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Abstract
Training large language models to predict beyond
their training context lengths has drawn much atten-
tion in recent years, yet the principles driving such
behavior of length generalization remain underex-
plored. We propose a new theoretical framework to
study length generalization for the next-token predic-
tion task, as performed by decoder-only transformers.
Conceptually, we show that length generalization
occurs as long as each predicted token depends on
a small (fixed) number of previous tokens. Our the-
oretical model justifies certain techniques to modify
positional embeddings which have been introduced
to improve length generalization, such as position
coupling. We support our theoretical results with
experiments on synthetic tasks and natural language,
which confirm that a key factor driving length gener-
alization is a “sparse” dependency structure of each
token on the previous ones. Inspired by our theory,
we introduce Predictive Position Coupling, which
trains the transformer to predict the position IDs used
in a positional coupling approach. Predictive Posi-
tion Coupling thereby allows us to broaden the array
of tasks to which position coupling can successfully
be applied to achieve length generalization.

1. Introduction
Enabling large language models (LLMs) to generalize to con-
texts longer than their training context length has emerged as
a key problem in recent years. Indeed, many factors limit the
context length of sequences which can be used during train-
ing, including the increased computational cost of training on
long sequences (Tay et al., 2022) as well as the fact that longer
sequences may be less numerous in the training dataset. Nev-
ertheless, many applications require LLMs to be accurate on
extremely long context lengths at inference time: for instance,
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a popular technique recently has been to use scratchpads or
Chain-of-Thought (CoT) to perform various logic and reasoning
tasks, and the length of the scratchpad can become very large,
especially when combined with search or reinforcement learn-
ing techniques (DeepSeek-AI et al., 2025; Team et al., 2025).

Unfortunately, transformers struggle to length generalize
on even very simple arithmetic and logic tasks, such as
computing parities, integer addition, and variable assignment
(Anil et al., 2022; Kazemnejad et al., 2023). Indeed, only
recently have transformer models successfuly been trained to
length-generalize to contexts many times their training length
on integer addition tasks, using a technique known as position
coupling (closely related to Abacus embeddings) (Cho et al.,
2024a;b; McLeish et al., 2024). For many other simple prob-
lems, comparable length generalization remains a challenge. In
light of this uneven progress, a natural question is whether there
is a more principled way of understanding length generalization.
In particular, can we formally reason about what structural
properties of data aid or inhibit length generalization? More-
over, can this suggest architectural modifications, such as to
positional embeddings, which improve length generalization?

Contributions. In this paper we give a positive answer to the
above questions: First, we introduce a class of data distributions,
namely those with sparse planted correlations (Definition 3.2),
which, roughly speaking, captures the property observed in
many synthetic and natural language tasks that each token to
be predicted depends on a small number k of previous tokens,
which we call the sparsity. We then establish the following:

• As long as the sparsity k does not grow with the sequence
length, then a simple class of models generalizing attention
heads (namely, sparse functional attention; Definition 3.3)
has provable length generalization (Theorem 4.3). This result
also relies on an additional assumption of locality on the
hypothesis class.

• While the locality assumption is typically violated in practice,
we show that (a theoretical abstraction of) position coupling
can remove the locality requirement (Proposition 4.4), thus
offering a theoretical justification for this recent technique.

• We perform experiments (Section 5) on synthetic and natural
language data to support our theorical conclusions: for
instance, our experiments adjust the sparsity of several
synthetic tasks, and we observe that length generalization
improves monotonically with decreasing sparsity. For natural
language data, we provide evidence that length-generalizing
transformers indeed make accurate predictions using a small
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number of past tokens.

• Inspired by our theory, we introduce a modification of
positional coupling, Predictive Position Coupling, which,
unlike positional coupling, works on tasks for which
the coupled position IDs are input-dependent. We show
(Section 5.2) that Predictive Position Coupling enables
significant length generalization on such tasks.

Related work. A few prior works have attempted to give
theoretical justifications for the length generalization abilities of
transformers (Zhou et al., 2023; Huang et al., 2024; Sabbaghi
et al., 2024; Ahuja & Mansouri, 2024); we compare these
works, as well as many others, to ours in Appendix A. The idea
that sparsity and locality are important for length generalization
has appeared in several of these works (Huang et al., 2024;
Sabbaghi et al., 2024). However, none has provided the
precise theoretical and empirical evidence which we believe
are essential for isolating the importance of these notions.

2. Preliminaries
Our focus in this paper is on decoder-only transformers trained
to predict the next token. We review the architecture of
such transformers in more detail in Appendix B.2. In this
section, we discuss a few aspects of the position encodings of
transformers which have previously been proposed to improve
length generalization.

Initially, Vaswani et al. (2017) proposed to introduce positional
information in a transformer model using absolute positional
embeddings (APE) (see also Gehring et al. (2017)). The APE
assigns to each token a position ID i (typically the position of
that token in the sequence) and adds an embedding vector vAPE

i

depending on i to the embedding vector for the corresponding
token. Recently, it has become more common to use position
encodings which encode relative positions. In particular, a
popular positional encoding technique in many large-scale
open-source transformers is the rotary positional encoding
(RoPE) (Su et al., 2021), which adjusts the computation of
attention scores as follows: it multiplies each key embedding
vector with position ID i by a rotation matrix depending on
i, and each query embedding vector with position ID j by a
rotation matrix depending on j. The effect of these rotations
is that the attention score for a (key,query) pair with position
IDs (i,j) depends only on i−j (and not i or j individually).

An obstacle to length generalization in transformers is that
the joint distribution of particular tokens and their position
IDs seen in training sequences may not match that seen in the
longer sequences at test-time. To account for this discrepancy,
a common empirical technique is to modify the position IDs at
training or test time. As discussed in Section 1, the positional
coupling technique, which has recently paved the way for major
improvements in length generalization in arithmetic and logic
tasks, plays a key role in our theoretical and empirical results.

We discuss it next; additional techniques to modify position IDs
to achieve length generalization are discussed in Appendix A.2.

2.1. Position Coupling

The technique of position coupling (Cho et al., 2024a;b;
McLeish et al., 2024) (similar to Abacus in McLeish et al.
(2024)) works specifically for problems with structured
input where there is a clear one-to-one relationship between
certain tokens. In particular, it assigns each token in a
sequence a particular position ID in a way so that tokens
assigned the same position ID should have a (task-dependent)
“one-to-one correspondence”. For example, to solve string
reversal, i.e., predict the last L tokens of the sequence
X1, ... ,XL,<SEP>,XL, ... ,X1, then since the ith-to-last
reversed token is equal to the ith input token, we feed the
following position IDs: 1,2,...,L,0,L,...,2,1.

3. Theoretical model
In this section, we formally define our theoretical model. Our
primary inspiration is the class of decoder-only transformers,
which are trained to predict each next token as a function of
the preceding ones in a given sequence. Accordingly, our
theoretical framework will focus on the next-token prediction
task, where we fix lengths L< L̄, and attempt to show that
models trained on sequences of length≤L to predict a single
token (interpreted as the (L + 1)th token in the sequence)
also succeed at predicting a single token (interpreted as the
(L̄+1)th token) when tested on sequences of length L̄.

Fix a set V which denotes the set of tokens. V? =
⋃
`≥0V`

denotes the set of all arbitrary-length sequences of tokens. For
technical reasons discussed below, we model the problem of
predicting the embedding (i.e., representation) of the next token,
as opposed to the token itself, given a sequence of previous
tokens. Accordingly, we fix a label set Y which is a convex
subset of Rd for some d ∈N denoting the space of possible
token embeddings, and a loss function L :Y×Y→ [0,1] with
L(Y,Y )=0 for all Y ∈Y. For simplicity, we fix an arbitrary
norm ‖·‖ on Rd, and assume that diam(Y)≤1 with respect
to this norm and that L(Y,Y ′) = ‖Y −Y ′‖. For a set Ω and
k∈N, we let Setsk(Ω) be the set of size-k subsets of Ω.

A distribution ensemble P is a sequence of distributions
P1,P2,..., where for each `∈N, P` ∈∆(V`×Y) represents
a distribution over labeled input sequences of length `. Let
H⊂YV?

denote a class of functions h :V?→Y. The length
generalization problem is as follows: we aim to choose a
hypothesis ĥ ∈ H which enjoys small square loss L(·) for
inputs drawn from PL̄ for some L̄∈N, if we are only allowed
to choose ĥ based off of inputs of lengths less than L̄, i.e.,
those drawn from P` for `<L̄.

How can we use inputs drawn from such P` to choose
ĥ? A classic paradigm in learning theory is empirical risk
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minimization (see e.g., Shalev-Shwartz & Ben-David (2014)),
which stipulates to choose a hypothesis inH to minimize the
average loss over samples drawn from P` for some values of
`. However, as our goal is specifically to understand the out-
of-distribution generalization behavior from inputs of length
`<L̄ to inputs of length L̄, we instead assume that ĥ is chosen
so as to minimize the population risk for inputs of length
`< L̄. This choice allows us to avoid having to consider the
(in-distribution) generalization error for samples drawn fromP`
(`<L̄). Formally, we define length generalization as follows:

Definition 3.1 (Length generalization). For L,L̄∈N, ε∈(0,1),
we say that the classH has (L,L̄,ε)-length generalization with
respect to the ensemble P if the hypothesis

ĥ :=argmin
h∈H

E
`∼Unif([L/2,L])

E
(X,Y)∼P`

[L(h(X),Y)] (1)

satisfies E(X,Y)∼PL̄
[L(ĥ(X),Y)]≤ε.1

For a hypothesis classH⊂YV?

and δ∈(0,1), we say that the
ensemble P is δ-approximatelyH-realizable if there is some
h? ∈H so that E(X,Y)∼P`

[L(h?(X),Y)]≤ δ for each `∈N.
We say that P isH-realizable in the case δ=0.

3.1. Distributional assumptions: sparse structure

Without distributional assumptions on P`, achieving length
generalization per Definition 3.1 becomes degenerate in
the following manner, even if we assume H-realizability.
For any fixed (realizable) choice of the distributions P` for
` < L̄, unless ĥ is identically equal to h?, we can choose
PL̄ to have all its mass on some sequence X ∈ VL̄ for
which L(h?(X), ĥ(X))� 0. This choice prevents the loss
of ĥ defined in (1) from being small, thus ruling out length
generalization, as formalized in Proposition B.1.

While some works (e.g., Ahuja & Mansouri (2024); Huang et al.
(2024)) have offered explanations for length generalization by
showing that in fact, h? is learned exactly under appropriate
assumptions, there is ample empirical evidence (Zou et al.,
2023; Wei et al., 2023; Andriushchenko et al., 2024) that
transformers can err on worst-case inputs. Accordingly we
ask: Are there distributional assumptions which enable us to
establish length generalization in settings where the ground
truth hypothesis h? may not be learned (nearly) exactly in the
sense that supX∈V?L(h?(X),ĥ(X)) is small?

The sparse attention patterns in many transformers trained on
natural language (e.g., Child et al. (2019); Tay et al. (2022))
suggest that for modeling a wide spectrum of natural language,
one needs to attend to only a small number of previous tokens
to predict each successive token. Inspired by this observation,
we define the following class of distribution ensembles, namely
those with sparse planted correlations. Roughly speaking,

1The lower bound of L/2 in the interval [L/2,L] from which `
is sampled is unimportant; any constant factor of L will suffice.

sequences drawn from such distributions have most of their
tokens drawn independently from some distribution µ∈∆(V)
(which we think of as a “background distribution”, representing
tokens not relevant for the task at hand), and a small number
k of tokens drawn from some “planted” correlated distribution
over k-tuples of tokens, denoted by Qvoc in Definition 3.2
below. One should interpret these planted k tokens as having
“relevant information” for the task of predicting the label Y.
The particular location of these tokens is drawn independently
(denotedQpos

` below). Formally, we have:

Definition 3.2 (k-sparse planted correlations). Fix a positive
integer k∈N. We say that a distribution ensembleP=(P`)`∈N
has k-sparse planted correlations if there are distributions
µ∈∆(V),Qpos

` ∈∆(Setsk([`])) for `∈N,Qvoc∈∆(Vk), and
a function g? :Vk→Y so that the following holds. For each
`∈N, a sample (X,Y)∼P` may be drawn as follows: first,
we draw S?∼Qpos

` ,Z∼Qvoc, and we set:

XS? =Z, Xi∼µ ∀i 6∈S?, Y=g?(Z) (2)

While the assumptions in Definition 3.2 that (a) the remaining
tokensXi for i 6∈S? are i.i.d. from µ and (b) the tuple S? which
indexes the correlated tokens that “matter” is drawn from a fixed
distributionQpos

` are not realistic, we emphasize that they are
made to simplify the proofs and ensure a simple model which
captures the salient features that enable length generalization.
We leave generalizations, such as that the Xi are drawn from
a Markov chain or Hidden Markov Model, for future work.

An example of a distribution ensemble satisfying Definition 3.2
is the distribution of tokens in the k-gram retrieval task, of
outputting the token following a certain k-gram in a given
sequence X. In particular, the k-gram in question together
with the following token form the “planted sequence”; see
Appendix B.1 for a formal description.

3.2. Defining the hypothesis classes

In this section, we define a hypothesis class which allows us
to effectively model the salient aspects of transformers while
permitting us to obtain provable length generalization. In
particular, we aim to satisfy the following two desiderata:

1. First, we would like there to be many ensemblesP with sparse
planted correlations which are realizable with respect toH.

2. Second, we would like the class H to capture simple
transformers (i.e., a single attention head).

To motivate how to arrive at our function class starting from the
above criteria, we recall the structure of a single attention head
(see Appendix B.2 for a more complete presentation). It takes as
input embedding vectors h1,...,hL∈Rd which could be, for in-
stance, the results of an embedding matrix multiplied by one-hot
encodings of tokens X1,...,XL∈V. For some matrices K,V∈
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Rd×d and a query vector2 q∈Rd, the attention head computes

ÃttHeadK,V,q(h1,...,hL)=

L∑
i=1

αi·Vhi (3)

where α = softmax(〈q,Kh1〉, ... ,〈q,KhL〉). The softmax
over linear functions of h1,...,hL allows ÃttHead to attend to
individual positions i∈ [L] whose tokens satisfy some property
(e.g., the embedding vector points in a particular direction of
Rd, which could represent a certain meaning of the token).
Suppose we were to takeH to be the class of attention heads
and try to satisfy Item 1: we would need attention heads to be
able to apply some function (g? in the context of Definition 3.2)
to a certain sub-sequence of k tokens (XS? in Definition 3.2).3

Unfortunately, a single attention head as in (3) is not
able to do so for large classes of g?, when k > 1 and
even if XS? is sufficiently “distinguishable”: for instance,
ÃttHeadK,V,q(h1,...,hL) is invariant to the order of h1,...,hL
(and thus of the tokens, in the typical case that hi is an em-
bedding of Xi), whereas g?(XS?) may not be. Decoder-only
transformers correct for this deficiency by (amongst other
factors, such as positional embeddings) stacking multiple layers
of attention heads. When doing so, embedding vectors hi at
individual positions of higher layers can contain information
about multiple tokens of the input sequence. Inspired by this
property, we introduce the following model of an “idealized
transformer” – instead of stacking multiple attention heads, it
directly applies attention on subsets of k tokens:

Definition 3.3 (Sparse functional attention class). Fix a
positive integer k (the sparsity) together with hypothesis classes
Gkey consisting of functions mapping (N×V)k→(R∪{−∞})
and Gval mapping Vk→Y. We define the k-sparse functional
attention class Hattn =Hattn(Gkey,Gval) to be the class of all
hg0,g1 :V?→Y, indexed by g0∈Gkey,g1∈Gval, where4

hg0,g1(x1,...,xL):=
∑

S∈Setsk([L])

exp(g0(S,xS))·g1(xS)∑
S′∈Setsk([L])exp(g0(S′,xS′))

.

Intuitively, one should think of the “attention function”
g0(S,xS) as computing attention scores based off of sets of k
tokens. Sparse functional attention with k=1 captures a single

2In the case of decoder-only transformers, q is commonly taken
to be equal to be a linear function applied to hL, though in this
discussion we take it to be fixed along with the other parameters of
the attention head.

3Notice that since S? is not given explicitly, there are certainly
cases where it is information-theoretically impossible to determine
S? from X. However, we give several examples in Appendices B.1
and C.3 where the planted sequence XS? is sufficiently “distinguish-
able” from the remaining tokens Xi, i 6∈S?, and in fact Y can indeed
be computed with high probability.

4If g0(S, xS) = −∞ for all S ∈ Setsk([L]), then we set
hg0,g1(x1,...,xL) to be 1

|Setsk([L])|
∑
Sg1(xS).

attention head with fixed query vector as discussed above: in
particular, for S={i}, we choose g0(S,xS)=〈q,Khi〉 where
hi is the embedding of xi, and g1(xi)=V·hi. The fact that
g0(S,xS) can also depend on the position indices S should be
interpreted as allowing us to model positional embeddings (see
Section 4.1 for more discussion). The following proposition
formalizes these observations, verifying that the sparse group
attention class indeed generalizes attention heads.

Proposition 3.1 (Informal version of Proposition B.2). The
class of attention heads corresponding to a vocabulary V and
embedding dimension d is equal to the 1-sparse functional atten-
tion classHattn(Gkey,Gval) for appropriate choices of Gkey,Gval.

Additional properties. We believe that the abstraction of
sparse functional attention defined in Definition 3.3 may be
of broader interest in obtaining a theoretical understanding of
various properties of transformers. Nevertheless, in order to
analyze length generalization, we need to further restrict the
classHattn(Gkey,Gval) in the following ways: first, we assume
that the class Gkey is local, meaning that it only outputs finite
(i.e., not negative infinity) scores on subsets S⊂N for which
max(S)−min(S) is bounded. Second, we assume that Gkey
only uses relative positional information, meaning that shifting
S does not change g0(S,x) for all g0∈Gkey,x∈Vk.

Assumption 3.2 (Gkey is local and relative). We introduce the
following properties of the class Gkey:

1. Fix Llocal ∈ N. We say that Gkey is Llocal-local if for all
S ∈ Setsk(N) for which maxi∈S i−mini∈S i > Llocal, we
have g0(S,x)=−∞ for all g0∈Gkey,x∈Vk.

2. We say that Gkey is relative if for any i∈N and S∈Setsk(N),
x∈Vk, it holds that g0(S,x)=g0(S+i,x) for all g0∈Gkey.5

The assumption that Gkey is relative is inspired by the fact
that many common positional embeddings only use relative
positional information. While the assumption of locality is
strong, we remark that it is provably necessary (Appendix C.3)
and can be relaxed using techniques such as positional coupling
(Section 4.1). Throughout the paper, we will assume that the
parameters k,Llocal are chosen so that Llocal≥k.

4. Theoretical results
In this section, we establish formal length generalization
guarantees for sparse functional attention classes Hattn

(Definition 3.3) for distribution ensembles P with sparse
planted correlation (Definition 3.2). To do so, we need to make
a few assumptions on the ensemble P. The first assumption
ensures that the ensemble P is approximatelyHattn-realizable.

Assumption 4.1 (Realizability). We assume that P is δ-
approximately Hattn(Gkey,Gval)-realizable, i.e., there is h? ∈
Hattn(Gkey,Gval) so that E(X,Y)∼P`

[L(h?(X),Y)]≤δ for all `.

5For S={i1,...,ik}, S+i :={i1+i,...,ik+i}.
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Our second assumption states that the distributions Qpos
` in

the context of Definition 3.2 have bounded coverage at all
locations in the sense that changing ` or shifting S by ∆ units
does not significantly changeQpos

` (S).

Assumption 4.2 (Coverage of Qpos
` ). Fix a k-sparse distri-

bution ensemble P specified by µ,(Qpos
` )`∈N,Qvoc, as well

as Llocal ∈N. We assume that for each `∈N with `≥Llocal,
there is some positive value η`∈R so that for all `′∈ [Llocal,`],

∆≥0 and S?∈Setsk([`]),
Qpos

` (S?)

Qpos

`′ (S?−∆)
≤η` and

Qpos

`′ (S?)

Qpos
` (S?)

≤η`,
where the first inequality is only required ifS?−∆∈Setsk([`

′])
and the second inequality is only required if S?∈Setsk([`

′]).

Our main result states that for any classes Gkey, Gval and
distribution ensemble P satisfying Assumptions 3.2, 4.1
and 4.2, the classHattn(Gkey,Gval) enjoys length generalization
with respect to the ensemble P.

Theorem 4.3 (Provable length generalization). Fix any
k ∈N, and consider any k-sparse functional attention class
Hattn = Hattn(Gkey,Gval) which is Llocal-local and relative
(Assumption 3.2) for some Llocal ∈N. Then for any k-sparse
planted correlations distribution ensemble P (Definition 3.2)
satisfying Assumptions 4.1 and 4.2, and any integers L, L̄
for which Llocal | L̄ − L and L ≥ 4Llocal, Hattn achieves
(L, L̄, ηLηL̄ · L · (L̄/Llocal)

2 · δ)-length generalization with
respect to the ensemble P.

In Appendix C.3, we show that if we remove any one of
the main assumptions of Theorem 4.3, then length general-
ization can fail to hold. Moreover, we remark that the error
ηL ·ηL̄ ·LL̄2 ·δ on distributions of length L̄ can be improved;
see Appendix C.2 for further discussion.

4.1. Improving length generalization: positional coupling

As discussed above, one limitation of Theorem 4.3 is its
reliance on Item 1 of Assumption 3.2, which is not satisfied in
actual transformers: indeed, transformers may attend to tokens
which are very far apart, as such dependencies can occur in
natural language. Is there a way to mitigate this limitation?

We now show how a theoretical abstraction of position coupling
as discussed in Section 2.1 can allow us to remove this locality
requirement. Roughly speaking, this abstraction of position cou-
pling states that there is a joint distribution over (S?,ψ`), where
ψ` : [`]→ [`] gives a way of “rewriting” position indices, so that
the “rewritten” set ψ`(S?) of indices in the planted set S? satis-
fies the locality condition of Assumption 3.2. In particular, for
each position ID i∈ [`], the value of ψ`(i) should be interpreted
as its “coupled position ID” as discussed in Section 2.1. More
precisely, we have (see Appendix D for the full definition):

Definition 4.1 (Informal version of Definition D.2). Fix a
distribution ensemble P with k-sparse planted correlations
per Definition 3.2 (defined by µ,Qpos,Qvoc). A Llocal-local
position coupling of P is defined by, for each `∈N, a joint dis-

tributionQpos−c over tuples (S?,ψ`) with S?∈Setsk([`]) and
ψ` : [`]→ [`] so that the marginal of S? underQpos−c isQpos

`

and with probability 1 under the draw of (S?,ψ`)∼Qpos−c:

1. max{ψ`(S?)}−min{ψ`(S?)}≤Llocal.

2. ψ`, S? satisfy some additional conditions which, e.g.,
prevent coupling of non-planted tokens (i.e., outside of S?;
Definition D.2).

With Definition D.2 in hand, we can now describe how
hypotheses in a sparse functional attention class Hattn,
which may not satisfy locality, can be transformed into new
hypotheses which will use information from the output of the
“position coupling” ψ` and will also satisfy locality. Roughly
speaking, given a sample (X,S?,Y)∼P`, we will join (i.e.,
“couple”) all tokens Xi for which ψ`(i) is identical. We will
denote the resulting distribution over sequences of “coupled
tokens” by PC[P`]. Moreover, we define a “position-coupled”
hypothesis class PC[Hattn] whose hypotheses, when given
sequences of coupled tokens as above, “unpacks” them and
applies the corresponding hypothesis inHattn. In Appendix D,
we formally define these notions and prove the following propo-
sition, which shows that this procedure of position coupling
can remove the locality requirement from Theorem 4.3:

Proposition 4.4 (Informal version of Proposition D.2). IfHattn

is a sparse functional attention class andP is an ensemble with
k-sparse planted correlations which satisfies δ-approximate
strong realizability (Assumption D.1) and Assumption 4.2, then
for L,L̄ satisfying the conditions of Theorem 4.3, PC[Hattn]
achieves (L, L̄, ηLηL̄ · LL̄2 · δ)-length generalization with
respect to the ensemble PC[P].

5. Experiments
Conceptually, we view the main takeaways of Theorem 4.3
and Proposition 4.4 to be the following:

(T1) First, an important factor enabling length generalization is
that the label Y depends on only k tokens of the input (in
the sense of Definition 3.2 and in particular the relation Y=
g?(XS?) in (2)). In particular, the parameter k (which we
refer to informally as the sparsity) must be the same for both
the lengths on which we train (namely, lengths `≤L) and the
length L̄ to which we attempt to extrapolate, and sufficiently
small compared to the maximum training length L.

(T2) Second, locality of the hypothesis class (per Item 1 of
Assumption 3.2) plays an important role as well: the
maximum distance Llocal between tokens which “matter” in
predicting the label Y must be the same for lengths `≤L
on which we train and the length L̄ to which we extrapolate.
Moreover, as this requirement is quite strong (and unrealistic
for many problems of interest), one way to mitigate it is the
technique of position coupling (per Proposition 4.4).

In this section, we evaluate these conclusions for synthetic and
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natural language modeling data.

5.1. Length generalization for sparse parity

First, we discuss a simple setting which measures the degree to
which length generalization in transformers reflects the require-
ment from (T1) that the sparsity k be sufficiently small and
not grow as a function of the sequence’s length. In particular,
consider the following sparse parity task:6 given k,`∈N, the in-
put is drawn from a distributionDsp

k,` over length-2` sequences,
where tokens at even-numbered positions are bits, and tokens
at odd-numbered positions belong to some set Ω. Exactly k to-
kens at odd-numbered positions belong to some “special subset”
Ω′⊂Ω, and the goal is to find the parity of the k tokens imme-
diately following them. See Appendix E.1.1 for precise details.

Experimental setup: data. For each value of
Ktrain ∈ {4,6,8,10,12}, we train a transformer ĥKtrain to
predict the last token of samples drawn from Dsp

`,k, where
` is sampled uniformly subject to the length of the sample
satisfying 2` ∈ [20, 50] and k ∼ Unif([Ktrain]). We then
evaluate the performance of each of the trained transformers
ĥKtrain on samples drawn from D`,ktest of length 2`∈ [20,500]
and with sparsities ktest∈{4,6,8,10,12,14,16}.

Experimental setup: model. Our model is based off of the
GPT-NeoX (decoder-only) transformer (Andonian et al., 2023),
and uses rotary positional embeddings (RoPE). To ensure
nontrivial length generalization performance, we combined
RoPE with PoSE (Appendix B.3).7 Full training and evaluation
details may be found in Appendix E.

Remark 5.1. Numerous other modifications to position IDs
have been proposed for length generalization, such as position
interpolation and various enhancements, which typically
modify the way the transformer uses the position IDs at
inference time, often after a small amount of fine-tuning (see
Appendix A.2). We stick with PoSE in this paper (when
position coupling is not applicable) because of its simplicity and
since (a) it does not require modifying the transformer’s com-
putations at inference time; and (b) the fine-tuning for position
interpolation requires sequences of length given by the testing
context length, which fails to lie in our framework where we
assume that any amount of training on such sequences is not al-
lowed. Understanding the role of sparsity and locality for length
generalization in transformers which make these inference-time
modifications to position IDs is left for future work.

6This task is slightly different from standard formulations of
sparse parity, where the sparsely chosen positions are not identified
as part of the input. We use this version so as to allow a different set
of k positions to be chosen for each example.

7This task is not well-suited for position coupling, since the output
token depends on 2k input tokens, all of which have different position
IDs.

Results & discussion. The accuracy of the trained trans-
formers ĥKtrain for predicting the last (parity) token on samples
of various lengths ` and sparsity values k is shown in Figure
1a for Ktrain=10 and in Figure 3 for the remaining values of
Ktrain. Two observations are notable: first, when the training
sparsity Ktrain is small enough (i.e., Ktrain≤8; see Figure 3),
then ĥKtrain experiences near-perfect length generalization up to
lengths of 500, for all values of the test sparsity ktest≤Ktrain.
However, for test sparsity values ktest>Ktrain, the performance
of ĥKtrain deteriorates rapidly, for both in-distribution and
out-of-distribution lengths. This behavior is consistent with
Theorem 4.3, which implies that good length generalization
occurs as long as the sparsity does not change between the train
and test distributions and is sufficiently small as a function of
the training length.

A corollary of this reasoning is that for a fixed maximum
training length L, the length generalization behavior with
respect to the distribution ensemble (Dsp

`,k)`∈N should degrade
at some point if the sparsity k is allowed to increase enough.
(In particular, our theoretical guarantee on length generaliza-
tion only holds for sufficiently small training sparsity, i.e.,
Ktrain≤L/4 in the case of Theorem 4.3, though the particular
threshold is likely different in the case of actual transformers).
This behavior is mirrored in Figure 1a as well as Figure 3 in Ap-
pendix E.1.2, where, for each fixed value ofKtrain∈{10,12},
larger values of k∈ [Ktrain] have worse length generalization
despite all having near-perfect in-distribution performance.8

5.2. Scratchpad with Predictive Position Coupling

Many tasks, unlike sparse parity, have the property that the
sparsity of the next-token prediction task (as formalized by,
e.g., Definition 3.2) can be quite large and in fact increase
from shorter to longer lengths. To help achieve length gener-
alization, one approach which has been suggested in numerous
existing works (Anil et al., 2022; Hou et al., 2024) is the chain-
of-thought/scratchpad technique (Nye et al., 2022; Wei et al.,
2022; Lewkowycz et al., 2022). It proceeds by computing
tokens representing intermediate steps, such as intermediate
parities when the task is to compute the parity of a sequence of
` bits. It has been observed that the scratchpad technique alone
is insufficient to ensure length generalization (Anil et al., 2022;
Dziri et al., 2023; Hu et al., 2024; Kazemnejad et al., 2023; Lan-
chantin et al., 2023). However, a number of recent works (Cho
et al., 2024a;b; McLeish et al., 2024) have shown that the tech-
nique of position coupling (see Section 2.1), when combined
with a scratchpad (and even when used on its own, when appro-
priate), can allow significant length generalization on arithmetic
tasks such as parity, addition, and multiplication. This devel-
opment parallels our theoretical results in Section 4.1, where

8Recall that ĥKtrain was trained by placing equal weights on all
sparsities k ≤ Ktrain, so in this respect the distributions Dsp

`,k for
k≤Ktrain were treated “on equal footing.”
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Figure 1: Length generalization for experiments in Sections 5.1 and 5.2. Shaded areas in (b), (c) represent 95% CIs over multiple training runs.

we showed that position coupling removes the stringent require-
ment of locality, which is not satisfied in practical settings.

One downside of position coupling is that it requires significant
structure in the format of the data sequence, including the
scratchpad: in particular, once the length is fixed, the coupled
position IDs (see Section 2.1) in all tokens the transformer is
trained to predict must be determined, as they must be fed into
the model to predict each successive token. (For instance, for
the string reversal example in Section 2.1, when L denotes the
length of the string to be reversed, the sequence of position IDs
is given as in Section 2.1.) As a consequence, the applications
of position coupling are currently limited to a small number
of synthetic tasks where the computation of each token in the
sequence (including the scratchpad) can be coupled with a
fixed position of the input.

Towards relaxing this limitation to allow sequences where
the coupled position IDs can be input-dependent, we propose
Predictive Position Coupling (PPC). PPC functions as follows:

1. It modifies the transformer architecture to instead predict
the coupled position ID for each next token. In particular,
we add an additional output embedding module so that, at
each step, the transformer predicts two IDs: the next token
ID, as well as the coupled position ID for that token.

2. The transformer is trained to predict both the actual tokens,
as well as the coupled position IDs for each token. We use
the standard cross-entropy loss for both predictions, and
weight them equally.

3. At generation time, the two predicted tokens at each step
are fed in as the position ID and token ID at the following
position.

In our results, we report the fraction of examples on which the
model correctly predicts all tokens and coupled position IDs.

Experimental setup: model. We use the same NeoX model
as described in Section 5.1, with the following modifications to
implement position coupling. Following (Cho et al., 2024a;b;
McLeish et al., 2024), we use absolute position embeddings
and fix some integer Lmax denoting the maximum possible
length of test-time sequences. During training, we shift each

sequence of coupled position IDs by a uniformly random offset
subject to the constraint that all shifted position IDs be at most
Lmax. In particular, if the sequence of coupled position IDs
ranges from 1 to `, then we would shift by a uniform element of
{0,1,...,Lmax−`}. We remark that using RoPE with PoSE (as
oposed to PPC) performs significantly worse; see Appendix E.

5.2.1. WARMUP: PARITY WITH SCRATCHPAD.

As a warmup, we first consider the task of evaluating the
parity of a sequence of ` bits with use of a scratchpad (and
PPC) to compute intermediate parities (as in, e.g., Anil et al.
(2022); Cho et al. (2024b)). The scratchpad is structured as
follows: it has length `, and the ith token of it is the parity
of the first i tokens of the input; thus, the final (`th) token of
the scratchpad is the desired answer, i.e., the parity of all `
input tokens. To measure the impact of sparsity, we consider
the following modification of the standard scratchpad format,
which we refer to as having a scratchpad with “jumps”. For
values of k ∈ {1,2,3,4}, we only write every kth bit in the
scratchpad, meaning that the ith bit of the scratchpad is the
parity of the first ki tokens of the input. In particular, the case
k=1 corresponds to the standard scratchpad format. We also
modify the position coupling IDs so that each position ID is
repeated k times in the input sequence. Full details of the data
and position coupling formats are in Appendix E.2.1.

Results & discussion. Figure 1b shows the length general-
ization behavior for our transformer model trained as discussed
above, for “jump lengths” k∈{1,2,3,4}. Note that the jump
length k parametrizes the sparsity of the next-token prediction
task: each token in the scratchpad depends on k+1 previous
tokens (namely, the immediately preceding one together with
the k tokens in the input which correspond to that step of com-
putation). While all 4 jump lengths attain near-perfect accuracy
for in-distribution lengths, smaller values of k have superior
performance on longer out-of-distribution lengths, consistent
with our takeaway (T1). This fact is particularly notable in light
of the fact that for jump length k, the scratchpad is shorter by a
factor of k, which a priori could presumably have made it easier
to correctly predict all tokens and position IDs correctly (the
metric measured in Figure 1b). Thus, at least in this task, spar-
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sity (as measured here by k) is a more important determinant
of length generalization than the length of the output sequence.

5.2.2. VARIABLE ASSIGNMENT WITH SCRATCHPAD.

Next, we consider the more challenging task of variable
assignment with a scratchpad, of which several slight variants
have been studied in numerous prior works (Zhang et al.,
2023; 2022; Lanchantin et al., 2023; Peng et al., 2024).

Experimental setup: data overview. In the variable assign-
ment problem, we fix a depth d, denoting the number of “hops”
it takes to compute the final value. Roughly speaking, the goal
is as follows: given a sequence of “variable assignments” of the
form v←v′ (where v,v′ are token IDs), together with a starting
variable vinit, follow a sequence of d assignments starting at
vinit.In more detail, a problem instance consists of some number
of “chains”, each of the form v1←v2;v2←v3;···;vd←vd+1

for some depth parameter d. The variable assignments in each
of these chains are interleaved randomly; exactly one of the
chains has v1 = vinit. The goal of the task is to find the final
variable vd on the chain for which v1 =vinit. To do so, we use a
scratchpad which writes out in full the chain starting with vinit,
together with position coupling, which matches each element
of this chain on the scratchpad with its corresponding position
in the input. The data format and position coupling scheme
are presented in detail in Appendix E.3. We mention here that,
because the chains are interleaved randomly, the position IDs
used in the position coupling scheme depend on the particular
input instance. Thus, the use of Predictive Position Coupling is
crucial in order to be able to feed in the correct coupled position
IDs in the scratchpad at inference time.9 We train on input se-
quences of length `∈ [20,60], and test on lengths L̄∈ [20,200].

Results. Figure 1c shows our results for the variable
assignment problem with position coupling: the technique of
Predictive Position Coupling allows good length generalization
for test lengths up to 3 times the training sequence length, for
depths d∈{2,3,4,5}. In Figs. 5a to 5c (Appendix E.3.2), we
present baselines that remove either just the position coupling or
the scratchpad altogether; as predicted by takeaways (T2) and
(T1), respectively, these modifications significantly harm length
generalization. In particular, using RoPE with PoSE (with or
without scratchpad) performs significantly worse than PPC.

5.3. Sparsity & length generalization in natural language

Finally, we study the interplay between sparsity and length
generalization in natural language. A trivial way to obtain
generalization from sequences of length≤L to those of length
L̄>L is to simply ignore tokens more than L units in the past.

9Simply feeding in the correct value as the next position ID
would be “cheating” as it would be performing part of the relevant
computation of the scratchpad.

To understand length generalization in models beyond this base-
line, we ask: given L<L̄, can a transformer trained on natural
language sequences of length L achieve smaller perplexity on
sequences of length L̄ than on sequences of length L? Previous
works have shown a positive answer to this question (as will our
experiments) when one uses appropriate modifications to the
positional embeddings, namely PoSE (Zhu et al., 2023) or posi-
tion interpolation (Chen et al., 2023; emozilla, 2023; Peng et al.,
2023; Chen et al., 2024). In light of this, a natural way to mea-
sure sparsity is as follows: is there a way to select a small num-
ber k of the tokens more thanL units in the past from the present
token, so that, using just those k tokens together with the most re-
centL tokens, we can nearly recover the perplexity of the model
on full sequences of length L̄? Informally, we are asking if the
dependence on tokens more thanL units in the past is sparse, in
terms of beating the trivial baseline for length generalization.

Experimental setup. We trained our models using the
OLMo codebase (Groeneveld et al., 2024) on the C4 dataset
(Raffel et al., 2019). We trained a transformer model ĥshort us-
ing context length L=64.10 Our aim is to length extrapolate to
a context length of L̄=2L=128. We used the PoSE technique
with Lmax=L̄ and c=2 chunks. We found that training from
scratch using PoSE did not yield good performance at length L̄,
so instead we first trained the model without PoSE for roughly
70% of the iterations and on the final 30% of the iterations used
PoSE. Precise hyperparameters may be found in Appendix F.
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Figure 2: Cross-entropy loss differences obtained by unmasking k
influential tokens (x-axis) or all of the first 64 tokens (y-axis).

Results & discussion. Table 5 confirms that the perplexity of
ĥshort on a context window of 128 is less than that on a context
window of 64, verifying that ĥshort is able to utilize information

10We chose the context length to be so short in order to decrease
the performance of the trivial baseline for length generalization which
ignores all but the Lmost recent tokens.
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beyond the shorter length-64 training context window. More-
over, in Figure 2, we plot, for each of a total of 500 evaluation
data points X1:L̄ with context window L̄=128, the amount of
decrease in cross-entropy loss for predicting the last token XL̄

of the sequence one achieves by the following two strategies:

(a) Unmasking k=5 “influential” tokens at positions i≤L=64
compared to masking out all tokens at positions i≤64 (this
difference is the x-coordinate);

(b) Unmasking all tokens at positions i ≤ 64 compared to
masking out all tokens at positions i≤ 64 (this difference
is the y-coordinate).

In particular, the y-coordinate of each point should be inter-
preted as the amount the model uses the first 64 tokens to
improve the prediction of the last token, and the x-coordinate
of each point should be interpreted as the amount the model
uses a select k of the first 64 coordinates (see Figure 6 for an
illustration). As can be seen, the data points are roughly clus-
tered along the line x=y, which indicates that (up to noise) the
model’s prediction of the last token in the sequence is sparse in
its dependence on tokens “far in the past”, consistent with Sec-
tion 5 which predicts that such sparsity allows ĥshort to length-
generalize. We discuss additional details and experiments (in-
cluding how the k influentail tokens are chosen) in Appendix F.
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Traum, D., and Màrquez, L. (eds.), Proceedings of the
57th Annual Meeting of the Association for Computational
Linguistics, pp. 2978–2988, Florence, Italy, July 2019.
Association for Computational Linguistics.

DeepSeek-AI, Guo, D., Yang, D., Zhang, H., Song, J., Zhang,
R., Xu, R., Zhu, Q., Ma, S., Wang, P., Bi, X., Zhang, X., Yu,
X., Wu, Y., Wu, Z. F., Gou, Z., Shao, Z., Li, Z., Gao, Z., Liu,
A., Xue, B., Wang, B., Wu, B., Feng, B., Lu, C., Zhao, C.,
Deng, C., Zhang, C., Ruan, C., Dai, D., Chen, D., Ji, D., Li,
E., Lin, F., Dai, F., Luo, F., Hao, G., Chen, G., Li, G., Zhang,
H., Bao, H., Xu, H., Wang, H., Ding, H., Xin, H., Gao, H.,
Qu, H., Li, H., Guo, J., Li, J., Wang, J., Chen, J., Yuan, J.,
Qiu, J., Li, J., Cai, J. L., Ni, J., Liang, J., Chen, J., Dong, K.,
Hu, K., Gao, K., Guan, K., Huang, K., Yu, K., Wang, L.,
Zhang, L., Zhao, L., Wang, L., Zhang, L., Xu, L., Xia, L.,
Zhang, M., Zhang, M., Tang, M., Li, M., Wang, M., Li, M.,
Tian, N., Huang, P., Zhang, P., Wang, Q., Chen, Q., Du, Q.,
Ge, R., Zhang, R., Pan, R., Wang, R., Chen, R. J., Jin, R. L.,
Chen, R., Lu, S., Zhou, S., Chen, S., Ye, S., Wang, S., Yu, S.,
Zhou, S., Pan, S., Li, S. S., Zhou, S., Wu, S., Ye, S., Yun, T.,
Pei, T., Sun, T., Wang, T., Zeng, W., Zhao, W., Liu, W., Liang,
W., Gao, W., Yu, W., Zhang, W., Xiao, W. L., An, W., Liu, X.,
Wang, X., Chen, X., Nie, X., Cheng, X., Liu, X., Xie, X., Liu,
X., Yang, X., Li, X., Su, X., Lin, X., Li, X. Q., Jin, X., Shen,
X., Chen, X., Sun, X., Wang, X., Song, X., Zhou, X., Wang,
X., Shan, X., Li, Y. K., Wang, Y. Q., Wei, Y. X., Zhang, Y.,
Xu, Y., Li, Y., Zhao, Y., Sun, Y., Wang, Y., Yu, Y., Zhang, Y.,
Shi, Y., Xiong, Y., He, Y., Piao, Y., Wang, Y., Tan, Y., Ma, Y.,
Liu, Y., Guo, Y., Ou, Y., Wang, Y., Gong, Y., Zou, Y., He, Y.,
Xiong, Y., Luo, Y., You, Y., Liu, Y., Zhou, Y., Zhu, Y. X., Xu,
Y., Huang, Y., Li, Y., Zheng, Y., Zhu, Y., Ma, Y., Tang, Y.,
Zha, Y., Yan, Y., Ren, Z. Z., Ren, Z., Sha, Z., Fu, Z., Xu, Z.,
Xie, Z., Zhang, Z., Hao, Z., Ma, Z., Yan, Z., Wu, Z., Gu, Z.,
Zhu, Z., Liu, Z., Li, Z., Xie, Z., Song, Z., Pan, Z., Huang, Z.,

Xu, Z., Zhang, Z., and Zhang, Z. Deepseek-r1: Incentivizing
reasoning capability in llms via reinforcement learning, 2025.

Delétang, G., Ruoss, A., Grau-Moya, J., Genewein, T., Wen-
liang, L. K., Catt, E., Cundy, C., Hutter, M., Legg, S., Veness,
J., and Ortega, P. A. Neural Networks and the Chomsky
Hierarchy. In International Conference on Learning Rep-
resentations. arXiv, February 2022. arXiv:2207.02098 [cs].

Dziri, N., Lu, X., Sclar, M., Li, X. L., Jiang, L., Lin, B. Y.,
West, P., Bhagavatula, C., Bras, R. L., Hwang, J. D.,
Sanyal, S., Welleck, S., Ren, X., Ettinger, A., Harchaoui,
Z., and Choi, Y. Faith and Fate: Limits of Transformers
on Compositionality. In Neural Information Processing
Systems. arXiv, October 2023. arXiv:2305.18654 [cs].

emozilla. Dynamically scaled rope further increases
performance of long context llama with zero fine-
tuning. https://github.com/emozilla/
Dynamically-Scaled-RoPE, 2023. Accessed:
2025-01-28.

Fan, Y., Du, Y., Ramchandran, K., and Lee, K. Looped
Transformers for Length Generalization, September 2024.
arXiv:2409.15647 [cs].

Gehring, J., Auli, M., Grangier, D., Yarats, D., and Dauphin,
Y. N. Convolutional sequence to sequence learning. In
Proceedings of the 34th International Conference on
Machine Learning, volume 70 of Proceedings of Machine
Learning Research, pp. 1243–1252. PMLR, 2017.

Groeneveld, D., Beltagy, I., Walsh, P., Bhagia, A., Kinney, R.,
Tafjord, O., Jha, A. H., Ivison, H., Magnusson, I., Wang,
Y., Arora, S., Atkinson, D., Authur, R., Chandu, K. R.,
Cohan, A., Dumas, J., Elazar, Y., Gu, Y., Hessel, J., Khot, T.,
Merrill, W., Morrison, J., Muennighoff, N., Naik, A., Nam,
C., Peters, M. E., Pyatkin, V., Ravichander, A., Schwenk, D.,
Shah, S., Smith, W., Strubell, E., Subramani, N., Wortsman,
M., Dasigi, P., Lambert, N., Richardson, K., Zettlemoyer, L.,
Dodge, J., Lo, K., Soldaini, L., Smith, N. A., and Hajishirzi,
H. Olmo: Accelerating the science of language models,
2024.

Hahn, M. and Rofin, M. Why are Sensitive Functions
Hard for Transformers? In Annual Meeting of the
Association for Computational Linguistics. arXiv, May 2024.
arXiv:2402.09963 [cs].

Han, C., Wang, Q., Peng, H., Xiong, W., Chen, Y., Ji, H.,
and Wang, S. Lm-infinite: Zero-shot extreme length
generalization for large language models, 2024.

Hou, K., Brandfonbrener, D., Kakade, S., Jelassi, S., and
Malach, E. Universal Length Generalization with Turing
Programs, July 2024. arXiv:2407.03310 [cs].

10

https://github.com/emozilla/Dynamically-Scaled-RoPE
https://github.com/emozilla/Dynamically-Scaled-RoPE


Length Generalization in Transformers

Hsieh, C.-P., Sun, S., Kriman, S., Acharya, S., Rekesh, D., Jia,
F., Zhang, Y., and Ginsburg, B. RULER: What’s the Real
Context Size of Your Long-Context Language Models?,
August 2024. arXiv:2404.06654 [cs].

Hu, Y., Tang, X., Yang, H., and Zhang, M. Case-based
or rule-based: how do transformers do the math? In
Proceedings of the 41st International Conference on
Machine Learning, ICML’24. JMLR.org, 2024.

Huang, X., Yang, A., Bhattamishra, S., Sarrof, Y., Krebs, A.,
Zhou, H., Nakkiran, P., and Hahn, M. A Formal Framework
for Understanding Length Generalization in Transformers,
October 2024. arXiv:2410.02140 [cs].

Huang, Z., Liang, D., Xu, P., and Xiang, B. Improve
transformer models with better relative position embeddings.
In Cohn, T., He, Y., and Liu, Y. (eds.), Findings of the
Association for Computational Linguistics: EMNLP 2020,
pp. 3327–3335, Online, November 2020. Association for
Computational Linguistics.

Hupkes, D., Dankers, V., Mul, M., and Bruni, E. Composition-
ality decomposed: how do neural networks generalise? In
Journal of Artificial Intelligence Research. arXiv, February
2019. arXiv:1908.08351 [cs, stat].

Jelassi, S., d’Ascoli, S., Domingo-Enrich, C., Wu, Y., Li,
Y., and Charton, F. Length Generalization in Arithmetic
Transformers, June 2023. arXiv:2306.15400 [cs].

Jelassi, S., Brandfonbrener, D., Kakade, S. M., and Malach, E.
Repeat After Me: Transformers are Better than State Space
Models at Copying. In International Conference on Machine
Learning. arXiv, February 2024. arXiv:2402.01032 [cs].

Jin, H., Han, X., Yang, J., Jiang, Z., Liu, Z., Chang, C.-Y.,
Chen, H., and Hu, X. Llm maybe longlm: Self-extend llm
context window without tuning, 2024.

Kalavasis, A., Zadik, I., and Zampetakis, M. Transfer
Learning Beyond Bounded Density Ratios, March 2024.
arXiv:2403.11963 [cs, math, stat].

Kazemnejad, A., Padhi, I., Ramamurthy, K. N., Das, P., and
Reddy, S. The Impact of Positional Encoding on Length Gen-
eralization in Transformers. In Neural Information Process-
ing Systems. arXiv, November 2023. arXiv:2305.19466 [cs].

Ke, G., He, D., and Liu, T.-Y. Rethinking positional encoding
in language pre-training, 2021.

Lanchantin, J., Toshniwal, S., Weston, J. E., Szlam, A.,
and Sukhbaatar, S. Learning to reason and memorize
with self-notes. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023.

Lee, N., Sreenivasan, K., Lee, J. D., Lee, K., and Papailiopou-
los, D. Teaching Arithmetic to Small Transformers. In
ICLR. arXiv, July 2024. arXiv:2307.03381 [cs].

Lee, N., Cai, Z., Schwarzschild, A., Lee, K., and Papailiopou-
los, D. Self-improving transformers overcome easy-to-hard
and length generalization challenges, 2025.

Lewkowycz, A., Andreassen, A., Dohan, D., Dyer, E.,
Michalewski, H., Ramasesh, V., Slone, A., Anil, C.,
Schlag, I., Gutman-Solo, T., et al. Solving quantitative
reasoning problems with language models. arXiv preprint
arXiv:2206.14858, 2022.

Li, S., You, C., Guruganesh, G., Ainslie, J., Ontanon, S.,
Zaheer, M., Sanghai, S., Yang, Y., Kumar, S., and Bho-
janapalli, S. Functional Interpolation for Relative Positions
Improves Long Context Transformers. In International
Conference on Learning Representations. arXiv, March
2024. arXiv:2310.04418 [cs].

Liu, B., Ash, J. T., Goel, S., Krishnamurthy, A., and Zhang, C.
Transformers Learn Shortcuts to Automata. In International
Conference on Learning Representations. arXiv, May 2022.
arXiv:2210.10749 [cs, stat].

Liu, B., Ash, J. T., Goel, S., Krishnamurthy, A., and Zhang,
C. Exposing Attention Glitches with Flip-Flop Language
Modeling. In Neural Information Processing Systems. arXiv,
October 2023. arXiv:2306.00946 [cs].

Lu, Y., Yan, J. N., Yang, S., Chiu, J. T., Ren, S., Yuan, F., Zhao,
W., Wu, Z., and Rush, A. M. A controlled study on long
context extension and generalization in llms, 2024.

Marsden, A., Dogariu, E., Agarwal, N., Chen, X., Suo,
D., and Hazan, E. Provable Length Generalization in
Sequence Prediction via Spectral Filtering, November 2024.
arXiv:2411.01035 [cs].

McLeish, S., Bansal, A., Stein, A., Jain, N., Kirchenbauer, J.,
Bartoldson, B. R., Kailkhura, B., Bhatele, A., Geiping, J.,
Schwarzschild, A., and Goldstein, T. Transformers Can
Do Arithmetic with the Right Embeddings, May 2024.
arXiv:2405.17399 [cs].

Nagarajan, V., Andreassen, A., and Neyshabur, B. Understand-
ing the Failure Modes of Out-of-Distribution Generalization.
In International Conference on Learning Representations.
arXiv, April 2020. arXiv:2010.15775 [cs, stat].

Nye, M., Andreassen, A. J., Gur-Ari, G., Michalewski, H.,
Austin, J., Bieber, D., Dohan, D., Lewkowycz, A., Bosma,
M., Luan, D., Sutton, C., and Odena, A. Show your work:
Scratchpads for intermediate computation with language
models. In Proceedings of the 10th International Conference
on Learning Representations, 2022.

11



Length Generalization in Transformers

Olsson, C., Elhage, N., Nanda, N., Joseph, N., DasSarma,
N., Henighan, T., Mann, B., Askell, A., Bai, Y., Chen, A.,
Conerly, T., Drain, D., Ganguli, D., Hatfield-Dodds, Z.,
Hernandez, D., Johnston, S., Jones, A., Kernion, J., Lovitt,
L., Ndousse, K., Amodei, D., Brown, T., Clark, J., Kaplan,
J., McCandlish, S., and Olah, C. In-context learning and
induction heads, 2022.

Ontanon, S., Ainslie, J., Fisher, Z., and Cvicek, V. Making
Transformers Solve Compositional Tasks. In Proceedings
of the 60th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pp. 3591–3607,
Dublin, Ireland, 2022. Association for Computational
Linguistics.

Peng, B., Quesnelle, J., Fan, H., and Shippole, E. YaRN: Effi-
cient Context Window Extension of Large Language Models.
In International Conference on Learning Representations.
arXiv, November 2023. arXiv:2309.00071 [cs].

Peng, B., Narayanan, S., and Papadimitriou, C. On limitations
of the transformer architecture. In First Conference on
Language Modeling, 2024.

Phuong, M. and Hutter, M. Formal Algorithms for
Transformers, July 2022. arXiv:2207.09238 [cs].

Press, O., Smith, N. A., and Lewis, M. Train Short, Test
Long: Attention with Linear Biases Enables Input Length
Extrapolation. In International Conference on Learning
Representations. arXiv, April 2021. arXiv:2108.12409 [cs].

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. arXiv e-prints, 2019.

Rozière, B., Gehring, J., Gloeckle, F., Sootla, S., Gat, I., Tan,
X. E., Adi, Y., Liu, J., Sauvestre, R., Remez, T., Rapin, J.,
Kozhevnikov, A., Evtimov, I., Bitton, J., Bhatt, M., Ferrer,
C. C., Grattafiori, A., Xiong, W., Défossez, A., Copet, J.,
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A. Related work
A.1. Theoretical guarantees for length generalization

Zhou et al. (2023); Huang et al. (2024) propose that transformers will length-generalize at tasks which can be solved using a
short RASP program (Weiss et al., 2021). Theorem 7 of Huang et al. (2024), however, assumes that the transformer is chosen
so as to minimize a certain regularizer tailored specifically for length generalization, and their result is asymptotic in nature
(in contrast to ours). Sabbaghi et al. (2024) show that using gradient flow on a 1-layer linear transformer model with relative
position embeddings on a simple linear regression task will converge to a model which length-generalizes, whereas the use of
absolute position embeddings will fail to length-generalize. Ahuja & Mansouri (2024) show that a model class defined as a
simple abstraction of attention heads that sums up pairwise dependencies of tokens experiences length generalization. Unlike our
theoretical results, those of Sabbaghi et al. (2024); Ahuja & Mansouri (2024) are asymptotic in nature and cannot capture the
(most common) case of a softmax attention head. Moreover, they proceed, roughly speaking, by showing that the learned model is
equal to the ground-truth model on the entire domain, which is generally not the case with actual language models (Zou et al.,
2023; Wei et al., 2023; Andriushchenko et al., 2024). As our theoretical setup incorporates distributional assumptions, it establishes
length generalization in cases where the learned model is only accurate on in-distribution inputs, which we believe to be more
realistic. Moreover, all of the preceding works generally apply only to specific classes of transformers or linear classes; in contrast,
our framework, while being able to capture an attention head, is significantly more general in that we allow arbitrary, potentially
nonlinear, function classes (see Definition 3.3), thus meaning our results may have significance for other (non-transformer) classes
of models as well.

Hou et al. (2024) proposes to use Turing programs, a scratchpad strategy inspired by Turing machines, to achieve length
generalization on an array of tasks. Their theoretical results, however, are only representational in nature, showing that transformers
can represent Turing programs without accounting for what models algorithms such as risk minimization will actually learn. Hahn
& Rofin (2024) offer reasons why transformers struggle to length-generalize on parity, based on their sensitivity bias.

Further from our own work, Marsden et al. (2024) obtain provable guarantees for length generalization in the context of dynamical
systems. Wang et al. (2024) prove that gradient descent on transformers can provably learn a task known as the sparse token
selection task (Sanford et al., 2023), which bears resemblance to Definition 3.2 (indeed, a slight modification of the task defined
in Section 2.1 of Wang et al. (2024) is in fact a special case of a distribution with sparse planted correlations (Definition 3.2)).

A.2. Modifying positional embeddings for length generalization

In addition to position coupling (Cho et al., 2024a;b) (and the closely related Abacus embeddings (McLeish et al., 2024)), which is a
focus in our paper, several other techniques have been developed to modify position embeddings during training and/or inference time
to improve the length generalization performance of transformers. Zhu et al. (2023) developed the positional skip-wise technique
(PoSE; see Appendix B.3), which was later refined by modifying the distribution of position IDs used at training time in Wu et al.
(2024). We remark that PoSE is conceptually similar to randomized position embeddings (Ruoss et al., 2023), which trains using
a random set of position IDs from the test-length context window (with no guarantee on the contiguity of these IDs, unlike PoSE).

Another popular strategy to extend the context length of transformers which has seen traction for models at larger scales, such as as
Code Llama (Rozière et al., 2024), is position interpolation. This technique scales down (“interpolates”) the position IDs in the longer
test-length context window to match the length of the shorter training-length context. Several such interpolation strategies have been
proposed, including the canonical choice of linear interpolation (Chen et al., 2023), as well as NTK-RoPE (emozilla, 2023), YaRN
(Peng et al., 2023), and CLEX (Chen et al., 2024); the latter strategies adjust the amount of interpolation done on a per-frequency
basis, with different RoPE frequencies receiving different interpolation scales. One downside of these position interpolation strategies
is that they generally require some fine-tuning on the longer test-length sequences in order to effectively use the longer context
windows (e.g., to achieve decreased perplexity on longer sequences than those seen during training). Such fine-tuning complicates
the theoretical setting of length generalization, where it is typically assumed that any amount of training on the longer test-length
sequences is not allowed. We remark, however, that these position interpolation techniques can be combined with PoSE (Zhu et al.,
2023; Wu et al., 2024); exploring such combinations in the context of our experiments is an interesting direction for future work.

Finally, we remark that some strategies, such as LM-Infinite (Han et al., 2024) and Self-Extend (Jin et al., 2024), have been
proposed to adjust the attention mechanism at inference time so as to achieve length generalization without any fine-tuning, though
their performance lags somewhat (Lu et al., 2024).
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A.3. Empirical evaluations & explanations of length generalization

A number of papers have offered empirical evaluations and comparisons of various techniques for length generalization. Anil et al.
(2022) studied a few simple length generalization tasks, such as parity and variable assignment, and found that techniques such as
finetuning and using a scratchpad did not lead to much length generalization. Kazemnejad et al. (2023) compared the performance
of various positional encoding techniques for length generalization, and found that NoPE performed best (though their analysis
did not account for techniques such as position interpolation and PoSE which can significantly improve length generalization
for, e.g., RoPE). Lee et al. (2024) observed that length generalization is difficult for transformers on arithmetic tasks. Finally,
Lu et al. (2024) performed a systematic study comparing various approaches to extend the context length of LLMs, including
various types of position interpolation.

Ontanon et al. (2022); Dziri et al. (2023); Hupkes et al. (2019) study the out-of-distribution performance of transformers by focusing
on compositional generalization, which refers to the ability of transformers to compose individual tasks found in the training data.
There is also extensive work more broadly on out-of-distribution generalization (Nagarajan et al., 2020; Abbe et al., 2023; Kalavasis
et al., 2024).

Finally, a number of works (e.g., Hupkes et al. (2019); Liu et al. (2023); Delétang et al. (2022); Zhang et al. (2023); Hsieh et al.
(2024)) introduce new benchmarks and datasets for studying length generalization and more broadly the performance of LLMs
on long contexts.

Additional techniques for length generalization. Many papers have introduced new types of positional encoding schemes
with the hope of improved length generalization, including relative positional embeddings (Shaw et al., 2018; Dai et al., 2019;
Huang et al., 2020; Ke et al., 2021), ALiBi (Press et al., 2021), Hard-Alibi (Jelassi et al., 2024), and FIRE (Li et al., 2024).

Many other types of techniques have been proposed, such as priming the training dataset with a few long sequences (Jelassi et al.,
2023), modifying the format of the input (Shen et al., 2023; Hu et al., 2024) such as by using a scratchpad (Lanchantin et al., 2023),
architectural changes (Csordás et al., 2021b; Fan et al., 2024), and combining several such techniques (Csordás et al., 2021a; Liu
et al., 2022; Zhou et al., 2024). Moreover, it was recently shown that length generalization can be achieved via a self-improvement
framework (Lee et al., 2025), which trains the model on sequences of increasing length, which are labeled by previous versions of the
model. We remark that such techniques lie outside the scope of this paper, as we require that the context length be bounded above by
L throughout training. Moreover, such techniques still may suffer from the computational issues that plague longer context lengths.

B. Additional Preliminaries
B.1. Additional context on distributional assumptions

The following proposition rules out length generalization in the absence of distributional assumptions.

Proposition B.1. Fix any L,L̄∈N with L<L̄, and a hypothesis classH⊂YV?

. Let P1,...,PL beH-realizable distributions,
realized by h?. Suppose that ε> 0 and ĥ defined in (1) satisfies supX∈VL̄L(h?(X),ĥ(X))>ε. Then there is an ensemble P
extending P1,...,PL so thatH does not have (L,L̄,ε)-length generalization with respect to P.

Below, we give a simple example of a distribution ensemble having k-sparse planted correlations (per Definition 3.2).

Simple example: k-gram retrieval. Suppose that V=[N ] for someN∈N, and we want to model the “k-gram retrieval” task of
outputting the token following a certain k-gram in the sequence X, which is closely related to the notion of induction heads (Jelassi
et al., 2024; Olsson et al., 2022). Formally, for a fixed length `, the tuple (X,Y)∈ (V`,Y) is drawn as follows: first, we draw
X1,...,X`−k∼Unif(V)`−k independently, then choose a random `′∼Unif([`−2k−1]), and set X`−k+1:` :=X`′+1:`′+k, and
Y :=φ(X`′+k+1) where φ :V→Y is some embedding function. In particular, the tokens X`−k+1:` specify the particular k-gram
we want to query. This distribution falls into the framework of Definition 3.2 by letting µ=Unif(V), letting S? be uniform over
length-(2k+1) sequences (`′+1,...,`′+k+1,`−k+1,...,`) where `′∼Unif([`−2k−1]), andQvoc be uniform over sequences
(Z1,...,Zk,Zk+1,Z1,...,Zk) where Z1,...,Zk+1∼Unif(V). Finally, g?(Z1,...,Z2k+1)=φ(Zk+1).

B.2. Transformers

In this section, we review the basic definitions and notations regarding the transformers architecture. We refer the reader to Phuong
& Hutter (2022) for a more extensive overview.
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Attention heads. We begin by defining attention heads. Consider matrices K,Q,V∈Rh×d and O∈Rd×h, where d denotes
the embedding dimension and h denotes the attention dimension. Let θ := (K,Q,V,O) denote the full set of parameters for
an attention head. The corresponding attention head AttHeadθ : (Rd)L→ Rd takes as input a sequence h = (h1,...,hL) of
L embedding vectors corresponding to individual tokens, as well as a query embedding vector hquery ∈ Rd, and outputs the
embedding of the next token, AttHeadθ(h,hquery) by first computing:

q←Q·hquery

kt←K·ht, vt←V·ht, αt←σ(〈q,k1〉,...,〈q,kL〉), ∀t∈ [L],

where typically σ=softmax. Then, the attention head outputs AttHeadθ(h,hquery):=O·∑L
t=1αt·vt.

Masked self-attention. We consider transformers which perform masked self-attention, meaning that they aim to predict each
token in a sequence by attending to previous tokens in the sequence. Moreover, in doing so, multiple attention heads are combined
into an attention layer, of which multiple are combined into a transformer. First, we describe an attention layer: for somem∈N,
we consider m attention heads parametrized by θ1,...,θm, together with a multilayer perceptron MLP :Rd→Rd, with 2 layers.
Letting θ=(θ1,...,θh,MLP), we let the attention layer AttLayerθ :(Rd)L→(Rd)L be the mapping defined as follows: for i∈ [L]
and h=(h1,...,hL)∈(Rd)L,

AttLayerθ(h)i :=MLP(hi+y)+hi+y, y :=

m∑
j=1

AttHeadθj(h1:i,hi).

Note that AttLayerθ(h)i depends only on the embeddings up to index i, i.e., h1, ... , hi. Finally, given a collection
θ=((θ(1),...,θ(Λ)),We) denoting parameters for each of Λ∈N layers together with an embedding matrix We∈Rd×|V|, we define
Transformerθ :VL→(Rd)L by, for h=(h1,...,hL)∈(Rd)L,

Transformerθ(X):=AttLayerθ(Λ)◦···◦AttLayerθ(1)(We ·X),

where X is interpreted as a matrix in R|V|×L whose columns are the one-hot encodings of each of the tokens of X. To produce
a sequence of tokens, typically Transformerθ is composed with an unembedding matrix Wu ∈R|V|×d to each position, and a
distribution for each position may be obtained by applying a softmax.

B.3. Positional Skip-Wise (PoSE) Training

The Positional skip-wise (PoSE) technique (Zhu et al., 2023) (see also (Wu et al., 2024)) aims to ensure that: (a) the position
IDs used during training cover all posible position IDs 1,...,Lmax that could be observed at test-time (where Lmax is the maximum
length of a test-time sequence), and (b) the differences between different position IDs seen in training sequences is of similar
magnitude to that seen in testing sequences. To do so, we fix an integer c denoting a number of chunks, and given a sequence
of tokens X=(X1,...,X`) during training, we partition X into c contiguous chunks (i.e., subsequences) and assign to each chunk
a random contiguous sequence of position IDs so that the first position ID of each chunk is greater than the last position ID of the
previous chunk. At test time, one simply uses the true position IDs, namely (1,2,...,L), corresponding to a sequence X of lengthL.

The precise schemes to partition into chunks and assign position IDs that we use are as follows: in all of our experiments we
take the number of chunks to be c=2: during training, we split a sequence X=(X1,...,X`) into two parts by choosing a uniformly
random position to split at. We then choose 2 integers J0,J1∼Unif([L̄−`]), and let the position ID of the first chunk begin at
min{J0,J1} and the position ID of the second chunk begin at max{J0,J1}+`1, where `1 is the length of the first chunk. This
is essentially the same as the scheme used in Zhu et al. (2023) with all vi=0.

B.4. Sparse functional attention captures a single attention head

In this section, we prove Proposition B.2, which shows that the k-sparse functional attention class in Definition 3.3 is sufficiently
general so as to capture the class of single attention heads (as defined in Appendix B.2). First we formally specify the relevant class
of attention heads; to ensure that the class maps from sequences of tokens (as defined in Definition 3.3) as opposed to sequences
of embedding vectors (as defined in Appendix B.2), we include an embedding matrix in the definition:
Definition B.1 (Single attention heads). Fix d,h∈N and a finite set V denoting the vocabulary. We define the class AttHeadsd,h,V ,
which consists of mappings h :V?→Rd, as follows. It is the set of all mappings from X∈VL to an embedding vector as follows:

X 7→AttHeadθ(We ·X,hquery),
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where W ranges over all matrices W ∈ Rd×|V|, hquery ranges over all vectors hquery ∈ Rd, and θ ranges over all tuples
θ= (K,Q,V,O), where K,Q,V∈Rh×d and O∈Rd×h. Moreover, we are slightly abusing notation by interpreting X as the
matrix X∈R|V|×L whose columns are the one-hot vectors of the individual tokens of the sequence X.

Proposition B.2 (Formal version of Proposition 3.1). Fix any d,h∈N and finite set V. Then there are function classes Gkey
consisting of functions mapping N×V→(R∪{−∞}) and Gval consisting of functions mapping V→Rd so that AttHeadsd,h,V
is equal to the 1-sparse functional attention classHattn(Gkey,Gval).

Proof. We let Gkey be the set of all mappings g0 :N×V→R which only depend on the V-component of the input, and Gval be
the set of all mappings g1 :V→Rd.

Now fix any θ=(K,Q,V,O),hquery,We indexing some element of AttHeadsd,h,V . For any L∈N, given X∈R|V|×L whose
columns represent the one-hot encoding vectors for some length-L sequence, we have

AttHeadθ(We ·X,hquery)=O·
L∑
i=1

αi·VWeXi

where αi=softmax(〈Qhquery,KWeX1〉,...,〈Qhquery,KWeXL〉), i∈ [L].

Define g0∈Gkey by, for x∈V,

g0(i,x)=〈Qhquery,KWex〉,

(where we conflate x∈V and its one-hot encoding vector in R|V|), and define g1∈Gval by

g1(x):=OVWe ·x.

It is now clear that the mapping X→AttHeadθ(We ·X,hquery) is identical to the 1-sparse functional attention mapping hg0,g1
defined in Definition 3.3.

Moreover, since we have assumed h ≥ d, it is evident that any hg0,g1 , for g0 ∈ Gkey, g1 ∈ Gval may be realized as
X 7→AttHeadθ(We ·X,hquery) for some θ,hquery,We as above.

C. Proofs for length generalization
First, we make the following remark on Assumption 4.2.

Remark C.1 (On Assumption 4.2). To help interpret Assumption 4.2, note first that in order for the distribution ensemble P to
be realizable (Assumption 4.1) by a classHattn(Gkey,Gval) satisfying Llocal-locality (Assumption 3.2), it will typically be the case
that maxi∈S?i−mini∈S?i≤Llocal with probability at least 1−δ for S?∈Qpos

` , for any `∈N. Thus, a natural choice forQpos
` is to

fix some distributionQpos
Llocal

over sets in Setsk([Llocal]) and letQpos
` be the distribution of a random shift of a sample fromQpos

Llocal
.

Formally, Qpos
` is the distribution of the shift S+∆, where S∼Qpos

Llocal
and ∆∼Unif({0,1,...,`−Llocal}). It is straightforward

to see that such a construction ensures that Assumption 4.2 is satisfied with η`=`. More broadly, any value η`≤poly(`) leads
to interesting conclusions in the context of our results, so we interpret Assumption 4.2 as being fairly mild.

C.1. Proof of Theorem 4.3

Proof of Theorem 4.3. Write Hattn :=Hattn(Gkey,Gval). By Assumption 4.1, we have E(X,Y)∼P`
[L(h?(X),Y)]≤ δ for some

h?∈Hattn. Let ĥ∈Hattn be chosen according to (1), so that we can write ĥ=hĝ0,ĝ1 for some ĝ0∈Gkey,ĝ1∈Gval. Thus, for each
`∈ [L/2,L], we have

Lδ≥ E
(X,Y)∼P`

[L(ĥ(X),Y)] (4)

= E
(X,Y)∼P`

[∥∥∥∥∥Y−
∑
S∈Setsk([`])exp(ĝ0(S,XS))·ĝ1(XS)∑

S′∈Setsk([`])exp(ĝ0(S′,XS′))

∥∥∥∥∥
]

= E
(X,S?)∼P`

[∥∥∥∥∥g?(XS?)−
∑
S∈Setsk([`])exp(ĝ0(S,XS))·ĝ1(XS)∑

S′∈Setsk([`])exp(ĝ0(S′,XS′))

∥∥∥∥∥
]
, (5)
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where g? : Vk → Y is the function guaranteed by Definition 3.2. By Assumption 4.2, for any S? ∈ Setsk([L]), we have
QL−2Llocal

(S?)

QL(S?) ≤ ηL and QL−Llocal
(S?)

QL(S?) ≤ ηL. (Recall that if, e.g., S? 6∈ Setsk([L−Llocal]), then we use the convention that
QL−Llocal

(S?)=0.) At various points later in the proof, we will need to use (5) for `=L−Llocal or `=L−2Llocal; in order for
this to be valid, we need L−2Llocal≥L/2, i.e., L≥4Llocal, which is ensured by the hypotheses of Theorem 4.3.

Thus, by the definition of the k-sparse planted structure (Definition 3.2; in particular, we are using the fact that Xi∼µ for all
i 6∈S?), we have that, for any X∈VL,S?∈Setsk([L]),

PL−2Llocal
(X1:L−2Llocal

,S?)·∏L
i=L−2Llocal+1µ(Xi)

PL(X,S?)
≤ηL,

PL−2Llocal
(X1:L−2Llocal

,S?)·∏L−Llocal

i=L−2Llocal+1µ(Xi)

PL−Llocal
(X,S?)

≤ηL. (6)

It follows that

ηL·(Lδ)≥ E
(X1:L−2Llocal

,S?)∼PL−2Llocal

XL−2Llocal+1:L∼µ⊗2Llocal

[∥∥∥∥∥g?(XS?)−
∑
S∈Setsk([L])exp(ĝ0(S,XS))·ĝ1(XS)∑

S′∈Setsk([L])exp(ĝ0(S′,XS′))

∥∥∥∥∥
]

(7)

ηL·(Lδ)≥ E
(X1:L−2Llocal

,S?)∼PL−2Llocal

XL−2Llocal+1:L−Llocal
∼µ⊗Llocal

[∥∥∥∥∥g?(XS?)−
∑
S∈Setsk([L−Llocal])

exp(ĝ0(S,XS))·ĝ1(XS)∑
S′∈Setsk([L−Llocal])

exp(ĝ0(S′,XS′))

∥∥∥∥∥
]
. (8)

The triangle inequality then gives

2ηL·(Lδ)≥ E
(X1:L−2Llocal

,S?)∼PL−2Llocal

XL−2Llocal+1:L∼µ⊗2Llocal

[∥∥∥∥∥
∑
S∈Setsk([L])exp(ĝ0(S,XS))·ĝ1(XS)∑

S′∈Setsk([L])exp(ĝ0(S′,XS′))
−
∑
S∈Setsk([L−Llocal])

exp(ĝ0(S,XS))·ĝ1(XS)∑
S′∈Setsk([L−Llocal])

exp(ĝ0(S′,XS′))

∥∥∥∥∥
]
.

(9)

We define the following random variables, where (X1:L−2Llocal
,S?)∼PL−2Llocal

, Xj∼µ for j>L−2Llocal, and i≥1:

A0 :=
∑

S∈Setsk([L−2Llocal])

exp(ĝ0(S,XS))·ĝ1(XS), B0 :=
∑

S′∈Setsk([L−2Llocal])

exp(ĝ0(S′,XS′))

Ai=
∑

S∈Setsk([L−2Llocal+iLlocal])\Setsk([L−2Llocal+(i−1)Llocal])

exp(ĝ0(S,XS))·ĝ1(XS),

Bi :=
∑

S∈Setsk([L−2Llocal+iLlocal])\Setsk([L−2Llocal+(i−1)Llocal])

exp(ĝ0(S,XS)).

Note thatA0,A1,...∈Rd are vectors, andB0,B1,...∈R are scalars. We have that

E
[∥∥∥∥A0

B0
−A0+A1

B0+B1

∥∥∥∥]≤2ηL·(Lδ), E
[∥∥∥∥A0+A1+A2

B0+B1+B2
−A0+A1

B0+B1

∥∥∥∥]≤2ηL·(Lδ),

where the first inequality uses (5) with `=L−2Llocal, (8) and the triangle inequality, and the second inequality uses (9). Let
Z0 denote the collection of random variables X1:L−2Llocal

, and for i ≥ 1, let Zi denote the collection of random variables
XL−2Llocal+(i−1)Llocal:L−2Llocal+iLlocal

. Then Z0,Z1,... are independent, and Z1,Z2,... are identically distributed (since we have
(X1:L−2Llocal

,S?)∼PL−2Llocal
). Since ĝ0(S,XS)=−∞ for any S for which max(S)−min(S)>Llocal (Item 1 of Assumption

3.2), Ai,Bi can each be written as functions of Zi,Zi−1 for each i≥0. Moreover, by Item 2 of Assumption 3.2, this function
does not depend on i for i≥1. By Lemma C.1, it follows that, for any t≥−2,

E
(X1:L−2Llocal

,S?)∼PL−2Llocal
Xj∼µ ∀j>L−2Llocal

[∥∥∥∥∥
∑
S∈Setsk([L−2Llocal])

exp(ĝ0(S,XS))·ĝ1(XS)∑
S′∈Setsk([L−2Llocal])

exp(ĝ0(S′,XS′))
−
∑
S∈Setsk([L+tLlocal])

exp(ĝ0(S,XS))·ĝ1(XS)∑
S′∈Setsk([L+tLlocal])

exp(ĝ0(S′,XS′))

∥∥∥∥∥
]

≤6ηL(Lδ)(t+2).

A symmetric argument establishes that for any t≥0,

E
(X1:L−2Llocal

,S?)∼PL−2Llocal
Xj∼µ ∀j≤0

[∥∥∥∥∥
∑
S∈Setsk([L−2Llocal])

exp(ĝ0(S,XS))·ĝ1(XS)∑
S′∈Setsk([L−2Llocal])

exp(ĝ0(S′,XS′))
−
∑
S∈Setsk([−tLlocal+1,L−2Llocal])

exp(ĝ0(S,XS))·ĝ1(XS)∑
S′∈Setsk([−tLlocal+1,L−2Llocal])

exp(ĝ0(S′,XS′))

∥∥∥∥∥
]

≤6ηL(Lδ)·t.
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Combining the two displays above with Lemma C.2 (and again using Item 1 of Assumption 3.2), we see that for any t0≥0,t1≥−2,

E
(X1:L−2Llocal

,S?)∼PL−2Llocal
Xj∼µ ∀j≤0,j>L−2Llocal

[∥∥∥∥∥
∑
S∈Setsk([L−2Llocal])

exp(ĝ0(S,XS))·ĝ1(XS)∑
S′∈Setsk([L−2Llocal])

exp(ĝ0(S′,XS′))
−
∑
S∈Setsk([−t0Llocal+1,L+t1Llocal])

exp(ĝ0(S,XS))·ĝ1(XS)∑
S′∈Setsk([−t0Llocal+1,L+t1Llocal])

exp(ĝ0(S′,XS′))

∥∥∥∥∥
]

≤6ηL(Lδ)(t0+t1+2). (10)

Let PL−2Llocal,t0,t1 denote the distribution of X̃1:L+Llocal(t0+t1)∈VL+Llocal(t0+t1) and S̃?∈Setsk([L+Llocal(t0+t1)]) defined as
follows: first, draw (X1:L−Llocal

,S?)∼PL−2Llocal
, as well as Xj∼µ for all j≤0, j>L−2Llocal, and then set X̃j=Xj−t0Llocal

for
j∈ [L+Llocal(t0+t1)] and S̃?=S?+t0Llocal. Then (10) together with (5) (with `=L−2Llocal) gives that, for all t0≥0,t1≥−2,

E
(X1:L+Llocal(t0+t1),S?)∼PL−2Llocal,t0,t1

[∥∥∥∥∥g?(XS?)−
∑
S∈Setsk([L+Llocal(t0+t1)])exp(ĝ0(S,XS))·ĝ1(XS)∑

S′∈Setsk([L+Llocal(t0+t1)])exp(ĝ0(S′,XS′))

∥∥∥∥∥
]

≤O(ηL·(Lδ)·(t0+t1+2)). (11)

By Definition 3.2 and Assumption 4.2, for any X1:L̄ ∈VL̄ and S? ∈Setsk([L̄]) with max{S?}−min{S?}≤Llocal, there are
some t0≥0,t1≥−2 satisfying t0+t1+2=(L̄−L)/Llocal

11 so that

PL̄(X1:L̄,S
?)

PL−2Llocal,t0,t1(X1:L̄,S
?)
≤ QL̄(S?)

QL−2Llocal
(S?−t0·Llocal)

≤ηL̄. (12)

Noting that we have L̄ = L + Llocal(t0 + t1), using (12) and summing (11) over all possible values of t0, t1 for which
t0+t1+2=(L̄−L)/Llocal gives that

E
(X1:L̄,S

?)∼PL̄

[∥∥∥∥∥g?(XS?)−
∑
S∈Setsk([L̄])exp(ĝ0(S,XS))·ĝ1(XS)∑

S′∈Setsk([L̄])exp(ĝ0(S′,XS′))

∥∥∥∥∥
]

≤O(ηLηL̄·(Lδ)·(t0+t1)2).

Using that g?(XS?)=Y under (X1:L̄,S
?,Y)∼PL̄, we conclude that

E
(X,Y)∼PL̄

[
L(ĥ(X),Y)

]
≤O(ηLηL̄·L·(L̄/Llocal)

2·δ).

Lemma C.1. Suppose that Z0, Z1, Z2, ... are independent random variables with sample space Ω, and that Z1, Z2, ...
are identically distributed. Furthermore suppose f, f0 : Ω → Rd and g, g0 : Ω → R are measurable functions, and let
Ai=f(Zi,Zi−1),Bi=g(Zi,Zi−1) for each i≥1, andA0 =f0(Z1,Z0),B0 =g0(Z1,Z0). Suppose ε>0 satisfies

E
[∥∥∥∥A0

B0
−A0+A1

B0+B1

∥∥∥∥]≤ε, E
[∥∥∥∥A0+A1

B0+B1
−A0+A1+A2

B0+B1+B2

∥∥∥∥]≤ε. (13)

Then for any i≥1, we have

E
[∥∥∥∥A0

B0
−A0+A1+···+Ai
B0+B1+···+Bi

∥∥∥∥]≤3iε.

Proof. We use a hybrid argument. Fix any i≥2, and defineA′1 =f(Z1,Zi),B
′
1 =g(Z1,Zi). We have

E
[∥∥∥∥A0

B0
−A0+A1+Ai
B0+B1+Bi

∥∥∥∥]
≤E
[∥∥∥∥A0

B0
−A0+A′1
B0+B′1

∥∥∥∥]+E
[∥∥∥∥A0+A′1
B0+B′1

−A0+A1+Ai
B0+B1+Bi

∥∥∥∥]≤2ε,

11In particular, any choice of t0 satisfying S?−t0 ·Llocal∈Setsk([L−2Llocal]) suffices.
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where the final inequality follows from (13) together with the fact that Z1,Z2,Zi are iid. By the triangle inequality, it follows that

E
[∥∥∥∥A0+A1

B0+B1
−A0+A1+Ai
B0+B1+Bi

∥∥∥∥]≤3ε.

Fix any j≥2. Summing over 2≤i≤j and using Lemma C.2, we see that

E
[∥∥∥∥A0+A1

B0+B1
−A0+A1+···+Aj
B0+B1+···+Bj

∥∥∥∥]≤3ε·(j−1).

A final application of the triangle inequality yields the conclusion of the lemma.

Lemma C.2. Let L∈N and a,qi∈Rd be vectors for 1≤i≤L and b,pi∈R>0 be positive real numbers for 1≤i≤L. Suppose
that for each i∈ [L],

∥∥∥ab− qi+a
pi+b

∥∥∥=εi. Then ∥∥∥∥∥ab−
∑L
i=1qi+a∑L
i=1pi+b

∥∥∥∥∥≤
L∑
i=1

εi.

Proof. For each i, we have:

∥∥∥∥pia−bqib(pi+b)

∥∥∥∥=

∥∥∥∥ab− qi+api+b

∥∥∥∥≤εi.
Multiplying both sides by b(pi+b) (which is positive), we see that

‖pia−qib‖≤εib(pi+b).

Summing both sides over i=1 to L:

∥∥∥∥∥a
L∑
i=1

pi−b
L∑
i=1

qi

∥∥∥∥∥=

∥∥∥∥∥
L∑
i=1

pia−qib
∥∥∥∥∥≤b

L∑
i=1

εi(pi+b).

Let ε=
∑L
i=1εi, S=

∑L
i=1pi and V =

∑L
i=1qi, so ‖aS−bV ‖≤εb(S+b).We need to bound

∥∥∥ab− V+a
S+b

∥∥∥. To do so, we compute∥∥∥∥ab−V +a

S+b

∥∥∥∥=

∥∥∥∥aS−bVb(S+b)

∥∥∥∥≤ εb(S+b)

b(S+b)
=ε,

which gives the desired bound.

C.2. Improving the length generalization error

Below we discuss some ways that the error bound ofO(ηLηL̄·L·(L̄/Llocal)
2·δ) in Theorem 4.3 can be improved:

• First, the factor of L can be removed if instead of the training objective (1) we choose

ĥ :=argmin
h∈H

max
`∈[L/2,L]

E
(X,Y)∼P`

[L(h(X),Y)].

(In particular, we take the worst length `∈ [L/2,L], as opposed to an average length.) This holds because the factor of L
is picked up in the first step of the proof (4) where we bound the in-distribution loss for each `∈ [L/2,L]. We opt to use
the formulation in (1) in the formal statement of Theorem 4.3 since it more closely correponds to what is done in practice.

• When applying Theorem 4.3 it is without loss to take Llocal =L/4, since making Llocal larger only make Assumption 4.2
easier to satisfy. Thus, the term (L̄/Llocal)

2 will be bounded asO((L̄/L)2).

• If we takeQpos
` to be as in Remark C.1, then we can use the shift-invariance of the distributionsQpos

` to remove the term
ηL·ηL̄ from the error bound as follows. The term ηL in (6) may be replaced withO(1) since L−2Llocal≥L/2. Moreover,
the instance of ηL̄ in (12) can be replaced withO(1) since L̄≥L−2Llocal.

If we incorporate all of the above optimizations, then we obtain that (under the assumption onQpos
` introduced in Remark C.1),

the error bound in Theorem 4.3 can be replaced withO((L̄/L)2·δ).
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C.3. On necessity of the assumptions

In the below proposition, we establish that each of the assumptions of Theorem 4.3 is necessary in that none of them can be
individually removed.
Proposition C.3. There is a constant c>0 so that the following holds. For any of the assumptions: (a) Item 1 of Assumption
3.2, (b) Item 2 of Assumption 3.2, (c) Assumption 4.1 with δ=0, (d) Assumption 4.2 with η`=O(`), and any integer L∈N, there is
a 2-sparse functional attention classHattn=Hattn(Gkey,Gval) and a 2-sparse planted correlations distribution ensemble P which
satisfy each of the other 3 assumptions with Llocal=2 but which does not have (L,L̄,c)-length generalization for any L̄≥2L.

Proof. We show in turn that each of the assumptions cannot be removed. For all of the examples, we set k=2, and V={1,2}.
We let Y=[0,1] be the unit interval, and let L(Y,Y′):= |Y−Y′|.

Removing locality. We first show that Llocal-locality (Item 1 of Assumption 3.2) cannot be dropped. We consider the sparse
function attention classHattn=Hattn(Gkey,Gval) where Gkey,Gval are defined as follows:

• Gkey={g00,g01}, defined as follows:

g00(S,x)=

{
0 :x=(2,2) or max{S}−min{S}≥L
−∞ :otherwise

g01(S,x)=

{
0 :x=(2,2)

−∞ :otherwise.

• Gval consists of the single function g1 :V2→Y defined as g1(2,2)=1 and g1(x1,x2)=0 for all (x1,x2) 6=(2,2).

Fix any integer L. We define a distribution ensemble P with k-sparse planted correlations, as specified by distributions
µ∈∆(V),Qpos

` ∈∆(Setsk([`])) for each `∈N, andQvoc∈∆(Vk), as well as a function g? :Vk→Y, as follows:

• µ is the point mass on {1}.
• Qvoc is the point mass on {(2,2)}.
• Qpos

` is uniform over the sets {1, 2}, {2, 3}, ... , {` − 1, `} if ` ≤ L; and is uniform over the sets
{1,2},...,{`−1,`},{1,L+1},{2,L+2},...,{`−L,`} if `>L.

• We set g?=g1∈Gval as defined above.

It is immediate from the above definitions thatHattn is relative (i.e., Item 2 of Assumption 3.2). Next, realizability (Assumption
4.1) is clearly satisfied as the function hg00,g1 achieves 0 loss. Finally, coverage (Assumption 4.2) is readily verified by taking
η`=2` and Llocal=2. (In particular, for S?={a,a+L}∈Setsk([`]) and `′≤L, we have that S?−∆ 6∈Setsk([`

′]) for all choices
of ∆ and so we do not need to satisfy Qpos

` (S?)

Qpos

`′ (S?−∆)
≤η` (such an inequality does not even make sense).

Finally, note that the risk minimization procedure which returns ĥ=hg00,g1 satisfies (1) with the chosen value of L and error
δ=0. However, it is readily checked that ĥ experiences error Ω(1) on the distribution P` for any `≥2L.

Removing the relative assumption. Next we show that Item 2 of Assumption 3.2 cannot be dropped. We consider the sparse
attention class defined by the following Gkey,Gval:

• Gkey={g00,g01}, defined as follows:

g00(S,x)=

{
0 :x=(2,2) and max{S}−min{S}=1

−∞ :otherwise

g01(S,x)=


0 :x=(2,2) and max{S}−min{S}=1

0 :max{S}−min{S}=2,max{S}>L
−∞ :otherwise.
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• Gval consists of the single function g1 :V2→Y defined as g1(2,2)=1 and g1(x1,x2)=0 for all (x1,x2) 6=(2,2).

Fix an integer L. We define an ensemble P specified by µ,Qpos
` ,Qvoc,g? as follows:

• µ is the point mass on {1}.

• Qvoc is the point mass on {(2,2)}.

• Qpos
` is uniform over the sets {1,2},{2,3},...,{`−1,`}.

• g?=g1∈Gval.

It is immediate from the above definitions thatHattn=Hattn(Gkey,Gval) is Llocal-local (Item 1 of Assumption 3.2) with Llocal=2.
Realizability (Assumption 4.1) is satisfied with h?=hg00,g1 . Coverage (Assumption 4.2) is satisfied with Llocal=1 and η`=`.

The risk minimization procedure which returns ĥ = hg01,g1 satisfies (1) with the chosen value of L and error δ = 0, but ĥ
experiences error Ω(1) on the distribution P` for any `≥L+1.

Removing realizability. Next, we show that Assumption 4.1 cannot be dropped. We consider the sparse attention class defined
by the following Gkey,Gval:

• Gkey={g00,g01}, defined as follows:

g00(S,x)=

{
0 :max{S}−min{S}=1 and x=(2,2)

−∞ :otherwise

g01(S,x)=

{
0 :max{S}−min{S}=2 and x=(2,2)

−∞ :otherwise.

Fix an integer L. We define an ensemble P specified by the following µ,Qpos
` ,Qvoc,g?:

• µ is the point mass on {1}.

• Qvoc is the point mass on {(2,2)}.

• Qpos
` is uniform over the sets {1,2},{2,3},...,{`−1,`} if `≤L. For `>L, we define:

Qpos
` ({1,2})= ···=Qpos

` ({`−1,`})=
1

10(`−1)

Qpos
` ({1,3})=Qpos

` ({2,4})= ···=Qpos
` ({`−2,`})=

9

10(`−2)
. (14)

• g?=g1∈Gval.

It is immediate from the above definitions thatHattn=Hattn(Gkey,Gval) is Llocal-local and relative (Assumption 3.2) with Llocal=2.
Moreover, coverage (Assumption 4.2) is satisfied with η`=`.

However, note that the hypothesis ĥ=hg00,g1 achieves 0 expected loss on the distributions P` for `≤L, but Ω(1) expected loss
on the distributions P` for `>L.12 Moreover, this example shows that we cannot even hope for an agnostic guarantee whereby
ĥ is close to the best-in-class hypothesis, since for any `>L, we in fact have13

E(X,Y)∼P`
[L(ĥ(X),Y)]≥ E

(X,Y)∼P`

[L(hg01,g1(X),Y)]+Ω(1). (15)

12Note that for X∼P` for `>L, we will have that g00(S,XS)=−∞ for all S with nonzero probability; here, recall from Definition 3.3
that hg00,g1(X)= 1

|Setsk([`])|
∑
S∈Setsk([`])g1(XS).

13Ensuring that (15) holds is the reason that we haveQpos
` put more mass on sets S with max{S}−min{S}=2 in (14).
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Removing coverage. Finally, we show that Assumption 4.2 cannot be dropped. We consider the sparse attention class defined
by the following Gkey,Gval:

• Gkey={g00,g01}, defined as follows:

g00(S,x)=

{
0 :x=(2,2) and max{S}−min{S}=1

−∞ :otherwise

g01(S,x)=

{
0 :x=(2,2) and max{S}−min{S}∈{1,2}
−∞ :otherwise.

• Gval consists of the single function g1 :V2→Y defined as g1(2,2)=1 and g1(x1,x2)=0 for all (x1,x2) 6=(2,2).

Fix an integer L. We define an ensemble P specified by the following µ,Qpos
` ,Qvoc,g?:

• µ is the point mass on {1}.

• Qvoc is the point mass on {(2,2)}.

• Qpos
` is uniform over the sets {1,2},{2,3},...,{`−1,`} if `≤L, and uniform over the sets {1,3},{2,4},...,{`−2,`} if `>L.

• g?=g1∈Gval.

It is immediate from the above definitions thatHattn=Hattn(Gkey,Gval) is Llocal-local and relative (Assumption 3.2) with Llocal=2.
Moreover, realizability (Assumption 4.1) is satisfied by noting that hg01,g1 has 0 loss.

However, note that the hypothesis ĥ=hg00,g1 achieves 0 expected loss on the distributions P` for `≤L, but Ω(1) expected loss
on the distribution P` for `>L.

D. Theoretical analysis for position coupling
In this section we formally state and prove Proposition 4.4. We begin with some notations. Given a set Ω⊂N and i∈Ω, we
let rankΩ(i) denote the rank of i in Ω, i.e., the position of i in Ω when the elements of Ω are sorted. Next for S ∈ Setsk([`]),
S=(i1,...,ik), and ψ` : [`]→ [`], we let ψ`(S)∈Setsk([`]) to denote the set {ψ`(i):i∈S}.
First, we discuss some additional motivation for Proposition 4.4.

Remark D.1 (Limitations of Assumption 3.2). The combination of Assumptions 3.2 and 4.1 leads to the following restriction
on the k-sparse distribution ensemble P: in typical examples (modulo some degenerate ones where, e.g., all functions in Gval
are constant), in order to satisfy realizability (Assumption 4.1), we will need the low-loss hypothesis h? ∈Hattn(Gkey,Gval) to
be of the form h?=hg?0 ,g?1 for some g?0∈Gkey which “selects out” the planted set S? and g?1∈Gval which correctly evaluates the
label Y given XS?; formally, for each `∈N, with high probability under (X,S?,Y)∼P`,

g?0(S?,XS?)>−∞, g?(S,XS)=−∞ ∀S 6=S?,

and g?1(XS?)=Y. (We formally call this property strong realizability in Assumption D.1.) But by Item 1 of Assumption 3.2, this
means that max{S?}−min{S?}≤Llocal with high probability over the draw from P`. Ideally, we would like to establish results
for planted k-sparse ensembles P for which the planted set S? is not local in this sense; this is accomplished by Proposition D.2.

We now formally define the notion of a local positional coupling, which expands out the technical details omitted in the informal
version in Definition 4.1.

Definition D.2 (Local position coupling; Formal version of Definition 4.1). Fix a distribution ensemble P with k-sparse planted
correlations per Definition 3.2 (defined by µ,Qpos,Qvoc). A Llocal-local position coupling of P is defined by, for each `∈N, a
joint distributionQpos−c over S?∈Setsk([`]) and a mapping ψ` : [`]→ [`] so that the marginal of S? underQpos−c isQpos

` and
with probability 1 under the draw of (S?,ψ`)∼Qpos−c:

1. max{ψ`(S?)}−min{ψ`(S?)}≤Llocal.
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2. For each i 6∈S?, |ψ−1
` (ψ`(i))|=1. (I.e., Indices not in S? are not coupled.)

3. For some fixed k′ (independent of `), |ψ`(S?)|=k′ and the distribution of the tuple ({rankψ−1
` (S?)(j) : j∈ψ−1

` (i))}i∈ψ`(S?)

does not depend on `.14

Position coupling operation on functional attention classes. We say that a mapping g0 : (N×V)k→R∪{−∞} (e.g., an
element of Gkey is position-independent if g0(S,X) depends only on X (and not S). For such g0, we will write g0 :Vk→R∪{−∞}.
We say that Gkey is position-independent if all g0∈Gkey are position-independent.

We define a new vocabulary V̄k := (V t [k])≤k, and “position-coupled” versions, PC[g0] : (N× V̄k)k → R ∪ {−∞} and
PC[g1] :V̄kk→Y of mappings g0 :Vk→R∪{−∞},g1 :Vk→Y, as follows. First, given X∈V̄kk , let

expand(X)∈V?

be defined as follows: for each i ∈ [k], we can write Xi = ((ji1,Zi1), ... ,(jin,Zin)) for some n ≥ 0, ji1, ... ,jin ∈ [`] and
Zi1...,Zin∈V. Then we let expand(S,X) be the tuple consisting of all pairs (ji1,Zi1),...,(jin,Zin) across all i∈ [k], where the
indices ji1,...,jin are sorted in increasing order across all i and all duplicates in the indices are removed. We next define

PC[g0](S,X):=


−∞ :max{S}−min{S}>Llocal

−∞ :expand(X) 6∈Vk
g0(expand(X)) : otherwise,

(16)

so that PC[g0] maps (N×V̄k)k→R∪{−∞}, and

PC[g1](X):=

{
g1(expand(X)) :expand(S)∈Vk
y0 :otherwise,

(17)

where y0∈Y is an arbitrary element; thus PC[g1] maps V̄kk→Y. For a sparse functional attention classHattn=Hattn(Gkey,Gval),
we define

PC[Hattn] :=
{
hPC[g0],PC[g1] : g0∈Gkey,g1∈Gval

}
.

Note that hypotheses in PC[Hattn] map V̄`k→Y.

Position coupling operation on distribution ensembles. Next, we define a “position coupling” operation which modifies
a distribution ensemble equipped with a local position coupling (per Definition D.2) to produce sequences in V̄k with tokens
coupled between positions.

Fix a distribution ensemble (P`)`∈N with k-sparse planted correlations, which is specified by the tuple (µ,Qpos
` ,Qvoc). Given

a sequence X∈V`, a set S∈Setsk([`]), and a function ψ` : [`]→ [`], we let PC[X,S] be the distribution over sequences X̄∈V̄`k
defined as follows: for i∈ [`], the distribution of X̄i is given by

X̄i


=((rankψ−1

` (S)(j),Xj))j∈ψ−1
` (i) :i∈ψ`(S)

=(I,Xmin(ψ−1
` (i))), I∼Unif([`]) :i 6∈ψ`(S),ψ−1

` (i) 6=∅
∼Unif([`])×µ :otherwise,

(18)

In words, we are “rearranging” the tokens of X by grouping together (i.e., “coupling”) tokens indexed by S which are mapped by
ψ` to the same index. Moreover, for positions i not inψ`(S), we take the token at the smallest position ofψ−1

` (i), and for positions i
not in the image of ψ`, we sample X̄i from Unif([`])×µ. We let PC[P`] denote the distribution of PC[X,S?] where (X,S?)∼P`.

Strong realizability. Finally, we introduce the following slight strengthening of realizability:

14For a set Ω⊂N and i∈Ω, rankΩ(i) is the position of i in Ω when the elements of Ω are sorted in increasing order; see Appendix D. Item 3
is a technical condition which is satisfied by most practical position coupling schemes which have been proposed.
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Assumption D.1 (Strong realizability). WriteHattn=Hattn(Gkey,Gval). We say that an ensemble P is δ-strongly approximately
Hattn-realizable if there are g?0∈Gkey,g?1∈Gval, for each `∈N, with probability 1−δ under (X,S?,Y)∼P`,

g?0(S?,XS?)>−∞, g?0(S,XS)=−∞ ∀S 6=S?,
and g?1(XS?)=Y.

Using the fact that the diameter of Y is at most 1, it is straightforward that δ-strong approximate realizability implies δ-approximate
realizability.

Position coupling removes the need for locality. The below proposition confirms that applying the position-coupling operation
to a distribution ensemble P` with k-sparse planted correlations (Definition 3.2), to yield PC[P`], and applying the position
coupling operation PC to a sparse functional attention class Hattn, to yield PC[Hattn], can effectively remove the requirement
for locality to hold (per Assumption 3.2) in order to obtain provable length generalization:
Proposition D.2 (Length generalization without locality from position coupling). Suppose that P=(P`)`∈N is an ensemble with
k-sparse planted correlations (Definition 3.2) defined by distributions (µ,Qpos

` ,Qvoc), and for some Llocal ∈N is amenable to
Llocal-position coupling (Definition D.2). Moreover suppose that the distribution of ψ`(S?) for (S?,ψ`)∼Qpos−c

` satisfies the
coverage assumption in Assumption 4.2 for some values of η`>0, `∈N.

Then for any sparse functional attention class Hattn = Hattn(Gkey,Gval) for which Gkey is position-independent and P is
δ-approximately strongly Hattn-realizable, and any integers L,L̄ ∈ [Lmax] for which Llocal | L̄−L and L≥ 4Llocal, the class
PC[Hattn] achieves (L,L̄,ηLηL̄·LL̄2·δ)-length generalization with respect to the ensemble PC[P].

Proof of Proposition D.2. We will verify that the sparse functional attention class PC[Hattn] together with the ensemble PCµ,ψ[P]
satisfy the requirements of Theorem 4.3 with respect to the vocabulary V̄ defined above.

First, it is straightforward to see that PCµ,ψ[P] is itself a k-sparse planted correlations distribution ensemble: for length `, the
planted set is given by ψ`(S?) for S?∼P`, and for all i 6∈S?, the distribution of X̄i (for X̄∼PC[P`]) is an independent sample
from Unif([`])×µ. (Here we have used the second and third cases in (18) together with Item 2 of Definition D.2.) We have
additionally used Item 3 of Definition D.2, which ensures that the distribution of X̄ψ`(S?) does not depend on ` (recall from
Definition 3.2 thatQvoc cannot depend on `).

Next we verify each of the three assumptions made in Theorem 4.3:

• Assumption 3.2 is satisfied by the first line of (16) (which ensures Llocal-locality) and since PC[g0](S,X) does not depend
on S for sets S satisfying max{S}−min{S}≤Llocal (again by (16)).

• To show that Assumption 4.1 is satisfied in the sense that PC[P] is δ-approximately PC[Hattn]-realizable, we use that P
is δ-strongly approximatelyHattn-realizable. In particular, choose g?0∈Gkey,g?1∈Gval per Assumption D.1. Consider a sample
(X̄?,S̄?)∼PC[P`]. We can write S̄?=ψ`(S

?) and X̄ as in (18) for a sample (X,S?,ψ`)∼P`. Thus, with probability 1−δ
under (X̄,S̄?)∼PC[P`], we have from Eqs. (16) and (18) that

PC[g?0](S̄?,X̄S̄?)=g?0(S?,XS?)>−∞.
Moreover, in order to have PC[g?0](S,X̄S)>−∞ for some S∈Setsk([`]), we need (under the 1−δ probability event above)
that expand(X̄S)=XS?; here we have used that g?0 ∈Gkey is position-independent. For any such set S, it holds also that
PC[g?1](X̄S)=g?1(expand(X̄S))=g?1(XS?), which is equal to the label Ȳ on this event.

• Assumption 4.2 is satisfied on account of the assumption from the proposition statement on the distribution of ψ`(S?) for
(S?,ψ`)∼Qpos−c

` .

Remark D.3 (Theoretical justification for PoSE). It is natural to wonder if our theoretical framework allows us to justify other tech-
niques used to induce length generalization, such as PoSE (Appendix B.3), in a sense akin to Proposition 4.4. At a high level, PoSE is
adjusting the distribution of position IDs during training, so that IDs always seen farther apart than the training context window at test
time may nevertheless be observed in the same training instance. In other words, a model trained as such should “interpret” a greater
range of setsS as satisfying the locality requirement of Assumption 3.2. Thus, we conjecture that this adjustment allows us to remove
the locality requirement in Assumption 3.2 as well; we leave a formal proof of this fact as an intriguing direction for future work.
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E. Additional experimental details: synthetic data experiments
For our experiments with synthetic data (Sections 5.1 and 5.2), we used the GPT-NeoX decoder-only transformer model with
a causal attention mask. The transformer had 12 layers, 16 heads, and an embedding dimension of 1024. We used the AdamW
optimizer with learning rate 5·10−5 and weight decay parameter equal to 0.1; moreover, the experiments use a linear learning
rate scheduler with 300 warmup steps. All shaded areas in figures represent 95% confidence intervals, computed with respect
to multiple training runs (the precise number of training runs for each experiment is noted in the following subsections).

Remark E.1. One might wonder why we emphasize Item 1 but not Item 2 of Assumption 3.2 in takeaway (T2). In fact, the
conceptual message of Item 2, namely that position IDs only influence attention scores by their relative information (i.e., the
difference between different positions) is already captured by the fact that it is common to use relative positional embeddings
and variants (e.g., RoPE (Su et al., 2021), FIRE (Li et al., 2024)) in many open-source transformer architectures. Due to the success
of such embeddings, in this sense the constraint imposed by Item 2 can “come for free”.

E.1. Sparse parity (Section 5.1)

E.1.1. HYPERPARAMETERS AND DATA FORMAT.

Hyperparameters. The hyperparameters specific to our sparse parity experiments are shown in Table 1.

Parameter Value
Minimum training length 20
Maximum training length 50
Minimum testing length 20
Maximum testing length 500
Training batch size 64
Number of training steps 50,000
Number of testing points 512
Vocabulary sizeN 20
Maximum position ID (Lmax) 510
Positional embedding RoPE
Number of training runs 1

Table 1: Hyperparameters for sparse parity experiments (Section 5.1).

Data format. For some positive integer N , we consider an alphabet of V=[N ]∪{t0,t1,<BOS>,<SEP>}. Given integers k,`
satisfying k<`, we consider the task of evaluating the parity of a particular set of k out of ` tokens at even-numbered positions.
The particular set of k tokens is defined as those tokens for which the directly preceding token (which must belong to [N ]) is
≤N/2. We remark that this task makes sense even forN=2.

Formally, the task is defined as follows. For each `,k∈N, we letDsp
`,k denote the distribution over sequences of the form

<BOS>,J1,tb1,...,J`,tb`,<SEP>,tb? (19)

where (J1,...,J`)∈ [N ]` is chosen uniformly subject to the constraint that exactly k of the values J1,...,J` are ≤N/2 and the
remaining `−k values are >N/2. Moreover, b1,...,b`∼Unif{0,1}, and b?=

⊕
i:Ji≤N/2bi. We consider the task of predicting

the final token tb? .

This task fits into the framework discussed in Section 3 as follows: P` is the distribution over tuples (X,Y) distributed as in (19)
where X consists of all tokens except the final one tb? , and Y= tb? .15 It is straightforward to verify that, under the additional
assumption that the k values of i for which Ji≤N/2 are all withinLlocal of each other (for some choice ofLlocal), then Assumption
4.2 is satisfied for η`=O(`) as long as `≥Ω(Llocal), and Assumptions 3.2 and 4.1 are both satisfied for natural choices of the
sparse functional attention classHattn.

15Technically, the length of X is 2` instead of `, but this discrepancy is immaterial.
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Figure 3: Length generalization for the sparse parity task for valuesKtrain∈{4,6,8,12} (see Figure 1a forKtrain=10).

E.1.2. ADDITIONAL RESULTS

The analogous plots to Figure 1a for Ktrain∈{4,6,8,12} are shown in Figure 3. The same patterns for Ktrain = 10 are evident
for each of these other values of Ktrain (except that the values of Ktrain∈{4,6} are sufficiently small so that there is essentially
perfect length generalization for each value of k≤Ktrain).

E.2. Parity with scratchpad (Section 5.2.1)

E.2.1. HYPERARAMETERS AND DATA FORMAT

Hyperarameters. The hyperparameters specific to our parity-with-scratchpad experiments are shown in Table 2.

Data format. For each length ` ∈ N, we train using data of the following format, which computes the parity of ` bits by
successively computing the parity of the first i bits for each i=1,2,...,`:

<BOS>,b1,...,b`,<SEP>,b
′
1,...,b

′
` (20)

where b1,...,b`∼Unif{0,1} are independent and b′i =
⊕i

j=1bj for i∈ [`]. The model is trained to predict all tokens after the
<SEP> (namely, the scratchpad). For position coupling, we use position IDs of 0,1,...,`,0,1,...,` (which are shifted by a random
offset during training as discussed above). Note that in this task, the position IDs used in position coupling in fact are determined
solely by the length of the sequence.

We train on ` for which the combined length of input and scratchpad satisfies 2`∈ [10,40] and test for ` satisfying 2`∈ [10,200].

E.2.2. ADDITIONAL RESULTS

In Figure 4, we show the length generalization behavior for our experimental setup with modifications that (a) remove Predictive
Position Coupling and simply use absolute position embeddings with a random shift during training time, and (b) use RoPE with

27



Length Generalization in Transformers

PoSE. Both of these modifications significantly harm length generalization behavior.

Parameter Value
Minimum training length 10
Maximum training length 40
Minimum testing length 10
Maximum testing length 200
Training batch size 64
Number of training steps 50,000
Number of testing points 192
Maximum position ID (Lmax) 210
Positional embedding Absolute Position Embeddings (learned)
Number of training runs 1016

Table 2: Hyperparameters for parity-with-scratchpad experiments (Section 5.2.1).

25 50 75 100 125 150 175
Length

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Jump = 1
Jump = 2
Jump = 3
Jump = 4

(a) Absolute positional embeddings with random shift
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(b) RoPE with PoSE

Figure 4: Length generalization figure for parity-with-scratchpad experiments (Section 5.2.1), with modifications that replace Predictive Position
Coupling. Length generalization behavior is significantly worse than that in Figure 1b.

E.3. Variable assignment with scratchpad (Section 5.2.2)

Parameter Value
Minimum training length 20
Maximum training length 60
Minimum testing length 20
Maximum testing length 200
Training batch size 32
Number of training steps 50,000
Number of testing points 192
Vocabulary size (number of variables) 200
Maximum position ID (Lmax) 230
Positional embedding Absolute positional embedding (learned)
Number of training runs 317

Table 3: Hyperparameters for variable assignment-with-scratchpad experiments (Section 5.2.2).

16For the ablation studies in Figure 4, we only used 3 training runs.
17The ablation study in Figure 5b uses 10 training runs.
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E.3.1. HYPERPARAMETERS AND DATA FORMAT

Hyperparameters. The hyperparameters specific to our variable assignment-with-scratchpad experiments are shown in Table 3.

Data format. We now describe in detail the distribution of data for the “variable assignment with scratchpad” problem discussed
in Section 5.2.2. To sample a problem instance, we first draw some number w of chains, where a chain is a sequence of d
variable assignments of the form: v1← v2;v2← v3;··· ;vd← vd+1. We sample uniformly at random a sequence of w such
chains with distinct variable IDs, where chain j is denoted vj,1←vj,2;vj,2←vj,3;···;vj,d←vj,d+1. We interleave these chains
randomly (but keep the order within each chain preserved). We let vinit =v1,1, and begin the input sequence with v1,1 (so that
it is possible for the model to determine which chain to follow). Finally, the sequence concludes with a scratchpad of the form
v1,1←v1,2;v1,2←v1,3;···;v1,d←v1,d+1, evaluating the variable assignments along the correct chain. Overall, an example sequence
consists of the following token IDs (here,←, <SEP1>, <SEP2> are separator tokens):

<BOS>,v1,1,<SEP1>,vπ(1),σ(1),←,vπ(1),σ(1)+1,vπ(2),σ(2),←,vπ(2),σ(2)+1,...,<SEP2>,

v1,1,←,v1,2,...,v1,d,←,v1,d+1. (21)

Here we have used π(1), π(2), ... ∈ [w] to denote the chain index corresponding to each step in the input sequence, and
σ(1),σ(2),...∈ [d] to denote the position within its chain corresponding to each step in the input sequence. As an example with
v=2 and w=2, we might have the sequence:

<BOS>,v1,1,<SEP1>,v2,1,←,v2,2,v1,1←v1,2,v1,2,←v1,3,v2,2←v2,3,<SEP2>,v1,1,←,v1,2,v1,2,←,v1,3.

The model is trained to predict all tokens after the <SEP2>. For a fixed depth d and desired length ` of the input, we choose
w as large as possible so that the length of the sequence between <SEP1> and <SEP2> is at most `.

For position coupling, the first part of the example (before <SEP2>) uses the true position IDs 1,2,3,...,`, where ` denotes the num-
ber of tokens before <SEP2>. The final part of the example (after <SEP2>) uses position IDs I1,I1+1,I1+2,I2,I2+1,I2+2,...,
where for j ∈ [d], Ij denotes the position ID assigned to v1,j in the first part of the example. Summarizing, the position IDs
corresponding to the example (21) are:

0,1,2,...,`,0,I1,I1+1,I1+2,...,Id,Id+1,Id+2.

Note that, because I1,I2,...,Id depend on the (random) functions π,σ, it is crucial that the model learns to predict these coupled
position IDs, so that they can be passed as the next position ID.

E.3.2. ADDITIONAL RESULTS

Figure 5 shows the length generalization behavior for our experimental setup with modifications that (a) remove Predictive Position
Coupling and use absolute positional embeddings with a random shift during training time, (b) use RoPE with PoSE (keeping
the scratchpad), and (c) use RoPE with PoSE and remove the scratchpad. Notice that Predictive Position Coupling (Figure 1c)
greatly outperforms all 3 of these modifications.

F. Additional experimental details: Natural Language Experiments

Additional experimental details. Hyperparameters used for our training procedure for the model ĥshort, discussed in Section 5.3.
The model ĥshort with context length L= 64 discussed in Section 5.3 was trained for 34000 steps without PoSE, and 15000
steps with PoSE. We additionally trained a model ĥlong with context length L̄= 128 for 48000 steps, whose hyperparameters
are identical to those of ĥshort except the batch and microbatch sizes are halved. Altogether, both models ĥshort,ĥlong were trained
on roughly 25B tokens, and each has 1.3B parameters.

Formal setup for results. Let ĥshort(Xi |X1:i−1) denote the probability ĥshort assigns to token Xi given the context X1:i−1.
For each test example X=(X1,...,XL̄), we first computed a set of k=5 “influential” tokens for predicting XL̄, chosen amongst
the first L̄−L tokens, by finding the k values of j∈ [L̄−L−1] which minimize

ĥshort(XL̄ |X1:j−1,Xj+1:L̄−1), (22)
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(a) Absolute positional embeddings with random shift
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(b) RoPE with PoSE
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Figure 5: Length generalization figure for variable assignment experiments (Section 5.2.1). Figs. 5a to 5c show length generalization behavior
with modifications that replace Predictive Position Coupling; length generalization is significantly worse than that in Figure 1c. Figs. 5a and 5c
report the full-string accuracy on the scratchpad; Figure 5b (which does not use a scratchpad) reports the accuracy of the model at predicting
the answer token. Moreover, consistent with takeaway (T1) it appears that, even when restricting to RoPE with PoSE, having a scratchpad
is superior to not having one (even when accuracy in the scratchpad case is measured by full-string correctness, as in Figure 5c), though there
is significant variance between different training runs.

i.e., where token Xj is masked out in all attention computations. Let J1,...,Jk denote these k tokens.18 We then compute the
following three negative log-likelihoods:

Lshort :=−logĥshort(XL̄ |XL̄−L:L̄−1)

Llong :=−logĥshort(XL̄ |X1:L̄−1)

Lshort,sparse :=−logĥshort(XL̄ |XJ1:k
,XL̄−L:L̄−1),

where to compute Lshort,sparse we mask out all tokens in the first L̄−L tokens except those at positions J1,...,Jk. In words,
Llong,Lshort,Lshort,sparse denote the cross-entropy losses for predicting XL̄ when the (a) full context X1:L̄−1 is used, (b) the L
most recent tokens XL̄−L:L̄−1 are used, and (c) the L most recent tokens as well as XJ1:k

are used, respectively. We illustrate
the quantities Lshort,Llong,Lshort,sparse for a particular choice of L,L̄,J1:k in Figure 6.

Results & discussion. In Figure 2, we plotted the pairs (Lshort−Llong,Lshort−Lshort,sparse) for each example X. As can be
seen, the quantity Lshort−Llong, which may be interpreted as the amount the model ĥshort uses tokens X1:L̄−L−1 to improve the
prediction of XL̄, is roughly equal (up to noise) to Lshort−Lshort,sparse, which may be interpreted as the amount the model uses
tokens XJ1,...,XJk to improve the prediction of XL̄. This provides evidence for the hypothesis that the model’s prediction of
the L̄th token is sparse in its dependence on tokens “far in the past”, and is thus consistent with (T1) which predicts that such
sparsity allows the model ĥshort to length-generalize.

It is natural to wonder whether the behavior seen in Figure 2 occurs even absent the use of methods such as PoSE to extend the context

18This is essentially equivalent to the “leave-one-out” baseline in Cohen-Wang et al. (2024).
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Hyperparameter ĥshort ĥlong

Model Dimension 2048 2048
MLP Hidden Size 8192 8192
Number of Heads 32 32
Number of Layers 24 24
Position Embedding RoPE (w/ PoSE) RoPE
Activation Type GeLU GeLU
Vocabulary Size 32000 32000
Tokenizer Llama-2-7b Llama-2-7b
Batch Size 8192 4096
Microbatch (per-device) size 256 128
Training Context Length 64 128
Number of training steps 49000 48000
Optimizer AdamW (w/o weight decay) AdamW (w/o weight decay)
Learning Rate 10−3 10−3

Table 4: Hyperparameters for our natural language modeling experiments (based off of OLMo codebase with C4 dataset).

Llong:

X1 X2 X3 X4 X5 X6 X7 X8X8

Full Context (L̄ = 8)

Lshort:

X1 X2 X3 X4 X5 X6 X7 X8X8

Lshort,sparse:

X1 X2 X3 X4 X5 X6 X7 X8X8

Figure 6: Illustration of the computation of Lshort,Llong,Lshort,sparse with L̄=8,L=2, k=2, J1 =2,J2 =4. Tokens shaded gray are masked
(i.e., not attended to) while those shaded blue are not masked (i.e., are attended to).

Train Context Length (Model) Eval Length = 64 Eval Length = 128

64 (ĥshort) 17.59 14.74
128 (ĥlong) 17.62 14.49

Table 5: Perplexities for (a) model trained on context length of 64 (top); and (b) model trained on context length of 128 (bottom).

length. Accordingly, we also trained a model ĥlong in the same manner as ĥshort but with context length L̄=128 (and without PoSE).
In Figure 7, we observe that a similar positive correlation is seen (a) for the model ĥlong trained on full contexts of length L̄ (Figure
7a), as well as for (b) the model ĥlong trained on contexts of length onlyL but where the indices J1:k are chosen as in (22) with respect
to ĥshort (as opposed to ĥshort; Figure 7b), and conversely, the model ĥshort when the indices J1:k are chosen as in (22) with respect to
ĥlong (Figure 7c). These observations suggest that the property that a small number k of tokens at positions in [L̄−L−1] can nearly
recover the cross-entropy loss at position L̄ obtained by training on all of the tokens at positions in [L̄−L−1] may be more of a prop-
erty of the data distribution, as opposed to a particularity of any particular language model variant such as ĥshort,ĥlong. In particular, it
indicates that some property like Definition 3.2 indeed governs the structure of the task of predicting the next token on long contexts.
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(a) ĥlong CE loss; J1:k chosen from ĥlong.
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(b) ĥlong CE loss; J1:k chosen from ĥshort.
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(c) ĥshort CE loss; J1:k chosen from ĥlong.

Figure 7: Modification of the plot of Figure 2 where cross-entropy of ĥlong is used instead (Figs. 7a and 7b), and where the opposite model
from the one being evaluated is used to generate the indices J1:k (Figs. 7b and 7c).
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