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Abstract

We consider running multiple instances of multi-armed bandit (MAB) problems in
parallel. A main motivation for this study are online recommendation systems, in
which each of N users is associated with a MAB problem and the goal is to exploit
users’ similarity in order to learn users’ preferences toK items more efficiently. We
consider the adversarial MAB setting, whereby an adversary is free to choose which
user and which loss to present to the learner during the learning process. Users are
in a social network and the learner is aided by a-priori knowledge of the strengths
of the social links between all pairs of users. It is assumed that if the social link
between two users is strong then they tend to share the same action. The regret is
measured relative to an arbitrary function which maps users to actions. The smooth-
ness of the function is captured by a resistance-based dispersion measure Ψ. We
present two learning algorithms, GABA-I and GABA-II which exploit the network
structure to bias towards functions of low Ψ values. We show that GABA-I has
an expected regret bound of O(

√
ln(NK/Ψ)ΨKT ) and per-trial time complexity

of O(K ln(N)), whilst GABA-II has a weaker O(
√

ln(N/Ψ) ln(NK/Ψ)ΨKT )
regret, but a better O(ln(K) ln(N)) per-trial time complexity. We highlight im-
provements of both algorithms over running independent standard MABs across
users.

1 Introduction

During the last decade multi-armed bandits (MAB) have received a great deal of attention in machine
learning and related fields, due to their wide practical and theoretical importance. The central problem
is to design a decision strategy whereby a learner explores sequentially the environment in order to
find the best item (arm) within a prescribed set. At each step in the exploration the learner chooses an
arm, after which feedback (typically a loss or reward corresponding to the selected arm) is observed
from the environment. Then the next decision is made by the learner based on past interactions,
and the process repeats. The goal is to design efficient exploration strategies which incur a small
cumulative loss in comparison to the cumulative loss that would have been obtained by always
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selecting the best arm in hindsight. Applications of MAB are numerous, including recommender
systems [1], clinical trials [2], and adaptive routing [3], among others.

In this paper we study the problem in which the learner is facing several MAB problems that are
related according to a prescribed interaction graph. A main motivation behind this problem are online
recommendation systems, whereby each of several users is associated with a MAB problem (task),
where the arms correspond to a finite set of products, and the graph represents a social network among
users. The goal is to exploit users’ similarity in order to improve the efficiency of learning users’
preferences via online exploration of products. In the standard full information setting, a lot of work
has been done showing that techniques from multitask learning are effective in reducing the amount
of data needed to learn each of the individual tasks, both in the statistical and adversarial settings, see
[4, 5, 6, 7, 8, 9, 10, 11] and references therein. Graphs have been used to model task relationships,
with different tasks’ parameters encouraged to be close according to the graph topology. In contrast,
multitask learning in the bandit setting is much less explored.

The algorithms that we present exploit the network homophily principle [12] which formulates that
users that are connected in the network have similar preferences, that is, they tend to share preferred
recommendations. We will show that our algorithms exploit graph structure and enjoy potentially
much smaller regret bounds than the cumulative regret of standard MAB run independently on each
user. Since the original graph may be dense, we exploit a randomized sparsification technique to
develop fast prediction algorithms. Our approach builds upon previous work on online learning
over graphs [13, 14] to generate a perfect full oriented binary tree, whose leaves are in one-to-one
correspondence with the nodes of the original graph. This construction approximately preserves the
relevant graph properties in expectation, and provides the starting point for designing our efficient
algorithms. A further ingredient in our algorithm is provided by the method of specialists [15, 16].
Our learning strategies combine the above ingredients to devise efficient online algorithms under
partial feedback.

Contributions. We introduce two Gang of Adversarial BAndit algorithms, GABA-I and GABA-
II that learn jointly MAB models for N users over K possible actions. Both algorithms are
designed to exploit network structure while being (extremely) computationally efficient. We de-
rive expected (over the algorithms’ randomizations) regret bounds. The bounds scale with the
dispersion measure Ψ ∈ [1, N ] of the best actions over the graph. For GABA-I the bound1

is of order of O(
√

ln(NK/Ψ)ΨKT ), where T is the number of trials, and has a per-trial
time complexity of O(K ln(N)). On the other hand GABA-II has a weaker expected regret
bound of O(

√
ln(N/Ψ) ln(NK/Ψ)ΨKT ) but is faster, having a per-trial time complexity of

O(ln(K) ln(N)). Thus the GABA-I algorithm improves on algorithms that treat each user in-
dependently, as in the best case the regret improves from O(

√
N) to O(

√
lnN) and in the worst

case the regret degrades by at most a constant factor. GABA-II has slightly weaker regret bounds;
however, it is more computationally efficient.

Outline of Main Results. The social network graph G is determined by a set of undirected links
between users {ωu,v}Nu<v where ωu,v ∈ [0,∞) indicates the magnitude of the link between user u
and v. For all t ∈ [T ] we have a user ut ∈ [N ] and a loss vector `t ∈ [0, 1]K which are selected by
Nature before learning begins and are unknown to Learner; i.e., Nature is a deterministic oblivious
adversary (see e.g., [17, Section 5.1]). Learning then proceeds in trials t = 1, 2, . . . , T . On trial t:

1. Nature reveals user ut ∈ [N ] to Learner,
2. Learner selects action at ∈ [K],
3. Nature reveals loss `t,at ∈ [0, 1] to Learner.

Before reflecting on the N -user case we review the well-known results for the single user (N = 1).
The seminal EXP3 algorithm [18] obtains the following (uniform) regret bound2 ,

E
[ ∑
t∈[T ]

`t,at

]
− min
a∈[K]

∑
t∈[T ]

`t,a ∈ O
(√

K ln(K)T
)
, (1)

1The bounds of GABA-I and GABA-II however depend on oracular knowledge of optimal tuning parameters.
We discuss this as well as a means of lessening this dependency following Corollary 5.

2An algorithm was given in [19] that removed the lnK term from the regret.
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where the expectation is with respect to the internal randomization of the EXP3 algorithm. In the
N -user setting, by running a copy of EXP3 independently for each user, we may obtain a uniform
regret bound of (see e.g., [20])

E
[ ∑
t∈[T ]

`t,at

]
− min
y:[N ]→[K]

∑
t∈[T ]

`t,y(ut) ∈ O
(√

K ln(K)NT
)
, (2)

i.e., for each user u the best action is y(u) and we now pay an additional constant factor of
√
N in

our regret. In this work we exploit the social network structure to prove a non-uniform regret bound
for the GABA-I algorithm (see Corollary 4) of

R(y) := E
[ ∑
t∈[T ]

`t,at

]
−
∑
t∈[T ]

`t,y(ut) ∈ O

(√
K ln

(
KN

Ψ(y)

)
Ψ(y)T

)
, (3)

for any mapping of users to actions y : [N ] → [K]. The non-uniform regret now depends on
Ψ(y) ∈ [1, N ] (see (5)) which measures dispersion of users’ ‘best’ actions across the network.
Thus, by taking network structure into account, we may upper bound the scaling in the regret with
respect to the number of users by O(

√
ln( eN

Ψ(y) )Ψ(y)). When the best action across the network

is nearly uniform then the dispersion Ψ(y) ∈ O(1), in contrast when the dispersion is maximal
then Ψ(y) = N thus in the best case the regret with respect to the number of users improves from
O(
√
N) to O(

√
lnN) and in the worst case the regret only increases by a constant factor. The

first algorithm GABA-I obtains the regret (3) while requiring O(K lnN) time to predict and update.
The second algorithm GABA-II’s regret (see Corollary 5) is larger by a O(

√
lnN/Ψ(y)) factor but

now prediction is at an even faster O(ln(K) ln(N)) time per trial, that is, prediction time improves
exponentially with respect to the cardinality of the action set [K]. Thus both algorithms support very
large user networks and the second algorithm allows efficient prediction with very large action sets.

Related Work. We mention here some of the key papers that are more closely related to ours and
refer the reader to the technical appendices for an expanded literature review. There has been much
work in the heterogenous multi-user setting for linear-stochastic bandits. Out of these works, those
closest to us are when the users are in a known social network and it is assumed that neighbouring
users respond to context vectors in a similar way [21, 22, 23, 24, 25, 26] but as far as we are aware
no works on this model have so far been done in the adversarial setting. Other works on this topic
include those in which it is assumed that there is an unknown clustering of the users, where users
in the same cluster are homogenous [27, 28, 29, 30, 31, 32, 33, 34, 35]; as well as other models
[36, 37, 38, 39, 40, 41, 42, 43]. There are also works on networked, homogenous multi-user bandit
models with limited communication between users [44, 45, 46, 47, 48, 49, 50]. Related to the multi-
user setting are works on transfer learning and meta-learning with linear-stochastic bandits [51, 52].
Whilst our work assumes a known network structure over the users, there is a wide literature on
bandit problems in which the actions are structured in a network and it is assumed that neighbouring
actions give similar losses [53, 54, 55, 56, 57, 58, 59, 60], as well as other networked-action models
[61, 62, 63]. In addition to the seminal paper on adversarial bandits [18], our work utilises ideas from
several different papers [13, 14, 15, 16, 64, 65].

Notation. Given a set X we define 2X to be its power-set, that is: the set of all subsets of X . For
any positive integer m, we define [m] := {1, 2, . . . ,m}. For any predicate PRED , JPREDK := 1 if
PRED is true and equals 0 otherwise. Given vectors x,x′ ∈ RK we define x · x′ to be their inner
product (i.e., equal to

∑
i∈[K] xixi′ ) and we define x� x′ to be their component-wise product (i.e.,

(x � x′)i := xix
′
i for all i ∈ [K]). We define ‘1’ to be the K-dimensional vector in which each

component is equal to 1 . Given a full oriented binary tree B we denote the set of its vertices also
by B. Given a non-leaf vertex n ∈ B let /(n) and .(n) be its left child and right child respectively.
Given a non-root vertex n ∈ B let ↑(n) be its parent. Given a vertex n ∈ B let ⇑(n) and ⇓(n) be its
set of ancestors and leaf-descendants (i.e. descendants which are leaves) respectively. Given a vertex
n ∈ B we define J(n) and I(n) as the left-most and right-most descendants (which are leaves) of n
respectively. Finally, we denote the user graph by G, which is an undirected connected graph with
edge weights {ωu,v : 1 ≤ u < v ≤ N}. For convenience we assume N is a power of two.3

3This assumption does not limit our results because to run our algorithms one can always add dummy vertices
without altering input weights, so as to force N to be a power of two.
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2 Modeling a Social Network as a Resistive Network

In this section we introduce the tools necessary to formalize our complexity measures, as well as the
ones to implement our algorithms.

2.1 Conceptual Tools

To minimize the incurred loss, Learner can exploit the similarity between any pair of users defined by
the weights ωu,v of user graph edges for all u, v ∈ [N ]. The function y : [N ]→ [K] is completely
unknown to Learner, and can be viewed as labeling each user with its best/favorite action. Within this
context, our homophilic bias can be stated as follows: users strongly connected w.r.t. the link weights
ω, tend to be associated with the same label.

The complexity measure used for this problem is the robustified resistance weighted cutsize Ψ(y),
which we now define formally. Within the graph-based learning context, the cutsize is defined as the
number of edges connecting users with different labels, i.e.,

∑
u<vJωu,v 6= 0KJy(u) 6= y(v)K, and the

weighted cutsize is defined as the sum of the edge weights ωu,v over all pairs of users u and v having
different labels, i.e.,

∑
u<v ωu,vJy(u) 6= y(v)K [14]. The effective resistance between two given

nodes u and v of a graph is a commonly used measure that expresses the degree of the connection
strength between u and v (see, e.g., [66]). More precisely, viewing the graph as an electrical circuit,
where each edge weight ωu,v corresponds to a 1

ωu,v
resistor, the effective resistance between u and v

is the power required to hold between them a unit voltage difference for a unit time. Informally, the
more there are paths between two nodes u and v that are short, edge-disjoint and formed by edges
with large weights, the lower is r(u, v) because the amount of flow between the two considered nodes
is larger. A formal definition of effective resistance r(u, v) between users u and v is

r(u, v) :=
1

minx∈RN {
∑N
i<j ωi,j(xi − xj)2 : xu − xv = 1}

.

Interestingly enough, for all u, v ∈ [N ] , r(u, v) is exactly equal to the probability that the edge
{u, v} is included in a uniformly generated random spanning tree of the given user graph G (see, e.g.,
[66]).

The resistance weighted cutsize Φ(y) [67] is the weighted sum of the effective resistances r(u, v)
between any two nodes u and v with different labels. i.e.,

Φ(y) :=

N∑
u<v

ωu,vr(u, v)Jy(u) 6= y(v)K (4)

and then its robustifcation is defined as

Ψ(y) := 1 + min
z:[N ]→[K]

(
Φ(z) +

∑
u∈[N ]

Jz(u) 6= y(u)K
)
. (5)

The first quantity (4) can be viewed as a dispersion measure based on the above mentioned homophilic
tendency. It has several advantages compared to the weighted cutsize in measuring the degree of
homophily violation [67]. The most significant property is that it is locally density-dependent because
the contribution to Φ(y) of each edge (u, v) such that y(u) 6= y(v) is inversely proportional to
how strongly u and v are connected in their user graph local area. Indeed, because of the effective
resistance, the potential contribution to Φ(y) of the edges in dense areas is smaller than the ones of the
edges in sparse areas. In fact if the graph is well-clustered i.e., it can be partitioned into dense clusters
(many intra-cluster edges) and fewer inter-cluster edges and the labeling y respects these clusters
then in many cases Φ(y)� N . As an archetypical instance consider the following proposition where
the clusters are represented by cliques.
Proposition 1. Consider an unweighted graph G partitioned into G clusters and a labeling function
y(·), where each cluster is an n-clique and, if u, v are vertices in the cluster, then y(u) = y(v). For
any pair of such clusters C,C ′ ⊂ G, suppose that there are n−1

G edges connecting the nodes of C
with the nodes of C ′. Then we have Φ(y) ∈ O(G).
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CONSTRUCTBST-C (User graph: G)

1. Sample a uniform random spanning tree T from the user graph.
2. Perform a depth-first visit of T to provide an order of the users. Without loss of generality

assume that, for all u ∈ [N ] , we have that user u is the u-th vertex visited.
3. Construct a perfect full oriented binary tree C of depth h := log2(N) whose u-th leftmost

leaf of its graphical representation is user u .a.
aIn this context, by oriented we mean that the leaves of C are numbered sequentially from the leftmost to

the rightmost one so that, for each internal vertex of C, both its left and right subtree contain subsets of leaves
uniquely determined by the depth-first visit of T .

Figure 1: Binary Support Tree Construction Algorithm

Thus in this archetypical case our regret bounds now scale strongly with the number of clusters of
users G (see (3)) rather than with the number of users N (comparing to the baseline (2)).

The second quantity (5) is an extension of Φ(y) to deal with adversarial label perturbation, viz.,
capturing the regularity of all labelings y such that Φ(y) can be dramatically reduced by simply
changing the labels of a relatively small number of users. To give an insight into the advantages of
Ψ(y) w.r.t. Φ(y) regarding its noise-tolerance property, consider an input star graph with all edge
weights equal to 1 and where all vertex labels are equal except for the one of the central node u. It is
natural to consider this labeling regular w.r.t. our bias, because it is sufficient to change only y(u) to
obtain a cutsize equal to 0. This is precisely the labeling property that is captured by Ψ(y), which is
equal to the minimum, over all labelings z, of the sum of Φ(z) and the number of vertices for which
y and z differ (plus 1). In this case we have therefore Ψ(y) = 1 + Φ(y∗) + 1 = 2, where y∗ is the
labeling obtained by changing y(u) to make it equal to all other labels, so that Φ(y∗) = 0, whereas
Φ(y) = N − 1 .

2.2 An Embedding to Enable Fast Computation

A uniformly generated random spanning tree (RST) is defined as a spanning tree selected with a
probability proportional to the product of the weights of all its edges (see, e.g., [66]). It represents a
fundamental tool in several mathematical fields, e.g., combinatorial geometry, algebraic graph theory,
stationary Markov chains [68], and can be viewed as a way to summarize the topological information
of the input network. When the input graph is weighted as in our case, it can be generated in time
almost linear in the number of edges [69, 70].

In a preliminary phase, our algorithms operate as follows (see Fig. 1). A RST T of the input social
network is drawn (step 1). Thus, an order of the N users is determined through a depth-first visit of
T (step 2). From here on we assume, without loss of generality, that user u ∈ [N ] is the u-th vertex
visited. This step is necessary to make the algorithms noise-tolerant, and is strictly related to the
improvement of the complexity measure Ψ(y) over Φ(y). Finally, a full perfect binary tree, called
the Binary Support Tree (BST), and having the users, ordered from left to right, as leaves (step 3) is
constructed. The BST forms the geometry that underlies the data-structures of our algorithms.

We conclude this section by showing a result which will be useful in the analysis of our algorithms,
and stems directly only from the user order determined by the depth-first visit of T . If we consider
the line graph L connecting the users u with u+ 1 for all u ∈ [N − 1], we have that, as stated in the
following theorem, the cutsize of L is at most twice the robustified resistance weighted cutsize of
the input user graph. This result can be viewed as the multi-class extension of part 2 of Theorem 6
in [67].

Lemma 2 ([67, Theorem 6]). For any given input user graph, we have

E

 ∑
u∈[N−1]

Jy(u) 6= y(u+ 1)K

 ≤ 2Ψ(y) ,

where the expectation is over the draw of the uniform random spanning tree T .
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SPECIALISTEXP (Learning rate η > 0; Distribution w1 : S→ [0, 1] s.t.
∑
s∈S w1(s) = 1.)

For t = 1, . . . , T do
1. ∀a ∈ [K], pt,a ←

∑
s∈S:s(ut)=a wt(s);

2. Predict at by drawing from [K] with probability P [at = a] := pt,a/‖pt‖1;

3. Receive `t,at

4. λt ← exp(−η`t,at‖pt‖1/pt,at); zt ← ‖pt‖1/(‖pt‖1 − (1− λt)pt,at);

5. ∀s ∈ S:

wt+1(s)←


wt(s) s(ut) = �
wt(s)zt s(ut) 6= at
wt(s)ztλt s(ut) = at

Figure 2: SPECIALISTEXP Algorithm

3 Predicting with Specialists

We build on the prediction with expert advice framework [71, 72, 73, 74], specifically that with
bandit feedback: pioneered by the EXP4 algorithm [18]. This type of online algorithm maintains
a distribution over a set of predictors (“experts”). After the predictors predict they incur a loss
and the distribution is updated accordingly. Although, except in special cases, this procedure does
not have a natural Bayesian interpretation, probabilistic methods still may be transferred into the
expert advice framework. In particular we will exploit an analogue of message-passing as used in
graphical models [75] to predict very efficiently over exponentially-sized sets of predictors. Broadly
speaking we would like build a graphical model that is isomorphic to the user graph G. However it is
well-known that exact prediction with graphical models that contain cycles is NP-hard [76]. Thus
a benefit of the embedding to a BST (see Section 2.2) is that it enables fast and exact computation
as the graph is now cycle-free and Lemma 2 ensures that the embedding only modestly increases
our regret bounds. Surprisingly, we improve in terms of computation over standard message passing
techniques, i.e., if we embedded to a “line” graph we would require O(KN) time to predict [75]
per trial or using the method of [77] O(K3 logN) time. However, we will require only O(K logN)
and O(logK logN) for the GABA-I and GABA-II algorithms respectively (see Figures 3 and 4). To
accomplish this technically we adapt the method of specialists [15, 16].

A specialist is a prediction function s : [N ]→ {1, 2, . . . ,K,�} from a context space to an extended
output space with abstentions. For us the context space is just the set of users [N ]; and the extended
output space is {1, 2, . . . ,K,�} where [K] corresponds to predicted actions, but ‘�’ indicates that
the specialist abstains from predicting an action. Thus a specialist specializes its prediction to part
of the context space. We denote the set of all specialists as S := {1, . . . ,K,�}[N ]. As a single
specialist only predicts over part of the context space, we need a set of specialists S ⊆ S if we wish
to define a function that predicts an action for every context. A specialist set S ⊆ S is well-formed
if for each u ∈ [N ] there exists a unique specialist s ∈ S such that s(u) ∈ [K]. For such a user u
and specialist s we then define S†(u) := s(u) so that S† is a function from [N ] into [K]. Finally a
specialist model is defined by giving a distribution w1 : S→ [0, 1] s.t.

∑
s∈S w1(s) = 1. To predict

with specialists we adapt [15] to the EXP3/4 [18] setting giving the SPECIALISTEXP algorithm (see
Figure 2). We then bound the regret by combining the analysis of [15, 18] into the following theorem.

Theorem 3. The expected regret of SPECIALISTEXP with initial specialist distribution w1 : S→
[0, 1] and learning rate η > 0 is bounded above by

E

∑
t∈[T ]

`t,at − `t,S†(ut)

 ≤ 1

η

∑
s∈S

ln

(
1

w1(s)|S|

)
+
ηKT

2
(6)

for all well-formed specialist sets S ⊆ S.

In the following we give the two distributions that define the two specialist models corresponding
to GABA-I and GABA-II in (7) and (9), and in the supplementary material we detail how these
distributions lead to the regret bounds in Corollaries 4 and 5.
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We now give the distribution w1(·) over S that defines the GABA-I model. The model has a single
parameter φ ∈ (0, 1) and we give the following helper functions to define the distribution,

valid1(s) := J∀u, v ∈ [N ] : s(u) = s(v) or s(u) = � or s(v) = �K

cut(s) :=
∑

u∈[N−1]

Js(u) 6= s(u+ 1)K

startfactor(s) :=
K − 1

K
Js(1) 6= �K +

1

K
Js(1) = �K.

The function valid1(·) determines the support of w1(·) which are the specialists that predict a unique
action or abstain, hence the cardinality of the support of w1(·) is K × (2N − 1) + 1. The remaining
two functions quantitatively determine probability mass of a specialist as:

w1(s) := valid1(s)× 1

K
× startfactor(s)× (1− φ)N−1−cut(s)φcut(s) (∀s ∈ S) . (7)

We note that this specialist selection is similar to that of the Markov circadian specialists in [16]
except that the nodes of the Markov chain are now users instead of trials.
Corollary 4. The expected regret of SPECIALISTEXP with distribution w1(·) as defined by (7) with

parameter φ = 4Ψ(y)/(K(N − 1)), learning rate η =
√

10Ψ(y) ln(KN/Ψ(y))
KT and with Ψ(y) ≤

(N − 1)/4 is bounded above by:

E

∑
t∈[T ]

`t,at − `t,y(ut)

 ∈ O(√K ln

(
KN

Ψ(y)

)
Ψ(y)T

)
(8)

for any mapping of users to actions y : [N ]→ [K].

We now give the distribution w1(·) over S that defines the GABA-II model. Whereas for GABA-I
the cardinality of the support was exponential in N , for GABA-II the cardinality is just K(2N − 1).
The supported specialists in GABA-II predict a unique action over a contiguous l, . . . , r and abstain
everywhere else, thus they are of the form:

sl,ra (u) :=

{
a u ∈ {l, . . . , r}
� u 6∈ {l, . . . , r} ,

but not all contiguous segments are supported. The segments supported are those that correspond
to the set of all leaf-descendents of a node in the BST (see Section 2.2). As an example if N = 4
the supported (l, r) segments are {(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (3, 4), (1, 4)}. Expressing this
algebraically leads to a relatively complex “validity” function

valid2(s) := J∃a ∈ [K]; l, r ∈ [N ]; i, j ∈ [log2N ] : 1+r−l = 2i and l = 2i(j−1)+1 and s = sl,ra K ,

and then the distribution is defined as,

w1(s) := valid2(s)× 1

K(2N − 1)
(∀s ∈ S) . (9)

We note that this selection of specialists is a simple multi-action extension of those defined in [65].
Corollary 5. The expected regret of SPECIALISTEXP with distribution w1(·) as defined by (9) with

learning rate η =
√

8Ψ(y) log2(eN/Ψ(y)) ln(3KN/2Ψ(y))
KT and with Ψ(y) ≤ N/2 is bounded above by:

E

∑
t∈[T ]

`t,at − `t,y(ut)

 ∈ O(√K ln

(
N

Ψ(y)

)
ln

(
KN

Ψ(y)

)
Ψ(y)T

)
(10)

for any mapping of users to actions y : [N ]→ [K].

4 The GABA Algorithms

We now introduce the GABA algorithms. Both algorithms are based on the BST C (see Section 2.2).

7



4.1 GABA-I

Since we have an exponential number of non-zero weight specialists in GABA-I a direct implementa-
tion of SPECIALISTEXP would take per-trial time and space exponential in N . We now describe how
GABA-I implements SPECIALISTEXP, bringing the per-trial time down toO(K ln(N)) and the space
down to O(KN). The implementation works by, for each action independently, performing online
belief propagation [64] over the tree C . We note that each of these K online belief propagations
is over two states {0, 1} and hence takes a per-trial time of only O(ln(N)). We now detail this
procedure:

GABA-I maintains a vector valued functionαt : C×{0, 1}×{0, 1} → RK which, for all i, j ∈ {0, 1}
and t ∈ [T ] , has the following properties:

∀u ∈ [N ] \ {ut} , αt+1(u, i, j) = αt(u, i, j) (11)

and for all internal vertices n of C we have:

αt(n, i, j) =
∑

k∈{0,1}

αt(/(n), i, k)�αt(.(n), k, j) (12)

On trial t GABA-I computes pt by sending vector valued messages down the path in C from the root to
ut. Specifically, we construct the left and right message functions β⇐t ,β⇒t : ⇑(ut)× {0, 1} → RK
as follows. Each (non-root, proper) ancestor n of ut receives, for i ∈ {0, 1} , K dimensional
vector messages β⇐t (↑(n), i) and β⇒t (↑(n), i) from its parent and then constructs its own messages
β⇐t (n, i) from β⇐t (↑(n), j) and αt(/(↑(n)), j, i) and messages β⇒t (n, i) from β⇒t (↑(n), j) and
αt(.(↑(n)), i, j), for all i, j ∈ {0, 1} . It then sends these messages to its child that is next on the
path to ut. Once ut has received the messages from its parent it combines them with αt(ut, 1, i) (for
i ∈ {0, 1}) to create pt.

On the receipt of `t,at we update the function αt to αt+1 noting that by (11) and (12) we need only
modify the values αt(n, i, j) when n is an ancestor of ut.

4.2 GABA-II

For GABA-II we have O(K ln(N)) non-zero weight specialists that don’t abstain on any given
trial so a direct implementation of SPECIALISTEXP would take a per-trial time of O(K ln(N)).
We now show how GABA-II implements SPECIALISTEXP, which takes the per-trial time down to
O(ln(K) ln(N)) whilst maintaining the space complexity of O(KN).

We first note that SPECIALISTEXP maintains a weight for each specialist. For any vertex n of C and
any action a , the weight, on trial t , of the specialist that predicts a whenever ut is its descendant and
abstains otherwise, is kept, by GABA-II in the following factored form:

µt(n)θt(n, a)

K(2N − 1)
(13)

where µt+1(n) := µt(n) whenever n /∈ ⇑(ut) , and θt+1(n, a) := θt(n, a) whenever n /∈ ⇑(ut) or
a 6= at.

In addition to the tree C, GABA-II also works with an oriented full binary tree B whose leaves are the
actions (in this overview we assume that the cardinality of the action set is an integer power of two,
although this is not required by GABA-II). For any vertex n of C the function θt(n, ·) is extended
onto all internal vertices of B by the following inductive relationship:

θt(n,m) := θt(n, /(m)) + θt(n, .(m)) (14)

To sample the action at GABA-II first samples an ancestor δt of ut with probability P [δt = n] ∝
µt(n)θt(n, r) where r is the root of B. GABA-II then uses the function θt(δt, ·) to sample action
at with probability P [at = a | δt = n] = θt(n, a)/θt(n, r) in O(ln(K)) time. The law of total
probability and (13) can then be used to show that P [at = a] ∝ pt,a where pt,a is as defined in
SPECIALISTEXP.

On the receipt of `t,at we update the functions µt and θt to µt+1 and θt+1 noting that by the equalities
between these functions and (14) we need only modify the values µt(n) and θt(n,m) when n is an
ancestor of ut and m is an ancestor of at.
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GABA-I (Learning rate : η > 0; Model parameter: φ ∈ (0, 1))

0. Construct binary support tree C via CONSTRUCTBST-C algorithm (see Figure 1).

1. ∀ leaf n ∈ C , ∀i, j ∈ {0, 1} , α1(n, i, j)← Ji 6= jKφ1 + Ji = jK(1− φ)1;

2. For d = 1, 2, . . . , h− 1, ∀n ∈ C at depth h− d, ∀i, j ∈ {0, 1}, do
α1(n, i, j)←

∑
k∈{0,1}α1(/(n), i, k)�α1(.(n), k, j);

For t = 1, 2 . . . T , do
3. ∀d ∈ [h] ∪ {0} νt,d ← ancestor of ut at depth d in C;

4. ∀i ∈ {0, 1}, β⇐t (νt,0, i)← (1 + Ji = 0K(K − 2))1/K; ∀i ∈ {0, 1}, β⇒t (νt,0, i)← 1;

5. For d = 1, 2, . . . , h, do
(a) if νt,d = /(νt,d−1) then ∀i ∈ {0, 1}

i. β⇐t (νt,d, i)← β⇐t (νt,d−1, i);
ii. β⇒t (νt,d, i)←

∑
j∈{0,1}αt(.(νt,d−1), i, j)� β⇒t (νt,d−1, j);

(b) if νt,d = .(νt,d−1) then ∀i ∈ {0, 1}
i. β⇒t (νt,d, i)← β⇒t (νt,d−1, i);

ii. β⇐t (νt,d, i)←
∑

j∈{0,1} β
⇐
t (νt,d−1, j)�αt(/(νt,d−1), j, i);

6. p̄t ← (1/K)
∑

i∈{0,1} β
⇐
t (νt,h, 1)�αt(νt,h, 1, i)� β⇒t (νt,h, i);

7. Predict at ∈ [K] with probability P [at = a] = p̄t,a/‖p̄t‖1;

8. Receive `t,at

9. ∀a ∈ [K] , ct,a ← exp (−ηJa = atK`t,at‖p̄t‖1/p̄t,a); πt ← (‖p̄t‖1ct)/(p̄t · ct);

10. ∀i ∈ {0, 1}, αt+1(νt,h, 1, i)← πt �αt(νt,h, 1, i);

11. ∀i ∈ {0, 1}, αt+1(νt,h, 0, i)← αt(νt,h, 0, i);

12. ∀n ∈ C \ {νt,d | d ∈ [h] ∪ {0}}, ∀i, j ∈ {0, 1}, αt+1(n, i, j)← αt(n, i, j);

13. For d = 1, 2, . . . , h− 1, do ∀i, j ∈ {0, 1}
αt+1(νt,(h−d), i, j)←

∑
k∈{0,1}αt+1(/(νt,(h−d)), i, k)�αt+1(.(νt,(h−d)), k, j);

Figure 3: GABA-I Algorithm

GABA-II (Learning rate: η > 0)

0. Construct binary support tree C via CONSTRUCTBST-C algorithm (see Figure 1).

1. Construct a full perfect oriented binary tree B with height g := dlog2(K)e, whose first K leaves represent
the actions [K]; Set r to be the root of B;

2. ∀ vertex n ∈ C:
(a) µ1(n)← 1; ∀ leaf m ∈ B, if m ∈ [K] then θ1(n,m)← 1; else θ1(n,m)← 0;
(b) ∀d ∈ {1, 2, . . . , g}, ∀m ∈ B at depth g − d, θ1(n,m) := θ1(n, /(m)) + θ1(n, .(m));

For t = 1, 2 . . . T , do
3. Draw δt from ⇑(ut) with prob. P [δt = n] ∝ µt(n)θt(n, r); ζt,0 ← r;

4. For d = 0, . . . , g−1: draw ζt,d+1 from {/(ζt,d), .(ζt,d)} with prob. P [ζt,d+1 = m] ∝ θt(δt,m);

5. Predict at ← ζt,g;

6. Receive `t,at

7. ψt ←
∑

n∈⇑(ut)
µt(n)θ(n, r); %t ←

∑
n∈⇑(ut)

µt(n)θ(n, at); λ̄t ← exp(−η`t,atψt/%t);

8. ∀ n ∈ ⇑(ut):
(a) µt+1(n)← µt(n)ψt/(ψt − (1− λ̄t)%t); θt+1(n, at)← λ̄tθt(n, at);
(b) ∀m ∈ B \ ⇑(at), θt+1(n,m) := θt(n,m);
(c) For d = 1, 2, . . . g: θt+1(n, ζt,(g−d))← θt+1(n, /(ζt,(g−d))) + θt+1(n, .(ζt,(g−d)));

9. ∀n ∈ C \ ⇑(ut), µt+1(n) := µt(n); ∀m ∈ B , θt+1(n,m) := θt(n,m);

Figure 4: GABA-II Algorithm
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4.3 Parameter Tuning

A limitation of the GABA-I regret bound is that it is dependent on knowing the optimal values of the
parameters φ and η, and for GABA-II on the parameter η. In the following, we will 1) sketch how to
autotune φ at little cost and 2) autotune η, however at essentially the cost of moving Ψ(y) outside of
the square root.

We first sketch how to automatically tune the parameter φ that appears in GABA-I. Assume, without
loss of generality, that N is an integer power of 2. The idea of our tuning method is that since φ is
unknown we will “mix” over possible values of φ ∈ [0, 1]. In fact, at little cost in regret it is sufficient
to just mix over the exponentially increasing values of φ = 2/N, 4/N, 8/N, . . . , N/N . Thus each
specialist is split into log2N specialists, so that the new distribution over specialists is

w1(sφ) :=
1

log2N
× valid1(s)× 1

K
× startfactor(s)× (1− φ)N−1−cut(s)φcut(s) ,

where
∑
s∈S,φ∈{2/N,4/N,...,1} w1(sφ) = 1. Implementing this efficiently is similar to the implemen-

tation of GABA-I, except that we now have log2N copies of the BST Cφ, each initialized with a
different value of φ. On each trial the computed values from the log2N copies of the BST Cφ are
summed to find the prediction vector. After receipt of the loss, all copies of the BST are updated as in
GABA-I. The regret bound of this autotuning with respect to φ is equal, up to an O(

√
log(log(N)))

factor, to that of GABA-I with the optimal φ, but comes at the cost of an additional O(log(N)) factor
in the computation time.

Now that we have shown how to automatically tune φ in GABA-I we are left with the learning rate η
in both algorithms. We first note that, with any η, the regret of both algorithms is Υ/η + ηKT/2,
where Υ is the robustified resistance weighted cutsize Ψ(y) multiplied by logarithmic terms (one
in GABA-I and two in GABA-II). By setting η =

√
2/KT we get a regret of (Υ + 1)

√
KT/2. In

addition, if T is unknown then a doubling trick can be performed with this result to get a regret bound
of O(Υ

√
KT ) with no parameters needed. We compare this to the regret bound of O(

√
ΥKT ) that

comes from the optimal tuning of η. It remains an open problem to bring Υ inside the square-root.

Even with the above knowledge-free tuning of η, our methods improve over the baseline comparator
of running an independent EXP3 algorithm for each of the N users in many natural scenarios. Recall
that in this case the induced regret is then Õ(

√
NKT ) (see (2)). Consider a very large social network

where the bandit problem is to show 1-of-K advertisements (for simplicity assume K ∈ O(1)) at
the nodes (users). Now consider the case that each user is served at most one advert, i.e., there is at
most a single trial for any given user. Since N ≥ T the bound of the baseline is now the vacuous
regret Θ(T ). We can intuitively see that this analysis is correct since the baseline algorithm is now
just picking a single “uniformly at random” advertisement from [K] for each user independently.
However, observe that when Ψ(y) ∈ õ(

√
T ) we get Õ(Ψ(y)

√
T ) ⊆ õ(T ), which is non-vacuous.

Intuitively, GABA-I/II may achieve this result since algorithmically they are exploiting the network
structure.

5 Conclusion

We considered a contextual, non-stochastic bandit problem in which the finite set of contexts (a.k.a
users) form a social network and the inductive bias is that if the social link between two users is
strong then actions that perform well for one of these users are likely to perform well for the other.
We gave two highly efficient algorithms for this problem, both with good regret bounds. Since this
work is theoretical in nature we cannot foresee any potential negative societal impacts.

In the future it may be interesting to investigate extensions of our algorithms to the stochastic setting,
as well as continuous bandit settings. Finally, it would be valuable to study potential applications of
our algorithms, with large scale recommender systems being a natural candidate. On the theory side
our bounds are based on an exponential potential function. Improved adversarial regret bounds were
proven for an alternate potential function in [19] and it is an open question if our techniques can be
extended to that potential.
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