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Abstract

Thousands of new scientific papers are published each month. Such information
overload complicates researcher efforts to stay current with the state-of-the-art as
well as to verify and correctly attribute claims. We pose the following research
question: Given a text excerpt referencing a paper, could an LM act as a research
assistant to correctly identify the referenced paper? We advance efforts to answer
this question by building a benchmark that evaluates the abilities of LMs in citation
attribution. Our benchmark, CiteME, consists of text excerpts from recent machine
learning papers, each referencing a single other paper. CiteME use reveals a large
gap between frontier LMs and human performance, with LMs achieving only 4.2-
18.5% accuracy and humans 69.7%. We close this gap by introducing CiteAgent,
an autonomous system built on the GPT-4o LM that can also search and read
papers, which achieves an accuracy of 35.3% on CiteME. Overall, CiteME serves
as a challenging testbed for open-ended claim attribution, driving the research
community towards a future where any claim made by an LM can be automatically
verified and discarded if found to be incorrect.

1 Introduction

Figure 1: Example of a CiteME instance. The input (left) is an excerpt from a published paper with
an anonymized citation; the target answer (right) is the title of the cited paper.

Scientific discoveries are advancing at an ever-growing rate, with tens of thousands of new papers
added just to arXiv every month [4]. This rapid progress has led to information overload within
communities, making it nearly impossible for scientists to read all relevant papers. However, it
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remains a critical scholarship responsibility to check new claims and attribute credit to prior work
accurately. Language models (LMs) have shown impressive abilities as assistants across tasks [25],
which leads us to explore the following task in this paper: Can language models act as research
assistants to help scientists deal with information overload?

We make progress towards answering this question by evaluating the abilities of LMs in citation
attribution [27, 59]. Given a text excerpt referencing a scientific claim, citation attribution is the task
in which a system is asked to fetch the title of a referenced paper, as illustrated in Figure 1.

Current benchmarks are collected automatically, which leads to the dominance of ambiguous or
unattributable text excerpts that make overly broad claims or are not used as evidence for any specific
claim, as shown in Table 1. Furthermore, these benchmarks typically frame citation attribution as
a retrieval task from a small set of pre-selected papers where only paper titles and abstracts can be
viewed, not the full paper’s content important for citation attribution [22, 50].

Table 1: Percentage of reasonable, ambiguous, unattributable, and trivial excerpts across 4 citation
datasets, as labeled by human experts. For a detailed breakdown of every analyzed sample, see
Appendix A.

Reasonable [%] Ambiguous [%] Unattributable [%] Trivial [%]

FullTextPeerRead [42] 24 26 34 16
ACL-200 [9, 58] 26 42 18 14
RefSeer [40, 58] 24 28 32 16
arXiv [33] 10 50 30 10

Average 21 36.5 28.5 14

To address these issues, we introduce CiteME (Citation for Model Evaluation), the first manually
curated citation attribution benchmark with text excerpts that unambiguously reference a single paper.
CiteMe’s use of only unambiguous text excerpts eliminates the subjectivity that characterizes other
benchmarks.

To evaluate CiteMe, we conduct benchmark tests that focus on open-ended citation attribution.
Human evaluators confirm the lack of ambiguity, achieving 69.7% accuracy while taking just 38.2
seconds on average to find the referenced papers. The current state-of-the-art system, SPECTER2
[77], experiences 0% accuracy on CiteME, highlighting the real-world difficulties of LM-based
citation attribution. Similarly, current frontier LMs achieve performance of 4.2-18.5%, substantially
beneath human performance. We conclude that current LMs cannot reliably link scientific claims to
their sources.

To bridge this gap, we introduce CiteAgent, an autonomous system built on top of the GPT-4o [1] LM
and the Semantic Scholar search engine [46]. CiteAgent can search for and read papers repeatedly
until it finds the referenced paper, mirroring how scientists perform this scholarship task to find
targeted papers. CiteAgent correctly finds the right paper 35.3% of the time when evaluated on
CiteME.

In summary, our main contributions are:

• CiteME, a challenging and human-curated benchmark of recent machine learning publica-
tions that evaluates the abilities of LMs to correctly attribute scientific claims. CiteME is
both natural and challenging, even for SoTA LMs.

• CiteAgent, an LM-based agent that uses the Internet to attribute scientific claims. Our agent
uses an existing LM without requiring additional training. It also uses a search engine,
which makes it applicable to real-world settings and differentiates it from systems that can
search only within a predetermined corpus of papers.

Future work that improves the accuracy of CiteME may lead to systems that can verify all claims an
LM makes, not just those in the ML research domain. This could reduce the hallucination rate [92]
and increase factuality [6] of LM-generated text.
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2 The CiteME Benchmark

We now present the CiteME benchmark, which we differentiate from other citation prediction
benchmarks that are automatically curated, i.e., curated without human supervision or feedback
in selecting text excerpts [32, 31, 9, 40, 72, 44, 42, 33]. For comparison, we study the quality of
excerpts across four popular citation prediction benchmarks (FullTextPeerRead, [42], ACL-200
[9, 58], RefSeer [40, 58], and arXiv [33]). Specifically, we sample 50 excerpts from each dataset and
categorize them using the following criteria:

(1) Attributable vs Unattributable. The cited paper should provide evidence for the statement in the
text excerpt, i.e., be an attribution as opposed to a statement that does not clearly refer to supporting
evidence. Excerpts that do not follow this criterion are termed unattributable, as in the example:

For all of our experiments, we use the hyperparameters from [CITATION].

(2) Unambiguous vs Ambiguous. The cited text excerpt should not be overly broad. The ground
truth cited papers should clearly be the only possible reference for the claim in the text excerpt.
Excerpts that do not follow this criterion are termed ambiguous, as in the example:

[CITATION1, CITATION2] explored paper recommendation using deep networks.

(3) Non-Trivial vs Trivial. The text excerpt should not include author names or title acronyms, which
simply tests LM memorization and retrieval. Excerpts that do not follow this criterion are termed
trivial, as in the example:

SciBERT [CITATION] is a BERT-model pretrained on scientific texts.

(4) Reasonable vs Unreasonable. The text excerpt should be attributable, unambiguous and non-
trivial. We term excerpts that do not follow this criterion unreasonable, but we categorize them
according to the underlying issue (e.g., unattributable, ambiguous, or trivial). An example of a
reasonable excerpt is:

We use the ICLR 2018–2022 database assembled by [CITATION], which includes 10,297 papers.

In Table 1 (left), we demonstrate that most samples from all four datasets lack sufficient information
for humans to identify the cited paper and are often labeled as ambiguous or unattributable. Ad-
ditionally, an average of 17.5% of the samples are tagged as trivial because they include the title
of the paper or its authors directly in the excerpt. Excerpts also frequently have formatting errors,
making some nearly unreadable (see examples in Appendix A). Past work also notes similar artifacts
[33, 42, 58], further supporting our claims. This analysis leads us to contend that performance on
existing citation benchmarks might not reflect real-world performance of LM research assistants.

In response to these deficiencies, we created CiteME, a new benchmark with human expert curation for
unambiguous citation references. CiteME contains carefully selected text excerpts, each containing a
single, clear citation to ensure easy and accurate evaluation.

Curation. A team of 4 machine learning graduate students, henceforth referred to as “experts”,
were responsible for collecting text excerpts. The experts were instructed to find samples that (1)
referenced a single paper and (2) provided sufficient context to find the cited paper with scant
background knowledge. Each sample was checked for reasonableness; only those deemed reasonable
by two or more experts were retained. Some excerpts were slightly modified to make them reasonable.

Filtering Out the Easy Instances. To ensure that CiteMe is a challenging and robust dataset, we
remove all dataset instances that GPT-4o can correctly answer. Filtering datasets by removing the
samples that a strong model can correctly answer was previously done in Bamboogle [71] and the
Graduate-Level Google-Proof Q&A Benchmark [73]. In our filtering process, GPT-4o was used with
no Internet access or any other external tools. Therefore, it could answer only correctly specified
papers that it memorized from its training process. We ran each sample through GPT-4o five times to
cover its different outcomes. In the end, we filtered out 124 samples, leaving 130 samples in total.

Human Evaluation. To ensure that our benchmark instances are not unsolvable, we evaluate human
performance on them. Using a random subset of 100 samples, we asked a group of 20 experts, who
were not part of benchmark construction, to perform the task of finding the referenced papers given
only the excerpt, with each expert given 5 random samples from CiteME and a maximum of two
minutes to solve each instance (similar to [47]). We observe that the experts found the correct citation
69.7% of the time, spending an average of only 38.2 seconds to do so. Note that this accuracy number
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Figure 2: (Left) The top 10 most frequent labels of papers in CiteME, as identified by GPT-4. Overly
broad tags like "Machine Learning" or "Deep Networks" were excluded (see Appendix D for details).
(Right) Most excerpts in CiteME are from recent papers.

does not represent the maximum-possible human performance since our annotators were limited to
two minutes per question for budget reasons. Human accuracy may rise even higher given more
time per instance. To check the experts’ consistency, five more experts were asked to solve the same
instances previously answered by the original experts. In 71% of the cases, both experts agreed on
the answer, and at least one expert got to the right answer in 93% of cases.

Are 130 questions sufficient to evaluate LMs? Though traditional machine learning benchmarks
usually contain thousands or even millions of test samples, recent work [17, 71, 74, 86] shows that
LM benchmarks can include only 100-200 samples and remain insightful. HumanEval [17], for
example, which consists of 164 programming problems, is among the most influential LM datasets
today, appearing in virtually every SoTA LM paper recently published [66, 1, 81, 19]. Similarly,
Bamboogle [71] contains 125 questions, DrawBench [74] contains 200 instances, and Plot2Code
[86] contains 132 questions. This is in line with [70, 69], who show that benchmarks with many
samples can be reduced to around 100 samples without sacrificing their utility. In addition, smaller
benchmarks are advantageous because they are both cheaper to evaluate and impose a less significant
environmental impact [76].

3 CiteAgent

We now describe CiteAgent, an LM-based system that we built to mimic researcher performance of
open-ended citation attribution. A researcher seeking the correct attribution for a claim might use
a search engine, read several papers, refine the search query, and repeat until successful. To allow
CiteAgent to perform these actions, we built it to use Semantic Scholar to search for and read papers.
Unless specified otherwise, we refer to CiteAgent with the GPT-4o backbone simply as CiteAgent
throughout this paper.

Given a text excerpt, we prompt CiteAgent to perform one of a fixed set of custom commands and
provide the output that the given command generated. CiteAgent then gives its rationale before
performing another action, following [90, 88]. Figure 3 shows this process. We now describe the
starting prompt and custom agent commands.

Prompt. Our prompt includes the task description, descriptions of available commands, and a demon-
stration trajectory, i.e., the series of actions that the system executes while solving an instance [90, 88].
The trajectory includes searching, reading a paper, and searching again (see Figure 4). We model our
prompt on the SWE-Agent prompt [88].

Agent Commands. CiteAgent can respond to three custom commands (see Table 2). It always begins
by executing the search command (sorting by relevance or citation count), which searches Semantic
Scholar for a query and returns top results in a sorted order. After searching, CiteAgent can either
search again, read one of the listed papers, or select a paper. It can perform up to 15 actions for
every sample. Once a select action is taken, the session ends, and the selected paper is recorded.
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Table 2: Commands available to the model using our system.

Command Description

search(query, sort) Searches for a query; sorts results by relevance or
by citation count; returns a list of papers, where
each item consists of the paper ID, title, number
of citations, and abstract.

read(ID) Returns the full text of a paper, including title,
author list, abstract, and the paper itself.

select(ID) Selects a paper from the search results as the an-
swer.

Search. CiteAgent initiates a search command by querying Semantic Scholar [46]. We chose the
Selenium API [63] over the Semantic Scholar API due to the former’s significantly better re-ranked
queries and its ability to provide a uniform interface for both our model and human trajectory
annotators.

Selenium also lets us access features such as sorting search results by relevance and citation count,
which our human trajectory annotators found particularly valuable.

To ensure correctness, we filter out search results published after the excerpt’s source paper, and the
source paper itself. We then give CiteAgent the top 10 search results, which include paper id, title,
abstract, and citation count.

Figure 3: The demonstration trajectory we gave CiteAgent
in the prompt.

Read. Read command execution causes
CiteAgent to retrieve the open-access
PDF corresponding to the selected pa-
per from Semantic Scholar. Using the
PyPDF2 library [29], our system ex-
tracts the text from the PDF, excluding
visual figures. It then presents the text
to CiteAgent, which generates a thought
and a new command. If an open-access
PDF link is unavailable, CiteAgent re-
turns a message to that effect. We note
that due to the limited context length of
8K tokens in the LLaMA-3 LM, we ex-
cluded the read action when using that
model.

Select. Select command execution
causes CiteAgent to choose a paper to
attribute to the input text excerpt, which
ends the run. If the number of actions
reaches 14, CiteAgent is prompted to
make a selection, forcefully concluding
the run. This design choice ensures that
all runs complete within a finite time
and budget.

4 Experiment Setup

Below, we provide detailed implemen-
tation information for the baseline mod-
els and the various CiteAgent configura-
tions we used for our evaluations.

SPECTER Models. We present the results of SPECTER [21] and SPECTER2 [77] on CiteME as
our baselines. SPECTER [21] encodes robust document-level representations for scientific texts,
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achieving high performance on citation prediction tasks without the need for fine-tuning. We use
the Semantic Scholar SPECTER API1 to embed the input text excerpts and the Semantic Scholar
Datasets API2 to embed all papers on Semantic Scholar, using these embeddings as our retrieval set.

SPECTER2 models [77] introduce task-specific representations, each tailored to different tasks. For
our experiments, we use the base customization of SPECTER2 from Hugging Face3 to embed text
excerpts and the Semantic Scholar Datasets API to similarly embed all papers on Semantic Scholar,
forming our retrieval set. We apply an exact kNN [53] match to identify the closest embedding,
computing the cosine similarity between the embeddings of text excerpt and all available papers
(title and abstract). Using exact kNN matches ensures no approximations/errors are introduced while
matching queries. We embed the query text excerpt as title only and both title and abstract, but that
did not change the performance of the SPECTER models.

CiteAgent. We run the CiteAgent system with three SoTA LMs as backbones: GPT-4o [1], Claude 3
Opus [3], and LLaMa-3-70B [81]. We additionally ablate over three classes of commands (Table 2):

1. Search and Read. The model can perform both search and read commands.
2. Search Only. The model is not allowed to read papers but can perform searches.
3. No Commands. The model operates with no access to the interface for actions like searching

and reading.

Each class of actions is evaluated with and without demonstrations trajectories in the prompt, resulting
in six configurations per LM. With three LMs, two action classes, and the option to include or exclude
demonstrations, we present a total of 12 CiteAgent ablations. We exclude LLaMa with both Search
and Read because its context length is limited to 8k tokens. For all experiments, we use a temperature
of 0.95, following Yang et al. [88], and provide our detailed prompts in Appendix E.

5 Results

Table 3: Performance of LMs (using our system) and retrieval methods on CiteME, summarized.

GPT-4o LLaMA-3-70B Claude 3 Opus SPECTER2 SPECTER1

Accuracy [%] 35.3 21.0 27.7 0 0

We present the evaluation results of the CiteME benchmark in Table 3. Our best model, CiteAgent
(GPT-4o, search and read commands, and a demonstration in the prompt) achieves 35.3% accuracy,
while the previous state-of-the-art models, SPECTER2 and SPECTER, achieve 0%. Human perfor-
mance on the same task is 69.7% accuracy, with less than a minute of search time, indicating that a
significant 34.4% gap remains.

Table 4: Accuracy (in %) of LMs and retrieval methods on CiteME. We test how the available
commands and prompt demonstrations affect CiteME performance. LLaMA’s context window is too
small and therefore incompatible with the read command.

Method
GPT-4o LLaMA-3-70B Claude 3 Opus SPECTER2 SPECTER

C
om

m
an

ds

No Commands w/o Demo 0 4.2 15.1 0 0
w/ Demo 7.6 5.9 18.5 – –

Search Only w/o Demo 26.1 21.0 26.1 – –
w/ Demo 29.4 2.5 27.7 – –

Search and Read w/o Demo 22.7 N/A 27.7 – –
w/ Demo 35.3 N/A 26.1 – –

Performance across Language Models. Comparing the performance of LMs across columns in
Table 4, GPT-4o demonstrates the highest accuracy when it has access to both read and search

1https://github.com/allenai/paper-embedding-public-apis
2https://api.semanticscholar.org/api-docs/datasets
3https://huggingface.co/allenai/specter2
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commands, outperforming other LMs by a wide margin. This finding aligns with previous research
[88], which shows that GPT-4 powered agents excel in solving software issues. Notably, GPT-4o
achieves high performance across settings even though CiteME consists exclusively of samples that
GPT-4o cannot predict correctly without commands; its 0% performance without commands and
demonstration trajectory is by design. However, LMs outperforming the SPECTER models purely by
autoregressive generation provides evidence that LMs act as implicit knowledge bases with sufficient
capacity [68].

Peformance across Demonstrations. Comparing the performance between w/o Demo and w/ Demo
rows in Table 4, we observe that LLaMA and Claude surprisingly perform worse when provided with
a demonstration trajectory in the prompt. This may be due to the increased prompt length, which
complicates the detection of important information [52]. LLaMA-3-70b incurs a performance drop
to 2.5% due to combined history extending beyond its context length, resulting in errors. However,
GPT-4o effectively utilizes demonstrations, which improves its accuracy.

Performance across Commands. GPT-4o is the only LM whose accuracy improves with access to
more commands, allowing it to read full papers. CiteAgent with GPT-4o creatively uses its commands
across test samples, demonstrating command behaviors not shown in the demonstration trajectory
(see Figure 4). It frequently refines its searches based on previous results and occasionally reads
multiple papers before making a selection. In contrast, Claude 3 Opus is less effective in utilizing
additional commands, likely due to difficulties in detecting important information [52].

Figure 4: Five CiteAgent trajectories on five different samples. CiteAgent often exhibits behavior not
shown in the demonstration given in the prompt, for example: searching by citation count and then
by relevance, and searching multiple times in a row. Gray dotted box: prompt demonstration; green
dotted boxes: CiteAgent succeeds; red dotted boxes: CiteAgent fails.

5.1 Error Analysis

To better identify CiteAgent’s shortcomings, we analyze 50 randomly chosen CiteME samples from
the best performing CiteAgent (using the GPT-4o backbone, with demonstrations, Search and Read
commands) failed to solve correctly. We classify each error into three types based on CiteAgent’s
searches, its predicted paper and the justification provided:

Error Type 1: Misunderstands the Excerpt. This category accounts for 50% of the errors. It occurs
when CiteAgent focuses on irrelevant parts of the excerpt or omits critical details. For example, in
the following excerpt:

The pioneering work of Reed et al. [37] approached text-guided image generation by training a
conditional GAN [CITATION], conditioned by text embeddings obtained from a pretrained encoder.

CiteAgent searches for "Reed text-guided image generation conditional GAN" instead of "conditional
GAN". It mistakes "Reed" as relevant to the current citation although it pertains to the previous one.
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Error Type 2: Understands the Excerpt but Stops Prematurely. In 32% of cases, CiteAgent
searches for the correct term, but it stops at a roughly matching paper instead of the exact match. For
example, in the following excerpt:

Using Gaussian noise and blur, [CITATION] demonstrate the superior robustness of human vision to
convolutional networks, even after networks are fine-tuned on Gaussian noise or blur.

CiteAgent found a paper comparing human and machine robustness but missed that it did not cover
fine-tuned networks. Notably, this paper referenced the correct target paper, meaning CiteAgent
could have found the right answer with just one more step if it had properly understood the paper it
was reading. Moreover, in 12.5% of such cases, the correct paper appeared in the search results but
was not chosen by CiteAgent.

Error Type 3: Finds the Correct Citation but Stops Prematurely. The last 18% of errors occur
when CiteAgent reads an abstract or paper and finds the correct citation; however, instead of doing
another search, it selects the paper that cites the correct citation and stops searching. For example, in
the following excerpt:

[CITATION] investigates transformers’ theoretical expressiveness, showing that transformers cannot
robustly model noncounter-free regular languages even when allowing infinite precision.

CiteAgent finds a paper discussing the target paper and reports it, but it stops at the citing paper
instead of searching for the correct target paper. For instance, it reports: ".. specifically mentioning
Hahn’s work on transformers’ classification decisions becoming ineffective over longer input strings.
This fits well with the description in the excerpt.." but it selects the citing paper instead of finding
Hahn’s work, which is the correct target paper.

Technical Errors. Aside from comprehension errors that stem from a lack of understanding an ex-
cerpt, 5.8% of runs encountered technical issues. Occasionally, the LM formats responses incorrectly,
making them unparseable by the system. Additionally, the Semantic Scholar API has inconsistencies,
such as not providing open access PDF links when available or linking to non-existent web pages.
Further details on these technical errors are provided in Appendix F.

Figure 5: CiteAgent trajectories on samples that were correctly predicted reveals differences in model
behavior. GPT-4o reads more frequently than Claude 3 Opus and can correctly predict papers even
after performing many actions.

5.2 Analyzing the Succesful Runs

Manually examining the instances that were correctly predicted by GPT-4o and Claude 3 Opus
(Figure 5) provides insights into how the LMs use commands they were given. First, we confirm the
results presented in Table 4: GPT-4o frequently reads papers before it correctly predicts a citation.
Second, when both LMs correctly predict a paper, they usually take just 5 steps or fewer to do so.
This could stem from LMs loss of important details when given a long context window [52].

CiteAgent’s trajectories on CiteME enable us to analyze the shortcomings of GPT-4o and other
SoTA LMs. These range from understanding fine details in text (Type 1 and Type 2 Errors), to not
completely understanding the task (Type 3 Errors), to being unable to use commands (Technical
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Errors). Correcting these errors could improve the utility of LMs on CiteME and for other related
tasks.

5.3 Benchmarking Reasoning Capability Improvements with Latest Models

Table 5: Accuracy (in %) of newly released LM models on CiteME.

Method
Claude-3.5-Sonnet LLaMa-3.1-70B o1-mini o1-preview

C
om

m
an

ds

No Commands w/o Demo 8.4 3.4 16.0 38.7
w/ Demo 9.2 8.4 10.9 –

Search Only w/o Demo 36.1 29.4 25.2 –
w/ Demo 43.7 29.4 32.8 –

Search and Read w/o Demo 37.0 22.7 26.9 –
w/ Demo 40.3 27.7 34.5 61.3

We compare the latest LLMs on the CiteME benchmark (Table 5) and find that Claude 3.5 Sonnet
outperforms the previous best, Claude 3 Opus. This improvement stems from better generalization, as
Sonnet achieves 9.2% without internet access, compared to Opus’ 18.5%. Similarly, LLaMa-3.1-70B
shows significant gains of 8% over LLaMa-3.0-70B, highlighting enhanced reasoning capabilities.
However, GPT-o1, while performing well on CiteME, appears to have memorized 38.7% of the
dataset, making its 61.3% benchmark performance less clear in terms of true improvement compared
to GPT-4o.

6 Related Work

Recent work has made substantial progress in developing methods and datasets to assist researchers
in paper writing and literature review [8, 12, 87] or act as tutors [18]. Early work [48, 56] showed that
researchers automatically retrieved topics and papers considered highly relevant to their work. Other
studies included methods that assist researchers in finding new ideas [34], understanding certain
topics [62], provide expert answers backed up by evidence [55] or clarifying a paper’s related work
by supplementing it with more information and focus [15, 67].

Closer to our line of research, prior studies developed methods for substantiating specific claims
using evidence from published papers [75, 83, 85, 84, 91, 24, 39, 45]. Retrieval-augmented LMs
[49, 11, 30] are also popularly used to ground claims with real-world evidence (see [60] for a survey).
Chen et al. [16] built a web-based retrieval-augmented pipeline for fact verification; this contrasts
with methods that use a static dataset for claim retrieval and verification [36, 5]. Concurrent to this
work, Ajith et al. [2] build a retrieval benchmark consisting of questions about discoveries shown in
specific machine learning papers.

Paper discovery is a crucial component of systems that automate scientific research as shown in
[10, 47, 54, 61, 78]. CiteME plays an important role in developing better tools for paper discovery,
and provides a way to effectively measure their efficiency. Currently, these systems are tested as a
whole, without isolating the tools responsible for scientific discovery. CiteME allows us to evaluate
components within them independently – and we discover that current LM Agents are not yet ready
for automated paper discovery, leading to serious gaps in end-to-end automated research pipelines.

In addition, most existing LM benchmarks are saturated, with most LMs scoring 80-95% on them
[43, 38, 20]. There is a need in the AI community to show what properties LMs currently lack, to
show LM developers what aspects they should work on. On CiteME, the best LMs get less than
40%, clearly indicating to developers an important task that they could improve LMs on, while also
providing an indicator they can use to track progress.

Context-aware Recommendation. Relevant to our research focus, [57, 64, 37] take as input
documents or parts thereof and recommend papers that are likely to be cited, often referred to as
context-aware citation recommendation [51, 26, 89, 28, 42, 65, 33]. The text inputs we use in
CiteME resemble those used in [42, 65, 80], which contain a few sentences with a masked out citation.
However, CiteME differs because it uses excerpts containing only one unambiguous citation, making
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the context sufficient to identify the cited paper. Furthermore, our work explores agents with access
to real-time paper information through tools like Semantic Scholar. This is crucial for real-time use
since thousands of new papers are indexed by arXiv monthly (e.g., 8,895 papers in March 2024 under
the cs category) [4]. Most previous approaches would be impractical due to the need for retraining
with every new paper issuance.

Citation Attribution Datasets. A variety of datasets contain text excerpts from scientific papers and
corresponding citations [32, 31, 9, 40, 72, 44, 42, 33]. There are many crucial distinctions between
the aforementioned datasets and CiteME, with the main one being that CiteME is composed of
manually selected excerpts that clearly reference a paper. To our best knowledge, CiteME is the only
dataset that reports human accuracy on the benchmark.

Additionally, the excerpts in CiteME are mostly taken from papers published in the last few years (see
Figure 2), whereas other datasets contain older papers. For example, the arXiv dataset [33] includes
papers from 1991-2020, and FullTextPaperRead [42] contains papers from 2007-2017. This currency
is particularly relevant in rapidly evolving fields like machine learning. The key distinction between
the dataset and methods we present compared to previous works is their real life applicability. Our
agent is based on SoTA LMs, needs no extra training, and can use a search engine, all of which make
it easily applicable to real-world settings.

7 Conclusion

This work introduces a citation attribution benchmark containing manually curated text excerpts that
unambiguously refer to a single other paper. We posit that methods that succeed on CiteME are likely
to be highly useful in assisting researchers with real-world ML-specific attribution tasks but also
generally useful in finding sources for generic claims. Further, our CiteAgent autonomous system can
search the Internet for and read papers, which we show to significantly enhance the abilities of LMs
on CiteME. We anticipate that this work will lead to LMs that are more accurate research assistants
in the vital scholarship tasks of attribution.
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Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] We ensure that the main claims accurately reflect the
contributions.

(b) Did you describe the limitations of your work? [Yes] Provided in the Supplementary
Material.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] Provided
in Supplementary Material.

(d) Have you read the ethics review guidelines and ensured that your paper conforms
to them? [Yes] All dataset curators are included as authors in our work, as data
contributions are central to our work. We use excerpts from publicly available, open-
access research papers only.

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments (e.g. for benchmarks)...

(a) Did you include the code, data, and instructions needed to reproduce the main exper-
imental results (either in the supplemental material or as a URL)? [Yes] See Supple-
mentary material for details.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See 4 for details.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A] We only ran inference (and not training), and reported
all hyperparamters used. Every LM was tested in multiple settings. Due to cost and
environmental concerns, we do not think that multiple test runs for each setting is
needed.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix E in Supplementary
Material for details.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] We appropriately
cited existing resources including links.

(b) Did you mention the license of the assets? [Yes] See Appendix F in Supplementary
Material.

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
We included the dataset behind our benchmark.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [Yes] We use short text excerpts from publicly accessible text excerpts
from open-access research papers, which does not require explicit consent from authors.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes] We manually verified that no PII information
or offensive content exists in our proposed dataset.

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots,
if applicable? [N/A] Our human experiments are not crowd-sourced. The human
participants were colleagues of the authors.

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A] The human participants were colleagues of
the authors who performed the task during their work hours.

15



We provide additional details include datasheet for our dataset, along with our benchmark provided
in Croissant format, reprocible scripts for all of our experiments and our visualization interface in the
supplementary material.
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A Excerpts from Citation Datasets

To demonstrate the problematic nature of automatically sourced text excerpts, we randomly choose 10
excerpts from FullTextPeerRead, ACL-200, RefSeer, and arXiv. We tag each sample chosen with one
of 4 tags, as summarised in Table 1 in the main paper. We show each sample as it appears verbatim,
using the datasets that appear in the official repository4 of Gu et al. [33].

ACL-200 [9, 58]

• m which the data was extracted (original). We used a combination of automatic (e.g.
BLEU–4 (OTHERCIT), METEOR (OTHERCIT)) and human metrics (using crowdsourcing)
to evaluate the output (see generally, TARGETCIT . However, in the interest of space, we
will restrict the discussion to a human judgment task on output preferences. We found this
evaluation task to be most informative for system improvement. The ta
Unattributable

• n Section 2 that it is more difficult to extract keyphrases correctly from longer docu-
ments. Second, recent unsupervised approaches have rivaled their supervised counterparts
in performance (OTHERCIT; TARGETCIT b). For example, KP-Miner (OTHERCIT), an
unsupervised system, ranked third in the SemEval-2010 shared task with an F-score of 25.2,
which is comparable to the best supervised system scoring 27.5. 5 An
Ambiguous: The citation is ambiguous by definition, as the excerpt cites more than one
paper.

• rams include unigrams for all feature definitions and bigrams for selected ones. Figure 3b
shows a sample of the actual extended set. We use two datasets, one prepared for the CoNLL
2000 shared task ( TARGETCIT and another prepared for the BioNLP/NLPBA 2004 shared
task (OTHERCIT). They represent two different tagging tasks, chunking and named entity
recognition, respectively. The CoNLL 2000 chunking dataset
Trivial

• ipts were from meetings, seminars and interviews. Some authors have also referred to this
phenomenon as Ellipsis because of the elliptical form of the NSU [OTHERCIT, Fern´andez
et al., 2004, OTHERCIT, TARGETCIT , OTHERCIT]. While the statistical approaches
336 have been investigated for the purpose of ellipsis detection [Fern´andez et al., 2004,
OTHERCIT], it has been a common practice to use rules – syntact
Ambiguous: The citation is ambiguous by definition, as the excerpt cites more than one
paper.

• e source language is morphologically poor, such as English, and the target language is
morphologically rich, such as Russian, i.e., language pairs with a high degree of surface
realization ambiguity ( TARGETCIT . To address this problem we propose a general
approach based on bilingual neural networks (BNN) exploiting source-side contextual
information. This paper makes a number of contributions: Unlike previ
Reasonable

• n our approach and the one described in (OTHERCIT). Such a similarity is calculated by
using the WordNet::Similarity tool (OTHERCIT), and, concretely, the Wu-Palmer measure,
as defined in Equation 1 ( TARGETCIT . 2N3 Sim(C1, C2) ? (1) N1 + N2 + 2N3 where
C1 and C2 are the synsets whose similarity we want to calculate, C3 is their least common
superconcept, N1 is the number of nodes on the path from C1 to C3,
Reasonable

• ch detected image object a visual attribute and a spatial relationship to the other objects in
the image. The spatial relationships are translated into selected prepositions in the resulting
captions. TARGETCIT used manually segmented and labeled images and introduced visual
dependency representations (VDRs) that describe spatial relationships between the image
objects. The captions are generated using templ
Reasonable

• ous open source machine translation systems. The widely used Moses system (OTHERCIT)
implements the standard phrase-based translation model. Parsingbased translation models

4https://github.com/nianlonggu/Local-Citation-Recommendation
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are implemented by Joshua ( TARGETCIT , SAMT (OTHERCIT), and cdec (OTHERCIT).
Cunei (OTHERCIT) implements statistical example-based translation. OTHERCIT and
OTHERCIT respectively provide additional open-source implementations of phrase-b
Trivial

• and test set, we had about 1000 sentences each with 10 reference translations taken from
the NIST 2002 MT evaluation. All Chinese data was re-segmented with the CRF-based
Stanford Chinese segmenter ( TARGETCIT that is trained on the segmentation of the
Chinese Treebank for consistency. The parser used in Section 3 was used to parse the
training data so that null elements could be recovered from the trees.
Trivial

• rdering between nodes), their means of creation, and the scoring method used to extract the
best consensus output from the lattice (OTHERCIT). In speech processing, phoneme or word
lattices (OTHERCIT; TARGETCIT are used as an interface between speech recognition
and understanding. Lat1318 Proceedings of the 48th Annual Meeting of the Association for
Computational Linguistics, pages 1318–1327, Uppsala, Sweden
Ambiguous: The citation is ambiguous by definition, as the excerpt cites more than one
paper.

RefSeer [40, 58]

• . Their experiments suggested that view independence does indeed affect the performance of
co-training; but that CT, when compared to other algorithms that use labeled and unlabeled
data, such as EM ( TARGETCIT ; OTHERCIT), may still prove e#ective even when an
explicit feature split is unknown, provided that there is enough implicit redundancy in the
data. In contrast to previous investigations of
Ambiguous: The citation is ambiguous by definition, as the excerpt cites more than one
paper.

• eeded is NP-hard. On the other hand, if the permutation π avoids the pattern 1-2-3, no
shuffles are needed if k ≥ 5 (this is the result that every triangle free circle graph is
5-colorable, see again TARGETCIT ). It becomes clear once more why circle graphs
“frustrated mathematicians for some years” OTHERCIT, and still continue to do so. 5
Stacking Constraints We finally consider the generalization in which ite
Reasonable

• a small number of details they have many things in common, especially the process of
motion compensation and the DCT. Due to similar motion compensation the motion vector
(MV) can be reused very well TARGETCIT . Furthermore, the equivalent usage of the DCT
of block size ? ? makes a transcoder implementation within the DCT-domain possible
OTHERCIT. With the standardization of H.264 the task of heterogeneous trans
Reasonable

• tioned Transactions ? Lingxiang Xiang Michael L. Scott Department of Computer Science,
University of Rochester lxiang, scott@cs.rochester.edu 1. Introduction Twenty years after the
initial proposal TARGETCIT , hardware transactional memory is becoming commonplace.
All commercial versions to date—and all that are likely to emerge in the near future—are
best effort implementations: a transaction may abort a
Reasonable

• local values generating a cluster are uniformly distributed in the range of [µij - σij × 0.01,
µij + σij × 0.01]. ? Irrelevant feature f ? j ∈ Si : We uniformly generate values in the
entire range TARGETCIT . We then synthetically generate co-occurrence scores. While the
co-occurrence score can be arbitrarily generated, it is non-trivial to decide the ground-truth
clusters when featurebased and co-occurr
Unattributable

• for visualizing the messagesow between objects in terms of method invocations. The scenario
diagrams are generated from event traces and linked to other sources of information. Jerding
and colleagues TARGETCIT , OTHERCIT focus on the interactions between program
components at runtime. They observed that recurring interaction pattern can be used in the
abstraction process for program understanding. The authors d
Trivial: Though the cited excerpt cites more than one paper, that author name is given.
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• Many multimedia services, such as audio-video conferencing or video playback, have
associated with them performance requirements that must be met to guarantee acceptable
service to the users. TARGETCIT describes the requirements that some typical applications
place on networks. The Tenet Real-Time Protocol Suite [Ferrari92 ] is one approach to
providing these real-time performance guarantees in pac
Unattributable

• y of the controlled system is jeopardized. Several scheduling paradigms have been developed
to support the analysis of a task set and determine if a schedule is feasible, e.g., rate-
monotone analysis TARGETCIT . These scheduling paradigms rely on the assumption that
the worst-case execution time (WCET) of hard real-time tasks be known a-priori. If the
WCET of all tasks is known, it can be determined if a sc
Reasonable

• Recommended for acceptance by L. Quan. For information on obtaining reprints of this
article, please send e-mail to: tpami@computer.org, and reference IEEECS Log Number
TPAMI-0308-1003. æ recovered TARGETCIT , OTHERCIT. Note that these calibration
techniques can be used for both central and noncentral catadioptric cameras. 2. Self-
calibration. This kind of calibration techniques uses only point correspo
Ambiguous: The citation is ambiguous by definition, as the excerpt cites more than one
paper.

• ic controller in which a single action is associated with each node, and an observation results
in a deterministic transition to a successor node (OTHERCIT; Hansen 1998; TARGETCIT a).
In other cases, it is a stochastic controller in which actions are selected based on a probability
distribution associated with each node, and an observation results in a probabilistic transition
Ambiguous: The citation is ambiguous by definition, as the excerpt cites more than one
paper.

arXiv [33]

• In this study we parallelized the computation of gradients to improve the efficiency, and
for large datasets further improvements can be obtained by using random minibatches to
perform the inversion TARGETCIT . Such a strategy can be applied to any variational
inference method (e.g. also ADVI) since variational methods solve an optimization rather
than a stochastic sampling problem. In comparison, this st
Unattributable

• e been shown to provide superior generative quality, but VAEs have a number of advantages
which include outlier robustness, improved training stability and interpretable, disentangled
representations TARGETCIT . Disentangled representations are generally conceived to be
representations in which each element relates to an independent (and usually semantically
meaningful) generative factor OTHERCIT OTHERCIT . Achieving a di
Reasonable

• tion (NTF) OTHERCIT . For example, NMF/NTF-based ML methods have been successfully
used for analysis of Monte Carlo simulated fission chamber’s output signals OTHERCIT
, for compression of scientific simulation data TARGETCIT , and for a variety of other
applications OTHERCIT . To avoid confusion, we should emphasize that in this paper the
term tensor is used to define two different types of mathematical objects. We use tensors t
Unattributable

• insight about the generalization to the multipartite scenario, but also since the recovery
problem for a tripartite probability distribution given all the three possible bipartite marginals
is open OTHERCIT TARGETCIT OTHERCIT . Moreover, moving to the quantum scenario,
also the compatibility problem for just a couple of overlapping marginals is open OTHERCIT
OTHERCIT . We are then going to assume the set of the two given marginal densit
Ambiguous: The citation is ambiguous by definition, as the excerpt cites more than one
paper.

• seen that the proxy-SU(3) symmetry suggests N = 116 as the point of the prolate-to-oblate
shape/phase transition, in agreement with existing exprerimental evidence OTHERCIT OTH-
ERCIT OTHERCIT OTHERCIT OTHERCIT and microscopic calculations OTHERCIT
OTHERCIT TARGETCIT OTHERCIT . Table 1 . Comparison between SU(3) irreps for
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U(6), U(10), U(15), and U(21), obtained by the code UNTOU3 OTHERCIT , contained in
the relevant U(n) irrep for M valence protons or M valence neutrons. Above
Ambiguous: The citation is ambiguous by definition, as the excerpt cites more than one
paper.

• h cannot be explained by the traditional expected utility theory. In the context of decision-
theoretic systems, Nadendla et al. have presented detection rules employed by prospect
theoretic agents in TARGETCIT under different scenarios based on decision costs. In
particular, the authors have focused on two types of prospect theoretic agents, namely
optimists and pessimists, and have shown that the prospect
Trivial: The name of the author of the referenced paper appears in the excerpt.

• .) (3) ψ(∧ S ) does depend on the isotopy class of the collection. Its image in the space A(⋆
k 1 ,... ,kµ ) , however, does not. These issues, and the above proof, are discussed in full
detail in TARGETCIT . We remark that, in the form presented, this theorem does not depend
on the two pieces of heavy machinery employed by OTHERCIT -it depends on neither the
adapted Kirby-Fenn-Rourke theorem nor the OTHERCIT calculati
Unattributable

• ed to follows an addition rule 2ND 2 = analogous to that found for frequency conversion. A
series of recent experiments demonstrated a more complex transfer of OAM in the generation
of Raman sideband TARGETCIT OTHERCIT OTHERCIT . This process was found to
follow a now wellestablished OAM-algebra for Stokes and anti-Stokes orders and was
definitively verified through phase measurements in a simultaneous Young double slit e
Ambiguous: The citation is ambiguous by definition, as the excerpt cites more than one
paper.

• BMD. An important tool to assess the performance of decoding metrics is the generalized
mutual information (GMI) OTHERCIT Sec. 2.4 ]. An interpretation of uniform BMD and
bit-shaped BMD as a GMI are given in TARGETCIT and OTHERCIT , respectively. In
OTHERCIT Sec. 4.2.4 ], the GMI is evaluated for a bit-metric. It is observed that the GMI
increases when the bits are dependent. We call this approach shaped GMI. Besides the GMI,
oth
Ambiguous: The citation is ambiguous by definition, as the excerpt cites more than one
paper.

• cay products dilute faster than matter, the expansion rate can be reduced around z ∼ 2.3.
However, the simplest such model, a dark matter component decaying into dark radiation
with constant lifetime TARGETCIT OTHERCIT , is in conflict with observations of the
late integrated SachsWolfe effect and lensing power spectrum OTHERCIT OTHERCIT .
Moreover, we find Ω ExDE becomes positive again at z < 1.5. Thus any decaying component
mus
Ambiguous: The citation is ambiguous by definition, as the excerpt cites more than one
paper.

FullTextPeerRead [42]

• tion function: r=g.The typical training criterion for autoencoders is minimizing the recon-
struction error, Σx∈XL with respect to some loss L, typically either squared error or the
binary cross-entropy TARGETCIT .Denoising autoencoders are an extension of autoen-
coders trained to reconstruct a clean version of an input from its corrupted version . The
denoising task requires the network to learn representatio
Ambiguous: Although [7] is cited, it could be argued that the original paper that used cross
entropy as a loss [23] should be used.

• al matrices of parameters, and show that it outperforms the random counterpart when
applied to the problem of replacing one of the fully connected layers of a convolutional
neural network for ImageNet TARGETCIT . Interestingly, while the random variant is
competitive in simple applications , the adaptive variant has a considerable advantage in
more demanding applications .The adaptive SELLs, including Adapti
Trivial

• eneous information networks. Recently, u peek_meaning:NTF . peek_catcode:NTF a . .
published a question answering algorithm that converts a given question into a vector space
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model to find the answer TARGETCIT , but, like neural network based models 2013 , the
learned model is generally uninterpretable. peek_meaning:NTF . peek_catcode:NTF a . .
proposed T-verifier, a search engine based fact checker 2011
Ambiguous: The cited paper is [35], while [41] also fits the description given.

• he graph’s main component correctly. The state-of-the-art described in gives a lowest value
at 58, with the best algorithms around 60, while algorithms regularized spectral methods
such as the one in TARGETCIT obtain about 80 errors.The current result should also extend
directly to a slowly growing number of communities . It would be interesting to extend the
current approach to smaller sized communities or
Unattributable

• amming approach that was used in all other structural tractability results that were known
before, and as we have seen this is no coincidence. Instead, B-acyclic #SAT lies outside the
STV-framework of TARGETCIT that explains all old results in a uniform way.We close this
paper with several open problems that we feel should be explored in the future. First, our
algorithm for #SAT is specifically designed for
Unattributable

• our method on a fully-connected network , we compare our method with on this dataset.
CIFAR and SVHN dataset, we evaluate our method on three popular network architectures:
VGGNet, Net and DenseNet TARGETCIT . The VGGNet is originally designed for Im-
ageNet classification. For our experiment a variation of the original VGGNet for CIFAR
dataset is taken from . For Net, a 164-layer pre-activation Net with bo
Trivial

• ars, various probabilistic extensions of description logics have been investigated, see, for
instance,.The one that is closest to our approach is the type 1 extension of ALC proposed in
the appendixof TARGETCIT . Briefly, This difference is the main reason why the ExpTime
algorithm proposed by tz and Schrödercannot be transferred to our setting. It does not suffice
to consider the satisfiable types independ
Unattributable

• h we compute through current input and the previous hidden state. The final output of
hidden state would be calculated based on memory cell and forget gate.In our experiment
we used model discussed in TARGETCIT .t x is feature vector for tth word in a sentence
and hl is previous hidden state then computation of hidden and output layer of LSTM would
be.Where σ is sigmoid activation function, ⋆ is a element
Unattributable

• e use of conditional LSTMs in the generation component of neural network -based dialogue
systems which depend on multiple conditioning sources and optimising multiple metrics.ral
conversational agents TARGETCIT are direct extensions of the sequence-to-sequence model
in which a conversation is cast as a source to target transduction problem.wever, these
models are still far from real world applications becau
Ambigiuous: The cited paper is [82], though [79] also fits the description given.

• onsistent with previous findings.As a comparison we also include test performances of a
BNN with a Gaussian approximation , a BNN with HMC, and a sparse Gaussian process
model with 50 inducing points TARGETCIT . In test-LL metric our best dropout model
out-performs the Gaussian approximation method on almost all datasets, and for some
datasets is on par with HMC which is the current gold standard for yesian
Ambiguous: The cited paper is [13], while [14] also fits the description given.

A.1 Automatic Ambiguity Analysis

In addition to the manual analysis above, we conducted an automated analysis of the ambigu-
ous category. Specifically, we identified excerpts that cited multiple papers simultaneously (e.g.,
\cite{paper1, paper2, paper3}) where one of the cited papers is the target. This analysis
allowed us to establish a lower bound on ambiguous excerpts across all benchmarks (Table 6). These
excerpts can not serve well as questions since they have multiple different correct answers, whereas
the respective benchmarks only include one correct target answer (as in CiteME).
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Table 6: Dataset ambiguity percentages from an automatic analysis. We note that this is just a lower
bound estimate, as the automatic parsing is only able to detect a subset of the ambiguous excerpts.
Still, these findings are consistent with our previous results, and show that previous benchmarks
contain vast quantities of ambiguous excerpts.

Dataset Ambiguous [%]
arXiv 54.96
ACL 27.20

RefSeer 12.61

FulllTextPeerRead automatically deletes all other citations, so this was not possible to do in their
case. We have updated Table 1 in the revised draft with the results with the expanded 50-sample sets
and included the automatic evaluation data.
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B Additional Comparison to Existing Benchmarks

We additionally compare CiteME to previous benchmarks based on information found in [33].
Importatnly, CiteME differs from previous work in that the query set, from which the answers come
from, is by far the largest with 218 million papers. Additionally, CiteME makes the entire paper
available to the model, and not just a snippet. These two factors make CiteME able to mimic the
experience a research would have when looking for papers.

Table 7: Comparison of previous benchmarks and CiteME based on query set size, availability of full
paper text, and date range.

Dataset Query Set Size Full Paper Text Date Range

FullTextPeerRead [42] 5K ✗ ’07-’17
ACL-200 [9, 58] 20K ✗ ’09-’15
RefSeer [40, 58] 625K ✗ Unk - ’14

arXiv [33] 1.7M ✗ ’91-’20
CiteME (Ours) 218M ✓ ’08-’24

C CiteAgent Results By Year

Language models may perform better on papers they encountered during training, with a drop in
performance on newer papers, leading to better performance from more recently released models. To
test this, we compare the results of our CiteAgent on excerpts from papers published before 2024
versus on excerpts from papers published in 2024. We note that the cutoff dates for Claude 3 Opus,
Claude 3.5 Sonnet and GPT-4o are August 2023, August 2023 and October 2023 respectively. The
results, shown in Table 8, show that this is indeed true for the LMs analyzed in this paper.

Table 8: Accuracy of CiteAgent models (in %) on questions where the target papers were published
either before 2024 and during 2024

Model Before 2024 2024

CiteAgent + GPT-4 36.99% 32.61%
CiteAgent + Claude 3 Opus 28.77% 21.74%

CiteAgent + Claude 3.5 Sonnet 42.47% 36.96%

D Verifying GPT-4 Paper Tags

We asked GPT-4 to generate 3 general tags that describe every paper in CiteME. We manually verify
that the tags automatically generated by GPT-4 are overwhelmingly correct. Here, we give a few
examples of papers, and their matching tags:

• Paper Name: PaLI: A Jointly-Scaled Multilingual Language-Image Model
Tags: Multimodal AI Models, Vision-Language Integration, Scalable Machine Learning

• Paper Name: Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets
Tags: Neural Network Generalization, Deep Learning Optimization, Algorithmic Data
Analysis

• Paper Name: Minimally distorted Adversarial Examples with a Fast Adaptive Boundary
Attack
Tags: Adversarial Machine Learning, Neural Network Security, Robustness Evaluation]

• Paper Name: Mamba-R: Vision Mamba ALSO Needs Registers
Tags: Computer Vision Models, Image Processing Techniques, Neural Network Architec-
tures

• Mass-Editing Memory in a Transformer
Tags: Language Model Updating, Natural Language Processing, Machine Learning Tech-
niques
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E Example Trajectory

Please note that the abstracts retrieved in the paper search have been redacted, and only the first two
of the ten results are displayed to condense the text. Additionally, the content retrieved by the paper
reading action has been abbreviated. The system prompt is omitted for brevity. Complete and exact
prompts are available in the published code.

User:

You are now given an excerpt. Find me the paper cited in the excerpt, using
the tools described above. Please make sure that the paper you select really
corresponds to the excerpt: there will be details mentioned in the excerpt
that should appear in the paper. If you read an abstract and it seems like
it could be the paper we’re looking for, read the paper to make sure.
Also: sometimes you’ll read a paper that cites the paper we’re looking for.
In such cases, please go to the references in order to find the full name
of the paper we’re looking for, and search for it, and then select it.

Our implementation for ImageNet follows the practice in [21, 41]. The
image is resized with its shorter side randomly sampled in [256, 480]
for scale augmentation [41]. A 224×224 crop is randomly sampled from
an image or its horizontal flip, with the per-pixel mean subtracted [21].
The standard color augmentation in [21] is used. We adopt batch
normalization (BN) [CITATION] right after each convolution and before
activation.

Assistant:

{
"reason": "The excerpt mentions batch normalization (BN) and places

it right after each convolution and before activation.
I’ll search for ’batch normalization’ to find the
appropriate citation.",

"action": {
"name": "search_relevance",
"query": "batch normalization"

}
}

User:

- Paper ID: 995c5f5e62614fcb4d2796ad2faab969da51713e
Title: Batch Normalization: Accelerating Deep Network Training

by Reducing Internal Covariate Shift
Abstract: <redacted>
Citation Count: 39617

- Paper ID: 713bbd21bd4780fc92a69645a8bee2a005cc90dd
Title: Comparison of normalization algorithms for cross-batch

color segmentation of histopathological images
Abstract: <redacted>
Citation Count: 18

<Remaining 8 Results>

Assistant:

{
"reason": "The paper with ID 995c5f5e62614fcb4d2796ad2faab969da51713e

titled ’Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift’ is explicitly
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about batch normalization and aligns perfectly with the
mention of batch normalization in the given excerpt.",

"action": {
"name": "read",
"paper_id": "995c5f5e62614fcb4d2796ad2faab969da51713e"

}
}

User:

arXiv:1502.03167v3 [cs.LG] 2 Mar 2015BatchNormalization:
AcceleratingDeepNetworkTrainingb y ReducingInternalCovariateShift
Sergey Ioffe GoogleInc., sioffe@google.comChristianSzegedy GoogleInc.,
szegedy@google.com Abstract TrainingDeepNeuralNetworksiscomplicatedbythefact
that the distributionofeach layer’sinputschangesduring training, as the
parametersof the previouslayers change. This slows down the training by
requiringlower learning

<Remaining Content of the Paper>

Assistant:

{
"reason": "The paper Batch Normalization: Accelerating Deep Network

Training by Reducing Internal Covariate Shift by Sergey
Ioffe and Christian Szegedy precisely matches the
description in the excerpt given. It details the
application of batch normalization, placing it right after
each convolution and before activation.",

"action": {
"name": "select",
"paper_id": "995c5f5e62614fcb4d2796ad2faab969da51713e"

}
}

25



F Technical Errors

In this section, we break down the types of technical errors that can occur when running CiteAgent
with a GPT-4o or Claude 3 Opus backbone.

Figure 6: Different technical errors for the CiteAgent with Search and Read command with Demo
comparing the GPT-4o and Claude Opus backbone. Claude Opus has a significantly higher error rate.
It struggles to adhere to the expected JSON fromat and in four cases the content filter was triggered.

Figure 7: Different technical errors for the CiteAgent with Search and Read command without
Demo comparing the GPT-4o and Claude Opus backbone. Because there is no demo the system
prompt is much shorter just containing the task description and the format instructions. One can see
that the JSON error rate for Claude Opus is now drastically reduced. GPT-4o also exhibits a smaller
error rate but its performance is degraded.
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Figure 8: Different technical errors for the CiteAgent with Search Only command with Demo
comparing the GPT-4o, Claude Opus and LLaMA-3 70B backbone. The system prompt containing
the Demo takes up a considerable amount of LLaMA-3’s context length therefore just a few actions
lead to the model running out of context.

Figure 9: Different technical errors for the CiteAgent with Search Only command without Demo
comparing the GPT-4o, Claude Opus and LLaMA-3 70B backbone.

Figure 10: Different technical errors for the CiteAgent with Search and Read command with Demo
comparing the o1-Preview, o1-Mini, Claude 3.5 Sonnet and LLaMA-3.1 70B backbone.

Figure 11: Different technical errors for the CiteAgent with Search and Read command without
Demo comparing the o1-Mini, Claude 3.5 Sonnet and LLaMA-3.1 70B backbone.
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Figure 12: Different technical errors for the CiteAgent with Search Only command with Demo
comparing the o1-Mini, Claude 3.5 Sonnet and LLaMA-3.1 70B backbone.

Figure 13: Different technical errors for the CiteAgent with Search Only command without Demo
comparing the o1-Mini, Claude 3.5 Sonnet and LLaMA-3.1 70B backbone.
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G Price and Duration Distribution

In this section, we break down runtimes and costs associated with running CiteAgent with a GPT-4o
or Claude 3 Opus backbone.

Figure 14: Price and duration distribution on CiteME with the Read and Search command with
Demo for the GPT-4o backbone. The average price is ∼$1.2 per run or ∼$150 in total. The average
duration is 82.9 s per citation or 10772 s in total.

Figure 15: Price and duration distribution on CiteME with the Read and Search command with
Demo for the Claude Opus backbone. The average price is ∼$1.6 per run or ∼$206 in total. The
average duration is 136.0 s per citation or 17675 s in total.
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Figure 16: Price and duration distribution on CiteME with the Read and Search command with
Demo for the o1-Preview backbone. The average price is ∼$1.7 per run or ∼$205 in total. The
average duration is 369.8 s per citation or 44006 s in total.

Figure 17: Price and duration distribution on CiteME with the Read and Search command with
Demo for the 01-Mini backbone. The average price is ∼$0.4 per run or ∼$50 in total. The average
duration is 125.1 s per citation or 14886 s in total.
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Figure 18: Price and duration distribution on CiteME with the Read and Search command with
Demo for the Claude 3.5 Sonnet backbone. The average price is ∼$0.6 per run or ∼$80 in total. The
average duration is 143.7 s per citation or 18686 s in total.
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