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Abstract
Multi-turn problem solving is critical yet challeng-
ing for Large Reasoning Models (LRMs) to re-
flect on their reasoning and revise from feedback.
Existing Reinforcement Learning (RL) methods
train large reasoning models with a single-turn
manner, which we observe that often lead to mod-
els lose multi-turn reasoning ability. We ask:
can LRMs learn to reflect their answers in a multi-
turn context? In this work, we find that train-
ing models with multi-turn RL using only unary
feedback (for example, “Let’s try again”) after
wrong answers can improve both single-turn per-
formance and multi-turn reasoning. We introduce
Unary Feedback as Observation (UFO) for re-
inforcement learning, which uses minimal while
common unary user feedback during iterative
problem solving. It can be easily applied to exist-
ing single-turn RL training setups. Experimental
results show that RL training with UFO keeps
single-turn performance and improves multi-turn
reasoning accuracy by up to 14%, enabling lan-
guage models to better react to feedback in multi-
turn problem solving. To further minimize the
number of turns needed for a correct answer while
encouraging diverse reasoning when mistakes oc-
cur, we design reward structures that guide mod-
els to produce careful and deliberate answers in
each turn. Our code and models are open source
https://github.com/lichengliu03/unary-feedback.

1. Introduction
Large language and reasoning models (LLMs/L-
RMs) (DeepSeek-AI, 2025; OpenAI, 2024; Yang
et al., 2024; Team, 2025) can solve complex tasks such
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as math and code generation, especially with the current
progress of reinforcement Learning (RL) (Schulman et al.,
2017; DeepSeek-AI, 2025; Zhou et al., 2024; Wang et al.,
2025) that enhances LLM reasoning capabilities with
verifiable rewards. On the other hand, many real-world
applications like chatbots, programming assistants, and
educational tools (Xie et al., 2024; Pan et al., 2024; Yao
et al., 2023a; Shridhar et al., 2021; Wang et al., 2024a)
require models to engage in multi-turn problem solving
and adapting their reasoning with feedback. However, it
remains underexplored how models trained with single-turn
RL generalizes to multi-turn interactive problem-solving
settings.

In this work, we first observe that single-turn RL may hinder
a model’s ability to engage in interactive, multi-turn rea-
soning. Specifically, such models often fail to incorporate
in-context feedback and instead persist with their initial
answers across multiple turns (Figure 1). In Figure 2, we
define effective answer as a new answer that has never been
given by the LLM in multi-turn interaction. It turns out
that in 70% of failed cases, single-turn-trained models gen-
erate exactly the same answer across five interaction turns
(i.e. only 1 effective answer). Though these models excel
at single turns, enabling them to effectively leverage in-
context feedback and improve over multiple turns remains
a challenge. One particular reason for that is most existing
reasoning datasets are inherently single-turn and do not in-
corporate multi-turn feedback. This challenge motivates our
research question: How can we train language models that
not only generate correct solutions but also improve from
sparse, minimal feedback iteratively?

Real-world multi-turn user feedback is very expensive and
hard to obtain. Constrained by this data bottleneck, existing
multi-turn framework has been training on automatic feed-
back such as code interpreter messages (Xie et al., 2024; Pan
et al., 2024; Wang et al., 2024a) and embodied simulator sig-
nals (Shridhar et al., 2021; Zhuang et al., 2025). However,
those inherently single-turn static dataset (e.g. QA, Math)
are originally built for single-turn RL training. Moreover,
code interpreter and embodied environment still costs large
amounts of resource to build (Cao et al., 2025). In light of
these limitations, in this work we explore a surprisingly sim-
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<think> Given the sequence 1, 2, X, 0, -1, 
-2, -1, 0, 1, 2, 1, 0, -1, -2, -1, 0, knowing 
that…</think> <answer>0</answer> ❌

LLMs generate exactly the same answer across turns

 Single-Turn 
RL Training

After Single-Turn RL Training: Repeating Answers

LLMs can revise answer based on feedback

The letters of the alphabet are given numeric values based on two conditions below…What is the value of X?

<think> First, Let’s list the numeric values for the letters based on given pattern… </think> <answer>4</answer>❌

Before Single-Turn RL Training: Revising Answers

Single-Turn RL training make LLMs lose multi-turn problem solving capabilities 

Please try again.

Please try again. Please try again.

Please try again.

<think> Let’s list the numeric values for the 
letters based on given pattern… </think> 
<answer>4</answer>

<think> Let’s list the numeric values for the 
letters based on given pattern… </think> 
<answer>4</answer>

<think> OK, let’s try again. We are sure the 
sequence is 1, 2, X, 0, -1, -2 ... We know 
this is…</think> <answer>1</answer>

❌

❌

Figure 1: Single-turn RL causes LLMs to repeat the same answer across turns instead of revising based on feedback.

Figure 2: After single-turn RL training, model gives exactly the
same answer across five interaction turns in 70% failed cases.

ple yet effective framework that can leverage static dataset
for multi-turn RL training, by simply adding verbal unary
feedback and encouraging the model to try again when the
model is wrong. We call this Unary Feedback as Observa-
tion (UFO), framing interactive problem-solving as Markov
Decision Processes (MDP) where the model (agent) only
receives unary feedback (e.g., think again) as its environ-
mental observation.

Through experiments, we show that applying UFO in multi-
turn RL settings can effectively stimulate interactive reason-
ing and allow the model to effectively revise its reasoning
across turns. Models trained with UFO inherently learn to
try to adopt different approaches when the current answer is
wrong, achieving a 14% improvement in success rates un-
der multi-turn evaluation compared to previous single-turn
RL approaches. Furthermore, we show that such capability

to self-reflect and revise is generalizable to various out-of-
domain tasks. To align with real-world multi-turn reasoning
objectives, we point out two principles, minimality and di-
versity, where the models should minimize interaction turns
needed to arrive at a correct answer and explore diverse
strategies upon failure. We design turn-wise reward decay
and an answer repetition penalty to encourage systematically
planning, improve reasoning efficiency.

To summarize, our contributions are as follows:

• We identify that while current single-turn RL training im-
proves reasoning, they can lead to repetitive and degraded
outputs in multi-turn, interactive reasoning scenarios.

• We explore a simple yet effective framework, Unary Feed-
back as Observation (UFO), to enable multi-turn RL
training on existing static single-turn reasoning datasets.

• We show that turn-wise reward decay and answer repeti-
tion penalty could effectively improve multi-turn reason-
ing minimality and diversity.

2. Reinforcement Learning for LLM
Reasoning

2.1. Background

Single-Turn Reinforcement Learning. Reinforcement
Learning (RL) is a general framework to steer the behavior
of LLMs by maximizing expected reward:

Ex∼D, y∼πθ(·|x)[R(x, y)],

where D is a prompt distribution, πθ, the policy, and
R(x, y), the reward for response y. Algorithms such as
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Figure 3: Comparison of effective (unique) answer ratio (%) before and after RL training. Across single-turn RL methods, the
unique answer ratio consistently drops after training across multiple model scales.

PPO (Schulman et al., 2017; Ouyang et al., 2022) and
GRPO (DeepSeek-AI, 2025; Shao et al., 2024) apply this
objective to static datasets, yielding strong single-turn gains
in math and code generation.

Multi-Turn Extensions. Reinforcement Learning (RL) ap-
plied to static, single-turn datasets has proven highly effec-
tive. Algorithms such as PPO and GRPO have significantly
enhanced the reasoning capabilities of LLMs, achieving
outstanding results in domains like mathematics and code
generation. These methods excel at optimizing a policy to
produce a correct answer in a single attempt, leveraging
large-scale datasets of problems and their answers.

However, real-world applications like tutoring, coding as-
sistants, embodied agents demand multi-turn interaction,
where a model refines answers across steps under sparse
feedback. In domains like programming, automated feed-
back is readily available from compilers or unit tests, en-
abling iterative correction. But for tasks like mathematical
reasoning, obtaining such dense, intermediate feedback is
inherently difficult; often, only a final signal of correctness
is available. Recent work like RAGEN (Wang et al., 2025)
addresses this by framing reasoning as an MDP and optimiz-
ing whole trajectories, supporting delayed credit assignment
in tasks like symbolic logic and interactive programming.
Yet widely used math and code datasets remain single-turn,
and collecting turn-by-turn human signals is costly. Most
prior work synthesizes feedback (Pan et al., 2024; Xie et al.,
2024) or uses tool-augmented environments (Jin et al., 2025;
Feng et al., 2025; Wang et al., 2024a), which leads to the
key question we study here: Can models trained only with
single-turn RL generalize to multi-turn reasoning?

2.2. Single-Turn RL Leads to Collapsed Multi-Turn
Reasoning

To answer the question posed above, we examine how mod-
els trained with single-turn RL perform in multi-turn inter-
action settings. Specifically, in practical use cases such as
tutoring or mathematical assistance, users typically offer

minimal feedback (e.g., “try again”) and expect the model
to adjust its reasoning accordingly. However, we find that
single-turn RL models are effective solvers but poor revis-
ers, consistently failing to incorporate feedback.

This phenomenon is illustrated in Figure 1: a pre-trained
model refines its answer across turns, while a single-turn RL
model fails to revise, repeating its initial output. To quantify
this behavior, we use effective answer as our metric, which
has been defined as a new answer that has not been given
in the previous turns. We present the results in Figure 3 for
off-the-shelf LLMs and Figure 2 for our trained models with
single-turn RL, and show that after single-turn RL training,
LLMs tend to give less effective answers across multiple
turns.

Specifically, for off-the-shelf LLMs, we select models fine-
tuned with various RL algorithms including PPO (Schulman
et al., 2017), GRPO (Shao et al., 2024), DAPO (Yu et al.,
2025), and Dr. GRPO (Liu et al., 2025). Details of the mod-
els used can be found in Appendix D. As shown in Figure 3,
all models exhibit a noticeable decline in the unique answer
ratio after RL training, and the extent varies by method and
model size. For example, under DAPO the 32B model’s
effective answer ratio falls from 78.0% to 65.7%, and un-
der Dr. GRPO the 1.5B model drop from 38.0% to just
15.4%. GRPO shows more moderate losses (e.g., the 0.5B
model declined from 34.0% to 24.3%), and PPO’s impact is
also mild (the 7B model went from 57.6% to 51.7%). We
also measure how many distinct answers our single-turn RL
model provides for questions it ultimately fails to answer
correctly (more details in 4.1). As shown in Figure 2, un-
der nearly 70% cases the model provide identical wrong
answers across multiple interaction turns.

This highlights a critical gap: single-turn RL is insufficient
for multi-turn reasoning, yet acquiring the necessary step-
by-step supervision is often infeasible. In light of this, we
ask the following question: Can we leverage only the
simplest form of supervision, such as “try again”, to
simulate multi-turn interaction on static datasets and
train models to learn adaptive revision behaviors?
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Figure 4: The UFO framework for multi-turn training. At each step t, the model observes the full interaction history and generates
a response. Correct responses receive discounted rewards γt, while incorrect ones receive none. A repetition penalty based on the
uniqueness of trajectory τ is applied after success or when the turn limit is reached.

3. Training Multi-Turn Reasoning Models
with Unary Feedback

3.1. Problem Formulation

We model the process of multi-turn problem solving
based on static single-turn datasets as a finite-horizon
Markov Decision Process (MDP), defined by the tuple
(S,A,P, R, Tmax). Here, S is the state space, A is the
action space consisting of all possible answers, P is the
transition function defined by the agent–environment inter-
action, R is the reward function, and Tmax is the maximum
number of interaction steps per episode. At each turn t,
the agent observes a state st ∈ S that encodes the original
question q and the history of past attempts and feedback:

st = Concat(q, {(ak, fk)}t−1
k=1), (1)

where ak denotes the k-th answer, and fk is a feedback token
returned by the environment. The agent then generates an
answer at ∼ πθ(· | st) and receives a scalar reward:

rt =

{
1, if at is correct,
0, otherwise.

(2)

The episode ends when the agent provides a correct answer
or reaches the maximum number of steps Tmax. This formu-
lation grounds the multi-turn learning problem in a standard
RL framework.

3.2. Unary Feedback as Observation (UFO)

To implement the MDP described above on static datasets,
we propose a simple yet general mechanism called Unary
Feedback as Observation (UFO) (Figure 4). This mech-
anism defines how the state history is constructed and pre-
sented to the agent. The key idea is to restrict fk in the
observation to negative signals only. Specifically, when an
answer ak is incorrect, the feedback is a generic signal such
as TryAgain. When the agent produces a correct answer,
the episode terminates immediately. Consequently, no ex-
plicit positive confirmation (e.g., Correct) is ever added
to the state history. The agent thus only receives unary feed-
back and must learn to revise its answers based solely on a
history of failed attempts.

In practice, the prompt is constructed as a natural-language
sequence concatenating all previous attempts and their feed-
back. For example:

Question: What is the value of ...?
Attempt 1: [wrong answer]
Feedback: Try Again.
...
Attempt K: [correct answer]

This UFO mechanism enables us to transform static single-
turn datasets into multi-turn interaction episodes without re-
quiring structural changes, expert annotations, or execution
environments. Thus, UFO allows multi-turn reinforcement
learning on LLMs with minimal supervision. We describe
this training setup as follows.

3.3. Reinforcement Learning with Unary Feedback

Given the MDP formulation and the UFO-based observation
design, we optimize the agent using reinforcement learning
to learn revision-aware and multi-turn policies. Since the
dataset only contains the final-answer accuracy and lacks
ground-truth reasoning traces, supervised finetuning is not
applicable. Reinforcement learning, in contrast, enables
exploration of diverse reasoning strategies under sparse and
delayed supervision.

We adopt Proximal Policy Optimization (PPO) to train the
policy πθ, following prior work (Hu et al., 2025; Wang et al.,
2025) which shows that a learned critic enables fine-grained
value estimates and stabilizes optimization. At each episode,
the agent interacts with a problem over multiple rounds. At
each turn t, it observes input xt, generates an answer at,
and receives a binary reward rt ∈ {0, 1}. The resulting
trajectory is defined as:

τ = {(x1, a1, r1), (x2, a2, r2), . . . , (xT , aT , rT )}, (3)

where T ≤ Tmax is the number of turns before success or
termination. The objective is to maximize the expected
return:

J RL(θ) = Eτ∼πθ

[
T∑

t=1

rt

]
. (4)
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We apply PPO with a clipped surrogate objective. For each
training batch, we estimate the advantage Ât using a base-
line value function and update the policy as:

LPPO(θ) = Et

[
min

(
ρÂt, clip(ρÂt, 1− ϵ, 1 + ϵ)

)]
, (5)

where ρ= πθ(at|xt)
πθold (at|xt)

. Crucially, the UFO design enables the
policy to condition on the full history of failure signals, giv-
ing rise to context-sensitive behaviors such as error correc-
tion, elimination, and hypothesis refinement—capabilities
that are difficult to elicit through static supervision alone.

3.4. Reward Design for Adaptive Reasoning

Binary correctness signals offer a minimal form of super-
vision, but they could induce suboptimal behavior such as
blind trial-and-error or repeated guesses. To encourage more
efficient and reflective reasoning, we introduce a trajectory-
level reward decay with repetition penalty. Reward decay
encourages minimality by favoring trajectories that reach
correct answers in fewer turns, thereby promoting concise
and purposeful reasoning, while the repetition penalty pro-
motes diversity by discouraging repetitive generations and
encouraging the model to explore alternative strategies upon
failure.

Formally, reward decay promotes early success by assign-
ing exponentially diminishing rewards to correct answers
produced at later turns:

Rt =

{
γt, if at is correct,
0, otherwise,

(6)

where γ ∈ (0, 1) is a decay factor that favors solving the
problem in fewer turns.

We define repetition penalty based on the number of effec-
tive answers—i.e., responses that have not been submitted
previously in the same episode. Let T denote the number of
turns in the episode, and E(τ) be the number of effective
answers in the trajectory τ . We define a normalized penalty
term:

Penalty(τ) = λ ·
(
1− E(τ)

T

)
, (7)

where λ > 0 is a tunable penalty weight, and E(τ)/T
measures answer diversity. The penalty is maximized when
all answers are identical, and vanishes when all are distinct.

Combining above components, the trajectory-level reward
for RL training is defined as:

R = Rt − Penalty(τ). (8)

To ensure syntactic validity and improve training stability,
we apply a small penalty η < 0 for each invalid output
across turns, i.e., when the model produces malformed or
missing answers. To summarize, the reward is determined
by the reasoning correctness at the last turn, answer diversity
and format correctness of model answers across turns.
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Figure 5: Multi-turn (5-turn) RL
significantly outperforms single-
turn baseline, achieving higher
success rates (Pass @ 5) with
similar inference cost.
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Figure 6: Performance compari-
son when evaluating with 5 turns
after training with different max-
imum turns (1, 5, and 10). Multi-
turn training yields better perfor-
mance.

4. Experiments
4.1. Setup

Dataset We conduct major experiments on the MATH sub-
set of MetaMathQA (Yu et al., 2024) dataset (MMQ-Math),
where data are augmented from the training sets MATH.
This environment provides math questions with adequate
difficulty, enabling us to observe and analyze its reasoning
emergence. We also select six widely–used datasets to evalu-
ate training generalization: MMQ-Math requires multi-step
symbolic and numerical reasoning to solve complex math
word problems. TheoremQA (Chen et al., 2023b) evaluates
formal mathematics understanding through questions about
theorem statements and proofs. HotPotQA (Yang et al.,
2018) tests multi-hop factual reasoning across Wikipedia
passages, while ConcurrentQA (Arora et al., 2022) focuses
on temporal and causal reasoning in concurrent event set-
tings. MMLU (Hendrycks et al., 2020) assesses general-
knowledge proficiency across 57 academic subjects, and its
extension, MMLU-Pro (Wang et al., 2024b) covers more
specialized expert domains.

Training Settings We train Qwen-2.5-3B-Instruct with PPO
for 200 optimization steps on A100 GPUs. Each batch sam-
ples P=8 prompts, with N=16 rollouts per prompt. During
training, we experiment with three distinct configurations
for the maximum number of turns per episode, setting Tmax
to 1, 5, and 10, respectively. For the validation phase, Tmax
is fixed at 5 turns. In both training and validation, episodes
are limited to a maximum of 10 actions in total. Policy
updates use PPO with GAE parameters (γ, λ) = (1.0, 1.0),
Adam with β = (0.9, 0.999), entropy coefficient 10−3.

Baseline and Metrics We compare our method UFO
against a single-turn PPO-trained model using parallel sam-
pling. For each problem, the baseline generates k inde-
pendent responses in parallel and is evaluated using stan-
dard Pass@k metric. In contrast, our multi-turn model
generates responses sequentially with unary feedback af-
ter each attempt, and is evaluated using both Succ@k and
AvgTurns. Success is recorded if any of the 5 responses
is correct. We also conduct ablation studies with different
maximum interaction turns (Tmax) to further analyze the
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Table 1: 5-turn success rate (%) across different tasks and training settings.

Math QA General

MMQ-Math TheoremQA HotPotQA ConcurrentQA MMLU MMLU-Pro

Base Model w/o RL 52.3 28.3 7.8 3.9 75.2 42.2
RL on MMQ-Math 79.7 32.0 19.5 12.9 66.8 48.3
gray!15 + 5-turn UFO 88.5 40.8 26.6 15.2 85.2 60.9
RL on HotPotQA 72.4 31.8 38.3 16.6 71.5 49.3
gray!15 + 5-turn UFO 72.7 29.2 44.2 16.8 76.6 48.9

effect of multi-turn training.

We report the following complementary metrics to assess
both effectiveness and efficiency.

• Pass@k (Single-turn baseline). The proportion of prob-
lems for which at least one of the k parallel completions
is correct. This metric reflects performance when no
feedback is used during generation.

• Succ@k (Multi-turn model) This metric measures the
percentage of problems solved within a fixed number of
interaction turns. Let τj be the number of turns the agent
takes to solve problem qj , or ∞ if it fails. We have:

Succ@k =
1

N

N∑
j=1

1[τj ≤ k]. (9)

We report Succ@1 for single-turn performance, and
Succ@5/10 to reflect multi-turn capability.

• Average Number of Turns (Multi-turn model) To
evaluate interaction efficiency, we report the average
number of turns the agent takes to solve each problem:
AvgTurns = 1

N

∑N
j=1 Tj . Tj denotes the number of in-

teractive turns taken for problem qj . This metric reflects
how efficiently the agent reaches a solution, accounting
for retries and step-wise refinement across multi-turn
episodes.

4.2. Experimental Results and Findings

In this section, we present empirical findings that address
three central questions in our study of multi-turn reinforce-
ment learning with unary feedback:

1. Section 4.2.1: Does multi-turn RL unlock stronger rea-
soning than single-turn training?

2. Section 4.2.2: Can models effectively revise their an-
swers from sparse feedback alone?

3. Section 4.2.3: How do reward shaping strategies impact
reasoning efficiency and diversity?

We explore each question in the following subsections, with
quantitative analyses and ablation studies. Additional quali-
tative examples and robustness checks are included in the
Appendix.
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Figure 7: Validation performance (Succ@k) of models trained
with different roll-out turns under varying inference-time turn
budgets. Multi-turn training (5 or 10 turns) consistently yields
higher success rates across all inference turn budgets, including
k = 1, indicating internalization to single-turn reasoning.
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Figure 8: Comparison of success rate with multi-turn setting.
(a) with feedback prompt in both training and validation compared
to blank prompt; (b) with feedback prompt only in training com-
pared to blank prompt.

4.2.1. MULTI-TURN RL UNLOCK HIGHER UPPER
BOUND OF LLM REASONING

We compare models trained with multi-turn RL against
single-turn PPO baselines, using Succ@5 on a held-out
validation set evaluated at 21 checkpoints across 200 train-
ing steps. During validation, each agent is allowed up to 5
interaction turns per problem (k = 5).

As shown in Figure 5, multi-turn training consistently out-
performs the single-turn baseline, achieving up to 14%
higher success rate with comparable inference cost. This
highlights the benefit of iterative revision under sparse feed-
back.

Furthermore, we conduct additional experiments compar-
ing various multi-turn training budgets (Tmax = 1, 5, 10)
while consistently using a 5-turn validation setup. Findings
presented in Figure 6 demonstrate that larger training bud-
gets yield enhanced performance relative to the single-turn
baseline. Notably, both the Tmax = 10 and Tmax = 5 con-
figurations deliver more than a 6% relative improvement
over single-turn training at their peak, clearly emphasizing
the benefits of multi-turn training.

To validate the robustness of these improvements, we ex-
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Figure 9: Validation under different verbal feedback prompts.
Success rates and action counts remain consistent across all vari-
ants, demonstrating UFO’s robustness to various prompts.
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Figure 10: Comparison of reward shaping strategies. While
constant, linear decay, and exponential decay schedules achieve
similar success rates (left), exponential decay consistently leads to
fewer actions per episode (right), indicating more efficient problem
solving with less external supervision.

pand our analysis by evaluating peak-performing models
trained with Tmax ∈ 1, 5, 10 across varied inference-time in-
teraction budgets (k ∈ 1, 2, 4, 6, 8, 10). Results illustrated in
Figure 7 reinforce previous observations, consistently show-
ing superior Succ@k performance by models trained under
multi-turn conditions.Intriguingly, these improvements are
observable even at the lowest inference budget (k = 1),
suggesting that multi-turn training enhances not only iter-
ative performance but also generalizes well to single-turn
scenarios.

We further evaluate multi-turn reasoning capability trans-
fer. Table 1 reports 5-turn success rates across six bench-
marks spanning mathematical reasoning (MMQ-Math, The-
oremQA), question answering (HotPotQA, ConcurrentQA),
and general knowledge (MMLU, MMLU-Pro). We ob-
serve that applying 5-turn UFO on top of task-specific
reinforcement learning (RL) consistently improves per-
formance across all domains. Note that since MMLU is
a four-way multiple-choice benchmark, and we allow the
model to attempt up to five independent completions. Under
this setting, the model is theoretically guaranteed to produce
a correct answer within the five attempts. Nevertheless, we
adopt this setting to ensure consistency with prior work and
to allow fair comparison across different datasets.

On the in-domain MMQ-Math dataset, 5-turn UFO raises
performance from 52.3% to 88.5%. Notably, the benefit
of UFO extends beyond the source task: when models
trained on MMQ-Math are evaluated on TheoremQA, Hot-
PotQA, and ConcurrentQA, UFO provides gains of +8.8,
+7.1, and +2.3 points respectively over RL alone, highlight-
ing strong cross-task generalization. Similar trends are ob-
served when training on HotPotQA, where UFO improves
downstream TheoremQA (+0.9), MMLU (+5.1), and Con-
currentQA (+0.2). The most striking results occur in the

general knowledge domain: although RL on MMQ-Math
degrades MMLU performance from 75.2% to 66.8%, ap-
plying UFO not only recovers but surpasses the original ac-
curacy, reaching 85.2%. On MMLU-Pro, UFO also boosts
performance from 48.3% to 60.9%. These results collec-
tively demonstrate that UFO enhances multi-turn reasoning
while preserving and even improving generalization to out-
of-domain tasks.

4.2.2. MULTI-TURN SETTING ENABLES LRM TO
REVISE FROM FEEDBACK

The multi-turn setting enables agents to engage repeatedly
with each prompt (up to Tmax turns), thereby constructing
richer and more informative interaction trajectories from the
same training data. This enhanced utilization of feedback is
hypothesized to extract more meaningful learning signals
per problem, potentially improving solution quality and
accelerating convergence in data-limited contexts.

To empirically validate that LRMs can be improved effec-
tively utilizing conversational feedback for revision, we
compared 5-turn training scenarios with and without ex-
plicit feedback prompts. Results presented in Figure 8(a)
support this hypothesis, demonstrating a 8% peak perfor-
mance improvement when explicit feedback is provided.

An additional analysis with feedback prompt only in training
(Figure 8(b)) reveals performance improvement as well.
This suggests that multi-turn training can even intrinsically
enhance model reasoning capabilities.

Finally, our robustness analysis in the Figure 9 shows that
the effectiveness of this approach is preserved across a range
of prompt formulations, underscoring its practical applica-
bility in real-world scenarios.

4.2.3. REWARD SHAPING ENCOURAGES EFFICIENT
PROBLEM SOLVING

We investigate how different reward schedules influence the
agent’s learning behavior, particularly in encouraging early
success versus allowing extended exploration. All schedules
define a reward r(n) based on the turn index n when the
first correct answer is produced, with n ∈ {1, . . . , Tmax}.

We define and evaluate three distinct reward schedules. Fol-
lowing the formulas proposed in Section 3.4, we compare
three approaches: (1) Exponential Decay: rexp(n) = γn

(with γ = 0.5), (2) Linear Decay: rlin(n) = max(0, 1 −
0.2(n − 1)), (3) Constant Reward: rconst(n) = 1. All
schedules operate for n ∈ 1, . . . , Tmax. The agent’s objec-
tive remains to maximize the expected cumulative reward.

Experimental validation (Figure 10) confirms that exponen-
tial reward decay notably reduces the mean number of
actions by roughly 10%, without sacrificing overall suc-
cess rates. This reduction in action count suggests that the
exponential decay schedule encourages the model to engage
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in more profound self-reflection and systematic thinking
before generating a response. By compelling the model to
find solutions in fewer turns, it learns to be more deliberate
and efficient, thus minimizing redundant interactions.

By considering the normalized penalty term in our experi-
ment (Equation 7), we count the number of non-repetitive
answer for each validation round, as shown in Figure 11. We
can tell the percentage increases from 80% to 90%, sug-
gesting that the model performs better in the later stages of
training as the model learned to generate different responses
better, reducing duplicate answers. This is an important
measure of model performance, as high repetition rates lead
to higher penalties and thus lower overall rewards. The chart
show that the model did improve in this area during training.
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Figure 11: Proportion of effective answers over training. The
upward trend suggests improved diversity across turns, which
reduces penalty from repeated responses and contributes to higher
overall rewards.

5. Related Work
Enhancing LLM Reasoning and Multi-Turn In-
teractions. Test-time reasoning frameworks keep
model weights frozen yet boost performance: Graph-of-
Thought (Besta et al., 2023), Reflexion (Shinn et al., 2023),
Monte Carlo Tree Self-Refine (Zhang et al., 2024), Self-
Refine (Madaan et al., 2023), CRITIC (Gou et al., 2023) and
memory-augmented agents such as POEM (Do et al., 2024)
and Larimar (Das et al., 2024) rely on search, self-feedback
or episodic memory without updating model parameters.

Training-time optimisation methods, in contrast, adjust
the policy itself. RLHF (Christiano et al., 2017; Ouyang
et al., 2022) and its low-cost variant RLAIF (Lee et al., 2023)
align models to preference data; scalable-oversight debate
protocols explore alignment with weak judges (Kenton et al.,
2024). Lightweight objectives such as Direct Preference Op-
timisation (DPO) (Rafailov et al., 2023), Parameter-Efficient
RLHF (PERLHF) (Sidahmed et al., 2024) and Self-Play
Fine-Tuning (SPIN) (Chen et al., 2024) further cut roll-out
cost, while hierarchical ArCHer (Zhou et al., 2024) tack-
les long-horizon credit assignment. Benchmarks like UNO
Arena (Qin et al., 2024) expose the strengths and weak-
nesses of both families in stateful, multi-turn settings.

Advancements in Mathematical Reasoning with Large
Language Models. LLMs have advanced rapidly on math-
ematical benchmarks, from grade-school GSM8K (Cobbe
et al., 2021) to Olympiad-level MATH (Hendrycks et al.,
2021). Prompting innovations, like Chain-of-Thought (Wei

et al., 2022), its self-consistent variant (Wang et al., 2022),
and Tree/Graph-of-Thought (Yao et al., 2023b; Besta et al.,
2023), made intermediate reasoning explicit. ReAct inter-
leaves reasoning with environment actions (Yao et al., 2022),
while tool-coupled approaches such as PAL (Gao et al.,
2022), PoT (Chen et al., 2023a) and Toolformer (Schick
et al., 2023) off-load heavy computation. Verifier pipelines
boost reliability: from Let’s Verify Step-by-Step (Light-
man et al., 2023) to AutoPSV (Lu et al., 2024), MATH-
Shepherd (Wang et al., 2023) and progress-aware veri-
fiers (Setlur et al., 2024). Binary-search debuggers like
URSA locate first-error steps (Luo et al., 2025). Neverthe-
less, intrinsic self-correction remains limited (Huang et al.,
2023).

6. Conclusions and Limitations
In this work, we highlight a critical limitation of current
single-turn RL training: its tendency to impair multi-turn
reasoning by promoting repetitive and shallow responses.
To address this, we propose Unary Feedback as Observa-
tion (UFO), a simple yet effective method that integrates
minimal feedback into existing RL pipelines. UFO enables
models to recover and improve both single-turn and multi-
turn reasoning performance. Our experiments show a 14%
gain in multi-turn accuracy while preserving single-turn
quality. Additionally, we demonstrate that incorporating
reward decay and repetitive penalty encourages deeper rea-
soning, self-correction and generating different responses.
Our approach is lightweight, generalizable, and easily ap-
plicable to existing datasets. A limitation of our work is
its primary focus on mathematical reasoning tasks, leaving
its generalizability to broader reasoning domains for future
investigation.
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A. Extended Background of Reinforcement Learning in LLMs
Reinforcement Learning (RL) enables large language models to improve through interaction and reward feedback. The
general RL objective maximizes the expected reward over sampled responses:

J(θ) = Ex∼D, y∼πθ(·|x) [R(x, y)] , (10)

where πθ is the model policy, x is the input prompt, y is the generated output, and R(x, y) is a scalar reward assessing
response quality.

A widely adopted method for RL fine-tuning is Proximal Policy Optimization (PPO) (Schulman et al., 2017), which stabilizes
training by clipping the likelihood ratio between the new and old policies. The ratio is defined as:

ρt(θ) =
πθ(yt | xt)

πθold(yt | xt)
. (11)

The PPO objective minimizes over the clipped surrogate advantage:

JPPO(θ) = Et [min (ρtAt, ρ̂tAt)− βDKL] , (12)

where ρ̂t = clip(ρt, 1− ϵ, 1 + ϵ), and At is the advantage function estimating how much better yt is than the baseline under
prompt xt.

For advantage estimation, Generalized Advantage Estimation (GAE) (Schulman et al., 2015) is often used:

A
GAE(γ,λ)
t =

∞∑
l=0

(γλ)lδt+l, with δt = rt + γV (xt+1)− V (xt), (13)

where (γ, λ) trade off bias and variance.

More recently, DeepSeekMath (Shao et al., 2024) and DeepSeek-R1 (DeepSeek-AI, 2025) adopts Group Relative Policy
Optimization (GRPO), a RL method that samples a set of outputs {yi}Gi=1 for each prompt x, and optimizes:

JGRPO(θ) = Ex,{yi} [Jgroup(θ)] , (14)

with

Jgroup(θ) =
1

G

G∑
i=1

min (ρiAi, ρ̂iAi)− βDKL, (15)

where the advantage Ai is computed using a reward-normalized baseline:

Ai =
ri − mean({rj})

std({rj})
. (16)

This avoids dependency on value networks and uses rule-based or environment-specific rewards ri, making it well-suited for
reasoning tasks where explicit heuristics can guide learning. GRPO has shown to induce emergent multi-step reasoning
behavior across domains.

B. Detailed Evaluation under Multi-round Settings
We illustrate a detailed analysis of how multi-round training improves generalization on long-horizon interactive reasoning.
Figure 12 provides a comprehensive view of validation performance across all checkpoints, comparing models trained under
1-round, 5-round, and 10-round settings. Each curve represents evaluation success rates under a fixed number of evaluation
rounds.

We observe that under 1-round evaluation (top-left), all training strategies achieve similar performance, suggesting that
even single-turn training can suffice in this limited setting. However, as evaluation round count increases, the gap between
single-round training and multi-round training becomes increasingly significant. In particular, models trained with 10-round
UFO feedback consistently outperform the others under 6, 8, and 10-round evaluation, demonstrating more stable and
generalizable behavior across turns.

These results support our core hypothesis: unary feedback, when used as structured observation during training,
enables better long-horizon generalization. In contrast, models trained only with single-round interactions struggle to
adapt to multi-turn dynamics, leading to degraded performance as the task horizon increases.
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Figure 12: Performance across different evaluation round settings. Each subplot shows the success rate evaluated at r rounds. While
all methods perform similarly under 1-round evaluation, models trained with multi-round feedback (UFO) generalize significantly better
to longer evaluation horizons.

C. Prompt Settings
C.1. Problem Solving Model Prompt

We adopt a simple and structured prompt format for mathematical problem solving, following prior designs from Shao
et al. (2024); Yang et al. (2024), with an extension to support multi-turn interactions. A key element of our prompt is the
explicit <think> and <answer> separation, paired with an action budget (Y) and max length (Z). This guides the model
to reason step-by-step while planning within a fixed turn horizon, improving controllability and alignment in multi-turn
settings. As shown in Box 1, we present the prompt template used during training and evaluation.

Box 1: Model Prompt Template

<|im start|>system
{prompt}
You’re a helpful assistant.
<|im end|>
<|im start|>user
{prompt}
You are solving Math problems.
Turn X:
State:
(Question)
You have Y actions left. Always output: <think> [Your thoughts] </think>
<answer> [your answer] </answer> with no extra text. Strictly follow this
format. Max response length: Z words (tokens).
<|im end|>

13



<|im start|>assistant
... (This conversation pattern repeats for up to K turns)
<|im end|>

C.2. Feedback Provider Model Prompt

We also present the prompt for the feedback provider that gives the problem-solving model more detailed feedback as
follows.

Box 2: Tutor Prompt Template

<|im start|>system
You are a helpful math tutor.
<|im end|>
<|im start|>user
Problem: {question}
Student’s answer: {wrong answer}
This answer is incorrect. Give a brief, encouraging hint (1--2 sentences)
that helps the student reconsider their approach without revealing the
correct answer. Focus on guiding them to check their work or think about
the problem differently.
Response format: Just the hint, no extra formatting.
<|im end|>
<|im start|>assistant
...
<|im end|>

C.3. TheoremQA Prompt Format

The TheoremQA environment follows a similar prompting structure as the MMQ-Math, with an additional image token
placed at the beginning of the question when a picture is present. This enables compatibility with multimodal pipelines,
where the image is processed separately while the text prompt includes a placeholder token to signal its presence.

As shown in Box 3, the image token <image> is placed on a new line above the question if an image is available.

Box 3: TheoremQA Prompt Template

<|im start|>system
You’re a helpful assistant.
<|im end|>
<|im start|>user
{prompt}
You are solving Math problems.
Turn X:
State:
<image>
+ (Question)
You have Y actions left. Always output: <think>[Your thoughts]</think><answer>[your
answer]</answer> with no extra text. Strictly follow this format. Max
response length: Z words (tokens).
<|im end|>
<|im start|>assistant
...
<|im end|>
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Table 2: Hugging Face model names used in the unique answer ratio evaluation.
Method Model (Hugging Face name)

DAPO Qwen/Qwen2.5-32B
BytedTsinghua-SIA/DAPO-Qwen-32B

Dr. GRPO Qwen/Qwen2.5-Math-7B
sail/Qwen2.5-Math-7B-Oat-Zero
Qwen/Qwen2.5-Math-1.5B
sail/Qwen2.5-Math-1.5B-Oat-Zero

GRPO Qwen/Qwen2.5-0.5B
hkust-nlp/Qwen-2.5-0.5B-SimpleRL-Zoo
Qwen/Qwen2.5-1.5B
hkust-nlp/Qwen-2.5-1.5B-SimpleRL-Zoo
Qwen/Qwen2.5-7B
hkust-nlp/Qwen-2.5-7B-SimpleRL-Zoo
Qwen/Qwen2.5-14B
hkust-nlp/Qwen-2.5-14B-SimpleRL-Zoo

PPO Qwen/Qwen2.5-Math-7B
RLHFlow/Qwen2.5-7B-PPO-Zero
Qwen/Qwen2.5-3B-Instruct
LichengLiu03/Qwen2.5-3B-UFO

D. Model Evaluation Details
We present the model used to evaluate answer repetition in Table 2.

E. Case Analyses
We investigate the impact of multi-turn reinforcement learning (RL) on large language models (LLMs) through a series of
curated examples across distinct training stages. These case studies (shown in Boxes 4–7) highlight the evolving dynamics
of exploration, convergence, and reasoning quality throughout training.

E.1. Case 1: Pre-training Behavior

Before any reinforcement learning, we observe the model’s default multi-turn reasoning behavior in a symbolic pattern-
matching task (Box 4). The model is asked to recover a missing variable X from a repeating alphabetic value pattern, given
partial information and a constraint on the sum of values in a specific word. In Turn 1, the model identifies the relevant
positions in the word “numeric” and proposes an initial guess for X . As feedback indicates the answer is incorrect, the
model progressively refines its understanding: it attempts to align characters in the input word with their positions in the
pattern and adjusts its value for X .

Despite making several wrong guesses, the model demonstrates adaptive behavior across turns: it updates its assumptions,
introduces new hypotheses, and makes meaningful structural progress (e.g., recognizing the 8-length cycle). However, it
ultimately fails to reach the correct solution within the available steps. The case shows that pretrained models already
possess multi-step reflective capabilities and can utilize external feedback to revise their reasoning, even without
explicit training for multi-turn alignment. It suggest that reinforcement learning has the potential to further stabilize and
guide emergent reasoning process toward convergence.

E.2. Case 2: Post Single-turn RL

After reinforcement learning with single-step reward feedback, the model demonstrates drastically different behavior from
its pretrained counterpart (Box 5). When tasked with identifying the variable X in a cyclic pattern-based word problem, the
model immediately commits to a single interpretation. In Turn 1, it attempts a symbolic derivation by aligning the letter
values of “numeric” with a fixed periodic pattern, then solving X − 3 = −1. However, this derivation mistakenly assumes
that the letters in “numeric” correspond to the first 7 elements of the pattern without justifying the mapping. More notably,
this exact sequence of logic and answer is repeated identically in Turns 2 through 5.

15



Table 3: Comparison of multi-turn reasoning behaviors across training stages.
Case Stage Exploration Convergence Reasoning Quality Failure Mode

1 Pre-RL High No Incomplete Early guessing
2 Single-turn RL None No Repetitive Overfitting
3 Multi-turn RL Moderate Yes Correct aligned
4 Multi-turn RL Moderate Yes Incorrect Reasoning drift

The case reveals that single-turn RL induces brittle, overconfident behavior: once the model settles on a trajectory
during initial inference, it does not reconsider alternative hypotheses or respond meaningfully to corrective feedback. The
reward optimization has led to collapse in exploration, as each turn simply replays the same incorrect reasoning with no
adaptation. In contrast to the pretraining stage, where the model at least attempts different strategies, this behavior illustrates
a major drawback of single-step reward supervision: it teaches the model what to say once, but not how to revise when it’s
wrong.

E.3. Case 3: Success Adaptation to Feedback Through Multi-turn RL with UFO

This example illustrates the effectiveness of multi-turn reinforcement learning (Box 6). The model is prompted to determine
the sum of all positive integers n for which n+18

n is an integer. In Turn 1, it begins by simplifying the expression to 1 + 18
n ,

and attempts a partial answer without listing all divisors. Upon receiving feedback, the model updates its understanding in
Turn 2 by enumerating all positive divisors of 18. By Turn 3, it completes the reasoning process by summing those divisors
correctly, arriving at the correct final answer of 39.

The case shows a successful case of multi-turn self-correction, where the model refines its reasoning incrementally in
response to feedback. Each turn builds on the previous one: the model first identifies the mathematical form, then retrieves
the correct domain knowledge (divisors), and finally executes a complete and valid computation. Unlike single-turn RL,
the multi-turn reward structure encourages adaptive reasoning and gradual convergence. The example shows that
properly trained multi-turn agents can both reason correctly and update their behavior mid-trajectory in pursuit of a verifiable
answer.

E.4. Case 4: Reasoning Drift of Multi-turn RL with UFO

We examine a failure trajectory under multi-turn reinforcement learning where the model arrives at the correct final answer
through incorrect or misaligned reasoning. As shown in Box 7, the task is to find the value of X such that the matrix(
X 3
−1 7

)
has an inverse consistent with the given answer “17.” In the initial turn, the model misinterprets the problem

structure by assuming that the matrix inverse itself is the scalar 17, and raises a structural objection. In the next turn, it shifts
to a more plausible interpretation where 17 is assumed to be the determinant. This leads to the formulation of the correct
equation 7X + 3 = 17, though the value of X is still miscalculated at that stage.

By the third turn, the model correctly solves for X = 2, but then presents a flawed expression for the inverse matrix,
misapplying the standard inversion formula for 2× 2 matrices. Despite producing the right numerical solution, the trajectory
contains conceptual errors related to matrix algebra, including an incorrect cofactor layout. This case highlights a form of
reasoning drift: while the final output aligns with the ground truth, the intermediate steps do not constitute a logically
valid derivation. Such behavior reveals a potential failure of reward design in multi-turn RL, where correctness of the
answer is reinforced even in the absence of faithful reasoning.

To summarize (as in Table 3), multi-turn RL with UFO improves convergence and stabilizes reasoning, but naive reward
design can still lead to misalignment between thought and outcome. It highlights the need for evaluation frameworks to go
beyond final answer correctness and explicitly assess reasoning integrity throughout the trajectory.

Box 3: Multi-Turn Rollout before training

Turn 1:
State: The letters of the alphabet are given numeric values based on the two conditions below.
• Only the numeric values of −2, −1, 0, 1 and 2 are used.
• Starting with A and going through Z, a numeric value is assigned to each letter according to the following pattern:

1, 2, X, 0,−1,−2,−1, 0, 1, 2, 1, 0,−1,−2,−1, 0, . . .
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Two complete cycles of the pattern are shown above. The letter A has a value of 1, B has a value of 2, F has a value
of −2 and Z has a value of 2. The sum of the numeric values of the letters in the word “numeric” is -1. What is
the value of unknown variable X? You have 10 actions left. Always output: <think> [Your thoughts] <think>
<answer> [your answer] <answer> with no extra text. Strictly follow this format. Max response length: 100
words (tokens).
Output:
<think>First, let’s identify the positions of each letter in the word “numeric” based on the pattern provided. We
know the values of A, B, F, and Z. We need to determine the value of X and then find the values of N, M, E, and C to
sum up to -1.</think>
<answer>X = 2</answer>
Reward: 0.0

Turn 2:
State: Incorrect. Please try agin. You have 3 actions left. Always output: <think> [Your thoughts] <think>
<answer> [your answer] <answer> with no extra text. Strictly follow this format. Max response length: 100
words (tokens).
Output:
<think>Given the incorrect answer, let’s re-examine the pattern and the values assigned to each letter. The word
“numeric” has the letters N, U, M, B, E, I, C. From the provided pattern, we know the values of A, B, F, and Z. To find
the value of X, we need to identify the value for N and then determine the pattern for subsequent letters.</think>
<answer>X = 0</answer>
Reward: 0.0

Turn 3:
State: Incorrect. Please try agin. You have 2 actions left. Always output: <think> [Your thoughts] <think>
<answer> [your answer] <answer> with no extra text. Strictly follow this format. Max response length: 100
words (tokens).
Output:
<think>Given the incorrect answer, let’s re-evaluate the pattern and the values assigned to each letter in the word
“numeric”. The values for A, B, F, and Z are known. The pattern seems to repeat every 8 letters, and the values cycle
through 1, 2, X, 0, -1, -2, -1, 0. We need to determine the value of X such that the sum of the values of the letters in
“numeric” equals -1.</think>
<answer>X = -1</answer>
Reward: 0.0

Turn 4:
State: Incorrect. Please try agin. You have 1 actions left. Always output: <think> [Your thoughts] <think>
<answer> [your answer] <answer> with no extra text. Strictly follow this format. Max response length: 100
words (tokens).
Output:
<think>Given the incorrect answer, let’s re-examine the pattern and the values assigned to each letter in the word
“numeric”. The values for A, B, F, and Z are known, and the pattern seems to repeat every 8 letters with values 1, 2,
X, 0, -1, -2, -1, 0. To find the value of X such that the sum of the values of the letters in “numeric” equals -1, we
need to assign values to N, U, M, B, E, I, C and ensure their sum is -1</think>
<answer>X = 1</answer>
Reward: 0.0

Turn 5:
State: Incorrect. Please try agin. You have 0 actions left. Always output: <think> [Your thoughts] <think>
<answer> [your answer] <answer> with no extra text. Strictly follow this format. Max response length: 100
words (tokens).
Output:
<think>Given the incorrect answer, let’s re-examine the pattern and the values assigned to each letter in the word
“numeric”. The values for A, B, F, and Z are known, and the pattern seems to repeat every 8 letters with values 1, 2,
X, 0, -1, -2, -1, 0. To find the value of X such that the sum of the values of the letters in “numeric” equals -1, we
need to assign values to N, U, M, B, E, I, C and ensure their sum is -1.</think>
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<answer>X = -1</answer>
Reward: 0.0

Box 4: Model rollout after single-turn RL training

Turn 1:
State: The letters of the alphabet are given numeric values based on the two conditions below.
• Only the numeric values of −2, −1, 0, 1 and 2 are used.
• Starting with A and going through Z, a numeric value is assigned to each letter according to the following pattern:

1, 2, X, 0,−1,−2,−1, 0, 1, 2, 1, 0,−1,−2,−1, 0, . . .

Two complete cycles of the pattern are shown above. The letter A has a value of 1, B has a value of 2, F has a value
of −2 and Z has a value of 2. The sum of the numeric values of the letters in the word “numeric” is -1. What is
the value of unknown variable X? You have 10 actions left. Always output: <think> [Your thoughts] <think>
<answer> [your answer] <answer> with no extra text. Strictly follow this format. Max response length: 100
words (tokens).
Output:
<think>For the word “numeric”, the values of the letters are as follows: N has a value of 1, U has a value of 2,
M has a value of 0, E has a value of -1, R has a value of -2, I has a value of -1, C has a value of 1. The sum of
these values is 1 + 2 + 0− 1− 2− 1 + 1 = 0, which contradicts the given sum of -1. However, we can re-evaluate
the pattern and the values. The pattern repeats every 16 letters, and the values repeat as well. The word “numeric”
consists of 7 letters, so we need to find the sum of the first 7 values in the pattern: 1, 2, X, 0,−1,−2,−1. We know
the sum of these values is -1. So, we have 1 + 2 +X + 0− 1− 2− 1 = −1, which simplifies to X − 3 = −1, and
thus X = 2.</think>
<answer>2</answer>
Reward: 0.0

Turn 2:
State: Incorrect. Please try agin. You have 3 actions left. Always output: <think> [Your thoughts] <think>
<answer> [your answer] <answer> with no extra text. Strictly follow this format. Max response length: 100
words (tokens).
Output:
<think>For the word “numeric”, the values of the letters are as follows: N has a value of 1, U has a value of 2,
M has a value of 0, E has a value of -1, R has a value of -2, I has a value of -1, C has a value of 1. The sum of
these values is 1 + 2 + 0− 1− 2− 1 + 1 = 0, which contradicts the given sum of -1. The pattern repeats every
16 letters, and the values repeat as 1, 2, X, 0,−1,−2,−1, 0, 1, 2, 1, 0,−1,−2,−1, 0. For the word “numeric”, the
values are 1, 2, X, 0,−1,−2,−1. The sum of these values is 1 + 2 +X + 0− 1− 2− 1 = −1, which simplifies to
X − 3 = −1, and thus X = 2.</think>
<answer>2</answer>
Reward: 0.0

Turn 3:
State: Incorrect. Please try agin. You have 2 actions left. Always output: <think> [Your thoughts] <think>
<answer> [your answer] <answer> with no extra text. Strictly follow this format. Max response length: 100
words (tokens).
Output:
<think>For the word “numeric”, the values of the letters are as follows: N has a value of 1, U has a value of 2,
M has a value of 0, E has a value of -1, R has a value of -2, I has a value of -1, C has a value of 1. The sum of
these values is 1 + 2 + 0− 1− 2− 1 + 1 = 0, which contradicts the given sum of -1. The pattern repeats every
16 letters, and the values repeat as 1, 2, X, 0,−1,−2,−1, 0, 1, 2, 1, 0,−1,−2,−1, 0. For the word “numeric”, the
values are 1, 2, X, 0,−1,−2,−1. The sum of these values is 1 + 2 +X + 0− 1− 2− 1 = −1, which simplifies to
X − 3 = −1, and thus X = 2.</think>
<answer>2</answer>
Reward: 0.0

Turn 4:
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State: Incorrect. Please try agin. You have 1 actions left. Always output: <think> [Your thoughts] <think>
<answer> [your answer] <answer> with no extra text. Strictly follow this format. Max response length: 100
words (tokens).
Output:
<think>For the word “numeric”, the values of the letters are as follows: N has a value of 1, U has a value of 2,
M has a value of 0, E has a value of -1, R has a value of -2, I has a value of -1, C has a value of 1. The sum of
these values is 1 + 2 + 0− 1− 2− 1 + 1 = 0, which contradicts the given sum of -1. The pattern repeats every
16 letters, and the values repeat as 1, 2, X, 0,−1,−2,−1, 0, 1, 2, 1, 0,−1,−2,−1, 0. For the word “numeric”, the
values are 1, 2, X, 0,−1,−2,−1. The sum of these values is 1 + 2 +X + 0− 1− 2− 1 = −1, which simplifies to
X − 3 = −1, and thus X = 2.</think>
<answer>2</answer>
Reward: 0.0
Turn 5:
State: Incorrect. Please try agin. You have 0 actions left. Always output: <think> [Your thoughts] <think>
<answer> [your answer] <answer> with no extra text. Strictly follow this format. Max response length: 100
words (tokens).
Output:
<think>For the word “numeric”, the values of the letters are as follows: N has a value of 1, U has a value of 2,
M has a value of 0, E has a value of -1, R has a value of -2, I has a value of -1, C has a value of 1. The sum of
these values is 1 + 2 + 0− 1− 2− 1 + 1 = 0, which contradicts the given sum of -1. The pattern repeats every
16 letters, and the values repeat as 1, 2, X, 0,−1,−2,−1, 0, 1, 2, 1, 0,−1,−2,−1, 0. For the word “numeric”, the
values are 1, 2, X, 0,−1,−2,−1. The sum of these values is 1 + 2 +X + 0− 1− 2− 1 = −1, which simplifies to
X − 3 = −1, and thus X = 2.</think>
<answer>2</answer>
Reward: 0.0

Box 5: Model rollout after multi-turn RL training with UFO (Success Case)

Turn 1:
State:
Determine the sum of all positive integer values of n such that n+18

n is an integer.
You have 10 actions left. Always output: <think> [Your thoughts] </think> <answer> [your answer]
</answer> with no extra text. Strictly follow this format. Max response length: 100 words.
Output:
<think>First, I need to understand when n+18

n is an integer. This fraction can be simplified to 1 + 18
n . For this to

be an integer, n must be a divisor of 18.</think>
<answer>18 and 1 (since 1 + 18

18 = 2 and 1 + 18
1 = 19 are integers)</answer>

Reward: 0.0

Turn 2:
State:
Incorrect. Please think again.
You have 9 actions left.
Output:
<think>Given n+18

n is an integer, we have 1 + 18
n as an integer. This means n must be a divisor of 18. The

positive divisors of 18 are 1, 2, 3, 6, 9, and 18. I need to verify which of these values make the expression an
integer.</think>
<answer>1, 2, 3, 6, 9, 18</answer>
Reward: 0.0

Turn 3:
State:
Incorrect. Please think again.
You have 8 actions left.
Output:
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<think>Upon reviewing, I realize the divisors of 18 are 1, 2, 3, 6, 9, and 18. For each of these values, 1 + 18
n is

indeed an integer. Therefore, the sum of all positive integer values of n is 1 + 2 + 3 + 6 + 9 + 18 = 39.</think>
<answer>39</answer>
Reward: 0.25

Box 6: Model rollout after multi-turn RL training with UFO (Failure Case)

Turn 1:
State:
Find the inverse of the matrix (

X 3
−1 7

)
.

If the inverse does not exist, then enter the zero matrix. The answer is 17. What is the value of unknown variable X?
You have 10 actions left. Always output: <think> [Your thoughts] </think> <answer> [your answer]
</answer> with no extra text. Strictly follow this format. Max response length: 100 words.
Output:
<think>Since the inverse of a matrix is given as 17, and the matrix provided is 2x2, the inverse should be a 2x2
matrix. However, the given inverse of 17 does not align with the structure of a 2x2 matrix. The problem might have
a mistake in the provided inverse value or the matrix structure.</think>
<answer>There is an inconsistency in the problem statement. The given inverse of 17 does not match the structure
of a 2x2 matrix inverse.</answer>
Reward: 0.0

Turn 2:
State:
Incorrect. Please think again.
You have 9 actions left.
Output:
<think>Given the inverse of the matrix is provided as 17, which does not fit the expected format of a 2x2 matrix
inverse (which should be a 2x2 matrix), it seems there might be a misunderstanding. However, since the problem
statement specifies the inverse as 17, and considering the structure of the matrix, it implies the inverse is a scalar value.

For a 2x2 matrix
(
a b
c d

)
, the inverse is 1

ad−bc

(
d −b
−c a

)
. If the inverse is simply 17, it suggests ad− bc = 17.

Given the matrix
(
X 3
−1 7

)
, ad− bc = X · 7− 3 · (−1) = 7X + 3. Thus, 7X + 3 = 17.</think>

<answer>7</answer>
Reward: 0.0

Turn 3:
State:
Incorrect. Please think again.
You have 8 actions left.
Output:

<think>Given the matrix
(
X 3
−1 7

)
, the condition for the inverse to be a scalar 17 is 7X +3 = 17. Solving for X

gives 7X = 14, thus X = 2. The inverse of the matrix should be 1
17

(
7 −3
1 X

)
, which simplifies to

(
7
17 − 3

17
1
17 2

)
,

not just 17.</think>
<answer>2</answer>
Reward: 0.25
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