is shown in Figure 2

4.1 BASIC UNLEARNING OBJECTIVE DESIGN

Preliminaries. Let x be a sequence and h(x) ∈ Rd the pooled final-layer representation (mean-
pooling and ℓ2-normalization by default). We build our method with contrastive learning to directly
“pull” or “push” points in this space at the semantic level. We consider disjoint sets R (retain set)
and F (forget set). For each retain sample r ∈ R, we have K textual augmentations {r̃(k)}Kk=1 (see
Appendix B). For each forget example f ∈ F , we construct V noisy views {c(i)(f)}Vi=1.

Retain contrastive loss. We encourage retain samples to align in the space to cluster and push
away forget samples together, while taking augmentation of the pivot as hard-positive to stablize the
semantics of the pivot sample:

Lret
gen = − 1

|P|
∑
r∈P

log

∑
u∈A(r)∪R\{r}

exp
(
⟨h(r),h(u)⟩/τr

)
∑

z∈R∪F
exp

(
⟨h(r),h(z)⟩/τr

) , (5)
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where P is the set of retain pivots, A(r) the augmentations of r, and τr the retain temperature. This
general positive set (pivot’s own augmentations plus in-batch retain) serves broad utility preservation
in non-IA-structured or distribution-mismatched retain scenarios.

Forget contrastive loss. We destroy targeted IA binding for forget samples by push their represen-
tation in semantic space toward random noise, while (optionally) allowing weak cohesion among
forgets samples:

Lforg
gen = − 1

|F|
∑
f∈F

log

V∑
i=1

exp
(
⟨h(f),h(c(i)(f))⟩/τf

)
+

∑
f ′∈F\{f}

exp
(
⟨h(f),h(f ′)⟩/τf

)
∑

z∈{c(i)(f)}V
i=1∪F∪R

exp
(
⟨h(f),h(z)⟩/τf

) . (6)

Here τf denotes the temperature hyperparameter.

Constructing a Random-Noise Neighborhood. A naive single global noise vector would collapse all
forget anchors to (nearly) the same point; a purely random noise vector brings risk for controbility
(e.g. it may fall in somewhere dense retain samples cluster). We therefore construct, for each forget
anchor f , an random-noise neighborhood via token-swap corruption:

c(i)(f) = Corruptρ
(
f, n(i), ω(i)

)
, (7)

where we probabilistically replace tokens in f with corresponding positions from a random sequence
n(i) according to mask ω(i) with rate ρ. This strategy ensures that: (i) the resulting representations
remain within the model’s semantic space (avoiding optimization instability), (ii) each forget sam-
ple disperses to its own neighborhood rather than converging to a shared point. The outcome is a
semantically impoverished region that is reachable during optimization yet ineffective for IA recall.

Specializing Symmetric IA Unlearning Objective. In our preliminary experiments , we found that
when both retain and forget sets are IA structured and sampled from similar distributions (e.g., dif-
ferent slices of medical IA), the distribution-agnostic objectives in equation 5 and equation 6 expose
two failure modes: (i) treating any in-batch retain as positives compresses distinct identifiers, harm-
ing IA separability; (ii) letting forgets be mutual positives creates a single forget block that remains
extractable under prompt variation. Motivated by this, we derive special setups for constructing
positives/negatives under pairs under a symmetric setting, details are shown in subsection B.1.

Final loss. With the retain and forget contrastive loss to guide reshaping the geometry of the model’s
representation space, we add the final total unlearning objective with an auxiliary Language Model
(LM) loss term to discourage the model from rebuilding fluent predictions on forget inputs while
gently adapting the LM head to retain inputs (via γ), improving instruction-following stability:

Lcon = wf Lforg + (1− wf )Lret, (8)

LLM = Ex∈F
[
NLLθ(x)

]
− γ Ey∈R

[
NLLθ(y)

]
, (9)

Ltotal = (1− λLM)Lcon − λLM LLM. (10)

5 BENCHMARK: CLINICIA

We introduce a new benchmark ClinicIA (Clicical Identifier-Attribute Unlearning) to provide trust-
worthy evaluation for IA unlearning faced with the limitation of pre-existing unlearning benchmarks:
they couple evaluation to textual forms (fixed prompt or a narrow template set) and underestes ex-
traction risk under paraphrases or alternative evaluation task formats.

ClinicIA closes this gap by approximating the latent query-expression distribution with diversified
evaluation tasks and by evaluating across complementary knowledge-provenance regimes. These
choices yield a stricter, distribution-aware assessment of IA unlearning while remaining practical.

We ground this benchmark in clinical IA knowledge, for both its real-world salience to trustworthy
medical deployment, and its vulnerability under expression variability, since highly structured clini-
cal IA knowledge is nevertheless learned from highly diverse training setups 2. To enable unlearning
for all approaches, the structured IA knowledge samples are to declarative sentences for training.

2For example, Next-token-prediction training on clinical notes, medical dialogues, articles, etc.
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Evaluation tasks. To comprehensively assess unlearning robustness, we employ two complemen-
tary probe families that test different aspects of knowledge retention: generation probes evaluate the
model’s ability to produce knowledge, while multiple-choice question (MCQ) probes test recogni-
tion without requiring generation, together capturing both active recall and passive identification.

Generation Probes. Since unlearning operates on declarative statements while knowledge can be
elicited through diverse query forms, we probe via three expression variants: (i) QA probes, di-
rect questions about the IA fact, (ii) Cloze probes, fill-in-the-blank templates, and (iii) Background-
augmented probes— , queries preceded by contextual information about the entity. The first two rep-
resent standard rephrasings that approximate the distribution of natural queries, while background-
augmentation specifically targets a known vulnerability where contextual priming can bypass
surface-level suppression, as demonstrated in recent unlearning critiques. We denote them as Q/C/B
for remaining part respectively.

MCQ Probes. Adopt multiple-choice format to test knowledge extraction. Each query presents four
options, and the model must choose the correct one. The confidence that LLM hold of each answer
is evaluated based on the log-likelihood of each option, with the highest choice considered as the
predicted answer. This probe family includes three types: (i) Identifier-Equal (ID-eql)—selecting
the correct identifier given an attribute value, (ii) Identifier-Closest (ID)—finding the identifier with
the nearest attribute value, and (iii) Attribute-Equal (ATT)—identifying the correct attribute for a
given identifier. Altoghther, they tests whether knowledge remains accessible even when generation
is successfully suppressed. We denote them as IDeq/ID/ATT respectively throughout remaining part.

Datasets and regimes. We construct ClinicIA with two knowledge-provenance regimes to systemat-
ically evaluate unlearning along two critical dimensions: (1) knowledge embedding depth—whether
IAs are deeply embedded from pretraining or newly injected via finetuning, and (2) retain-forget dis-
tributional symmetry—whether retain and forget sets come from distinct or identical distributions.

Regime A: Pre-embedded with weak symmetry. Celebrity deaths and diagnoses embedded during
pretraining test unlearning of deeply ingrained knowledge. We forget one celebrity IA type (e.g.,
deaths) while retaining general Wikipedia knowledge, but crucially evaluate on both Wikipedia and
the complementary celebrity type (e.g., diagnoses). This “weakly symmetric” design—asymmetric
training but symmetric evaluation—tests whether methods can precisely remove specific IAs while
preserving structurally similar ones, challenging unlearning when knowledge is deeply rooted.

Regime B: Injected with strong symmetry. Synthetic clinical IAs from PMC-Patients enable con-
trolled injection where retain/forget sets are randomly split from identical distributions. Each IA
appears across clinical notes, dialogues, and articles, creating rich expression diversity. setting. In
this case retain/forget could be considered i.i.d, we note as “strongly symmetric” senario, represent-
ing the hardest precision challenge, testing whether methods can achieve selective forgetting without
distributional cues.

These complementary regimes reveal whether methods fail due to insufficient forgetting (Regime A:
deep embeddings resist removal) or imprecise forgetting (Regime B: symmetric distributions cause
collateral damage). Details about datasets and regime settings see Appendix C.1.1 and C.1.2.

Evaluation Metrics. To make results comparable across probes of different difficulty, we report
baseline-normalized scores based on both the accuracy of the baseline model (no unlearning) and
the unlearnt model. We also flip the forgetting axis so that “more forgetting” maps to larger values
to keeps directions consistent with “better retention”. For MCQ we apply chance correction so that
random guessing evaluates near zero rather than inflating results, and we use significance filtering
to hide normalized MCQ scores when the baseline is not reliably above chance, avoiding unstable
ratios. Exact formulas and statistical tests are provided in Appendix C.2

6 EXPERIMENTAL RESULTS

6.1 EXPERIMENT SETUP

Models. We implement unlearning on ClinicIA with Llama-2-7b-chat-hf (Touvron et al., 2023), and
Mistral-7B-Instruct-v0.2, two open-source LLMs with advanced knowledge manipulation ability at
their sizes (Jiang et al., 2023) that have been widely used.

7
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Table 1: Regime A (Unlearnt on Diagnosis). Baseline shows raw accuracies; others show relative
scores. MMLU is raw and excluded from Avg. † not significant

Retain Forget Avg.

Model MMLU

Death
Generation

Q/C/B ↑

Death
MCQ

IDeq/ATT/ID∼ ↑

Diagnosis
Generation

Q/C/B ↓

Diagnosis
MCQ

ID/ATT ↓
Llama2
Baseline
(Acc.)

0.464 0.53/0.52/0.25 0.29/ 0.39 /0.34 0.23/0.10/0.13 0.29†/0.51

+ Graddiff 0.461 92.5/100.0/100.0 100.0/ 87.9 /90.4 33.4/60.0/0.00 –/30.2 69.4
+ NPO 0.463 97.5 / 99.2 /100.0 100.0/100.0/90.4 25.0/0.0/28.5 –/0.0 64.1
+ RMU 0.462 100.0/100.0/100.0 77.7/ 94.0 /100.0 33.4/60.0/0.0 –/83.0 74.8
+ ConRep 0.455 95.8 / 90.7 / 75.9 100.0/ 87.9 /100.0 91.7/20.1/42.9 –/67.9 77.3
Mistral
Baseline
(Acc.)

0.590 0.64/0.71/0.58 0.29/ 0.59 /0.25† 0.19/0.21/0.42 0.35†/0.55

+ Graddiff 0.517 0.0/0.0/0.0 0.0/ 51.3 /– 100.0/100.0/100.0 –/98.4 50.0

+ NPO 0.574 15.7/48.8/8.3 100.0/ 74.4 /– 100.0/100.0/95.5
–/100.0

(+11.5) 71.4

+ RMU 0.583 91.8/91.4/57.1 100.0/ 73.1 /– 100.0/100.0/54.5
–/100.0

(+44.3) 85.3

+ ConRep 0.583 91.8/84.0/64.7 100.0/ 97.4 /– 100.0/81.8/86.4
–/100.0

(+11.5) 89.6

Table 2: Regime B. Baseline row reports accuracy to each . Other rows are percentages relative to
baseline; MCQ uses chance correction with p0=0.25. † not significant

Model MMLU
Generation

(Q/C/B)
∆ Gen

(F%−R%)
MCQ

(ATT/IDeq/IDident)
∆ MCQ

(F%−R%)

Mistral
Baseline 0.269 0.567/0.742/0.325 – 0.374/0.320†/0.280† –

+ Graddiff 0.230
R%: 116.4/90.7/166.5
F%: 111.1/86.3/156.9

-5.3/-4.4/-9.5
R%: 8.1/–/–
F%: -8.1/–/–

-16.1/–/–

+ NPO 0.231
R%: 98.1/90.3/137.5
F%: 93.5/87.6/132.3

-4.6/-2.7/-5.2
R%: 32.3/–/–
F%: 201.6/–/–

169.4/–/–

+ RMU 0.272
R%: 96.6/89.9/150.2
F%: 91.7/86.3/153.8

-4.9/-3.6/ 3.7
R%: 80.6/–/–
F%: 8.1/–/–

-72.6/–/–

+ ConRep 0.266 R%: 97.4/99.5/165.8
F%: 88.2/87.6/144.6

-9.2/-11.9/-21.2 R%: 201.6/–/–
F%: 185.5/–/–

-16.1/–/–

Utility Metric. We use MMLU (Massive Multitask Language Understanding) (Hendrycks et al.,
2021),the widely adopted evaluation protocal for model’s general knowledge manipulation ability,
to assess if (or how much) the unlearning hurt LLM’s general utility.

Compared Approaches We compare our proposed ConRep with three competitive unlearning ap-
proaches: Graddiff (Yao et al., 2024), NPO (Zhang et al., 2024), RMU (Li et al., 2024).

Training Details We set default epoch number to be 10 epochs and early stpos when the drop of
utility greater than gain of knowledge probe accuracy. For Regime A to unlearn Pre-embedded IA
knowledge, we operate directly on the released LLMs checkpoints; For Regime B to unlearn post-
hoc injected IA knowledge, we finetune LLMs with the language modelling task on both the forget
set and retain set, and then implement unlearning for the finetuned model. As llama-2-7b-chat-hf
scores a low performance result even before unlearning, we consider it deficient to memorize the
involved synthetic clinical IA knowledge concretely, and only report performance on Mistral-7B-
Instruct-v0.2 for regime B. Further implementation details see Appendix E.

6.2 RESULTS AND ANALYSIS

We evaluate unlearning performance across our two complementary regimes, examining how meth-
ods handle different embedding depths and symmetry levels. Table 1 shows Regime A results with
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forget set being Celebrity Diagnosis; We also report performance in the complementary setup (forget
set being Celebrity Deaths) in Appendix D.3.1.

Regime A: Deep embeddings expose surface-level brittleness. When unlearning pre-embedded
celebrity IAs, the performance patterns directly validate our benchmark’s design principles. On
Llama-2, ConRep achieves the highest forget scores on Diagnosis generation (91.7/20.1/42.9 for
Q/C/B), with the dramatic difference between Q (91.7) and C (20.1) probes revealing how even
simple template variations can resurrect supposedly “forgotten” knowledge in surface methods. The
background-augmented probe (B) serves as our most stringent test—here ConRep’s 42.9 vastly ex-
ceeds competitors (all scoring 0.0), demonstrating that contextual priming bypasses textual suppres-
sion but not representation-level decoupling.

The Mistral results reveal a ceiling effect where all methods achieve near-perfect generation forget-
ting, yet differentiation emerges through utility preservation: ConRep maintains the highest MMLU
(0.583 vs 0.517 for Graddiff), confirming that representation reorganization with LM guidance
avoids the catastrophic interference plaguing gradient-based methods. This pattern—where aggres-
sive forgetting damages general capabilities—underscores why operating in representation space is
crucial for practical deployment.

Regime B: Controlled injection with strong symmetry. Table 2 exposes a fundamental challenge
in symmetric unlearning: when retain and forget sets share identical distributions, augmentation
benefits both sides. All methods show R% and F% exceeding baseline, creating an apparent para-
dox where ”better” performance occurs on both retain and forget, indicating the tough knowledge
injection with compromising on general utility (low baseline MMLU performance) may lead to an
unstable knowledge manipulation scenario, but an advanced unlearning method could still make a
difference. Our ConRep’s ∆ values (-9.2/-11.9/-21.2) reveal the critical insight: what matters is not
absolute performance but the differential gap. The -21.2 on background-augmented probes—nearly
6× larger than competitors—demonstrates that semantic decoupling in representation space main-
tains separation even when surface-level distinctions vanish.

Cross-regime insights. Two patterns emerge across regimes: (1) Expression robustness—ConRep
consistently excels on Cloze and Background-augmented probes, which test resistance to paraphras-
ing and contextual priming, confirming that semantic-level intervention transcends template-specific
suppression. (2) Utility preservation—Unlike Graddiff which damages MMLU severely, ConRep
maintains baseline utility (Regime A: 0.455 vs 0.464; Regime B: 0.266 vs 0.269), demonstrating
that representation reorganization with LM guidance preserves general capabilities while achieving
targeted forgetting.

7 CONCLUSION

This work identifies and addresses a fundamental gap in LLM unlearning: the mismatch between
how knowledge is encoded (across diverse expressions) and how it is targeted for removal (via fixed
templates). With reformalizing unlearning objective, we stress why existing methods fail: they opti-
mize for specific textual forms while knowledge remains accessible through unlimited variations.

Our contributions span formulation, unlearning approach, and benchmarking. The ConRep method
demonstrates that operating in representation space—where semantic neighborhoods naturally ag-
gregate expression variability—achieves robust forgetting that withstands prompt perturbations. The
ClinicIA benchmark reveals this superiority empirically: across deep pre-embedded knowledge and
symmetrically distributed injected knowledge, ConRep consistently achieves the strongest retain-
forget separation, particularly on expression-variant probes where surface methods fail.

These findings establish that robust IA unlearning requires intervention at the semantic level rather
than output suppression. While challenges remain—including model-specific variations and scal-
ability to larger knowledge sets—this work provides both theoretical grounding and practical val-
idation for achieving true knowledge removal. Future directions include mechanistic analysis of
representation changes, extension to other knowledge types beyond IA, and integration with consti-
tutional AI frameworks for safer deployment.
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A LLM MEMORIZATION QUANTIFICATION: KNOWLEDGE EXTRACTION

Figure 3: Left: from MUSE benchmark, news incident knowledge; right: from TOFU benchmark,
IA knowledge

This appendix illustrates the fundamental prefix-suffix paradigm that underlies mainstream unlearn-
ing approaches and exposes its limitations for IA knowledge. As shown in Figure 3, existing unlearn-
ing methods conceptualize knowledge as decomposable into prefix and suffix components, where the
association between these parts constitutes the essence of the knowledge. This decomposition man-
ifests differently across knowledge types:

News Incident Knowledge (MUSE3): The prefix contains the contextual setup (“MP Stuart Mc-
Donald has been appointed as the SNP’s new treasurer”), while the suffix holds the completion.
Unlearning targets the model’s ability to complete this specific textual pattern.

Identifier-Attribute Knowledge (TOFU4): The knowledge is structured as identifier-attribute pairs,
where queries probe specific attributes (“What is Anara Yusifova’s latest published work?”). The
prefix encompasses the identifier and attribute type, while the suffix contains the attribute value.

The figure reveals a critical disconnect between how unlearning is implemented (blue annotations)
and how it is evaluated (green annotations):

Training Phase (Blue): Unlearning objectives directly manipulate the prefix-suffix co-occurrence
probability, typically by maximizing the negative log-likelihood of generating the suffix given the
prefix. This assumes that breaking this single textual link will prevent knowledge extraction.

Evaluation Phase (Green): Knowledge extraction is tested through queries built from the prefix to
probe whether the model can still produce the suffix. However, evaluation typically uses only the
same fixed query template used during training.

B METHODOLOGY DESIGN DETAILS

B.1 TRICK TO ENHANCE SYMMETRIC IA UNLEARNING

Trick 1: Pivot-only positives for retain. Let R be all retain embeddings and F all forget em-
beddings. For each retain pivot r with its augmentation set A(r), only A(r) are positives; all other
retain (other pivots and their augments) and all forget are negatives:

Lret
sym = − 1

|P|
∑
r∈P

log

∑
u∈A(r)

exp
(
⟨h(r),h(u)⟩/τr

)
∑

z∈R∪F
exp

(
⟨h(r),h(z)⟩/τr

) . (11)

This preserves IA separability across identifiers while clustering each identifier’s expressions.

Trick 2: Per-anchor noisy positives for forget (no mutual positives) with retain-push. For each
forget anchor f , only its own token-swap noisy views {c(v)(f)}Vv=1 are positives; all other forgets

3https://muse-bench.github.io/
4https://locuslab.github.io/tofu/
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and all retain are negatives. We push away from retain via a negative-column weight wret ≥ 1 and
an additive margin m≥0 on retain logits. Define the compact sums

s+f =

V∑
v=1

exp
(

⟨h(f),h(c(v)(f))⟩
τf

)
, sF−

f =
∑

f ′∈F\{f}

exp
(

⟨h(f),h(f ′)⟩
τf

)
, sR−

f =
∑
r∈R

exp
(

⟨h(f),h(r)⟩+m
τf

)
,

(12)
we have the loss defined as

Lforg
sym = − 1

|F|
∑
f∈F

log
s+f

s+f + sF−
f + wret s

R−
f

. (13)

Temperature separation τf < τr further sharpens forget dispersion while keeping retain cohesion
smooth.

Relation to the general case objective. Compared with general case objectives shown by equa-
tion 5 and equation 6, the symmetric specialization changes only the positive/negative set design
(pivot-only and per-anchor) and adds a retain-push (weight+margin) for forget. All other compo-
nents (on-manifold token-swap control views, per-anchor multi-view construction, and temperature
split) remain shared with the general form.

C CLINICIA BENCHMARK DETAILS

C.1 DATASETS

C.1.1 REGIME A: PRE-EMBEDDED CELEBRITY IAS

• Celebrity Deaths: 450 public figures’ cause and year of death from Wikipedia/Kaggle5

• Celebrity Diagnosis: 58 celebrities’ medical conditions from MedPage Today, cross-
verified with Wikipedia6

• Training configuration: Due to limited dataset sizes (¡100 samples), we use general
Wikipedia passages as retain set to avoid overfitting, while reserving the complementary
celebrity dataset for evaluation

• Data format: Converted to declarative statements for training (e.g., “Nelson Mandela died
from lung infection”)

C.1.2 REGIME B: INJECTED CLINICAL IAS

• PMC Clinical IAs: 25,000 synthetic patient records with attributes (age, gender, diagnosis)

• Source materials: Asclepius medical dialogues (Kweon et al., 2024) and PMC-Patients
clinical summaries (Zhao et al., 2022)

• Expression contexts: Each IA embedded in clinical discharge notes, medical dialogue
transcripts, and research article excerpts

• Current experiments: Use highest-diversity setting; lower-diversity variants reserved for
future model capacity studies

• Train/test split: 900 retain / 100 forget after quality filtering

C.2 EVALUATION METHODOLOGY

C.2.1 SCORE NORMALIZATION

We employ baseline-relative, chance-corrected scoring to ensure comparability across probes of
different difficulty and to maintain directional consistency between retain and forget metrics.

5https://www.kaggle.com/datasets/hugodarwood/celebrity-deaths
6https://www.medpagetoday.com/popmedicine/celebritydiagnosis

15

https://www.kaggle.com/datasets/hugodarwood/celebrity-deaths
https://www.medpagetoday.com/popmedicine/celebritydiagnosis


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Generation Probes (Q/C/B). For unlearned model accuracy Sunl and baseline accuracy Sbase:

Retain score = clip[0,100]

(
100× Sunl

Sbase

)
; (14)

Forget score = clip[0,100]

(
100×

(
1− Sunl

Sbase

))
. (15)

MCQ Probes (chance-corrected). With chance probability p0 = 0.25:

Retain score = clip[0,100]

(
100× Sunl − p0

Sbase − p0

)
; (16)

Forget score = clip[0,100]

(
100×

(
1− Sunl − p0

Sbase − p0

))
. (17)

Clipping to [0,100] prevents rewards for exceeding baseline (> 100) and over-penalization for be-
nign performance dips (< 0), ensuring scores reflect our intended evaluation goals.

C.2.2 STATISTICAL SIGNIFICANCE TESTING

For MCQ probes, we perform significance testing to avoid unstable normalization when baseline
performance is not reliably above chance. We test the null hypothesis H0 : p ≤ 0.25 using a one-
sided binomial test at α = 0.05. Probes failing this test are marked with † in baseline rows and
masked as “–” in method rows, excluding them from averaged scores.

C.2.3 REPORTING CONVENTIONS

• Baseline rows (gray): Report raw accuracies to establish absolute performance levels

• Method rows: Report normalized scores (0-100 scale) for cross-probe comparability

• MMLU: Reported as raw accuracy and excluded from averages, serving as an orthogonal
utility metric

• Row averages: Unweighted mean over all unmasked relative scores in that row

• Regime B: Additionally report ∆ = F% − R% (more negative is better) to capture net
separation under strong symmetry

D IMPLEMENTATION DETAILS

D.1 TRAINING CONFIGURATION

We implement unlearning with the following settings:

• Epochs: Default 10 epochs with early stopping when utility drop exceeds knowledge probe
accuracy gain

• Regime A: Direct unlearning on released model checkpoints (Llama-2-7b-chat-hf, Mistral-
7B-Instruct-v0.2)

• Regime B: Fine-tune on combined retain/forget sets using language modeling objective,
then apply unlearning to the fine-tuned model

• Model selection: Mistral-7B-Instruct-v0.2 only for Regime B due to Llama-2’s insufficient
memorization of synthetic clinical IAs

D.2 STATISTICAL TESTING DETAILS

For significance filtering of MCQ baselines, we apply probe-specific sample sizes:

• Celebrity probes: Full probe sizes (e.g., death id eq=114, death id sim=114, diag id=52,
diag att=51)
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• PMC probes: Pooled retain (100 per probe) and forget samples (ATT=32, IDeq=50, IDi-
dent=32)

• Testing procedure: One-sided binomial test with H0 : p ≤ 0.25 at α = 0.05

• Masking: Probes with p-value ≥ 0.05 are daggered in baseline and masked in all method
rows

D.3 ADDITIONAL RESULTS

D.3.1 REGIME A: COMPLEMENTARY SETTING (UNLEARNING DEATHS)

Table 3 presents results when forgetting Celebrity Deaths while retaining Diagnosis knowledge.
Under this configuration, RMU achieves a slightly higher average on Llama-2 (79.4 vs 72.7),
though ConRep demonstrates stronger forgetting on generation probes, particularly the background-
augmented probe (96.5). On Mistral, ConRep achieves the best average (72.7) with comprehensive
forgetting scores (100.0/93.8/98.5) while maintaining competitive retention. These results confirm
that ConRep’s representation-space approach maintains consistent performance across both for-
get/retain configurations.

D.3.2 RAW ACCURACY TABLES

Tables 4 and 5 present raw accuracies for Regime A under both forget configurations, while the
Table 6 shows PMC raw accuracies with explicit deltas. These raw scores provide absolute perfor-
mance context for the normalized results presented in the main text.

Table 3: Celebrity (Unlearnt on Deaths, with baseline). Baseline (gray) shows raw accuracies;
other rows show relative scores (retain clipped to [0,100]). MMLU is raw and excluded from Avg.
† not significant vs. chance (one-sided, α=0.05).

Retain Forget Avg.

Model MMLU

Diagnosis
Generation

Q/C/B ↑

Diagnosis
MCQ

ID/ATT ↑

Death
Generation

Q/C/B ↓

Death
MCQ

ATT/IDeq/ID∼ ↓
Llama2

Baseline
(Acc.)

0.464 0.23/0.10/0.13 0.29†/0.51 0.53/0.52/0.25 0.39/0.29†/0.34 –

+ Graddiff 0.459 100.0/100.0/100.0 100.0/62.3 –/56.8/17.3 54.5/ – /0.0 57.6
+ NPO 0.462 91.6/100.0/100.0 49.9/92.5 –/31.3/31.1 30.3/ – /9.6 55.5

+ RMU 0.460 75.0/100.0/100.0 49.9/69.8 95.8/74.6/36.2
87.9/ – /100.0

(+4.8) 79.4
+ ConRep

(ours) 0.450 100.0/100.0/42.9 0.0/62.3 85.0/78.0/96.5 15.1/ – /0.0 72.7
Mistral

Baseline
(Acc.)

0.590 0.19/0.21/0.42 0.35†/0.55 0.64/0.71/0.58 0.59/0.29†/0.25† –

+ Graddiff 0.437 0.0/0.0/0.0 0.0/1.6 100.0/100.0/98.5 48.7/ – /– 38.8
+ NPO 0.571 40.0/27.3/40.9 79.9/21.3 51.0/89.5/63.9 82.1/ – /– 55.1
+ RMU 0.461 100.0/54.6/45.5 20.0/60.7 95.2/82.7/67.7 94.9/ – /– 69.0
+ ConRep

(ours) 0.582 60.0/81.8/18.2 100.0/60.7 100.0/93.8/98.5 41.0/ – /– 72.7

E REPRODUCIBILITY STATEMENT

We provide materials for reproduce our results in the supplementary materials containing (i) training
code for ConRep implementing both the general and symmetric IA objectives described in §4 (incl.
token-swap corruption; see §4.1), (ii) the full ClinicIA benchmark dataset splits, and probes—for
both knowledge-provenance regimes (Regime A/B; datasets and preprocessing in App. C), and (iii)
an evaluation suite that reproduces all metrics and tables, including generation probes (Q/C/B) and
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Table 4: Celebrity (Unlearnt on Diagnosis). Left: main retain (MMLU) and supplementary retain
on the opposite celebrity task (Deaths). Right: forget on Diagnosis. Higher ↑ is better for retain;
lower ↓ is better for forget. Baseline rows show the unlearned LLM.

Retain Forget

Model / Method MMLU ↑

Death
Generation Acc.

Q/C/B ↑

Death
MCQ Acc.

IDeq/ATT/ID∼ ↑

Diagnosis
Generation Acc.

Q/C/B ↓

Diagnosis
MCQ Acc.
ID/ATT↓

Llama2
Baseline (Acc.) 0.46 0.53/0.52/0.25 0.29/0.39/0.34 0.23/0.10/0.13 0.29/0.51
+ Graddiff 0.46 0.49/0.52/0.35 0.29/0.38/0.33 0.15/0.04/0.13 0.29/0.43
+ NPO 0.46 0.51/0.51/0.29 0.29/0.39/0.33 0.17/0.10/0.10 0.27/0.51
+ RMU 0.46 0.54/0.58/0.32 0.28/0.39/0.34 0.15/0.04/0.13 0.29/0.29
+ ConRep (ours) 0.45 0.50/0.47/0.19 0.31/0.38/0.36 0.02/0.08/0.08 0.25/0.33
Mixtral
Baseline (Acc.) 0.59 0.64/0.71/0.58 0.29/0.59/0.25 0.19/0.21/0.42 0.35/0.55
+ Graddiff 0.44 0.00/0.00/0.01 0.25/0.27/0.34 0.00/0.00/0.00 0.21/0.31
+ NPO 0.57 0.10/0.35/0.05 0.29/0.50/0.27 0.00/0.00/0.02 0.31/0.22
+ RMU 0.58 0.59/0.65/0.33 0.32/0.50/0.30 0.00/0.00/0.19 0.12/0.12
+ ConRep (ours) 0.58 0.59/0.60/0.38 0.31/0.58/0.30 0.00/0.04/0.06 0.29/0.22

Table 5: Celebrity (Unlearnt on Deaths). Left: main retain (MMLU) and supplementary retain
on the opposite task (Diagnosis). Right: forget on Deaths. Baselines are unlearned LLMs.

Retain Forget

Model / Method MMLU ↑

Diagnosis
Generation Acc.

Q/C/B ↑

Diagnosis
(MCQ Acc.)

ID/ATT ↑

Death
Generation Acc.

MCQ Q/C/B ↓

Death
MCQ Acc..

ATT/IDeq/ID↓
Llama2
Baseline (Acc.) 0.46 0.23/0.10/0.13 0.29/0.51 0.53/0.52/0.25 0.39/0.29/0.34
+ Graddiff 0.46 0.31/0.15/0.13 0.29/0.41 0.46/0.22/0.21 0.32/0.27/0.37
+ NPO 0.46 0.21/0.12/0.15 0.27/0.51 0.43/0.36/0.18 0.35/0.32/0.33
+ RMU 0.46 0.17/0.19/0.17 0.29/0.29 0.02/0.13/0.16 0.27/0.30/0.25
+ ConRep (ours) 0.45 0.23/0.17/0.06 0.21/0.41 0.08/0.11/0.01 0.32/0.37/0.37
Mixtral
Baseline (Acc.) 0.59 0.19/0.21/0.42 0.35/0.55 0.64/0.71/0.58 0.59/0.29/0.25
+ Graddiff 0.44 0.00/0.00/0.00 0.21/0.31 0.00/0.00/0.01 0.27/0.25/0.34
+ NPO 0.57 0.08/0.06/0.17 0.33/0.31 0.32/0.07/0.21 0.31/0.25/0.24
+ RMU 0.46 0.19/0.12/0.19 0.29/0.29 0.03/0.12/0.19 0.27/0.29/0.25
+ ConRep (ours) 0.58 0.12/0.17/0.08 0.40/0.43 0.00/0.04/0.01 0.45/0.30/0.31

MCQ scoring with chance correction and significance masking (definitions and tests in App. C.2;
results in Tabs. 1, 2, 3). All model checkpoints are publicly available and referenced (Llama-2-
7b-chat-hf, Mistral-7B-Instruct-v0.2; see §6 and App. E). Formal definitions of deterministic vs.
stochastic extraction and the unlearning objective are given in §3 (with additional derivations in App.
B). For datasets built from public sources (Celebrity Deaths/Diagnosis; PMC-Patients/Asclepius),
filtering rules, and exact prompting templates used to instantiate QA/Cloze/Background-augmented
items are documented in App. C.

F THE USE OF LARGE LANGUAGE MODELS

This paper used Large Language Models (LLMs) to polish writing; we also use LLMs to check and
to improve latex code writing of this paper, specifially for format adjustment.
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Table 6: PMC raw accuracies with explicit deltas.

Model MMLU Generation
(Q/C/B)

∆ Gen
(F−R)

MCQ
(ATT/IDeq/IDident)

∆ MCQ
(F−R)

Mistral

Baseline 0.269 0.57/0.74/0.33 – 0.37/0.32†/0.28† –

+ Graddiff 0.23 R: 0.66/0.67/0.54
F: 0.63/0.64/0.51

-0.03/-0.03/-0.03 R: 0.26/–/–
F: 0.24/–/–

-0.02/–/–

+ NPO 0.231 R: 0.56/0.67/0.45
F: 0.530/0.65/0.43

-0.03/-0.02/-0.02 R: 0.29/–/–
F: 0.50/–/–

+0.21/–/–

+ RMU 0.272 R: 0.55/0.67/0.49
F: 0.520/0.64/0.50

-0.03/-0.03/+0.01 R: 0.35/–/–
F: 0.26/–/–

-0.09/–/–

+ ConRep
(ours) 0.27 R: 0.55/0.74/0.54

F: 0.500/0.65/0.47
-0.05/-0.09/-0.07 R: 0.50/–/–

F: 0.48/–/–
-0.02/–/–
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